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Abstract Goal-oriented modelling is one of the most

important research developments in the requirements

engineering (RE) field. This paper conducts a systematic

analysis of the visual syntax of i*, one of the leading goal-

oriented languages. Like most RE notations, i* is highly

visual. Yet surprisingly, there has been little debate about

or modification to its graphical conventions since it was

proposed more than a decade ago. We evaluate the i*

visual notation using a set of principles for designing

cognitively effective visual notations (the Physics of

Notations). The analysis reveals some serious flaws in the

notation together with some practical recommendations for

improvement. The results can be used to improve its

effectiveness in practice, particularly for communicating

with end users. A broader goal of the paper is to raise

awareness about the importance of visual representation in

RE research, which has historically received little attention.

Keywords Goal modelling � i* � Visualisation �
Visual syntax � Evaluation � Visual notation �
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1 Introduction

1.1 Visual syntax: an important but neglected issue

Visual notations1 play a critical role in requirements

engineering (RE), and have dominated research and prac-

tice from its earliest beginnings. Virtually all RE notations

use diagrams as the primary basis for documenting and

communicating requirements. For example, the ‘‘structured

techniques’’ of the 1970s, probably the first RE techniques,

were highly graphical. This was their major distinguishing

feature compared to previous (text-based) techniques and

claimed as one of their major advantages [16, 22]. This

pattern continues to the present day, with UML (the

industry standard modelling language) and i* (one of the

most influential modern RE notations) also being visual

notations.

This makes it all the more surprising that visual repre-

sentation issues receive so little attention in RE research.

Evaluations and comparisons of RE notations tend to be

conducted based primarily on their semantics, with issues

of visual syntax rarely mentioned. In designing notations,

the majority of effort is spent designing the semantics of

notations (what constructs to include and what they mean),
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with design of visual syntax (how to perceptually represent

these constructs) taking place largely as an afterthought.

There is also little or no attempt to justify the symbols

chosen (design rationale) [33, 58].

1.2 i*: A goal-oriented modelling language

Goal-oriented modelling is one of the most important

research developments in the RE field. This shifts the focus

from what and how (data and processes) as addressed by

traditional analysis to who and why (the actors and the

goals they wish to achieve). Goal-oriented modelling

addresses the early analysis or requirements elicitation

phase in the RE process [11]. i* [90] is one of the most

widely used goal modelling languages [2] and vies with

KAOS [14] as the leading goal modelling notation.

1.2.1 A highly visual language

Like most RE notations, i* is a visual language. In fact, it is

more visual than most: every construct in the language is

represented graphically and i* models are defined only by

diagrams (rather than diagrams plus supporting text as is

usually the case). i* uses two diagram types to document

requirements, which correspond to different levels of

abstraction (Fig. 1):

• Strategic Dependency (SD) Diagrams (intentional

level) define dependencies among actors, treating each

actor as a ‘‘black box’’.

• Strategic Rationale (SR) Diagrams (rational level)

define the internal rationale or intentions of each actor

(shown within dotted circles), corresponding to a ‘‘glass

box’’ view of actors.

1.2.2 Lack of design rationale

Like most RE notations, i* lacks explicit design rationale

for its graphical conventions: in all the sources of i* [26,

89, 90], symbols are defined without any explanation of

why they were chosen. In fact, i* contains less design

rationale than most RE notations: graphical conventions

are mostly defined by example without even being

described in the text. For example, this is how the visual

syntax of SD diagrams is defined in the original source

of i*:

1. Strategic 
Dependency 

(SD) Diagram 

2. Strategic 
Rationale 

(SR) Diagram 

Fig. 1 i* Consists of two

diagram types (from [90])
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Figure 2 shows an SD model of the meeting scheduling

setting with a computer-based meeting scheduler.

1.2.3 Lack of adoption in practice

Goal-oriented modelling has been enthusiastically

embraced by the RE research community but has so far had

negligible impact on practice [19]. As Lockerbie and

Maiden say [45]:

Whilst the i* approach [1] has been developed and

applied to case studies for some time, it has not been

applied widely in industrial requirements projects

A recent survey of practice [15] showed that the most

widely used RE notations in practice are Data Flow

Diagrams (DFDs) and Entity Relationship (ER) models,

both developed in the 1970s. i* was not even mentioned by

survey participants, suggesting an adoption rate of close to

zero. This should be of major concern to RE researchers:

while there is always inertia to adopt new methods [8], it

has been over a decade since i* was proposed (around the

same time the first version of UML was released).

1.3 Objectives of this paper

This paper conducts an systematic analysis of i* visual

syntax, the first so far conducted. We believe such an

analysis is long overdue as there has been little debate about

or modification to its graphical conventions since it was

originally proposed (more than a decade ago). It is always

easy to criticise, but our aim in conducting this analysis is

constructive: to improve i*’s usability and effectiveness in

practice, especially for communicating with end users. In

this spirit, rather than simply pointing out problems, where

possible, we suggest ways of resolving them.

A broader goal of this paper is to raise awareness about

the importance of visual representation issues in RE, which

have historically been ignored or undervalued. Visual syntax

has a profound effect on the effectiveness of RE notations,

equal to (if not greater than) than decisions about semantics

[58]. For this reason, it deserves (at least) equal effort and

attention in evaluating and designing RE notations.

2 Previous research

A review of the literature revealed no previous analyses of

i* visual syntax. i* has stimulated an enormous amount of

research, with over 1,000 citations to its primary sources

[89, 90]. Given that it is primarily a visual language, it is

surprising that none of these papers relate specifically to its

visual syntax. While some papers propose changes to its

visual syntax, this is typically only to reflect changes or

extensions in semantics (e.g. [18]).

Despite the lack of analyses of i* visual syntax, there is

a widespread perception in the literature that the i* visual

notation is effective (italics added below):

The undoubted strengths of i* include a simple but

formal and stable semantics, a graphical modelling

notation that is simple to use, models that are ame-

nable to computational analysis, and applicability in

both agent-oriented and goal-oriented requirements

methods. [46]

i* allows for the clear and simple statement of actor’s

goals and dependencies among them. It also includes

a graphical notation which allows for a unified and

intuitive vision of the environment being modelled,

showing its actors and the dependencies among them.

[2]

However, the effectiveness of the visual notation is

stated rather than shown: in the absence of formal analyses,

it is impossible to say whether it is effective or not. One

goal of this paper is to determine whether statements like

these are justified.

The lack of attention to i* visual syntax reflects a com-

mon pattern in RE research, where issues of visual repre-

sentation are rarely given the attention they deserve. One

possible reason for this is that methods for analysing visual

syntax are less mature than those available for analysing

semantics [29, 48, 87] (an issue this paper also addresses).

However, another explanation is that researchers consider

visual syntax to be unimportant: a matter of ‘‘aesthetics’’

rather than effectiveness [33]. This view is contradicted by

research in diagrammatic reasoning, which shows that the

form of representations has an equal, if not greater, influ-

ence on human understanding and problem solving per-

formance as their content [42, 76]. Empirical studies

confirm that the visual appearance of RE notations signifi-

cantly affects understanding, especially by novices [51, 62].

3 Theoretical basis

As discussed in the previous section, one possible reason

for the lack of attention to i* visual syntax is the lack of

accepted principles for evaluating and designing visual

notations. In the absence of such principles, evaluations

can only be carried out in a subjective manner. The anal-

ysis in this paper is based on a recently proposed theory of

visual notations, called the Physics of Notations as it

focuses on the physical (perceptual) properties of notations

rather than their logical (semantic) properties [58]. This

provides a scientific basis for comparing, evaluating,
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improving, and constructing visual notations, which has

previously been lacking in the RE field.

3.1 Definitions: the anatomy of a visual notation

A visual notation consists of a set of graphical symbols

(visual vocabulary), a set of compositional rules for

forming valid expressions (visual grammar), and semantic

definitions for each symbol (visual semantics). The set of

symbols and compositional rules together form the visual

(concrete) syntax. Graphical symbols are used to signify

or symbolise (perceptually represent) semantic con-

structs, typically defined by a metamodel. An expression

in a visual notation is called a visual sentence or diagram.

Diagrams are composed of instances of graphical symbols

(symbol instances or tokens), arranged according to the

rules of the visual grammar. In this paper, we focus only on

visual syntax: how constructs are perceptually represented;

issues of semantics are specifically excluded (Fig. 2).

3.2 The dependent variable (design goal): what makes

a ‘‘good’’ visual notation?

Visual notations are uniquely human-oriented representa-

tions: their primary purpose is to facilitate human com-

munication and problem solving [31]. To be most effective

in doing this, they need to be optimised for processing by

the human mind. Cognitive effectiveness is defined as the

speed, ease and accuracy with which a representation can

be processed by the human mind [42]. This provides an

operational definition of visual notation ‘‘goodness’’ that

can be empirically evaluated. The Physics of Notations

defines this as the primary dependent variable for evalu-

ating and comparing visual notations and the primary

design goal in constructing them. Cognitive effectiveness

determines the ability of visual notations to support com-

munication with business stakeholders as well as reasoning

and problem solving by requirements engineers.

The cognitive effectiveness of visual notations is one of

the most widely accepted and infrequently challenged

assumptions in the RE field. However, as Larkin and Simon

showed in their seminal paper, ‘‘Why a Diagram is

(Sometimes) Worth 10,000 Words’’, cognitive effectiveness

is not an inherent property of visual representations but

something that must be designed into them [42]. All visual

representations are not equally effective and poorly designed

visual representations can be far less effective than text.

3.3 The visual notation design process

The Physics of Notations conceptualises the process of

visual notation design as consisting of three ‘‘spaces’’: the

problem space, the design space, and the solution space.

3.3.1 The problem space

In any graphic design task, the starting point is always the

information content to be expressed: form follows content.

In visual notation design, the problem space is defined by

the notation semantics, which should be defined by a

metamodel [35, 65] and formal semantics [32].

3.3.2 The (graphic) design space

The design space is the set of all possible graphical

encodings of a particular notation semantics. This defines a

set of semantically equivalent but cognitively inequivalent

visual notations. There are 8 elementary visual variables

which can be used to graphically encode information [4].

These are categorised into planar variables (the two

spatial dimensions) and retinal variables (features of the

retinal image) (Fig. 3). These define the dimensions of the

Visual 
notation

Graphical 
symbol 
(type)

Semantic 
construct

Symbol 
instance 
(token)

Diagram 
(visual 

sentence)

expression in instance of

Construct 
instance

instance of

consists of

consists of

Metamodel

Model

SemanticsSyntax

Type  
(language) 

level

Instance 
(sentence) 

level

signifies consists of

instance of

composition rule

signifies consists of

Fig. 2 Scope: this paper

focuses on the top left hand
quadrant of the diagram (visual

syntax) and excludes semantic

and sentence-level issues

TextureOrientationBrightnessVertical
Position

ColourSizeShapeHorizontal
Position

RETINAL VARIABLES
PLANAR

VARIABLES

0

90

45°

°

°HighMediumLow

Red Green Blue

Small

Medium

Large

Fig. 3 The design space: the visual variables define a set of building

blocks for constructing visual notations
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graphic design space. They also define a visual alphabet

for constructing visual notations: any graphical symbol can

be defined by specifying particular values for the visual

variables (e.g. shape = rectangle, colour = green) [49].

Notation designers can create an infinite number of

graphical symbols by using different combinations of val-

ues of these variables.

3.3.3 The solution (optimisation) space

Designing cognitively effective visual notations is a

problem of choosing the most cognitively effective rep-

resentations from the infinite possibilities in the graphic

design space. Principles of visual perception and cogni-

tion provide the basis for making informed choices among

the alternative graphical encodings in the graphic design

space.

