
The University of Manchester Research

Eliciting user requirements for e-collaboration systems: A
proposal for a multi-perspective modelling approach
DOI:
10.1007/s00766-017-0285-7
10.1007/s00766-017-0285-7

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Wang, Y., & Zhao, L. (2019). Eliciting user requirements for e-collaboration systems: A proposal for a multi-
perspective modelling approach. Requirements Engineering, 24(0), 205–229. https://doi.org/10.1007/s00766-017-
0285-7, https://doi.org/10.1007/s00766-017-0285-7

Published in:
Requirements Engineering

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://doi.org/10.1007/s00766-017-0285-7
https://doi.org/10.1007/s00766-017-0285-7
https://research.manchester.ac.uk/en/publications/78ac70bc-c08e-4de4-86a1-7be30392ace4
https://doi.org/10.1007/s00766-017-0285-7
https://doi.org/10.1007/s00766-017-0285-7
https://doi.org/10.1007/s00766-017-0285-7

Eliciting user requirements for e-collaboration
systems: A proposal for a multi-perspective
modeling approach

Ye Wang 1 y Liping Zhao2

Abstract E-collaboration systems have become a new way of doing business that supports and enables communication,
coordination and cooperation between people in shared projects and so on. Yet, eliciting user requirements for
e-collaboration systems has proved to be a great challenge, due to the need to capture different knowledge for many different
types of stakeholder. This paper proposes an approach for eliciting user requirements for e-collaboration systems. This
approach takes a scenario description of e-collaboration systems as input and transforms it into a rich set of four-perspective
requirement models, namely Coordination Model, Communication Model, Connection Model, and Collaboration Model.
These models respectively represent the coordination, communication, collaboration, and connection characteristics of
e-collaboration systems. Collectively, these models aim to provide a more complete and accurate requirements specification.
An example from a collaborative office system is used to illustrate the applicability of the proposed approach. This paper
also discusses practical implications of the proposed approach and then provides an assessment for the proposed approach.

Keywords E-Collaboration Systems, Model-Based Requirements Elicitation, Multi-Perspective Modeling, User
Scenarios

Ye Wang
yewang@zjgsu.edu.cn

tel:+86-18072711212

Liping Zhao
Liping.zhao@manchester.ac.uk

1 Zhejiang Gongshang University, China
2 The University of Manchester, UK

Title Page with ALL Author Contact Information

1

1 Introduction

In recent years, e-collaboration has become “a new way of
doing business and a strategic weapon which could
fundamentally change the traditional business
relationships” [34][57]. E-collaboration is broadly defined
as “virtual teaming of structured communication activities
by using electronic tools e.g. blogs, groupware, discussion
boards, portals and instant messaging” [15][48]. Based on
the Internet, e-collaboration systems, under different
synonyms such as groupware, group support systems,
collaborative systems, cooperative information systems,
have become an important instrument in supporting and
enabling the communication, coordination and cooperation
between people in shared projects, processes and teams
within and across the organizations [30]. Some specific
applications of e-collaboration systems, such as
e-participation systems and e-procurements systems, have
been used in a large number of domains [31][53], including
education [3], transport [1], government [29], and
healthcare [13].
 With the rising economic importance of e-collaboration
systems, there is a great demand on their development. Yet,
there is still a lack of understanding of how best to develop
these systems so that they can function according to the
needs and requirements of their stakeholders [14][33].
According to Hickey and Davis [23], the technique used to
elicit requirements greatly depends on the characteristics of
the system-to-be. For e-collaboration systems, four basic
characteristics – Coordination, Communication,
Collaboration and Connection (also known as 4Cs) – are
identified [9][44]. Each of the characteristics addresses one
critical aspect of an e-collaboration system [44]. This
suggests that every phase in developing e-collaboration
systems should support the 4Cs [49]. Therefore
requirements elicitation for e-collaboration systems should
be based on these characteristics [19].

However, according to our research, very little work has
been done to address all of the 4Cs in the requirements
elicitation for e-collaboration systems. For example,
Bendjenna et al. [4] proposed MAMIE (from MAcro to
MIcro level requirements Elicitation) to elicit requirements
for inter-company cooperative information systems by
coupling goals, scenarios and viewpoints. In MAMIE,
goals are documented in terms of texts in each independent
cooperation use case, which does not stress the connections
between different stakeholders. Besides, the coordination

aspect of e-collaboration systems was not described in
detail in MAMIE. The i* framework is usually used to
define requirements for systems in a collaborative
environment [12][39]. However, it is generally understood
that there is an absence of ordering information in the
operationalization of the tasks in the i* framework and a
lack of the support for the coordination aspect of
e-collaboration systems. Eliciting requirements for an
e-collaboration system is difficult because it involves a
large number of factors, such as the organization, context,
problem, participants, processes and so on [49].
 In order to support the elicitation of the requirements
related to the 4Cs of e-collaboration systems, we propose a
multi-perspective modeling approach. By adopting a
model-driven elicitation process, our approach aims to
capture different aspects of e-collaboration systems and
guide requirement engineers towards a more complete,
accurate and reusable requirements specification. The
proposed approach builds on our previous work on a
pattern language for transforming scenarios into
requirements models [59]. Scenario-based requirements
engineering approaches [24][35] are widely used in
requirements elicitation [68]. According to Lau [33],
scenarios also play a crucial role in capturing user
requirements for e-collaboration systems. The proposed
approach takes an e-collaboration scenario description as
input and transforms it into a set of requirement models,
namely Coordination Model, Communication Model,
Connection Model and Collaboration Model. While our
approach currently only focuses on the functional
requirements (FRs), the elicitation of non-functional
requirements (NFRs) can be incorporated into the proposed
approach using sound techniques such as Strategic
Dependency Situations (SDsituations) [39] and the i*
framekwork [39][64]. The SDsituations uses constraints to
capture the NFRs of a scenario and then transforms it into
softgoals in the i* framework.

The paper proceeds as follows. As a background to this
paper, Section 2 describes the characteristics of
e-collaboration systems. Section 3 provides the concepts
and definitions of the proposed approach. Section 4
presents how the multi-perspective modeling approach can
be coupled with e-collaboration scenarios. Section 5
demonstrates this approach through a real world example: a
collaborative office system (COS). Section 6 evaluates our
approach against some of the closely related ones by
discussing the strengths and weaknesses of our approach.

Manuscript Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

Fig. 1 Two independent instances of the Purchase Goods process

participated by two customers

Fig. 2 The intersected process of Create Video Meeting with multiple

instances involved

Section 7 discusses how the proposed approach addresses
the industrial challenges and its relevance to the industrial
applications. Finally Section 8 concludes the paper.

2 Characteristics of e-collaboration systems

Although there is no single definition of “e-collaboration
system”, such a system is generally characterized by four
basic characteristics [9][44], also known as “4Cs”, which
are:

y Coordination. An e-collaboration system offers
people the ability to manage tasks, projects,
workflows and appointments.

y Communication. An e-collaboration system enables
people to communicate and exchange information
via both asynchronous and synchronous modes.

y Collaboration. An e-collaboration system
encourages people to work with each other for
problem solving, with shared commitment and goals
via knowledge sharing systems.

y Connection. An e-collaboration system enables
people to connect with each other. The connection
characteristic emphasizes the networking nature of
the e-collaboration system.

The emphasis of the 4Cs suggests that an e-collaboration

system and its environment should be defined to support
4Cs. Therefore, in developing an e-collaboration system,
the requirements related to the 4Cs should be explicitly
elicited and captured in the early phase of requirements
engineering.

First, in order to support the coordination characteristic,
requirements engineers needs to elicit requirements for
different knowledge of collaborative activities, such as the
management of participants, their activities, workflows and
so on.