3.4 Principles for designing cognitively effective

visual notations

The practical (prescriptive) component of the Physics of

Notations is a set of nine principles for designing cogni-

tively effective visual notations. These are summarised

briefly below2:

1. Semiotic Clarity: there should be a 1:1 correspondence

between semantic constructs and graphical symbols

2. Perceptual Discriminability: symbols should be clearly

distinguishable from one another

3. Semantic Transparency: use symbols whose appear-

ance suggests their meaning

4. Complexity Management: include explicit mecha-

nisms for dealing with complexity

5. Cognitive Integration: include explicit mechanisms to

support integration of information from different

diagrams

6. Visual Expressiveness: use the full range and capac-

ities of visual variables

7. Dual Coding: use text to complement graphics

8. Graphic Economy: keep the number of different

graphical symbols cognitively manageable

9. Cognitive Fit: use different visual dialects for different

tasks and/or audiences

All principles define desirable and measurable properties

of notations, so provide a basis for evaluation and design.

Improving a visual notation with respect to any of the

principles will increase its cognitive effectiveness (subject

to tradeoffs among them). The Physics of Notations thus

defines a causal theory, which posits (positive) causal

relationships between each principle and cognitive effec-

tiveness (Fig. 4). In the language of scientific theories, the

principles represent independent variables, while cogni-

tive effectiveness is the sole dependent variable. Most

Fig. 4 Causal structure of the

Physics of Notations (using

standard scientific notation for

representing theories [68])

2 Rather than defining the principles in detail here, they are defined as

they are used in the analysis.
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importantly, the principles are evidence based: they were

synthesised from theory and empirical evidence from a

wide range of fields.

3.4.1 Interactions among principles

In all design tasks, there are tradeoffs among design goals

[1]. Figure 5 summarises the interactions among the visual

notation design principles (effects are not necessarily

symmetrical). Knowledge of these interactions can be used

to make tradeoffs (where principles conflict with one

another) and exploit synergies (where principles aid port

one another one another). The objective should be to sat-

isfy all principles to an acceptable level, rather than to

optimise some at the expense of others.

3.5 i* Representation of the Physics of Notations

Visual notation design is a goal-oriented activity (like any

design task), so it should be possible to represent the

Physics of Notations as an i* model. The dependent

variable (cognitive effectiveness) is operationally defined,

so corresponds to a GOAL in i*. The principles represent

desirable and measurable properties of notations, so also

correspond to GOALS. Logically then, the relationship

between the principles and cognitive effectiveness (shown

in Fig. 4) could be represented using DECOMPOSITION rela-

tionships. However, GOALS cannot be decomposed in i*

(only TASKS can be). Another possibility would be to

relate them using MEANS-END relationships. However, i*

does not allow GOALS to act as means: only TASKS can.3

Finally (and we are running out of relationship types

here), we could consider that each principle CONTRIBUTES

to the overall goal of cognitive effectiveness: these would

be HELP CONTRIBUTIONS (as each principle positively affects

cognitive effectiveness but satisfying any single principle

is not enough to achieve cognitive effectiveness).

However, i* does not allow CONTRIBUTIONS to GOALS (only

to SOFTGOALS or BELIEFS). As a result, there seems to be no

way of representing the Physics of Notations using i*

(Fig. 6).

It is also not possible to represent the interactions among

the principles (shown in Fig. 5), which correspond

semantically to HELP, HURT or combined HELP/HURT contri-

butions, as i* does not allow GOALS to be the target of

CONTRIBUTIONS. The inability to represent the Physics of

Notations using i* suggests a possible problem with its

semantics: its grammatical rules are too restrictive and

exclude valid situations that can occur in the real world

[28].

4 Research approach

4.1 Unit of analysis: choosing an appropriate source

The first issue we faced in conducting our analysis was to

choose a particular source of i* as the basis for our anal-

ysis: there is no single definition of the language as there is,

say, for UML. There are multiple versions and variants of

the i* notation, often not fully defined and even contra-

dictory [2]. A review of the literature revealed 4 leading

candidates for our analysis:

• The original i* notation as defined in Eric Yu’s doctoral

thesis [89] and RE’97 paper [90]. These are the most

cited sources but are becoming rather dated as both are

more than 10 years old. They are also unlikely to be

used in practice as they (a) are written for an academic

audience; (b) [89] is not electronically available;

(c) [90] lacks sufficient detail to apply the language

in practice.

• The goal-oriented modelling component of Tropos [6],

which was originally based on i* but has since followed

its own evolutionary path. Tropos has the advantage of

having an explicit metamodel but differs from standard

i* in both syntax and semantics.

• The Goal-oriented Requirements Language (GRL),

which has recently been adopted as an international

standard in the telecommunications field [36]. Like

Tropos, GRL has an explicit metamodel but differs in

both syntax and semantics from standard i*.

• The i* Guide 3.0 [26], available in the form of a

Wiki.

Fig. 5 Interactions between principles: ? (red cell) indicates

a positive effect, - (green cell) indicates a negative effect,

and ± (orange cell) indicates either a positive or negative effect

depending on the situation

3
MEANS-END links are allowed between GOALS in original i* [89] but

not in the i* Guide (which we used as the basis for our analysis). No

explanation is given for this discrepancy.
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We chose the i* Guide [26] for the following reasons:

• It so represents the most up-to-date source. Being Wiki-

based represents a ‘‘living’’ version of the language,

while most other sources represent ‘‘snapshots’’ at a

point in time.

• It provides the most detailed description of i* visual

syntax.

• Being web-based, it is the most easily accessible

source, so most likely to be used by potential i* users.

Empirical studies show that web-based sources are

generally preferred to other sources [43].

• It is the only interactive source: it is based on Wiki

technology, so is able to incorporate feedback from the

i* user community. For this reason, it is most likely to

reflect i* as actually used in practice.

However, the differences in visual syntax between the

different sources of i* are relatively minor, so most of our

findings will apply to the other sources as well.

4.2 Structure of analysis

The visual notation design principles defined in the Physics

of Notations were used to conduct a systematic, symbol-

by-symbol analysis of the i* visual notation. The findings

for each principle are reported in separate sections (Sects.

5–13). The analysis for each principle is structured as

follows:

• Definition of principle

• Results of evaluation

• Recommendations for improvement

• Interactions with other principles (where relevant)

4.3 Typographical conventions

Cross-references between principles are indicated by

underlining; new or important terms by bolding; and i*

concepts by SMALL CAPITALS.

5 Semiotic Clarity

5.1 Definition of principle

The Principle of Semiotic Clarity states that there should be

a 1:1 correspondence between semantic constructs and

graphical symbols. This is necessary to satisfy the

requirements of a notational system, as defined in Good-

man’s theory of symbols [24]. When there is not a 1:1

correspondence, one or more of the following anomalies

can occur (Fig. 7):

• Symbol deficit: when a semantic construct is not

represented by any symbol

• Symbol redundancy: when a semantic construct is

represented by multiple symbols

• Symbol overload: when the same symbol is used to

represent multiple constructs

• Symbol excess: when a symbol does not represent any

semantic construct.

Semiotic Clarity maximises expressiveness (by elimi-

nating symbol deficit), precision (by eliminating symbol

overload), and parsimony (by eliminating symbol redun-

dancy and excess) of visual notations.

Fig. 7 Principle of Semiotic Clarity: there should be a 1:1 corre-

spondence between semantic constructs and graphical symbols

Fig. 6 The relationships among the principles and cognitive effec-

tiveness defined in the Physics of Notations cannot be represented

using i*. The leftmost cell shows the relationships using standard

scientific notation (a causal graph), while the cells on the right
attempt to show the same relationships using i*: however, all result in

violations to i* grammatical rules
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Evaluating semiotic clarity involves conducting a two-

way mapping between a notation’s metamodel and its

symbol set (visual vocabulary). This is problematic for the

i* Guide, as it does not include an explicit metamodel.

While Yu’s PhD thesis [89] includes a metamodel, it is

incomplete and represented using non-standard conventions

(using Telos [61]). There have been several proposals for i*

metamodels in the literature [2, 21], but these have no

official status as they were reverse engineered from text and

examples describing i*. There are also metamodels for

variants of i* such as GRL [36] and Tropos [5, 6]. A

problem with all of these for the purposes of our analysis is

that they relate to syntactically different versions of i*

(different visual dialects) to that defined in the i* Guide. To

conduct semiotic analysis, we need a metamodel specific to

the notation: an approximate one is not good enough. For

this reason, we reverse engineered a metamodel (or more

precisely, a metaclass hierarchy) from the i* Guide.

5.1.1 Why i* needs a metamodel

A clear recommendation from this research is that i* needs

an official metamodel. To facilitate communication and tool

support, this should be represented using industry standard

conventions (e.g. using the Meta Object Facility (MOF)

[65] or the recently defined ISO/IEC Standard 24744 [35]).

Currently, both i* semantic constructs and grammatical

rules are defined using natural language, which leads to

problems of inconsistency, ambiguity, and incompleteness

[2]: an explicit metamodel would help resolve such issues.

i* was developed before meta-modelling was standard

practice in defining software language engineering so it is

not surprising that it did not have one when it was first

defined. What is surprising is that it still doesn’t have an

official metamodel after more than 10 years in use. Meta-

modelling represents current best practice in software lan-

guage engineering: not having one represents a barrier to

learning, correct usage, and tool support.

5.2 Results of evaluation

5.2.1 Metaclass hierarchy

The metaclass hierarchy for the i* Guide is shown in

Fig. 8: this defines an inheritance hierarchy consisting of

semantic constructs (metaclasses) and generalisation rela-

tionships among them. Abstract metaclasses (constructs

that cannot be instantiated) are shown as dotted boxes. We

adopt the UML convention of inheriting from a single

(root) element and distinguishing between relationships

and other element types: all i* relationships are directed

relationships. It is often difficult to determine from the

textual descriptions in the i* Guide what is a separate

‘‘construct’’. To avoid making arbitrary judgements about

this, we considered everything with a separate entry or

heading in the Wiki to be a construct. However, without an

official metamodel, semiotic analysis can only be con-

ducted in an approximate manner.

Fig. 8 Metaclass Hierarchy for i*: each element on the diagram corresponds to a semantic construct (metaclass), with dotted elements showing

abstract metaclasses
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5.2.2 i* Visual vocabulary

The i* visual vocabulary is summarised in Fig. 9. Symbols

are categorised as 2-D symbols (areas or node types), 1-D

symbols (lines or link types), and spatial relationships [13].

5.2.3 Semiotic clarity analysis results

There are 31 semantic constructs in i*, consisting of 9

element types and 21 relationship types: this defines the

semantic complexity of the notation. There are 16 visually

distinct graphical symbols in the i* visual vocabulary,

consisting of 11 node types, 4 line types, and 1 spatial

relationship: this defines the graphic complexity of the

notation. Two symbols are visually distinct if and only if

they have a different value for at least one visual variable.

This is based on the definition of a graphical symbol (Sect.

3.1): a graphical symbol is defined by specifying particular

values for the 8 visual variables.

Any discrepancy between the number of constructs and

the number of symbols in a notation is due to semiotic

clarity anomalies. The equation below defines the rela-

tionship between the number of constructs, the number of

symbols, and violations to semiotic clarity.

n symbolsð Þ ¼ n constructsð Þ þ n symbol redundancyð Þ
� n symbol overloadð Þ
þ n symbol excessð Þ � n symbol deficitð Þ

The results of the semiotic clarity analysis are

summarised in Table 1: there is a minor problem of

symbol redundancy, a major problem of symbol overload,

and no symbol excess or symbol deficit. There is a negative

symbol balance (number of symbols - number of

constructs) of 15, mainly due to symbol overload.

5.2.4 Symbol redundancy (synographs)

There are two instances of symbol redundancy or syno-

graphs (the graphical equivalent of synonyms) in i*. The

first and most obvious case is that two alternative symbols

may be used to represent BELIEFS (Fig. 10). No explanation

is given for why a choice is provided, which is not provided

for any other construct. This places a burden of choice on

the notation user to decide which symbol to use and an

additional load on the reader to remember multiple repre-

sentations of the same construct.

A less obvious form of symbol redundancy (a rare case

of between-diagram symbol redundancy) is that ACTORS are

shown in different ways on different diagram types:

as circles on SD diagrams and as a compound symbol

(a circle superimposed on a larger, dotted circle) on

Fig. 9 i* Visual vocabulary (symbol set)

Table 1 Semiotic clarity analysis results

Constructs = 31

Symbols = 16

Symbol balance = -15

Symbol redundancy 2

Symbol overload 17

Symbol excess 0

Symbol deficit 0

Fig. 10 Symbol redundancy (synographs)
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SR diagrams (Fig. 11). This is an unusual representation

choice, and the rationale for this is not explained. In most

visual notations, either the same symbol is used to repre-

sent the same construct at different levels of abstraction

(e.g. UML packages are shown using the same symbol but

larger in size when their contents are expanded) or the

symbol disappears at the lower level (e.g. when processes

are exploded to lower level diagrams in DFDs). Using

different symbols also leads to potential problems of

Cognitive Integration.

5.2.5 Symbol overload (homographs)

Symbol overload is the worst type of anomaly as it results

in perceptual ambiguity and the potential for misinterpre-

tation [24]. There are 17 instances of symbol overload or

homographs (the graphical equivalent of homonyms) in

i*. All of these occur among relationship types: there are

22 distinct semantic relationship types but only 5 visually

distinct graphic relationships: on average, each graphical

link has to convey more than 4 different meanings4

(Table 2). The symbol overload for a given symbol is the

number of constructs it represents minus one (as each

symbol should represent at most one construct).

The high level of symbol overload in i* is due to:

• Contextual differentiation: ACTOR ASSOCIATIONS and

CONTRIBUTIONS use the same graphical link but connect

different types of elements. The 4 types of STRATEGIC

DEPENDENCIES are also differentiated by context (the type

of dependum). Contextual differentiation violates one

of the basic properties of the symbol system of

graphics: monosemy, which means that all symbols

should have a single meaning, defined in advance and

independent of context [4].

• Textual differentiation: labels are used to distinguish

between 6 types of ACTOR ASSOCIATIONS and 9 types of

CONTRIBUTIONS. Adding text to a graphical symbol does

not result in a new symbol as text is not a visual

variable: a graphical symbol is fully defined by its

values for the 8 visual variables. Textual differentiation

is discussed in more detail under Perceptual

Discriminability.

5.2.6 Symbol excess (visual noise)

There are no instances of symbol excess in i*.

5.2.7 Symbol deficit (visual silence)

There are no instances of symbol deficit in i*. However this

is not necessarily a good thing as some level of symbol

deficit is normally required to keep graphic complexity

manageable (see Graphic Economy). It is highly unusual

(and generally undesirable) for any RE notation to show all

constructs in graphical form.

Fig. 11 Inter-diagram symbol redundancy: ACTORS are shown using

different symbols on SD diagrams (left) and SR diagrams (right)

Table 2 Symbol overload analysis of i* relationships

Symbol Semantic relationship Symbol overload

Actor association (6 types)

14

ISA

Part of

Instance of

Plays

Covers

Occupies

Contribution (9 types)

Make

Help

Some?

Unknown

Break

Hurt

Some-

OR

And

Decomposition 0

Means-end 0

Strategic dependency (4 types)

3

Goal dependency

Softgoal dependency

Task dependency

Resource dependency

Actor context/viewpoint 0

Total = 5 Total = 22 Total = 17

4 Note: if the 9 types of contributions are not considered as separate

relationship types (but a single relationship type with different

properties like DEPENDENCY STRENGTHS), they will be treated under

Perceptual Discriminability or Visual Expressiveness. In other words,

using text to differentiate between contribution types will be a

problem whether or not they are considered to be separate constructs:

the problem will just be classified differently.
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5.3 Recommendations for improvement

To improve semiotic clarity of i*, all instances of symbol

redundancy and overload should be removed.

5.3.1 Remove synographs

Symbol redundancy can be resolved by choosing one of the

symbols to represent the construct and removing the other

symbol(s) from the notation. As we will see, later princi-

ples provide clear guidelines for choosing between the

alternative BELIEF symbols (Perceptual Discriminability and

Semantic Transparency). A potential solution to the prob-

lem of different symbols for ACTORS on SD and SR dia-

grams is proposed in Cognitive Integration.

5.3.2 Remove homographs

Symbol overload can be resolved by using visual variables

(instead of text or context) to distinguish between symbols.

Potential solutions to symbol overload are discussed under

Perceptual Discriminability (as symbol overload is a spe-

cial case of perceptual discriminability).

5.4 Interactions with other principles

Semiotic Clarity has important interactions with Com-

plexity Management and Graphic Economy. It can have

either positive or negative effects on these principles

(Fig. 12):

• Symbol deficit has a positive effect on Complexity

Management by decreasing diagrammatic complexity

(the number of diagram elements or symbol tokens) and

on Graphic Economy by decreasing graphic complex-

ity (the number of symbol types in the notation).

• Symbol overload has a positive effect on Graphic

Economy but no effect on Complexity Management: it

reduces the number of symbol types but does not affect

the number of symbol tokens.

• Symbol excess has a negative effect on both Complex-

ity Management and Graphic Economy as it increases

both the number of symbol types and symbol tokens.

• Symbol redundancy has a negative effect on Graphic

Economy but no effect on Complexity Management as

it increases the number of symbol types but the number

of symbol tokens stays the same.

6 Perceptual Discriminability

6.1 Definition of principle

Perceptual Discriminability refers to the ease and accu-

racy with which symbols can be differentiated from each

other. Accurate discrimination between symbols is a pre-

requisite for accurate interpretation of diagrams [87].

Discriminability is determined by the visual distance

between symbols, which is measured by the number of

visual variables on which symbols differ and the size of

these differences (measured by the number of perceptible

steps). While each visual variable has an infinite number of

possible values, it only has a finite number of perceptible

steps (values that are reliably discriminable by the human

mind). In general, the greater the visual distance between

symbols, the faster and more accurately they will be

recognised [88]: if differences are too subtle, errors in

interpretation can result. Discriminability requirements are

much higher for novices than for experts as we are able to

make much finer distinctions with practice [7].

6.2 Results of evaluation

6.2.1 Similarity of shapes

Of all visual variables, shape plays a privileged role in

perceptual discrimination, as it is the primary basis on

which we classify objects in the real world. This means that

more than any other variable, shapes used to represent

different constructs should be clearly distinguishable from

one another. Figure 13 shows the shapes used in i*.

Experimental studies show that entities (rectangles) and

relationships (diamonds) are often confused by novices on

Fig. 12 Interactions between Semiotic Clarity and other principles

(like Fig. 6 this also violates rules for showing contributions in i*) Fig. 13 Shapes used in i*
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ER diagrams [62]. This suggests that similar—or more

likely worse—confusion is likely to occur between i*

symbols, as there are more symbols and less obvious dif-

ferences between them.

In particular, the shapes used to represent GOAL and

BELIEF are very similar and do not represent perceptible

steps of the visual variable shape. A similar problem exists

with AGENTS and ROLES, which have a very subtle differ-

ence: AGENTS have a straight line at the top of the symbol

while ROLES have a curved line at the bottom. No expla-

nation is given for these graphic design choices (top versus

bottom = vertical position and straight versus curved =

shape), suggesting they are arbitrary. Having some ratio-

nale would help people remember which is which

(Semantic Transparency), as these symbols are frequently

confused in practice.

6.2.2 Shape inconsistency

Discriminability problems can also occur when dissimilar

shapes are used to represent the same or similar constructs.

This is a problem of visual-semantic congruence: the

visual distance between symbols should be consistent with

semantic distance between the constructs they represent. In

general, similar shapes should be used to represent similar

constructs: family resemblances among shapes can be

exploited to show family relationships among constructs

[29].

This requirement is clearly violated in i*, where one of

the subtypes of ACTOR (POSITION) is represented by a shape

from a different shape family (Fig. 14).5 A similar issue

exists with GOALS and SOFTGOALS: shapes from different

families are used to represent these concepts when they

represent the same (or very similar) things. While much is

often made of the difference between GOALS and SOFTGOALS

in i*, the semantic distance between these concepts is

really quite small. In ontological terms, both represent

states of the world an ACTOR desires to achieve [84]. The

only difference is that a GOAL has explicit measures defined

while a SOFTGOAL can only be evaluated subjectively. A

SOFTGOAL can become a GOAL if it is operationalised (i.e.

made measurable), suggesting these are not different con-

structs but different states of the same construct.

6.2.3 Discriminability of relationships: strategic

dependencies

STRATEGIC DEPENDENCIES in i* are represented by lines with

the letter ‘‘D’’ attached to each side (Fig. 15), with the

orientation of the letters indicating the direction of the

dependency (the ‘‘D’’s point towards the dependee). This

convention is one of the most distinctive (and peculiar)

characteristics of the i* visual notation and makes i* dia-

grams immediately recognisable. However, this is not

particularly effective as a visual representation technique:

• The letter ‘‘D’’ is too symmetrical, making it percep-

tually difficult to identify the direction of the depen-

dency (which way the ‘‘D’’ is pointing). In contrast,

direction of conventional arrows (which use ‘‘V’’s or

triangles) can be perceived unambiguously.

• Attaching ‘‘D’’s to both sides of the dependency

exacerbates this problem, as it requires conscious effort

to determine which ACTOR is the depender (the origin

of the dependency, who is vulnerable to the dependee)

and which is the dependee (the target of the depen-

dency, who has a commitment to the depender). Using

conventional arrows, it is easy to distinguish between

the origin and destination simply by looking at which

end the arrowhead appears.

Fig. 14 Shape inconsistency (actor types): which is the odd one out?

Fig. 15 How many commitments does Actor 1 have? Conscious

effort is required to distinguish between vulnerabilities and

commitments

5 According to private communications with i* researchers, the

POSITION symbol is meant to represent 4 ACTOR symbols superimposed

on each other, to suggest multiple roles. However we were unable to

find this design rationale documented anywhere. If it was, it would

provide an aid to remembering what the symbol means and explaining

it to users (Semantic Transparency). This provides a strong argument

for including explicit design rationale when defining visual notations:

it is highly undesirable for design rationale to be disseminated by

word of mouth.
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6.2.4 Discriminability of relationships: textual

differentiation

Textual differentiation is commonly used in UML to dis-

tinguish between symbols, and many notations have since

followed their lead. However, this is not a graphic design

practice that should be emulated, as it is cognitively inef-

fective [60]. Textual differentiation is an extreme case of

perceptual discriminability where symbols are not just

similar but visually identical: symbols that are differenti-

ated only by text have zero visual distance.

i* uses textual differentiation: to an even greater extent

than UML. In fact, most of its relationship types (around

70%) are differentiated in this way (Fig. 16): 6 types of

ACTOR ASSOCIATIONS and 9 types of CONTRIBUTIONS, which

accounts for most of the symbol overload in the notation

(Semiotic Clarity).6

There are a number of problems with using text to dif-

ferentiate between symbols:

• The first is a syntactic one: visual variables form the

building blocks for constructing visual notations while

alphabetic characters form the building blocks for

constructing textual languages. Text is not a visual

variable and using it to differentiate between graphical

symbols violates the rules of the symbol system of

graphics [4].

• It reduces speed and accuracy of perceptual discrimi-

nation: text processing relies on slower, sequential

cognitive processes [60]. To maximise discriminability,

symbols should be differentiated using visual variables

so that differences can be detected automatically and in

parallel using perceptual processes.