Second, the communication characteristic requires
requirements engineers to elicit the exchange of different
types of messages between the system and its users
participating in the collaboration process. Besides, a
significant difference between e-collaboration systems and
other types of systems is the number of users participating
in an instance of a business process. In other types of
systems, although there are multiple instances of users
participating in a process, there is only one user performing
the action in the system in a particular process instance. But
in an e-collaboration system, the situation is different [7].

This difference is illustrated in Fig. 1 and Fig. 2. Fig. 1
illustrates an e-commerce process. In purchasing goods,
there are two types of users: the customer and the seller.
There can be multiple customers buying goods in the
e-commerce system at the same time. But each user
actually only participates in only one process instance of
purchasing goods. A process instance that one user is
involved will not affect the process instance of another user.
They may face the problem of shared data but the
workflows are independent. For e-collaboration systems, in
a process instance, even for one role, there are usually
multiple users participating in an activity at the same time.
Fig. 2 illustrates an online video meeting system. In the
process of create video meeting, one meeting participant

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Fig. 3 The structure of the basic models of our approach

has been added to the meeting, a communication link will
be established between him/her and other participants at
once. The process instance of one user is intersected with,
or even depends on the process instances of other users,
which presents another challenge to requirements
elicitation of e-collaboration systems.

Third, the connection characteristic requires
requirements engineers to elicit different types of
connections between agents. In e-collaboration systems,
agents may be connected in order to achieve the same goal.
One agent may depend on another agent to complete a task,
or to transfer data. These different types of connections
should be fully captured by requirements engineers.

Last but not least, each participant in the e-collaborative
system should have intentionality [39]. The collaboration
characteristic requires requirements engineers to understand
and elicit the common goals of the participants. Besides,
the way to achieve a goal (i.e., the tasks they need to
perform) should also be captured. Therefore, the
relationships between different tasks should be elicited as
well.

The above description shows that in order to elicit the
complex requirements of e-collaboration systems, we need
a more comprehensive and systematical approach. In the
remaining paper, we propose such an approach.

3 Concepts and definitions

3.1 The four-perspective models

To address the challenges with requirements elicitation in
e-collaboration systems, we propose an approach to capture
and model the requirements from multiple perspectives.
Under this approach, user requirements are elicited by
means of the four-perspective models, each addressing a
characteristic of 4Cs. Fig. 3 summarizes these models and

their supporting characteristics. In what follows, we define
each of these four models.

1) Coordination Model
Coordination Model coordinates the dynamics of

collaborative work through a set of control flows in a
process-centric view and sketches the story line of team
working. This perspective captures both the domain and the
system knowledge at different levels of abstractions,
including the activities involved by the system and its users,
the workflows among users and the system as well as the
internal workflows performed by each user or the system.
Therefore this perspective addresses the coordination
characteristic of e-collaboration systems.

Fig. 4 (a) depicts the metamodel of Coordination Model
and the concepts it used. Coordination Model consists of
five fundamental elements [41]: 1) activity, which refers to
the dynamic process. The execution of an activity is
modeled as activity nodes connected by activity edges; 2)
activity node, which denotes the steps of an activity. It
covers two types of nodes in our approach, i.e., action and
control node; 3) action, which represents a single step
within an activity; 4) control node, which is an activity
node used to coordinate the flows between other nodes. The
control node is divided into initial node, final node, fork
node, join node, decision node, and merge node. An initial
node denotes a starting point for executing an activity. A
join node is to synchronize multiple workflows. A merge
node is to bring together multiple alternate workflows. A
decision node is to choose between outgoing workflows. A
fork node is to split a workflow into multiple concurrent
workflows. A final node denotes the final state of an
activity; 5) activity edge, which organizes the actions
performed in the description through time. The metamodel
of Coordination Model is adapted from the metamodel of
UML Activity Diagram [41] by tailoring some unnecessary
elements and remaining the most important elements.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

2) Communication Model
In an e-collaboration system, communications among

users and the system are the most typical characteristic.
Communication Model unearths human factors and the
interactions that should be addressed in the e-collaboration
work through a set of messages in an agent-centric view.
Communication Model is used to represent the users and
the system involved in the e-collaboration process and their
interaction messages. Therefore this perspective addresses
the communication characteristic of e-collaboration
systems. The sequence and concurrency of each interaction
between users and the system are also captured by
Communication Model.

As shown in Fig. 4(b), Communication Model consists
of several agents and messages. An agent represents a user
or a system. The agents communicate with each other
through exchanging messages. A message has the following

properties: 1) action, the action to send or receive a
message, 2) parameter, the objects carried by a message, 3)
sequence number, the sequence number of the message in
an interaction, 4) condition, under which condition the
message can be executed, 5) concurrency, denotes whether
the message is executed sequentially or concurrently, 6)
message sort, the type of message. The messages can be
divided into three types:
1. asynchronous call message. When an agent sends an

asynchronous call message, it does not require an
immediate response to continue processing.

2. synchronous call message. When an agent sends a
synchronous call message, it needs to wait for a
message response before it continues processing.

3. return message. This is the message that returns from a
synchronous call.

If the type of a message is not defined, the message is

Fig. 4 The metamodel of the multi-perspective modeling approach for e-collaboration systems

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

only a normal send message. The metamodel of
Communication Model is adapted from the metamodel of
UML Communication Diagram [41] by keeping the most
crucial elements such as the message and its properties
such as the action, parameter, sequence number, message
sort, and condition. In addition, we add the
collaboration-specific property such as concurrency to the
original metamodel.

3) Connection Model
Connection Model helps to discover different types of

dependencies between users and the system through a set of
links. Therefore this perspective addresses the connection
characteristic of e-collaboration systems.

As shown in Fig. 4(c), Connection Model consists of
agents, their dependencies and dependums. Dependency is
a dependent relationship between two agents based on a
dependum. In Connection Model, each node represents an
agent, and each dependency between two agents indicates
that one agent (i.e., the depender) depends on the other (i.e.,
the dependee) for something (i.e., the dependum) in order
that the former may attain some goal. There are three basic
types of dependum in Connection Model: task, goal or
resource. According to the dependum type, the
dependencies are different. The task dependency means that
one agent depends on another agent to complete a task. The
goal dependency means that one agent depends on another
agent to achieve a particular goal. The resource dependency
means that one agent depends on another agent to provide a
specific resource. The metamodel of Connection Model is
adapted from the i* metamodel [16] and Connection Model
can be represented by the Strategic Dependency (SD) model
of the i* framework [65]. The SD model focuses on
describing the network of relationships among agents and
the agents’ external intentional relationships with each
other through the resource dependency, task dependency or
goal dependency, which is quite fit for describing the
connection characteristic of e-collaboration systems.

4) Collaboration Model
The intentionality of each user or system is crucial for

e-collaboration systems because the collaboration made by
two agents is driven by some common goals. Therefore it is
necessary for e-collaboration systems to address the
intentions or goals of each user and the system.
Collaboration Model discovers the implicit intentionality of
each user and system, and the shared problems that they
have as well as the way how they solve the shared problem.
This perspective captures the goals of each user and system,

and the tasks they performed to achieve each goal.
Therefore this perspective addresses the collaboration
characteristic of e-collaboration systems. Collaboration
Model is a combination of the goal-centric model and the
task-decomposition model.

As shown in Fig. 4(d), Collaboration Model consists of
several internal elements and their links. The internal
elements belong to different agents and thereafter outline
the boundary of each agent. A goal unravels each agent’s
intentions, which is the core concept of Collaboration
Model. Each agent achieves their goals by performing a set
of tasks and making uses of resources. The internal
elements are linked by two kinds of links: the means-end
and decomposition. Decomposition represents that a task
can be decomposed into a set of subtasks or subgoals,
whereas means-end represents that there are different
possible ways to accomplish a goal. The internal elements
in one agent may be connected to internal elements in
another agent via the dependency. The metamodel of
Collaboration Model is also borrowed from the i*
metamodel [16] [64].

To support the collaboration characteristic of
e-collaboration systems, the Strategic Rationale (SR) model
of the i* framework [65] can be used. The SR model
describes and supports the reasoning that each agent has
about its relationships with other agents. The SR model can
be treated as a refinement of the SD model by elaborating
the inherent intentions and the reasoning of the tasks of
each agent. Therefore the SR model is well suited for
addressing the collaboration characteristic.

In the SR model, each agent in the SD model is
decomposed to a set of nodes, which may be goals, tasks,
or resources. Through the creation of the SR model, one
can gain insight into the goals of each agent and the means
to implement the goals through the means-end link.

Table 1 summarizes the modeling elements of these four
models.

3.2 Relationships between the models

The four-perspective models can be composed into one
coherent model to represent the system as a whole. Fig. 5
shows the four types of relationship that connect the
models. These relationships are described as follows.

(1) contains: the interactive actions in Coordination
Model are treated as the property of messages in
Communication Model. Compared to actions, messages

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

Table 1 The modeling elements of the four-perspective models

ID Name Definition Related Model
1 Activity An activity is a dynamic process connected by activity edges. Coordination Model
2 Activity Edge An activity edge represents the control flow from one activity node to

another.
Coordination Model

3 Activity Node An activity node denotes a step of an activity. Coordination Model
4 Action An action represents a single step within an activity. Coordination Model
5 Control Node A control node is an activity node used to coordinate the workflows

between other nodes.
Coordination Model

6 Initial Node An initial node denotes a starting point for executing an activity. Coordination Model
7 Final Node A final node denotes an end point to stop a workflow in an activity. Coordination Model
8 Decision Node A decision node is a node to choose between outgoing workflows. Coordination Model
9 Join Node A join node is a mediate node to synchronize multiple workflows. Coordination Model
10 Merge Node A merge node is a mediate node to bring together multiple alternate

workflows.
Coordination Model

11 Fork Node A fork node is a mediate node to split a workflow into multiple
concurrent workflows.

Coordination Model

12 Agent An agent is a user or a system that communicates with each other
through exchanging messages. Agents are connected by dependencies
and collaborating with each other.

Communication Model
Connection Model
Collaboration Model

13 Message A message is a named element that defines one specific kind of
communication between lifelines of an interaction.

Communication Model

14 Message Sort Message sort is the type of a message. Communication Model
15 Dependum A dependum is a fact for which one agent depends on another. Connection Model

Collaboration Model
16 Goal A goal is the intention of one or more agents. A goal is also a type of

dependum, which means that one agent depends on another agent to
achieve a particular goal.

Connection Model
Collaboration Model

17 Task A task is an activity that needs to be carried out. It is a type of
dependum, which means that one agent depends on another agent to
complete a task.

Connection Model
Collaboration Model

18 Resource A resource is the provision of some entity, physical or informational. It
is a type of dependum for which one agent depends on another agent to
provide a specific resource.

Connection Model
Collaboration Model

19 Dependency Dependency is a dependent relationship between two agents based on a
dependum.

Connection Model
Collaboration Model

20 Internal Element An internal element is an abstract element which can be a goal, task or
resource. A set of internal elements outline the boundary of each agent.

Collaboration Model

21 Link A link is a fact by which two internal elements connected. Collaboration Model
22 Decomposition Decomposition represents that a task can be decomposed into a set of

subtasks or subgoals.
Collaboration Model

23 Means-End Means-end represents that there are different possible ways to
accomplish a goal.

Collaboration Model

have more properties, such as the parameter, condition, and
the concurrency constraint. We merge some repeated
actions for each agent in Coordination Model but keep

them intact in Communication Model. The reason is that
messages carry data but actions not. By carrying different
data, the messages differ from each other. For example, 1

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

Fig. 5 The relationships between the four-perspective models
 message – “scheduleMeeting (MeetingName)” can be
treated as the same action “schedule meeting” with
different meeting name.

(2) relates to: the atomic actions in Coordination Model
are related to tasks in Collaboration Model at the same
level, and vice versa. Note that composite actions are
related to tasks in Collaboration Model at the level below.
This suggests a close relationship between Coordination
Model and Collaboration Model: Coordination Model
controls the tasks specified in Collaboration Model. Yu also
discussed this inter-relationship in [63].

(3) performs: denotes that each agent performs actions.
(4) has: denotes that each agent has one or more goals in

the e-collaboration processes.
In addition, agents in Communication Model are mapped

to agents in Connection Model at the same level. The
difference between Communication Model and Connection
Model is that Communication Model addresses the
dynamic interactions between agents whereas Connection
Model addresses the structural dependencies between
agents.

4 The proposed approach

4.1 E-collaboration scenarios

In Requirements Engineering (RE), scenarios have been
widely used as a communication tool to help software
stakeholders and requirements engineers to describe and
elicit requirements [21][26]. The narrative of the scenario
makes it natural for people to express their needs and wants.
Scenarios can also be used to capture the domain
knowledge from the users and to communicate that
knowledge to different software stakeholders. The
scenarios technique has also shown its effectiveness in
capturing requirements for e-collaboration systems [33].

According to Rolland et al. [45], a system’s scenarios
can be divided into three levels: the context level, the
system interaction level and the system internal level. The
scenarios at a high-level can be refined into low-level
scenarios [46]. The context level normally contains one
scenario (i.e. contextual scenario) and this high-level

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

Fig. 6 The metamodel for e-collaboration scenarios

scenario should describe the owner’s vision about the
system to be developed. The system interaction level
contains one or more scenarios (i.e. system interaction
scenarios), each of which corresponds to a subgoal
discovered at the contextual level. Scenarios at this level
describe the interactions between the system and its users.
These scenarios refine the contextual scenario and hence
are more concrete. The system internal level contains
several scenarios, each of which corresponds to a subgoal
discovered at the system interaction level. Scenarios at this
level describe the detailed system operations that support
the interactions at the level above. These scenarios refine
the system interaction scenarios and terminate the
refinement relationship. The progress from one level to the
next is determined by the goal decomposition in the goal
model. Each goal leads to a new scenario description at a
level below. We therefore said that it is a model-driven
process based on a system of scenarios.

Inspired by Rolland et al. [46], we have adapted these
three levels of scenarios to our approach and used them to
guide requirements engineers to elicit requirements for
e-collaboration systems. According to Yu [65], capturing
requirements in a collaborative environment should put
more emphasis on the intentionality of all agents, rather
than the system. Therefore in our approach, we change
Rolland et al.’s three levels of scenarios into: the context

level, agent interaction level and agent internal level. An
e-collaboration scenario can be a contextual scenario, an
agent interaction scenario or an agent internal scenario,
each of which addresses different aspects of requirements
in e-collaboration systems. The contextual scenario outlines
the services that an e-collaboration system provides to its
users, rather than how it provides the services. The agent
interaction scenario describes how each e-collaboration
service is provided by different agents in more detailed
ways. The agent internal scenario describes how each agent
works internally, including both the users and the system.
Through the three types of scenarios, our approach allows
requirements engineers to codify the interaction of human
and computer agents at different levels of abstraction.