• It confounds the role of labels in diagrams. Labels play

a critical role at the diagram (sentence) level to

differentiate between symbol instances (tokens) and

define their correspondence to the real world (Fig. 17).

Using labels to differentiate between symbol types (at

the language level) confounds this role. In general, text

is an effective way to distinguish between symbol

instances but not between symbol types. At the notation

level, labels should appear as placeholders (variables)

rather than literals (constants).

• Using labels to distinguish between relationship types

precludes the use of user-defined and domain relevant

labels for relationships at the diagram level.

Textual differentiation of symbols is a common way of

dealing with excessive graphic complexity, a problem that

i* and UML both suffer from. However, there are much

more effective ways of dealing with this than resorting to

such measures (see Graphic Economy). In particular, the

most successful RE visual notations (e.g. ER, DFDs [15])

don’t do this. Wherever possible, information should be

encoded graphically (i.e. using visual variables) to take

advantage of the power of human visual processing and

computational offloading [73].

6.3 Recommendations for improvement

6.3.1 Shape similarity

The similarity between the standard symbols used for

BELIEF and GOAL provides a strong reason to use the alter-

native symbol for BELIEF (the cloud) as the sole represen-

tation. This would also resolve the problem of symbol

redundancy identified in Semiotic Clarity.

6.3.2 Shape inconsistency

Possible solutions to problems of shape inconsistency

(between ACTOR and GOAL types) are discussed under

Semantic Transparency.

Fig. 16 Textual differentiation

of relationships in i*

Fig. 17 Correct use of labels: to differentiate between symbol

instances (tokens) and define correspondence to the real world at

the diagram level

6 Symbol overload is a special case of perceptual discriminability

where (a) there is zero visual distance between symbols and (b)

symbols are used to represent different semantic constructs.

Requirements Eng (2010) 15:141–175 153

123



6.3.3 Strategic dependencies

STRATEGIC DEPENDENCIES are among the most important

relationships in i*, so it is important they are clearly dis-

criminable. DEPENDENCIES could be represented much more

clearly using conventional arrows, making sure to use a

different type of arrow to those already used in i* (Fig. 18).

It is now a straightforward perceptual task to distinguish

between vulnerabilities and commitments by the absence

or presence of arrowheads. As with the ‘‘Ds’’ in the original

representation, the arrows go from the depender to the

dependee.

6.3.4 Dealing with textual differentiation of relationships

Textual differentiation of relationships is the major source

of Perceptual Discriminability and Semiotic Clarity prob-

lems in i*, so resolving this should be a major priority. To

do this requires using visual variables instead of text to

distinguish between relationship types. As an example of

how to do this, consider the case of CONTRIBUTIONS, the

worst case of textual differentiation in i*, in which labels

are used to distinguish between 9 different relationship

types.7 To address this, we need to go back to the semantics

these relationships are designed to express: visual repre-

sentation should always begin with a thorough analysis of

the information to be conveyed [4]. As shown in Table 3,

these relationships are encoding a number of different (and

orthogonal) properties:

• Sign (positive, negative, and unknown): is there a

positive or negative effect on the softgoal?

• Sufficiency (sufficient, insufficient, and unknown): is

the relationship sufficient to satisfy or deny the softgoal?

• Logical dependencies (AND/OR): are the contributions

inter-dependent?

The different contribution types represent different

combinations of values of these properties. To graphically

encode these relationships, we need to use visual variables

to encode each of these elementary properties.

Sign. As one possibility, we could use different line

textures to represent positive, negative, and unknown sign

correlations. This represents use of texture (a variable

rarely used by visual notation designers but heavily used by

graphic designers and cartographers):

• Positive: ????????

• Negative: | | | | | | | | | | |

• Unknown sign: ? ? ? ? ? ? ? ? ? ?

Alternatively, we could use different line connectors (in

place of the existing arrow heads): this represents use of

shape (Fig. 19). This would resolve the problem of symbol

overload with ACTOR RELATIONSHIPS, which currently use the

same type of arrowhead. It would also increase discrimi-

nability of CONTRIBUTIONS from all other relationship types,

which mostly use different types of arrows.

Sufficiency. Sufficiency is an ordinal property, so

should be encoded using ordinal variables (see Visual

Expressiveness for a discussion about matching properties

of information to properties of visual variables). For

example, if we used texture to encode sign, we could use

darker and larger texture elements (making use of bright-

ness and size, both ordinal variables) to encode different

levels of sufficiency.

• Positive sufficient (Make): 11111111

• Positive unknown (Some ?): ? 1 ? 1 ? 1 ? 1
• Positive insufficient (Help): ? ? ? ? ? ? ? ?

Alternatively, if we used shape to encode sign (as in

Fig. 19), we could use darker or lighter fills (brightness) to

encode sufficiency (Fig. 20).

Fig. 18 Strategic Dependencies (suggested improvement): how

many commitments does Actor 1 have? This can be seen immediately

from the number of arrowheads attached

Table 3 Semantic analysis of contribution links

Contribution type Sign Sufficiency Logical operator

Make Positive Sufficient

Some? Negative Unknown

Help Positive Insufficient

Break Negative Sufficient

Some- Positive Unknown

Hurt Negative Insufficient

Unknown Unknown Unknown

And Conjunction

Or Disjunction

7 Aside from the issue of textual differentiation, there is a discrim-

inability problem with the labels chosen in that relationships with

opposite meanings have similar-looking (e.g. Hurt/Help) or similar-

sounding (e.g. Make/Break) labels.
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Logical relationships. One thing to notice about the

analysis in Table 3 is that the last two relationships (AND,

OR) are independent of all the others. The reason is that

they do not define properties of contributions themselves

but logical relationships among them: this suggests that

they should not be represented as visual properties of links

(like sign and sufficiency) but as relationships between

links. One way of doing this would be to use merged lines

to represent AND relationships and separate lines for OR

relationships (Fig. 21: left). Alternatively, different junc-

tions could be used (as in Event Driven Process Chains): in

Fig. 21 (right), shape ? brightness are used to differentiate

the junctions.

7 Semantic Transparency

7.1 Definition of principle

Semantic transparency refers to the use of graphical

representations whose appearance suggests their meaning.

While Perceptual Discriminability simply requires that

symbols be different from each other, this principle

requires that they provide cues to their meaning. Seman-

tically transparent symbols reduce cognitive load because

they have built-in mnemonics, making it easier to learn

and remember what they mean [70]. Such representations

improve speed and accuracy of understanding, especially

by naı̈ve users [7, 51].

Semantic transparency is not a binary state but a con-

tinuum (Fig. 22). Semantic immediacy means that a

novice reader would be able to (correctly) infer the

meaning of a symbol from its appearance alone (e.g. stick

figure for a person). At the other end of the scale, semantic

perversity means a novice reader would be likely to guess

a completely different meaning. At the zero point of the

scale, semantically opacity means there is an arbitrary

association between a symbol and its meaning (e.g. rect-

angles on UML Class Diagrams). The concept of semantic

transparency formalises and operationalises subjective

notions like ‘‘intuitiveness’’ or ‘‘naturalness’’ that are often

used when discussing visual notations, as it can be

empirically evaluated e.g. by getting novices to guess what

symbols mean and measuring the correlation between

guesses and correct answers (1 indicates semantic imme-

diacy while -1 indicates semantic perversity).

Icons are symbols that perceptually resemble their ref-

erent concepts: this reflects one of the basic distinctions in

semiotics [69]. Icons are particularly effective for com-

munication with novices as their meaning can be perceived

directly or easily learnt; they also support communication

across international boundaries [25]. For this reason, icons

are routinely used in design of graphical user interfaces

(GUIs) but surprisingly rarely in RE visual notations.

Empirical studies show that replacing abstract shapes with

concrete icons significantly improves understanding of RE

models by novices [51]. Semantic transparency also applies

to spatial relationships: certain spatial arrangements of

Fig. 19 Use of shape (line connectors) to encode sign of contribu-

tions: ? = positive, - = negative, ? = unknown

Fig. 20 Use of shape to encode sign and brightness to encode

sufficiency (white = insufficient, black = sufficient, 50% grey =

unknown)

Fig. 21 Use of line topology (left) or line junctions (right): to define

logical relationships among contributions

Fig. 22 Semantic transparency

is a continuum
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visual elements predispose people towards a particular

interpretation of how they are related even before the

meaning of the elements is known [29, 87].

7.2 Results of evaluation

i* currently makes very little use of semantic transparency.

Most symbols in i* are abstract geometrical shapes whose

meaning is purely conventional and must be learnt (i.e.

semantically opaque). A novice would be unlikely to be

able to guess what any of the symbols in Fig. 23 mean.

Ironically, one of the few exceptions to this is a synograph:

the cloud (the alternative symbol for BELIEF) is a widely

recognised convention for expressing inner thoughts—the

ubiquitous ‘‘thought bubble’’. i* also uses spatial enclosure

to show actor viewpoints on SR diagrams. Placing ele-

ments inside the ACTOR BOUNDARY suggests that they form

part of that actor’s rationale (as spatial enclosure naturally

suggests containment).

7.3 Recommendations for improvement

The semantic opacity of the i* visual notation represents

one of its major weaknesses for communicating with end

users. On the positive side, it also represents one of the

major opportunities for improving it. Semantic transpar-

ency is one of the most powerful tools in the visual notation

designer’s bag for improving understanding by novices.

7.3.1 Beliefs

The alternative symbol for BELIEF (cloud) is the only

semantically transparent node type in i*. This provides

another reason to choose this as the standard (and sole)

symbol for BELIEF to resolve the problem of symbol

redundancy (Semiotic Clarity).

7.3.2 Actors and actor types

The current symbols used to represent ACTORS and ACTOR

TYPES are neither discriminable nor mnemonic. An obvious

way to increase the semantic transparency of i* diagrams

would be to use stick figures to represent ACTORS (as in

UML Use Cases and rich pictures). Such figures are truly

semantically immediate, as they are universally interpreted

as representing people and have been used for this purpose

across cultures and time: stick figures are commonly seen

in early cave paintings and children’s drawings. This would

also increase the discriminability of ACTORS from other

symbols (Perceptual Discriminability).

Different types of ACTORS could be distinguished using

variations of stick figures (Fig. 24):

• An AGENT could be shown wearing dark glasses and

holding a gun (by association with agents of the 007

kind)

• A POSITION could be shown without a face as it does not

represent a specific person (or perhaps by association

with faceless bureaucrats!). Alternatively, a POSITION

could be shown with a rectangular head (not shown in

Fig. 24), suggesting a position in an organisational

chart.

• A ROLE could be shown with a hat, as ‘‘wearing

different hats’’ is a common metaphor used across

cultures for playing different roles.

Note that all ACTOR types now have the same basic

shape, thus resolving the problem of shape inconsistency

identified in Perceptual Discriminability. Drawing these

figures could present problems for the artistically chal-

lenged (Cognitive Fit), but would make diagrams more

visually interesting and appealing to novices.

Semantic immediacy versus semantic translucency.

While semantic immediacy draws on direct (literal) asso-

ciations such as perceptual resemblance (e.g. stick figures

for people), semantic translucency draws on indirect

(mnemonic) associations. To be a good mnemonic, a sym-

bol needs to be able to trigger the appropriate concept in the

reader’s mind. For example, we are not suggesting that i*

AGENTS wear dark glasses and carry guns, but use this image

to trigger the concept of ‘‘agent’’. If a novice reader sees this

Fig. 23 Semantic transparency can be empirically evaluated by

asking novices to guess what symbols mean: the current i* visual

vocabulary is mostly semantically opaque Fig. 24 Distinction between subtypes of actors
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for the first time, they would be unlikely to be able to guess

what it means (i.e. it is not semantic immediate in the strict

sense); however, once the association is explained to

them, it will help them to remember it in the future. Such

representations can draw on word association (e.g. secret

agent ? agent), rhetorical devices (e.g. alliteration:

green ? goal), metaphorical associations (e.g. hats ?
roles), or cultural associations (e.g. red ? danger).