The metamodel of e-collaboration scenarios is shown in
Fig. 6, which is adapted from [39][59]. An e-collaboration
scenario is identified by one name (title) and has a
description, which consists of an initial state (source), a
flow of actions (path) and a final state (goal). The initial
state defines the precondition for a scenario to be triggered
and the final state defines the goal state reached at the end
of the scenario. A goal state is defined as something that
some stakeholder hopes to achieve in the future [43]. An
e-collaboration scenario is participated by one or more
agents, which can be actors involved in the scenario or the
system. Agents perform some action and use some

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

resources on the action individually or interactively to
achieve the goal state. Each action may affect some
resource. Agents interact with each other via messages,
which may contain an action. It is interesting to find that
the relationships between the four models (Line 1, 3 and 4
in Fig. 5) can be mapped to the links in the structure of
e-collaboration scenarios (Fig. 6).

4.2 Defining and representing e-collaboration
scenarios using the four-perspective models

Based on the approach proposed by Rolland et al. [46], we
combine the four-perspective models with e-collaboration
scenarios into a multi-perspective approach to requirements
elicitation.

In our approach, agent interaction scenarios are derived
from the connection model at the context level and
authored by requirements engineers that follow a set of
instructions and heuristics. Goals in the connection model
at the context level correspond to agent interaction
scenarios at the middle level, which capture the interactions
between the e-collaboration system and its users. Agent
internal scenarios are derived from collaboration models at
the level above and authored by requirements engineers
that follow a set of instructions and heuristics. Goals in
collaboration models at the agent interaction level
correspond to agent internal scenarios at the bottom level.
In doing so, both goals and scenarios are refined across
three levels. In addition to the goal and scenario refinement,
the dependencies between agents and composite actions can
also be refined across levels. A dependency in a connection
model or a collaboration model can be refined to more
concrete dependencies at the level below, whereas a
composite action in a coordination model can be refined to
atomic actions at the level below.

Since scenarios at three levels address different aspects
of requirements knowledge, it is suggested that
requirements engineers create different models for different
levels:

1) Create Connection Model at the context level.
Connection Model helps with capturing the high-level
structural dependencies between agents described in the
contextual scenario.

2) Create the four-perspective models at the agent
interaction level. At this level, the scenario description
needs to explicitly describe the interactions between

different agents. To fully understand the interactions, the
dynamics of interactions are crucial, such as the workflows
and the exchanging messages. Therefore, Coordination
Model and Communication Model are created. The
workflows are transformed to elements in Coordination
Model, whereas the messages are transformed to elements
in Communication Model. Besides, to assist requirements
engineers to derive agent internal scenarios at the next level
based on goals, it is necessary to analyze the purposes of
interactions and agents. Thereafter, Connection Model and
Collaboration Model are created. The intentionality of each
agent involved in the interaction is transformed to elements
in Connection Model and Collaboration Model

3) Create Coordination Model and Collaboration Model
at the agent internal level. Scenarios at this level describe
how each agent works internally, therefore the implicit
goals and internal operations of each agents are important
for this level. Coordination Model and Collaboration Model
are created to capture agent internal requirements at this
level. The implicit goals and internal operations are
transformed into internal elements in Collaboration Model.
Moreover, the dynamics between the internal operations are
transformed into the elements in Coordination Model.

Table 2 shows the detailed steps of using the
four-perspective models for different levels of scenarios
and the corresponding outcome for each step. The
elicitation process based on activities is also shown in the
SADT diagram [47] in Fig. 7.

Step 1 is to define the contextual scenario. Based on this
scenario, Connection Model is constructed (Step 2), which
has two uses: 1) to derive agent interaction scenarios, 2) to
provide a feedback on the contextual scenario and check
whether there are new knowledge that need to be added to
the scenario description. Step 3 is the definition of agent
interaction scenarios and Step 4 is to model agent
interaction scenarios by creating the four-perspective
models. The four-perspective models can also be used to
validate and improve the scenario descriptions.
Coordination Model, Communication Model, Connection
Model and Collaboration Model are created to capture the
workflows, messages and the purpose of agent interactions.
Step 5 is the definition of agent internal scenarios and Step
6 is to model agent internal scenarios by creating
Coordination Model and Collaboration Model. Likewise,
there is a feedback link from Step 6 to Step 5. Collaboration
Model and Coordination Model are created to capture agent
internal requirements, such as the implicit goals and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

Table 2. The process of using the four-perspective modeling approach to requirements elicitation for e-collaboration systems

Step Purpose Outcome

Step 1: Define the contextual scenario Elicit requirements at the
context level

The contextual scenario

Step 2: Model the contextual scenario The connection model
Step 3: Define agent interaction scenarios Elicit requirements at the agent

interaction level
Agent interaction scenarios

Step 4: Model agent interaction scenarios
 Step 4.1: Create Coordination Model
 Step 4.2: Create Communication Model
 Step 4.3: Create Connection Model
 Step 4.4: Create Collaboration Model

Coordination models
Communication models
Connection models
Collaboration models

Step 5: Define agent internal scenarios Elicit requirements at the agent
internal level

Agent internal scenarios
Step 6: Model agent internal scenarios
 Step 6.1: Create Coordination Model
 Step 6.2: Create Collaboration Model

Coordination models
Collaboration models

Fig. 7 The SADT diagram that describes the requirements elicitation process from four perspectives

internal operations of each agent.

 For Step 1, 3 and 5, the scenarios technique and a set of
questions can help to define and author the scenario at these
levels. Note that we will design different questions for
different levels. For Step 2, 4 and 6, RE-Tools [50] is
employed as a modeling tool. Besides, the i* modeling
framework can help to create Connection model and
Collaboration model, whereas for Step 4 and 6, the UML
modeling language is used to create Coordination model
and Communication model. We are aware that UML and i*
are not the only one technique to represent the
four-perspective models. For example, BPMN can be used
to represent Coordination Model [60]. Message Sequence
Chart can be used to represent Communication Model [54].
CSRML (Collaborative Systems Requirements Modeling
Language) [52] can be used to represent Connection Model
and Collaboration Model. Requirements engineers can

choose the most familiar technique by borrowing its
metamodel. It is worth noting that the elicitation process
can be iterative. The outcome of Step 6 can be used for the
system design, and moreover, as the input for the
next-iteration requirements elicitation.

5 An example: applying the proposed
approach to a collaboration office system

We have applied our approach to a real world
e-collaboration application – a Collaborative Office System
(COS) for requirements elicitation. COS is an enterprise
service system supporting collaborative offices in China.
The major users of the system are the members who have
participated in a collaborative project. COS is a
collaboration tool that facilitates the users to organize their
projects into online boards. The following sections

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

demonstrate how the proposed approach is used to elicit a
system of requirements from COS. These sections are
based on the steps in Table 2.

5.1 Define the contextual scenario (Step 1)

To acquire the domain knowledge for the contextual
scenario, the requirements engineer starts by finding out the
main stakeholders involved in the domain and conducting
an open-ended interview with all the stakeholders. During
this meeting, the requirements engineer will try to get an
initial idea of the domain by asking the stakeholders two
questions:

1) Why do you need this system?
2) What services do you expect the system to provide

for you?
By answering these two questions, the requirements

engineer can construct the high-level domain knowledge
for the system, and then write the contextual scenario. We
do not require the contextual scenario to be written in a
template, but it should contain at least two pieces of
information: 1) the actors that use the system; 2) the
services the system should provide to each actor. Other
knowledge are welcome but not mandatory, such as the
constraints for running the system, the resources used in the
scenario, and so on. By following this guideline, the
contextual scenario for COS contains the following
statement:

“There are two types of users in the COS: the project
owner and the project member. The COS should provide the
following services to the project owner after he/she login
the system: project creation, project management,
notification management, and meeting scheduling; and
provide the following services to project members: project
management, notification management and meeting
scheduling.”

Once the contextual scenario is defined, it can be
validated by stakeholders to check whether there are
additional knowledge to complement the scenario. The
incorrectness and inconsistency can be found in this
validation. In this step, a domain vocabulary is required to
be first built among all stakeholders to facilitate their
communication [12], but this is not the focus of this paper.

5.2 Model the contextual scenario (Step 2)

The next step for the requirements engineer is to model the

contextual scenario using Connection Model (i.e., the SD
model in this paper). There are several heuristics for
constructing the connection model:

1. Pick up actors and the system from the contextual

scenario and map them to the agents in the SD model.
In the i* model, there are different types of actors,
such as roles, positions and agents [65].
Differentiating the actor types makes the definition
more accurate but introduces too many concepts and
makes it harder to model scenarios at different levels
from different perspectives. Therefore in this paper,
we only use agents as the core concept for
e-collaboration scenarios. In the contextual scenario
for COS, there are three agents: the project owner,
project member and COS.

2. Analyze and model dependencies between agents. The
services provided by the system are mapped to the
goal dependency between the system and its users. For
example, the COS provides the project management
service to project members, then project members
depend on the COS to achieve the “Project Be
Managed” goal. To build the dependencies, the
requirements engineer needs to ask each identified
user the following questions:

1) Who do you need to depend on in doing your
job?

2) Who need to depend on you to do their job?
3) In what way do you depend on other agents?

These questions are elaborated from [12]. These
questions help to find out the basic dependencies
between different types of agents. For example, the
project owner relies on project members to participate
in the project and to attend the meeting. Note that we
adopt the goal formulations of the i* framework [64]
in this paper. But there are a lot of other goal
formulations [46][56] that can be used in Connection
Model as well as Collaboration Model.

3. Create and validate the SD model. By using the
RE-Tools [50], the requirements engineer produces
the SD model (Fig. 8) according to the domain
knowledge acquired from the above steps and then
validates it with stakeholders to assure its correctness.
Each goal (between the system and its users) at the
context level suggests a new scenario. For example, in
Fig. 8, the goal “Project Be Created” can only be
realized in the system if more information about how

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

Fig. 8 The connection model at the context level

to achieve this goal is provided. At this point the
requirements engineer is ready to move to the agent
interaction level.

5.3 Define agent interaction scenarios (Step 3)

The agent interaction level contains several agent
interaction scenarios, each of which corresponds to a goal
discovered at the context level. In this paper we only
illustrate the elicitation process for the “Project Be
Created” goal at the context level.

To define agent interaction scenarios, the requirements
engineer first needs to interview the stakeholders and
acquire the domain knowledge from the stakeholders by
asking the following questions for each goal:

1) To achieve this goal, what tasks do you need to
perform, or what subgoals do you need to
realize?

2) What are the relationships between these tasks or
subgoals?

3) Do you need someone to provide some
information before you do a task?

4) What response should the system give to you
after you execute a task?

5) Can you perform this task at the same time with
other people?

6) Are there any constraints or conditions for you to
execute this task?

7) Who needs the outcome of your task?
By answering these questions, the requirements engineer

can acquire the knowledge for the interactions between the
system and its users, such as the individual and interactive
actions performed in the scenario, the flows and conditions
of these actions, system responses, resources, outcomes and
concurrency constraints. Then the requirements engineer
encodes these knowledge into the agent interaction scenario
in a temporal manner. Below is the statement of one
scenario which is named Project Creation corresponding to
“Project Be Created” goal.

“After the user logins the system, the user needs to create
a new project by first entering a new project name. When
the project is initially created, the system displays the new
created project to the user. The user becomes the owner of
the project. Next the system asks the owner to invite two
project members to work on this project. It is required that
all members have already registered. In order to add a
member, the owner needs to obtain the personal
information (i.e., the email or the phone number) of the
member. Once a member receives an invitation from the
owner, the project list of the member will be refreshed
instantly with the new project updated. The owner next
adds one stage named “planning”, and then adds another

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

Fig. 9 The coordination model of Project Creation at the agent interaction level

stage “working on” to the project. The members can also
add stages to the project. No matter who adds the stage to
the project, the stage list of all members including that of
the owner will be refreshed instantly with the stage added.
The stages are initially ordered according to the creation
time. After the stages are added, the owner creates one task
at the planning stage and another task at another stage.
Once the owner or the member adds a new task to the stage,
the task list of all members will be updated instantly.”

Once an agent interaction scenario is defined, it can be
validated by stakeholders, to check if the scenario contains
any incompleteness, incorrectness and inconsistency.

5.4 Create Coordination Model (Step 4.1)

Coordination Model can be directly built according to the
scenario description without asking the stakeholders more
questions. There are several construction heuristics for
constructing the coordination models:
1. Extract the source and goal of the scenario, and pick

up actions of different agents. The source and goal can
be mapped to the initial node and final node of the
model respectively.

2. Organize all actions using activity edge and control
nodes in a temporal manner (Fig. 9). Some tasks can
be mapped to composite actions in Coordination
Model, which will be refined into a set of actions at
the level below. In the scenario example, there are
multiple agents performing repeated actions. For
example, two actions – “Add Stage” and “Create
Task” – are performed more than one once in this
scenario by different agents. To reduce the complexity

of each coordination model, we only consider the
generic process without regard to the agents and thus
merge repeated actions into one single action. In the
Project Creation scenario, eight actions are identified
below: “Enter Project Name”, “Display New Project”,
“Invite Project Member”, “Update Project List”, “Add
Stage”, “Update Stage List”, “Create Task”, and
“Update Task List”. The requirements engineer
structures the eight actions with the sequence flow in a
temporal order in UML Activity Diagram [41]. The
resulting coordination model is shown in Fig. 9.

5.5 Create Communication Model (Step 4.2)

Agents and messages are core to Communication Model at
this level. In order to create a communication model, the
requirements engineer needs to:
1. Identify agents from the scenario. In the example, the

identified agents are the project owner, project
member, and COS.

2. Identify messages from the scenario, including the
properties of messages, such as the actions,
parameters, message sort, and condition and
concurrency constraints. Most messages can be
extracted from the interactive tasks in the scenario, yet
some properties may not be described in the scenario,
which needs to be further clarified by the
requirements engineer and the stakeholders by
answering the following questions:

1) Is this message a synchronous message,
asynchronous message or return message?

2) Is there any condition for you to send or

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

Fig. 10 The communication model of Project Creation at agent interaction level

receive this message?
3) Is there any implicit message that is not

described in the scenario?
The answer to the first question provides information
for the message sort. If the stakeholders cannot
identify the sort, it can be treated as a normal send
message and refine it in next iterations. The answer to
the second question provides information for the
condition property. The answer to the third question
can help to elicit implicit interaction requirements that
are not described in the scenario. For example, the
requirements engineer captures an implicit message
“send notification” from COS to project members,
although this message does not explicitly described in
the scenario. Then the requirements engineer can add
this message to the original scenario.

3. Number the above messages in a temporal order. If the
messaging order cannot be predictable until the
runtime, the requirements engineer needs to build
more than one communication model for the scenario.
For example, in a meeting schedule system, the
meeting participants can either send their available
dates at the same time or one by one. Then one model
can be created for the situation that the meeting
participants send available dates at the same time, and
the other model can be created for the situation that
the meeting participants send available dates one by
one. The sequence expression [41] is used to represent
a lot of knowledge, for instance, the sequence number,
concurrency, and the number of message instances. If
a message is a concurrent message, we use *|| notation
to specify concurrent (parallel) execution of messages.
If a message is a sequential message, we use *

iteration notation to specify the iteration will be
executed sequentially. For example, the notation
*||[k:1..2] means that there are two messages will be
sent concurrently.