7.3.3 Intentional elements

The remaining node types in i* are the INTENTIONAL

ELEMENTS: GOALS, SOFTGOALS, TASKS, and RESOURCES. These

are among the most important constructs in i*, yet cur-

rently all use abstract symbols that have no association

with their referent concepts (semantic opacity), making it

difficult for novices to learn and remember what they

mean. In general, it is much more difficult to find seman-

tically transparent representations for abstract concepts

such as these, which unfortunately represent the majority of

constructs in RE notations. It is usually impossible to find a

direct (semantically immediate) representation, as this

relies on perceptual resemblance, so the best we can hope

for is an indirect (semantically translucent) association.

Figure 25 shows a set of semantically translucent sym-

bols for the i* intentional elements. All of these are

designed to resemble concrete objects that are somehow

associated with the referent concept:

• The TASK symbol is designed to look like a ‘‘sticky

note’’, one of the most common ways of recording tasks

in everyday life.

• The RESOURCE symbol resembles a tree, one of our most

important natural resources.

• The GOAL symbol is designed to look like a football, by

association with goals in football (drawing on a

sporting metaphor). This symbol could be made to

look more football-like by using a 3D rather than a 3D

symbol (i.e. a sphere rather than a circle). 3D symbols

have the added advantage of being more perceptually

effective than 2D shapes [34].

• SOFTGOALS are shown as dotted circles, to suggest that

they are GOALS (as they are the same shape) but are less

well defined (as shown by their ‘‘fuzzy’’ outline). This

resolves the problem of shape inconsistency identified

in Perceptual Discriminability: GOALS and SOFTGOALS

now have the same shape and are differentiated by a

secondary visual variable (brightness).

All of these symbols rely on indirect associations rather

than direct perceptual resemblance: sticky note ? task;

tree ? resource; football ? goal (Fig. 26). However, once

the association between the (concrete) object and the

(abstract) concept is explained, it can be used to aid rec-

ognition and recall.

The proposed new symbols are also much more dis-

criminable as they use shapes from different shape families

(circles, squares, and irregular polygons) so are highly

unlikely to be confused. In most cases, improving Semantic

Transparency also improves Perceptual Discriminability

[58].

7.3.4 Putting the ‘‘fun’’ back into i*

Another, less tangible benefit of using iconic representa-

tions is that it makes diagrams look more fun and acces-

sible to novices. Appearances are important and can affect

users’ motivation to participate in the analysis process and

their perceptions of their ability to do so effectively (self-

efficacy) [70]. Pictorial representations appear less daunt-

ing to novices (especially technophobes) than diagrams

comprised only of abstract symbols [3, 70]. If diagrams

look easy to understand, this can go a long way towards

breaking down communication barriers between analysts

and business stakeholders. Empirical studies also show that

people prefer concrete objects to abstract symbols, which

makes iconic representations more enjoyable and ‘‘fun’’

[3]. Rich pictures [10], another technique used in early

analysis, make extensive use of iconic representations,

resulting in diagrams that look more like cartoons than

Fig. 25 More semantically transparent (mnemonic) shapes for

intentional elements

Fig. 26 With abstract concepts like goals, direct perceptual resem-

blance (semantic immediacy) is impossible. In such cases, the best we

can achieve is resemblance to a concrete object that can be used to

trigger that concept: in this case, a circle ‘‘resembles’’ a football,

which ‘‘suggests’’ a goal
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technical diagrams (Fig. 27). These demonstrate that RE

visual notations don’t have to be dull (though they almost

always are).

Currently, there is very little about i* diagrams that

suggests they are intended for use in early analysis. They

are as technical-looking—if not more—as diagrams used in

later development stages (e.g. UML). Replacing the

existing i* symbol set by a more iconic vocabulary would

make diagrams more cartoon-like and accessible to non-

technical people (i.e. more like rich pictures).

7.3.5 Task decomposition relationships

TASK DECOMPOSITION in i* is currently shown using links

with a perpendicular bar at the ‘‘parent’’ end (Fig. 28: left):

subtasks may appear above, below, left, or right of their

parent task. This is a semantically opaque way to show

decomposition and a novice reader would be highly unli-

kely to guess the relationship among the elements.

Decomposition could be shown in a more semantically

transparent way using ‘‘organisational chart’’ or ‘‘tree

structure’’ lines (right-angled lines which converge into

one at the parent end), with children horizontally aligned

and vertically below the parent (Fig. 28: right). Experi-

mental studies show that this configuration of elements is

naturally interpreted as a hierarchy [87] and using any

other spatial layout of elements (e.g. left to right, right to

left, or bottom to top) is likely to be misinterpreted [40]. Of

course, using such a layout convention is only possible if

diagrammatic complexity is reduced (Complexity Man-

agement): currently i* diagrams are so complex that ele-

ments must be placed wherever they fit.

Fig. 27 Rich pictures [10]: an

example of the use of pictorial

representations in early analysis

Fig. 28 Task decomposition.

Left: existing representation

(from [89]); right: this spatial

arrangement of elements is

naturally interpreted as a

hierarchy
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There is no longer any need to indicate the direction of

decomposition (the perpendicular bar in the existing rep-

resentation) as this is defined by vertical position (the

parent is always above the child). However, circles are

used as line connectors to clearly differentiate these rela-

tionships from other types of relationships (Perceptual

Discriminability).

This representation incorporates 3 visual variables:

horizontal position, vertical position, and shape (for both

line topology and line connectors). Using multiple visual

variables to differentiate between symbols is called

redundant coding, which improves Perceptual Discrimi-

nability (by increasing visual distance) and Visual

Expressiveness.

8 Complexity Management

8.1 Definition of principle

Complexity management refers to the ability to present

large amounts of information without overloading the

human mind. This relates to diagrammatic complexity:

the number of symbol instances or tokens on each diagram

(not to be confused with graphic complexity, the number

of symbol types in a notation, which is covered under

Graphic Economy). Managing complexity is an important

issue in RE [37] and was identified as the #1 ‘‘hot spot’’ in

a recent review of RE research [11]. It is also one of the

most intractable issues in design of visual notations: a well-

known problem with visual representations is that they do

not scale well [12].

Complexity has a major effect on cognitive effective-

ness as the amount of information that can be effectively

conveyed by a diagram is limited by human perceptual and

cognitive abilities:

• Perceptual limits: The ability to discriminate between

diagram elements increases with diagram size [67].

• Cognitive limits: The number of diagram elements that

can be comprehended at a time is limited by working

memory capacity (believed to be seven, plus or minus

two elements at a time [54]). When this is exceeded, a

state of cognitive overload ensues and comprehension

degrades rapidly.

Complexity management is especially important for

communicating with end users, who lack strategies for

dealing with complexity [58]. Complexity is one of the

major barriers to end user understanding of RE diagrams

[55, 75].

To effectively represent complex situations, visual

notations need to allow diagrams to be divided into per-

ceptually and cognitively manageable ‘‘chunks’’. The most

effective way of doing this is by recursive decomposition:

allowing diagram elements to be defined by complete

diagrams at the next level of abstraction [16]. This is the

common denominator among all visual notations that

effectively manage complexity. Visual languages that

support this are called hierarchical visual languages [13].

Hierarchical structuring of RE diagrams in this way can

improve end user understanding by more than 50% [55].

DFDs provide one of the earliest (and best) examples of

how to do this, which may partly explain their longevity in

practice despite their well-known semantic limitations

(Fig. 29).

8.1.1 The role of tool support

A common misconception is that complexity management

should be provided by tools rather than by the notation

itself. It is only because so many RE notations lack formal

complexity management mechanisms that tool designers

are forced to incorporate them to make notations workable

in practice. However, leaving this up to tools is likely to

result in inconsistent and suboptimal solutions. Each tool

vendor will implement complexity management in differ-

ent ways (‘‘point solutions’’ [9]), creating problems of

learning and communication. To be most effective, com-

plexity management mechanisms should be defined at the

notation level [56, 85]. Notations such as DFDs, UML

Activity Diagrams, and Statecharts do this, which increases

both their usability (for analysts) and communication

effectiveness (for end users).

8.2 Results of evaluation

Currently, i* lacks effective complexity management

mechanisms. It provides some hierarchical structuring, as

Fig. 29 Recursive decomposition in DFDs: elements on higher level

diagrams explode to complete diagrams at the next level down
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SD and SR diagrams define two levels of abstraction.

However, to be most effective, the number of levels of

abstraction should not be fixed but should vary depending

on the complexity of the underlying domain [20]. A much

greater limitation is that it provides no way of partitioning

either type of diagram, meaning that both SD and SR

diagrams must be represented as single monolithic dia-

grams, no matter how complex they become (Fig. 30).

Empirical studies show SD diagrams consist of an average

of around 100 elements while SR diagrams can consist of

more than 300 elements [19], which exceed perceptual and

cognitive limits.

Without effective complexity management mechanisms,

i* stands little chance of being adopted in projects of real

world size and complexity, where managing complexity

represents one of the greatest challenges [17, 23]. One of

the only empirical evaluations of i* in practice identified

lack of complexity management as the most serious barrier

to its use in industrial projects. The study concluded:

The evaluation has demonstrated that there is a set of

issues that need to be addressed by the i* modelling

framework to ensure its successful application within

industrial software development projects. These

issues boil down to a lack of modularization mech-

anisms for creating and structuring organizational

models [19].

The main weakness in i* is that it does not support

recursive (element ? diagram) decomposition (Fig. 31).

Currently, i* provides two forms of decomposition:

• Element ? element decomposition: TASKS can be

decomposed via TASK DECOMPOSITION relationships.

However, they can only be decomposed in situ (on

the same diagram), which does not reduce diagram-

matic complexity.

• Diagram ? Diagram decomposition: ACTORS are

decomposed in more detail on the SR diagram, but

this is limited to one level of decomposition and all

Fig. 30 SD diagram example:

i* lacks mechanisms for

modularising diagrams, which

means that each diagram type

must be shown as a single

monolithic diagram (example

from [89])
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ACTORS are decomposed on a single diagram, which

does not reduce diagrammatic complexity at the lowest

level (where it is needed most).

8.3 Recommendations for improvement

8.3.1 Partitioning the SR diagram

One way of reducing complexity of the SR diagram would

be to ‘‘explode’’ each ACTOR on the SD diagram into a

separate SR diagram: this would partition the SR diagram

into a set of smaller diagrams (one for each ACTOR). This

provides a recursive decomposition capability for ACTORS,

though this is limited to a single level.

8.3.2 Allow all elements to be decomposed

Currently, i* only allows ACTORS and TASKS to be decom-

posed. To effectively support complexity management, this

capability should be extended to other (possibly all) con-

structs. Among other things, this would solve the problem of

the Physics of Notations not being representable in i* by

allowing GOALS to be decomposed into SUB-GOALS (Sect. 3.5).

8.3.3 Provide recursive decomposition capability

To effectively support complexity management, i* needs to

support recursive (element ? diagram) decomposition.

That is, to allow elements on higher level diagrams to be

defined by complete diagrams at the next level, to as many

levels as required. For example, TASKS could ‘‘explode’’ to

TASK DECOMPOSITION diagrams, GOALS to END-MEANS dia-

grams, and SOFTGOALS to CONTRIBUTION diagrams. This

would result in a hierarchy of diagrams, with the SD dia-

gram at the top level, SR diagrams (one for each ACTOR) at

the second level and lower level diagrams (‘‘exploding’’

elements on SR diagrams) to as many levels as required

(Fig. 32).