Fig. 10 shows a communication model of COS
represented using UML 2.0 Communication Diagram.
Message with sequence 1.1 denotes the first message
within activation 1. Message with sequence 2 follows
message with sequence 1, and 2.1 follows 2. Messages 2.2a
and 2.2b concurrently follow message 2.1 within activation
2. In this communication model, the
“sendNotification(invitation)” message is an implicit
message.

5.6 Create Connection Model (Step 4.3)

The heuristics for creating Connection Model at this level
are similar to those at the context level. The only difference
is that at the agent interaction level, the requirements
engineer asks several questions to acquire the domain
knowledge for a specific scenario – “Project Creation”,
rather than for the whole system.

In the connection model at this level (see Fig. 11), there
are also three agents, which are the project owner, COS and
project member. The project owner depends on the project
member to participate in the project and to provide the
personal information. The project owner and COS have
dependencies as follows: the COS depends on the project
owner to provide a set of resources such as the project
name, stages, tasks and invitations. There are also
dependencies between the COS and the project member.
For example, the project member depends on the COS to
provide the invitation notifications. The COS also depends

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

Fig. 11 The connection model of Project Creation at the agent interaction level

Fig. 12 The collaboration model of Project Creation at the agent interaction level

on the project member to provide the stages.

5.7 Create Collaboration Model (Step 4.4)

In this step the requirements engineer will mostly make use
of the answers to question 1), 2), 3) and 7) in Section 5.3 to
create Collaboration Model by following the heuristics
below:

1. Analyze the high-level goals of each agent in this
scenario and map them to the root goals in the
collaboration model (Fig. 12). For example, the goals
of the project member and COS in this scenario is to
add a new project successfully into the boards, i.e.
“Project Be Added”. If a goal appears more than once
in different agents, it means that the goal is not an
individual goal but a collaboration goal, such as

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

Fig. 13 The coordination model of Add Stage at the agent internal level

Fig. 14 The collaboration model of Add Stage at the agent internal level

“Project Be Added”. The goal for the project members
is to participate in the new project, i.e. “New Project
Be Participated In”.

2. Identify the subgoals and tasks of each agent for the
root goals, and structure the subgoals and tasks with
the decomposition and means-end relationship. For
example, to realize the “Project Be Added” goal, the
project owner needs to perform “Enter Project Name”
and realize the subgoals “Task Be Created”, “Stage Be
Added” and “Project Member Be Invited”.

3. Identify the dependencies for each tasks and subgoals
among different agents. For example, the COS has a
subtask called “Display New Project”, which depends
on the project name entered by the project owner.

The validation of the four-perspective models are
required. When the project members checked the
collaboration model, they found that they have multiple
ways to participate in a new project, such as adding stages,
and creating tasks. But in the scenario description, only
“Add Stage” is mentioned. Therefore, the requirements
engineer can complement the scenario by adding new
information to the goal “Task Be Added”. At this point the
requirements engineer is ready to move to the agent internal
level.

5.8 Define agent internal scenarios (Step 5)

Each leaf goal in Collaboration Model at the agent
interaction level suggests a new scenario at the agent
internal level. For example, the “Stage Be Added” goal in
Fig. 12 derives a new scenario Add Stage at the agent
internal level. Then we can define this scenario with a
statement.

The questions at this level put more emphasis on the
internal operations and the condition to perform the
operations. Therefore the following questions are asked:

1) What operations do you need to do to achieve the
goal?

2) Is there any condition or constraint for you to
perform the operation?

3) What are the relationships between these
operations?

By answering these questions, the requirements
engineer writes the Add Stage scenario as follows:
 “The project owner enters the stage name of a project
and selects to save the new stage to COS. This scenario
requires that the project owner logins COS and at least a

project has been created.”

5.9 Model agent internal scenarios (Step 6)

The heuristics for creating Coordination Model and
Collaboration Model at this level is the same as those at the
agent interaction level. We will not repeat the steps in this
paper. In the coordination model (Fig. 13), the Add Stage
process is divided into two actions: “Enter Stage Name”
and “Save New Stage”. To construct the collaboration
model (Fig. 14), the requirements engineer has more
questions to ask stakeholders, which are similar to those
asked at the middle level:

1) On whom and what do you depend to perform this
operation?

2) Do you need to provide the outcome to other
agents?

For example, in Fig. 14, to realize the “Stage Be Added”
goal, the project owner has to perform two operations that
correspond to the actions in the coordination model. The
COS depends on the project owner to provide the stage
name. Similar to the levels above, the coordination models
and collaboration models at this level should also be
validated by the requirements engineers.

By applying our approach to the COS, the requirements
engineer starts from a contextual scenario and elicit COS’s
requirements incrementally. Finally a system of scenarios
and requirements models are elicited. At the top level, a
contextual scenario and a connection model are obtained; at
the middle level, a set of agent interaction scenarios (e.g.,
Project Creation), their corresponding coordination models,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

connection models, communication models and
collaboration models are defined; at the bottom level, a set
of agent internal scenarios (e.g., Add Stage), their
corresponding coordination models and collaboration
models are defined.

6 Related work

In this section, we compare our approach with some closely
related approaches by focusing on each other’s similarities
and differences. We ask these two questions: 1) How are
the 4Cs characteristics of e-collaboration systems supported
by the existing approaches? 2) How does our approach
differ from similar approaches?

6.1 Supporting the 4Cs characteristics

Supported by e-collaboration platforms and tools [10], such
as RM-Tool [32] and GroupSystems [55], most current
work on requirements elicitation has been focused on
improving the elicitation process itself. By contrast, work
on how to elicit requirements for e-collaboration systems
has so far received little attention. Although several
approaches are available for dealing with the elicitation
activities concerning the applications in the context of
collaborative environments, they do not support all of the
4Cs characteristics. This sub-section discusses some of the
closely related approaches to ours.

1. Workflow-oriented elicitation
Coordination is a core concept in e-collaboration systems.

Action-Workflow is an early step to capture the
coordinative requirements among agents [37]. It defines a
basic communication unit called customer-performer in
terms of a four-phased loop, including proposing, agreeing,
performing, and accepting. However, Action-Workflow
loop was not designed towards e-collaboration systems. It
only addresses the coordination characteristic, while the
intentionality properties of agents are ignored [65].
Therefore there is no support for the connection and
collaboration aspect. Similar to Action-Workflow, Fuks et
al. [19] provided a common language for representing the
collaboration process and functional aspects of a
workgroup and guiding the functional specification of
e-collaboration systems. Chebbi et al. [7] emphasized the
role of workflow playing in inter-organizational

cooperative systems and provided a workflow modeling
approach to elicit requirements of workflows and resources
among agents, which consists of three steps: workflow
advertisement, workflow interconnection and workflow
cooperation. Nevertheless, all the above approaches address
the interactions and coordination between stakeholders, but
none of them take stakeholders’ intentions into
consideration.