9 Cognitive Integration

9.1 Definition of principle

This principle only applies when multiple diagrams are

used to represent a problem situation. Using multiple dia-

grams places additional cognitive demands on the reader to

mentally integrate information from different diagrams and

keep track of where they are in the system of diagrams

[76]. Kim et al. [30, 38] have proposed a theory to address

this issue, called the cognitive integration of diagrams

(Fig. 33). According to this theory (which has been vali-

dated in an RE context), for multi-diagram representations

to be cognitively effective, they must include explicit

mechanisms to support:

• Conceptual integration: to enable readers to assemble

information from separate diagrams into a coherent

mental representation of the system.

• Perceptual integration: perceptual cues to simplify

navigation and transitions between diagrams.

9.2 Results of evaluation

Currently, cognitive integration is not a major problem in

i* as there are only two diagrams to integrate (as there are

only two diagram types and each is represented as a single

diagram). However, introducing complexity management

(as described in the previous section) introduces cognitive

integration problems, as it multiplies the number of

diagrams.

Fig. 31 i* currently does not support recursive decomposition, which is an essential requirement for managing complexity of diagrams
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9.2.1 Naming of diagram types

The current names for the i* diagram types (Strategic

Dependency and Strategic Rationale) are too similar and

easily confused. In particular, ‘‘strategic’’ acts as a ‘‘noise

word’’ as it lacks a precise meaning and is overused in most

business contexts. It also performs no differentiating

function as it prefixes both diagram types.

9.2.2 Linking diagram types (perceptual integration)

The use of different symbols to represent ACTORS on SD and

SR diagrams (discussed under Semiotic Clarity) makes the

link between the diagram types unclear.

9.2.3 Lack of overview (conceptual integration)

An important mechanism to support conceptual integration

is a longshot diagram, a diagram that provides an over-

view of the system as a whole. This acts as an overall

cognitive map into which information from individual

diagrams can be assembled [38, 72]. Examples of such

diagrams are rich pictures in the Soft System Methodology

and context diagrams in DFDs. While i* includes a top

level diagram (the SD diagram), this is too complex to

provide an effective overview (e.g. see Fig. 30). As Estrada

et al. [19] say:

The dependency model is too concrete to serve as

starting point for the analysis of a large enterprise. In

such cases, it may contain many actors with a large

number of dependencies corresponding to different

business processes, whose union constitutes a very

complicated model to manage.

9.3 Recommendations for improvement

9.3.1 Naming of diagram types

Alternative names for the diagram types could be:

• Actor Dependency Diagram: top level diagram show-

ing DEPENDENCIES among ACTORS.

• Actor Rationale Diagrams: diagrams for each ACTOR

showing their internal rationale or intentions.

Fig. 33 Cognitive Integration: when multiple diagrams are used to

represent a domain, explicit mechanisms are needed to support

perceptual and conceptual integration

Fig. 32 Left: i* currently provides two levels of abstraction but no partitioning at either level; right: recursive decomposition supports

hierarchical structuring of diagrams, which provides both levelling and partitioning
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These names are more indicative of the content of each

diagram and less likely to be confused with each other.

9.3.2 Linking diagram types (perceptual integration)

To more clearly show the link between the SD and SR

diagrams, the same symbol should be used to represent

ACTORS on both diagram types, as the SR diagram is really

just a refinement of the SD diagram. One way of doing this

would be to use the stick figure on both diagrams, but with

the head expanded on the SR diagram to show the ‘‘inner

workings’’ of each ACTOR’s mind (Fig. 34). This would also

resolve the problem of symbol redundancy identified in

Semiotic Clarity.

9.3.3 Contextualisation (focus ? context)

Contextualisation (or focus 1 context) is a technique

used in information visualisation where the part of a system

of interest (the focus) is displayed in the context of the

system as a whole [41, 81]. This could be applied in SR

diagrams by exploding a single ACTOR at a time (the focus),

while showing dependencies with all other ACTORS (the

context). All ACTORS apart from the focus would be shown

in ‘‘black box’’ form (as on the SD diagram). Currently, the

SR diagram shows all actors in ‘‘glass box’’ form, leading

to uncontrolled complexity.

9.3.4 Create an overview diagram (conceptual

integration)

Currently, the SD diagram is too complex to provide an

effective overview or longshot diagram. This is one of the

limitations of the complexity management approach pro-

posed in the previous section: while it provides a way of

decomposing the SR diagram, the SD diagram remains as a

single monolithic diagram.

This problem is difficult to resolve within the existing i*

diagram architecture, where the SD diagram shows all

actors and dependencies among them and the SR diagram

explodes each actor. One solution would be to create an

overview diagram that shows only a subset of elements on

the SD diagram e.g. the central actors and their most

important goals. This should be limited to 7 ± 2 elements

so that it is cognitively manageable. Each element on this

diagram can then be recursively decomposed to as many

levels as required. This would remove the (somewhat

artificial) distinction between SD and SR diagrams that

currently exists in i*. In this new proposal, there would be a

single diagram type, shown at multiple levels of abstrac-

tion. There would be no restriction on the type of elements

that can appear on each diagram, only on their number.

10 Visual Expressiveness

10.1 Definition of principle

The visual expressiveness of a notation is defined by the

number of different visual variables used and the range of

values (capacity) used of each variable: this measures

utilisation of the graphic design space. Using a variety of

visual variables results in a perceptually enriched repre-

sentation that exploits multiple visual communication

channels.

The choice of visual variables should not be arbitrary

but should be based on the nature of the information to be

conveyed [4]. Different visual variables have properties

that make them suitable for encoding different types of

information. For example, colour can only be used for

nominal data as it is not psychologically ordered [39].

10.2 Results of evaluation

Currently, i* uses three visual variables (shape, brightness,

and orientation), resulting in a visual expressiveness of 3.

This is more than most RE visual notations, which typi-

cally only rely on a single visual variable (shape). Another

positive aspect is that the i* symbol set uses more curved

shapes than most RE visual notations, which mostly rely on

rectangles or rectangle variants. Curved shapes are both

more perceptually efficient and aesthetically pleasing [3,

71]. Overall, i* does well on this criterion compared to

most RE visual notations, but there is still room for

improvement. In particular, it uses only two levels of

brightness (dotted vs. solid lines) and a limited range of

shapes (all abstract geometrical shapes). Iconic and 3D

shapes are not used at all, even though these are more

perceptually and cognitively effective than abstract 2D

shapes [34, 87].

Fig. 34 Using the same (but expanded) shape for ACTORS on SR

diagrams provides a clearer link between the diagrams and a clearer

indication of the role of each diagram
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10.2.1 Informal and ineffective use of colour

Colour is one of the most cognitively effective of all visual

variables: the human visual system is highly sensitive to

variations in colour and can quickly and accurately dis-

tinguish between them [49, 88]. Differences in colour are

detected three times faster than shape and are also more

easily remembered [47, 79]. However, if not used care-

fully, colour can undermine communication.

Currently, colour is not used effectively in i*. Most

examples in the i* Guide use blue text on a green back-

ground for symbols (e.g. Fig. 35) but use of colour is not

explicitly mentioned in the text, making it unclear whether

this an official part of the visual syntax. Whether it is or

not, it certainly does not represent effective use of colour:

• All symbols are the same colour, meaning that colour

plays no role in differentiating between symbols

(Perceptual Discriminability). In fact, colour does not

convey any additional information, which is why it is

not included in the calculation of i*’s visual expres-

siveness (a variable only adds to visual expressiveness

if it is used to encode information).

• Coloured text on a coloured background reduces

understanding of text and is the worst possible combi-

nation for both legibility and aesthetics [86]. This

means that the use of colour actively undermines

communication.

10.3 Recommendations for improvement

10.3.1 Effective use of colour

A common misconception is that use of colour should be

defined as part of tool support rather than the notation

itself. In the case of i*, use of colour is not formally

prescribed in the notation so different software tools

apply different colour schemes (e.g. [50]). However, like

complexity management, use of colour should not be left

up to tool designers to implement in idiosyncratic and

possibly suboptimal ways (e.g. using colours that are not

reliably discriminable or reduce legibility of text). Effec-

tive use of colour should be prescribed at the notation level

to avoid such problems.

Colour could be used to increase the visual expressive-

ness of i* by using different colours to distinguish between

symbols (Fig. 36). The colours are chosen to be as dis-

criminable and mnemonic as possible:

• TASKS are yellow (the standard colour for ‘‘sticky notes’’)

• RESOURCES are green (like trees)

• SOFTGOALS are pink (suggesting ‘‘softness’’ or ‘‘fluffiness’’)

• GOALS are white (like footballs)

In this case, colour is used to communicate rather than to

decorate: it helps both to distinguish between symbols

(Perceptual Discriminability) and suggest their meaning

(Semantic Transparency). Note that colour is only used

redundantly, to reinforce differences in shape and bright-

ness. Colour should never be used as the sole basis for

distinguishing between symbols, as it is highly sensitive to

differences in visual perception (e.g. colour blindness) and

printing/screen technology (e.g. black and white printers).

Robust design means designing symbols so they are

impervious to such differences. Figure 37 shows how the

differences between symbols are preserved even in con-

version to black and white (the strongest test for robust

design).

Fig. 35 Ineffective use of

colour in i* (from [26])

Fig. 36 Use of colour to distinguish between symbols
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10.3.2 Dependency strengths (level of vulnerability)

As discussed in Semiotic Clarity and Perceptual Discrim-

inability, i* makes extensive use of textual encoding to

distinguish between different types of relationships. How-

ever, it also uses text to encode properties of relationships

(e.g. as UML does for multiplicities). For example, dif-

ferent DEPENDENCY STRENGTHS or VULNERABILITY LEVELS for

STRATEGIC DEPENDENCIES are distinguished by placing dif-

ferent letters next to the lines (Fig. 38: left). Where pos-

sible, information should be encoded graphically (using

visual variables rather than text or typographical charac-

teristics) to take maximum advantage of the power of

human visual processing. Because DEPENDENCY STRENGTH is

an ordinal property, ordinal visual variables need to be

used to encode this information. Figure 38 (right) shows

how dependency strengths could be encoded graphically.

Three visual variables are used in this representation:

brightness (dotted lines for OPEN DEPENDENCIES), size (thick

lines for COMMITTED DEPENDENCIES), and colour (red for

CRITICAL DEPENDENCIES).

10.3.3 Visual saturation

Many of the recommendations in this paper have involved

introducing additional visual variables or expanding the

range of values used of a particular visual variable:

• CONTRIBUTIONS (Perceptual Discriminability): texture

• Actors and intentional elements (Semantic Transpar-

ency): greater range of shapes (iconic and 3D), brightness

• TASK DECOMPOSITION relationships (Semantic Transpar-

ency): vertical position (y), horizontal position (x), and

shape

• Colour coding of intentional elements (Visual Expres-

siveness): colour

• DEPENDENCY STRENGTHS (Visual Expressiveness): colour,

brightness, and size

Visual saturation refers to the use of the full range of

visual variables (the maximum level of visual expressive-

ness). If all these recommendations were implemented, the

visual expressiveness of i* would reach the point of visual

saturation, the first RE notation ever to achieve this.

10.4 Interactions with other principles

Increasing Perceptual Discriminability almost always

increases visual expressiveness as increasing visual dis-

tance involves using a greater range of visual variables and/

or a greater range of values. Visual expressiveness also

assists Graphic Economy.

11 Dual Coding

11.1 Definition of principle

Perceptual Discriminability and Visual Expressiveness

both advise against using text to encode information.

However, this does not mean that text has no place in

visual notations. According to dual coding theory [66],

using text and graphics together to convey information is

more effective than using either on their own. This suggests

Fig. 37 Robust design: even when symbols are reproduced in black

and white, they remain highly discriminable due to differences in

shape and brightness

D D

D

DD

D

Fig. 38 Dependency strengths. Left: textual encoding of dependency strengths: O = open, X = critical and no label = committed; right:
graphical encoding of dependency strengths: dotted lines for open dependencies, thick red lines for critical dependencies
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that textual encoding is most effective when it is used in a

supporting role: to supplement rather than to substitute for

graphics. In particular, text should never be used as the sole

basis for distinguishing between symbols, but can be use-

fully used as a form of redundant coding, to reinforce and

clarify meaning.

11.2 Results of evaluation

Currently, i* only uses text or graphics on its own to

encode information in its symbol set, so makes no use of

Dual Coding.

11.2.1 Labelling of elements

Labels play an important role in interpretation of dia-

grams and in defining their real world semantics. Many of

the examples in the i* Guide use a distinctive convention

for labelling diagram elements, called the Type [Topic]

notation (e.g. see Fig. 35). However, the rules for for-

mulating such labels and how to interpret them are not

explained.

One of the most unusual features of i* is that all rela-

tionship labels on diagrams are drawn from a predefined

vocabulary of reserved words (e.g. plays, covers, help,

and hurt) rather than allowing users to define domain rel-

evant labels. This is something more commonly associated

with programming languages than RE notations and is a

side-effect of using labels to differentiate between rela-

tionship types (Perceptual Discriminability).

A final problem is that most relationships on i* diagrams

don’t have labels at all (e.g. see Fig. 35): in particular,

STRATEGIC DEPENDENCIES, TASK DECOMPOSITION, and MEANS-

END relationships. Currently, i* only uses relationship

labels for differentiating between relationship types, which

is an inappropriate use of labels (as explained in Perceptual

Discriminability).

11.2.2 Definitions of elements

The interpretation of most RE diagrams depends on a

division of labour between graphics and text [27, 63]. At

some level, diagrams need to be supported by detailed

definition of elements: for example, in DFDs, processes can

be decomposed to multiple levels but at the bottom level

must be defined in textual form. Similarly, in ER diagrams,

attributes must be defined in textual form. These definitions

form an important part of the notation, and without these

the model is incomplete. Unlike most other RE notations,

i* models are represented only by diagrams and lack sup-

porting element definitions, suggesting that they are not

fully specified. The i* Guide does not specify what

attributes are required to define each construct apart

from naming them, and even this is not required for

relationships.

11.3 Recommendations for improvement

11.3.1 Define naming guidelines

Labelling of RE diagrams is typically done in an ad hoc

manner in practice [53]. Defining clear guidelines for

naming elements can help improve communication of

diagrams. In particular, the implicit system for naming i*

elements (the Type [Topic] notation) needs to be explic-

itly defined. In addition, naming processes in verb-object

form has been recently found to improve understanding

of process models [53], so could be used for naming

TASKS.

11.3.2 Label all relationships

For diagrams to be effectively understood, relationships

should be labelled [16, 40, 44, 57, 77]. To support this,

guidelines for formulating such names should be defined.

For example, there are (at least) 4 options for naming

STRATEGIC DEPENDENCIES (illustrated in Fig. 39):

(a) Define role names (nouns) i.e. DEPENDER versus

DEPENDEE. One problem with this approach is that

these are very similar words and therefore easily

confused. Another problem is that the meaning of

these terms would not be understood by the average

business user as they are not commonly used in

everyday language8.

(b) Define relationship names so that separate sentences

can be formed involving each ACTOR and the DEPEN-

DUM (verbs or verb clauses). Different verbs would be

required for different types of intentional elements

(e.g. TASK is performed by, GOAL/SOFTGOAL is satisfied

by, RESOURCE is provided by)

(c) Define relationship names so that a single sentence

can be formed involving both ACTORS and the

DEPENDUM (verb ? clause).

(d) User-defined labels with guidelines for formulating

them [e.g. following either (b) or (c)]

The advantage of options (b), (c), and (d) is that they

could be used to produce a normative language from

diagrams [33], which supports Cognitive Fit.

8 Neither of these words are recognised by the Microsoft Word spell

checker, which suggests they form part of a specialised vocabulary

rather than standard English usage.
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11.3.3 Supporting definitions

Diagrams should be supported by detailed definitions of

elements at the lowest level. An explicit metamodel would

help here by defining the mandatory and optional properties

for each construct (e.g. as the UML metamodel does [64]).

For example, a key difference between GOALS and SOFTGOALS

is that GOALS have measures: this defines a mandatory

property of GOALS (and a non-allowed property of SOFTGO-

ALS). This would also provide a check on whether elements

have been classified correctly (i.e. to define something as a

GOAL, at least one measure must be specified).

11.3.4 Annotations

Including textual explanations (annotations) can improve

understanding of diagrams in the same way comments

improve understanding of programs. Following the prin-

ciple of spatial contiguity [52], including these on the

diagram is more effective than including them in a sep-

arate document (as is common in practice). An example

of design excellence here is UML (Fig. 40), which

includes a comment construct, though representing it

using a graphical symbol is not a good representational

choice (this represents symbol excess (Semiotic Clarity)

[60]). A simple block of text would be less intrusive and

less likely to be misinterpreted. Including comments on i*

diagrams would help improve their comprehensibility to

end users.

12 Graphic economy

12.1 Definition of principle

Graphic complexity refers to the number of different

symbol types in a notation: the size of its visual vocab-

ulary [62]. Empirical studies show that graphic com-

plexity significantly reduces understanding of RE

diagrams, especially by novices [62]. The reason is that

the human ability to discriminate between perceptually

distinct alternatives (span of absolute judgement) is

around 6 categories [54]: this defines an effective upper

limit for graphic complexity.

(a) (b)

(d)(c)

Fig. 39 Options for naming strategic dependencies: in all cases, relationships are read from left to right; different terms would be required for

different intentional elements

Fig. 40 Annotations: the UML comment is a useful notational feature but should not be shown using an explicit graphical symbol. Annotations

would be a useful addition to i*
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12.2 Results of evaluation

i* has a graphic complexity of 16, which exceeds the span

of absolute judgement by an order of magnitude.9 Such a

level of graphic complexity would be a problem for any

visual notation, but particularly for one intended for use in

early analysis.

12.3 Recommendations for improvement

There are four primary strategies for dealing with excessive

graphic complexity:

12.3.1 Reduce semantic complexity

Semantic complexity (as defined by the number of semantic

constructs in a notation) is a major determinant of graphic

complexity, as different constructs are usually represented

by different symbols (following the Principle of Semiotic

Clarity). The number of constructs in i* [31] seems exces-

sive for a notation designed for early analysis and greatly

exceeds most other early analysis techniques (e.g. UML use

cases) and even later analysis techniques (e.g. ER, DFDs).

Such a level of semantic complexity makes it difficult to

design an effective visual notation for communicating with

end users. This provides a clear case for simplifying the

semantics of i*. For example, we could ask the question: is it

really necessary to distinguish between different types of

ACTORS? However, such questions are beyond the scope of

this paper, which focuses on syntactic issues.

12.3.2 Partition semantic complexity

Another way of dealing with excessive semantic com-

plexity is to partition metamodel constructs into different

diagram types (à la UML), so that the graphic complexity

of each diagram type is cognitively manageable. For

example, different diagram types could be defined for

ACTOR DEPENDENCIES, SOFTGOAL CONTRIBUTIONS, TASK DECOM-

POSITION, and MEANS-END analysis, with each diagram type

limited to a subset of constructs and relationships in the

metamodel (though this would introduce problems of

Cognitive Integration).

12.3.3 Introduce symbol deficit

Graphic complexity can also be reduced directly (without

affecting semantics) by introducing symbol deficit

(Semiotic Clarity). This means choosing not to show some

constructs in graphical form. The mistake that many RE

notations make is to try to show too much information on

diagrams, which beyond a certain point reduces their cog-

nitive effectiveness. Judicious use of symbol deficit is one of

the most effective ways to reduce graphic complexity. For

example, the question could be asked: even if it is necessary

to distinguish between the different types of ACTOR at the

semantic level, do we need to distinguish between them at

the syntactic level? Removing this distinction would reduce

graphic complexity by 3 in a single stroke.

As a more radical proposal, i* currently includes 9

different types of CONTRIBUTION links. We could ask the

question: do these need to be shown on the diagram at all?

While this may seem to conflict with Visual Expressive-

ness, diagrams are good for representing some types of

information but not others [27]. Interactions among ele-

ments can often be more effectively shown using matrices

(e.g. CRUD matrices, quality matrices). A good example of

this is the figure defining the interactions among the

Physics of Notations principles (Fig. 5). Trying to show

these in the form of a diagram results in a representation

that is very difficult to understand. The advantage of

matrices for showing interactions is:

• They avoid the ‘‘tangled web’’ problem as matrices are

not significantly affected by the number of relationships

among elements (the density or interactivity of the

representation).

• They support systematic analysis of interactions: a

missing cell in a matrix is much more obvious than as a

missing link in a diagram.

Removing contributions from the visual notation would

reduce graphic complexity, diagrammatic complexity

(Complexity Management), and symbol overload (Semi-

otic Clarity).

12.3.4 Increase visual expressiveness

This is an approach to dealing with excessive graphic

complexity that works not by reducing the number of

symbols but by increasing human discrimination ability.

The human ability to differentiate between stimuli can be

expanded by increasing the number of perceptual dimen-

sions on which stimuli differ [54]. Using multiple visual

variables to differentiate between symbols (Visual

Expressiveness) can increase human discrimination ability

in an almost additive manner.

12.4 Interactions with other principles

Graphic Economy has important interactions with Semiotic

Clarity, Visual Expressiveness and semantic complexity:

9 The graphic complexity of i* is artificially deflated by the high level

of symbol overload. If this was resolved, graphic complexity would

become a much greater problem. Symbol overload is a common, but

cognitively ineffective, way of dealing with excessive graphic

complexity.

168 Requirements Eng (2010) 15:141–175

123



• Removal of symbol excess and redundancy has a

positive effect on Graphic Economy.

• Symbol deficit and symbol overload have positive

effects on Graphic Economy, even though these are

violations of Semiotic Clarity. In this sense, Semiotic

Clarity has a negative effect on Graphic Economy.

• Visual Expressiveness has a positive effect on Graphic

Economy by increasing the number of symbols that can

be reliably discriminated.

• Increasing semantic complexity has a negative effect on

Graphic Economy (if Semiotic Clarity is held constant).

Because of the semantic complexity of most SE notations,

tradeoffs often need to be made between Semiotic Clarity

and Graphic Economy. Symbol overload is a common (but

suboptimal) way of reducing graphic complexity. Symbol

deficit is a much more effective way of doing this and has the

added advantage of reducing diagrammatic complexity.

13 Cognitive Fit

13.1 Definition of principle

Most RE notations use a single visual notation for all

purposes. However, cognitive fit theory [74, 82, 83] sug-

gests that this ‘‘one size fits all’’ assumption may be

inappropriate and that different representations may be

required for different tasks and/or audiences (‘‘representa-

tional horses for cognitive courses’’ [70]). According to

this theory, problem solving performance (& cognitive

effectiveness) is determined by a three-way fit between the

problem representation, task characteristics, and problem

solver skills (Fig. 41).

There are at least four reasons for creating multiple

visual dialects in an RE context:

• Expert-novice differences (problem solver skills):

when notations are used to communicate with

technical experts (e.g. developers) and novices (e.g.

end users)

• Representational medium (task characteristics): when

notations are used both for hand drawing and computer-

based tools.

• Cultural differences: when notations are used in

different cultural contexts. This is not something that

has so far been considered in cognitive fit theory, but

seems increasingly applicable in our globalised world.