2. Agent-oriented elicitation
To overcome the difficulties of workflow-based

approaches in capturing the connection and collaboration
requirements, agent orientation was emerging as a new
paradigm [65]. Yu [66] argued for six properties for agents,
i.e., intentionality, autonomy, sociality, identify and
boundary, strategic reflectivity and rational self-interest,
and proposed the i* framework to elicit user requirements
in an agent-oriented modeling paradigm. The i* framework
is not only considered as a requirements modeling language,
but also a requirements elicitation tool. It uses the SD
model and SR model to address the six properties of agents.
Although the i* framework is not designed peculiar to
e-collaboration systems, stakeholders in e-collaboration
systems share the same properties as agents. So the SD
model can support the connection characteristic whereas
the SR model can support the collaboration characteristic of
e-collaboration systems. However, the descriptions of the
activities and actions of e-collaboration systems are not
given in i*. Thereafter, the i* framework is unable to
portray the coordination aspect of e-collaboration systems.
In order to overcome the limitations of the i* framework,
there are several requirements elicitation and modeling
techniques for cooperative systems to enrich i*. For
example, an extended i* approach, CSRML (Collaborative
Systems Requirements Modeling Language) [52], attempts
to provide support for the collaboration, communication
and coordination aspects of collaborative systems. Though
CSRML categorized tasks into the coordination, the
collaboration and communication tasks, CSRML is only
capable of describing the structural knowledge, rather than
the dynamic knowledge. Another agent-oriented technique
is HOMER [62], a Human-Oriented Method for Eliciting
Requirements. HOMER uses organizational metaphor to
help requirements engineers to elicit requirements by
answering a set of questions around the metaphor, such as
“What is the purpose of the position?” and “What tasks will
be commonly be required?”. HOMER can also be
integrated into agent-oriented software engineering (AOSE)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

frameworks. However, the coordination, communication
and connection aspects are not concerned with HOMER. To
overcome the problem that i* does not address the
inter-agent communication, Sutcliffe [51] proposed a
coupling analysis method to capture and analyze the
requirements for social-technical systems or cooperative
systems. The coupling analysis method builds on the i*
models and extends i* by modeling the communications
between agents by discourse act types. The coupling
analysis method consists of three stages: 1) use cases and
system modeling by the i* models; 2) communication and
task analysis; 3) dynamic analysis. Although this method
focuses on the requirements analysis such as the agents’
workload analysis, it can also be used to elicit the implicit
communication requirements. Yet, the coordination aspect
is not addressed by this method. While our
multi-perspective approach bears close relations to
agent-oriented elicitation, it also addresses the coordination
and communication aspect of e-collaboration systems.

3. Activity Theory-based elicitation
Activity Theory (AT) of social science also provides

support for the identification of contradictory requirements
in some AOSE methodologies, such as INGENIAS [42]
and Tropos [5]. Requirements Elicitation Guide (REG)
based on AT [17] [18] is another attempt to support
developers in gathering requirements about the social
environment of cooperative applications. The REG
technique is developed as a set of tools by incorporating the
AT concepts such as areas, aspects and questions to the
UML diagrams. A question has a related set of answers that
represent possible requirements elicited by that question.
By answering a set of questions, developers can follow a
generic guide to elaborate the social features that should be
considered in cooperative systems. The REG technique
contains many of the concepts needed for e-collaboration
systems and considers more on the mutual influences
between the envisioned system and the human context, but
does not deal with issues of agents’ coordination and
communication.

4. Scenario-based elicitation
Scenarios are widely recognized as an important

technique to elicit user requirements for various types of
systems. Lau [33] identifies two reasons for the difficulties
in requirements elicitation for e-collaboration systems: 1)
insufficient engagement of the ‘potential’ users in
requirements capture; 2) insufficient understanding of how
RE tools can help people working more effectively with

each other. Lau shared the experience gained from one
empirical study in using scenario-driven techniques at the
requirements elicitation stage of developing e-collaboration
systems. By walking through the scenarios, a shared
understanding of the vision could be achieved among
stakeholders; and moreover, scenarios can separate a
complex process into individual tasks, each of which can be
intertwined with the use of IT solutions. In so doing, the
second aforementioned problem is tackled. However, Lau’s
approach was just exploring the possibilities of applying
scenarios into requirements elicitation for e-collaboration
systems, but not explicitly addressing the 4Cs
characteristics. Our approach also starts from a scenario
description and makes use of scenarios to help with the
elicitation process. Coordination Model also divides an
entire business process into a coherent set of tasks (i.e.,
actions in our approach). Thereafter, the binding of tasks
and IT solutions is also enabled in our approach.

Also acknowledged the crucial role played by scenarios
in eliciting e-collaboration requirements, Oliveira and
Cysneiros [39] adopted scenarios into requirements
elicitation in the context of collaborative settings to address
aspects such as connection, autonomy, collaboration and
pro-activeness. They developed Strategic Dependency
Situations (SDsituations) as a simple technique for helping
requirements elicitation. They first defined SDsituations,
then defined a scenario for each SDsituation and finally
used i* models to organize different scenarios. Our
approach also uses i* to model the intentionality of agents
in different scenarios. Besides, they presented the mapping
from the concept – Episode – in scenarios to the task
concept in the i* model, which is similar to our approach.
The episode concept was proposed by Leite et al. [35],
which can be mapped to the path in our scenario
metamodel (Fig. 6). In addition, Leite et al. defined a
scenario consisting of the context, title, goal, resources,
actors, episodes and exceptions, some of which can also be
found in our scenario metamodel, such as title, goal, and
resources. The other elements such as context, actors and
exceptions can be mapped to the elements in our scenario
metamodel. For example, the actor can be mapped to the
agent, while the context and exceptions can be mapped to
the source and paths. While our approach does not
addresses NFRs, both of the above approaches discussed
how to elicit NFRs for collaborative systems by
incorporating the constraints into scenarios.

Another approach applying scenarios to requirements

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

elicitation for e-collaborative systems is MAMIE (from
MAcro to MIcro level requirements Elicitation) [4].
MAMIE was developed for eliciting requirements for
inter-company collaborative information system (ICIS).
MAMIE integrates goals, scenarios and viewpoints within a
requirements elicitation approach. In MAMIE, the macro
level is used to find goals and use cases, the medium level
is based on scenarios, and the micro level is used to
discover low-level requirements based on viewpoints.
Besides, the relevant NFRs of the system-to-be are coped
with at the macro level. Moreover, MAMIE takes the
stakeholders’ situation into consideration and selects the
most suitable elicitation technique for the stakeholder. The
selection process is based on Felder-Silverman's Learning
Styles Model (LSM) classification [4]. In LSM, people are
classified into four categories: Sensing / Intuitive, Visual /
Verbal, Active / Reflective, Sequential / Global. Likewise,
our multi-perspective modeling approach can satisfy all of
the above categories of stakeholders to elicit requirements.
For example, Coordination Model and Communication
Model are suitable for sensing people to learn facts,
whereas Connection and Collaboration Model is suitable
for intuitive people to discover possibilities and
relationships. The diagrammatic models are suitable for
visual people and reflective people that prefer to think
according to what they see, whereas the narrative scenarios
are suitable for verbal people that prefer explanations and
active people that remember things when they put things
down. Coordination Model and Communication Model are
also suitable for sequential people to understand the
requirements easier when following a step-by-step
procedure, whereas Connection Model and Collaboration
Model is suitable for global people to get the rough features
and to find connections. MAMIE provides a systematic
guidance to instruct requirements engineers to elicit
requirements in an ICIS, but it does not explicitly describe
the relationships between the stakeholders and does not
encompass the concept of activities, which are crucial for a
cooperative information system. In contrast, our approach
uses Connection Model to represent the relationships
between stakeholders and uses Coordination Model to
describe activities.

5. Viewpoint-based elicitation
Viewpoints [38] have long been used to capture different

perspectives of user requirements. But the viewpoint
method does not explicitly support the elicitation of
interactions and the cooperation between actors, or the

activities and actions of e-collaboration systems. In order to
overcome the weakness of viewpoints, Kessi et al. [27]
proposed VpCIS (Viewpoints for requirement engineering
in a Cooperative Information System) to identify user
requirements for collaborative information systems from
three key aspects, including the organizational aspect, the
functional aspect, and the informational aspect. VpCIS
incorporates the concept of activities, actors, and group of
actors into the existing viewpoint template. However,
VpCIS cannot capture dynamic interactions between agents
and coordination between actions. Moreover, while VpCIS
focuses on the requirements descriptions, it does not show
us how to elicit requirements with VpCIS in detail.