• Verbal versus spatial ability (problem solver skills):

people differ in their ability to process information in

textual versus graphical form.

13.2 Results of evaluation

Currently, i* consists of a single visual dialect used for all

purposes, so does not support Cognitive Fit.

13.2.1 Expert-novice differences

This reason for having multiple visual dialects does not

really apply to i*. As an early analysis technique, it is only

used for communicating with business specialists as the

models produced are not directly used as a basis for

implementation (unlike, for example, ER or UML models).

This means that only one visual dialect is required, but this

should be tailored for novices. Notations designed for

communication with novices should use easily discrimi-

nable symbols (Perceptual Discriminability), mnemonic

conventions (Semantic Transparency), reduced complexity

(Complexity Management), supporting text (Dual Coding)

and a simplified visual vocabulary (Graphic Economy)

[58]. Currently, i* fares poorly on all of these principles,

which suggests that expert-novice differences were not

taken into account in its design.

13.2.2 Representation medium differences

An important consideration in designing RE visual nota-

tions is that they must be easy to draw by hand. Especially

in the early stages, models are developed in an interactive

manner by sketching on whiteboards or paper. It is there-

fore important that diagrams can be drawn quickly and

easily, and do not slow down the flow of ideas. Hand

drawing presents special challenges for visual notation

design because of the limited drawing abilities of most

requirements engineers (as drawing is typically not a skill

included in IT curricula). Some of the important notational

requirements are:

• Perceptual Discriminability: discriminability require-

ments are higher due to variations in how symbols are

drawn by different people.
Fig. 41 Cognitive fit is the result of a three-way interaction between

the representation, task, and problem solver [82]
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• Semantic Transparency: pictures and icons are more

difficult to draw than simple geometric shapes, espe-

cially for the artistically challenged.

• Visual Expressiveness: some visual variables (colour,

value, and texture) are more difficult to use (due to

limitations in drawing ability and availability of

equipment e.g. colour pens).

The existing i* symbol set presents some challenges for

hand drawing: ACTORS, GOALS and BELIEFS are likely to look

very similar when drawn by hand (as they are all variants

of circles); SOFTGOALS and POSITIONS are difficult to draw as

they are irregular shapes. The proposed new symbol set

presents even greater problems for hand drawing, as it

introduces iconic representations and additional visual

variables.

13.2.3 Cultural differences

As the i* symbol set consists entirely of abstract symbols, it

is unlikely to cause problems in different cultural contexts.

13.2.4 Verbal versus spatial ability

Currently, i* relies only on diagrams to communicate, so

does not take into account user preferences for receiving

information in verbal or graphical form.

13.3 Recommendations for improvement

13.3.1 Expert-novice differences

The i* visual notation should be tailored for communica-

tion with novices, which means optimising Perceptual

Discriminability, Semantic Transparency, Complexity

Management, Dual Coding and Graphic Economy.

13.3.2 Representation medium differences

To support Cognitive Fit, visual notations should provide a

simplified visual dialect for initial sketching and an enri-

ched dialect for final production of diagrams: this allows

the best of both worlds (ease of drawing and cognitive

effectiveness). Figure 42 shows a simplified symbol set

(based on the one proposed in Fig. 36) that would be

suitable for sketching. These symbols are easy to draw

even for the most artistically challenged requirements

engineer, are highly discriminable and sufficiently similar

to the enriched symbol set not to cause confusion.

Note that symbols for ACTOR types (ROLE, POSITION,

AGENT) are not included in this symbol set. Ease of hand

drawing would favour not distinguishing between different

types of ACTORS (as suggested in Graphic Economy) rather

than using different symbols (as suggested in Semantic

Transparency and the existing symbol set).

13.3.3 Cultural differences

The proposed new symbol set presents some potential

problems as it draws on culture-specific associations: this is

a common side-effect of increasing Semantic Transpar-

ency, which often draws on cultural associations. For

example, representing goals using circles is likely to be less

effective in North America or Australia, where footballs

are generally a different shape. This may suggest the need

for region-specific dialects of the notation (Fig. 43).10 An

alternative solution would be to use the same symbol but

different sporting associations depending on the context

(e.g. football in the United Kingdom, basketball in the

United States, and ice hockey in Canada). Circles are

associated with goals in many different sports (Fig. 44).

13.3.4 Normative language

A systematic approach to naming diagram elements and

relationships as suggested in Dual Coding can be used to

generate verbal representations of i* models. This repre-

sents a normative language [33], which would support

users who prefer verbal representations of information.

14 Conclusion

This paper has conducted a systematic, symbol-by-symbol

analysis of i* visual syntax, based on a set of theoretically

Fig. 42 Simplified symbol set for hand sketching

Fig. 43 Cultural differences about the meaning of the word football

may require ‘‘rugby’’ and ‘‘soccer’’ dialects of the i* notation

10 The circle representation could be justified by the fact that soccer

is the most popular sport in the world (considered to be the ‘‘world

game’’), so could be argued to transcend international boundaries.
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and empirically grounded principles for visual notation

design. The analysis has revealed some serious flaws in the

i* visual notation that have gone unrecognised for more

than a decade. We argue that these represent a barrier to its

usability and effectiveness in practice, especially for

communicating with end users. We have also made prac-

tical recommendations for addressing (most of) the prob-

lems identified.

14.1 A simplified visual vocabulary for i*

It is beyond the scope of this paper to propose a new visual

notation for i*. Our primary goal was to evaluate existing

visual representation choices (which have so far gone

unquestioned) and to consider some of the alternatives

available in the graphic design space. However, as a

starting point for discussion, we have proposed a simplified

(partial) visual vocabulary for i* based on some of the

recommendations in this paper (Fig. 45).11 Compared to

the existing symbol set (Fig. 13), this is more:

• Semiotically clear: it contains no synographs or

homographs.

• Perceptually discriminable: the shapes used come from

different shape families and are therefore unlikely to be

confused. They also incorporate redundant coding to

further increase visual distance.

• Semantically transparent: shapes and colours are used

that suggest the meaning of the underlying concepts.

While it would be difficult for a novice to infer the

meaning of the symbols without explanation, all have

mnemonic associations with their referent concepts to

aid learning, recognition and recall.

• Visually expressive: it uses three visual variables

(colour, shape, brightness) instead of only one (shape)

and uses a greater range of shapes. It is also robust to

variations in visual perception and printing technology

(e.g. conversion to black and white).

• Graphically economical: the size of the visual vocabu-

lary is reduced by eliminating symbol redundancy and

introducing symbol deficit (eliminating ACTOR subtypes).

14.1.1 The importance of design rationale

Explicit design rationale is included for all symbols in the

proposed new symbol set, whereas the existing i* symbol

set lacks this for any of its symbols. Further, none of the

graphic design decisions in constructing this symbol set are

arbitrary: not just each symbol but each visual property of

each symbol (i.e. the value chosen for each visual variable)

is justified with reference to visual notation design princi-

ples. This is the lowest level of granularity of design

rationale possible, as visual variables form the atomic

elements of graphical symbols (Fig. 46). Finally, visual

representation choices are justified using theory and

empirical evidence rather than common sense, opinion or

personal taste.

Articulating the reasons behind graphic design choices

can help in two major ways:

• It can help notation users learn and remember what

symbols mean

• It opens up the visual representation debate beyond the

notation designers themselves. If notation users are

aware of what the notation designers were trying to

achieve in constructing particular symbols, they can

contribute their own ideas, which could lead to new and

innovative designs.

14.2 Contributions of the research

The practical contribution of this research has been to

suggest ways of improving the cognitive effectiveness of

Fig. 45 A more cognitively effective visual vocabulary

Fig. 44 Circles are associated with goals in a wide range of sports: (from left) soccer, basketball (basket ? ball), ice hockey, darts, archery,

shooting

11 Note: this is not a complete symbol set as it does not include

relationship types.
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the i* visual notation. These can be used to improve its

usability and effectiveness in practice, and remove poten-

tial barriers to its adoption in practice.

The theoretical contribution of this research is that it has

conducted the first analysis of i* visual syntax. While there

have been many papers published on goal modelling in

general and i* in particular, this is the first to focus

exclusively on visual representation aspects. A second

contribution has been to demonstrate a systematic approach

to evaluating and improving visual notations, which could

be applied to any RE visual notation. Finally, this is the

first application of the Physics of Notations in an RE

context. The analysis demonstrates its applicability to RE

notations and extends the theory by identifying cultural

and verbal/spatial ability differences as considerations in

Cognitive Fit.

14.3 Limitations of the research

An obvious limitation of this research is that it focuses only

on syntactic issues. Addressing some of the problems

identified in this paper (e.g. Graphic Economy) will require

re-examining the semantics of i*, which is beyond the

scope of this paper.

Another limitation is that the recommendations from

different principles sometimes conflict with one another

(e.g. how to represent CONTRIBUTIONS in Perceptual Dis-

criminability and Graphic Economy). There are always

tradeoffs between objectives in any design task [1], and

these would need to be resolved to produce an improved

visual notation.

Finally, the recommendations for improving the visual

notation have not been empirically tested. However, there

are sound reasons for predicting that they will improve

cognitive effectiveness as they are based on theory and

empirical evidence (encapsulated in the Physics of Nota-

tions). In any case, it would be premature to empirically

test these ideas at this stage as they are initial suggestions

only, to provide a starting point for discussion: more work

is needed to develop these further and explore alternative

solutions, preferably with input from i* users and

researchers.

14.4 Further research: next steps

This paper should not be seen as the final word on i* visual

syntax but a starting point for further research. The rec-

ommendations in this paper represent some initial ideas for

improving the notation but are only the tip of the iceberg in

terms of what is possible. Our aim was to provide some

concrete suggestions as a starting point for debate, a debate

which has not yet begun in the i* community and is long

overdue.

In many ways, the paper raises more questions than it

answers. For example, we have provided a number of

suggestions for improving complexity management in i*

but these fall short of providing a complete solution (which

is probably a paper in its own right). Part of the reason for

this is the (necessarily) broad scope of this paper. As the

first paper to explicitly address i* visual syntax, it was

appropriate to consider all principles at once but future

research might more productively focus on individual

principles.

Finally, this paper has suggested some ways of

improving the i* visual notation using the existing notation

as a base. However, a more productive approach might be

to start from first principles: to forward engineer a new

visual notation based on an explicit metamodel and

following sound ontological principles [28]. Ideally, visual

notation design should proceed from a stable metamodel

and formal semantics rather than reverse engineering a

metamodel after the event: form follows content.

14.5 Beyond i*: the importance of visual syntax

in RE notations

This paper should be seen not just as a critique of i* but of

RE visual notations in general, which are mostly designed

in a similar way and have similar problems. i* is used as

just one example, chosen because of its popularity and

influence in the RE community. UML makes many of the

same mistakes despite the much greater resources invested

in developing it (see [60] for a similar analysis of UML).

The broader message of this paper is that we need to follow

sound principles in designing visual notations rather than

Fig. 46 Design rationale

should be specified at the lowest

level of granularity (visual

properties) and should be based

on theory and/or empirical

evidence
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relying on intuition and experience. Cognitive effective-

ness is not an inherent property of visual notations but

something that must be designed into them [42]: this

requires significant effort and expertise.

To design more effective RE visual notations we need

to:

(a) Invest as much effort and attention into designing

visual syntax of RE notations as we currently invest in

their semantics.

(b) Provide explicit design rationale for visual represen-

tation choices, down to the level of individual visual

variables. This will force notation designers to think

carefully about visual representation decision and

explicitly consider alternatives rather than making

arbitrary (or default) choices.

(c) Justify visual representation choices using theory and

empirical evidence rather than common sense. The

effects of graphic design decisions are often counter-

intuitive and relying on intuition can lead us horribly

astray.
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