6. Other elicitation techniques
In addition to the approaches discussed above, there are

other requirements elicitation techniques for collaborative
systems, such as questionnaire and interview [2],
observations [36], simulation-based elicitation [49].
Alreshidi et al. [2] adopted a structured questionnaire and
semi-structured interviews to capture the requirements for
collaborative governance solutions – Building Information
Modeling (BIM) governance. The questionnaire design
concerns the connection, collaboration and communication
among stakeholders. Machado et al. [36] developed an
observation conceptual model (OCM) and a collaborative
observation method aimed at improving the requirements
elicitation activity for systems delivered at collaborative
workplaces. The OCM is a framework that captures and
specifies different dimensions of knowledge through the
observations of requirements engineers, such as “what to
observe”, “how to observe”, “how to analyze” and “how to
represent”. The collaborative observation method defines
an iterative elicitation process by preparing, capturing,
analyzing, evaluating and representing domain knowledge
from various types of materials. After the observation
process, the functionalities, the responsibilities and
activities of each role can be captured. However, the
requirements elicited by this method are very fragmented
and do not explicitly support the 4Cs characteristics.
Simulation is another emerging technique to elicit
requirements for virtual collaborative systems. Silva and
Hirata [49] captured the interaction requirements of
potential users in collaborative environments emphasizing
CIB (Collaborative Information Behavior) activities by
simulating the activities among actors that make up CIB.
The process of this approach is composed of four steps:
define the system, its environment, the restrictions and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

permissions of CIB activities, plan the simulation, execute,
monitor and control the simulation, analyze and identify
requirements. The simulation-based approach addresses the
coordination, communication, collaboration aspect of
e-collaboration systems as well as the awareness property
of agents, while the connection aspect is not supported.

6.2 Model-driven requirements elicitation

Model-driven requirements elicitation [22] is based on the
concept of model transformation and refinement. This
sub-section discusses some of the well-known
model-driven requirements elicitation approaches. Goal
modeling is the most commonly established requirements
elicitation technique for the early phase of RE [22]. The
KAOS framework [56] provides a model-driven way to
goal-oriented requirements acquisition. In KAOS, the
requirements engineers first identify high-level goals,
which is similar to our approach. Then the goals are
formalized and objects are identified and enriched by the
goals. Next new specific goals are elicited by asking the
WHY and HOW question. The agent is also an essential
construct in KAOS as each goal can be assigned to an agent,
According to Yu [65], KAOS “offers a strong foundation
for goal-based reasoning and analysis in agent-oriented
modelling”, yet, agents in KAOS do not have rich social
relationships and interact non-intentionally. Therefore we
cannot only use KAOS to capture the requirements in
e-collaboration systems. But the goal-model-driven
elicitation steps in KAOS framework provides a lot of
guidelines for the requirements elicitation process
presented in this paper. Rolland et al. [46] proposed a
goal-scenario coupling approach to elicit system
requirements at different levels of abstraction. According to
Rolland et al., there exists a refinement relationship
between the hierarchy of scenarios. The refinement
relationship relates a higher-level scenario to a lower-level
scenario. Under this relationship, higher-level (less detailed)
scenarios are refined into lower-level (more detailed)
scenarios by a goal-model-driven process. The
goal-scenario coupling approach suggests an interactive
activity between scenario transformation and scenario
writing: new scenarios discovered by the current round of
transformation needs to be written up before the next round
of transformation can be performed again. The approach
presented in this paper is also an interactive process of
scenario authoring and goal discovering. The difference

between the two is that Rolland et al.’s process focuses on
the goal model transformation only, whereas our process
transforms a scenario into four different models, which
include the goal model. Since our approach is towards
e-collaboration systems, we emphasize the connection,
coordination and communication between agents in
addition to the intentionality of each agents. Besides, unlike
Rolland et al., we consider in this paper the scenario
authoring process. We design a set of questions to help the
requirements engineers to elicit the knowledge that is
needed for a scenario.

Georg et al. [20] proposed a methodology that combines
the Activity Theory (AT), User Requirements Notation
(URN) goal and scenario modeling (AT/URN) to elicit,
analyze and evolve requirements. It first performs the AT
analysis to generate the ASD (Activity System Diagram)
network models, then transform it to GRL (Goal-oriented
Requirement Language) models, and finally create the
UCM (Use Case Maps) to design scenario models based on
the goal models. In the integrated AT/URN approach, while
AT provides a broad, conceptual framework for exploring
social requirements, such as human activities and their
mediating relations, URN provides formality to analyze and
exploit traceability. Like the AT/URN approach, the
approach presented in this paper also combines the use of
goal models and scenarios. However, while the AT/URN
approach put emphasis on how to define and evolve social
requirements at one level, our approach focuses on the
iterative requirements elicitation at multiple levels of
abstraction and from multiple perspectives.

The i* modeling framework introduces an intentional
and social ontology for requirements engineering. There are
several model-driven elicitation approaches based on the i*
framework. For example, Cysneiros and Yu [12] proposed a
model-driven requirements engineering methodology that
builds on the i* framework for systems in a collaborative
environment. This methodology starts from the LEL
(Language Extended Lexicon) and uses the strategic actor
as the central construct to elicit and organize requirements,
which is composed of five basic steps: 1) build a lexicon to
obtain a vocabulary about the domain, 2) build a social
structure of strategic actors to derive the initial SD models,
3) build a first-cut dependency model to derive more
complete SD models, 4) add intentionality for each actor
and build the SR models, and 5) reason about the
alternative solutions. The SD model and SR model are the
core to drive the elicitation process. Oliveira and Cysneiros

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

[39] integrated the LEL approach, scenarios technique and
i* framework to elicit requirements. Their approach is
divided into four steps: elaborate LEL to obtain the general
domain knowledge, define SDsituations, define scenarios
and model intentionality with i*. The development of the i*
models may demand changes in SDsituations as well as in
the definition of scenarios, which results in the
enhancement of original requirements. The approach
presented in this paper is similar to the above two
approaches in that all of the three approaches address the
agent characteristics such as such as autonomy, sociality,
and intentionality and select i*/scenarios coupling approach
to capture these aspects. Our approach differs from the two
approaches in that the former is mainly a top-down
elicitation process that starts from a contextual scenario and
refines the high-level requirements into more detailed ones
by coupling scenarios and the four-perspective models,
whereas the latter ones start from the lexicon and refine the
coarse-grained requirements by encoding more information
to the i* models step by step, which builds a traceability
link between the lexicon and the i* models. Compared to
the two approaches, our approach put more emphasis on the
hierarchy of user requirements.

In addition to goal-model-driven elicitation and
i*-model-driven elicitation, there are some other elicitation
work driven by organizational models. For example, the
EKD (Enterprise Knowledge Development) approach [6] to
requirement engineering is driven by a set of organizational
models, the goal model, the concepts model, the business
rules model, the business process model, the actors and
resources model, and the technical components and
requirements model. Oliveira et al. proposed a
REMO-EKD (Requirements Elicitation oriented by
business process MOdeling for EKD) [40] approach in
order to support the elicitation of software requirements
based on EKD models. The REMO-EKD technique
supports the elicitation of FRs and NFRs as well as
business rules. REMO-EKD consists of a set of ten
heuristics, each of which is composed of: 1) a set of
components of the EKD model it is related to, 2) the
description of the heuristic, and 3) the guideline about how
to elicit the requirements. However, these approaches
mostly tell us what to elicit, while they pay little attention
on how to elicit requirements. Besides, both the EKD and
REMO-EKD approaches have limitations in dealing with
agents’ sociality.

6.3 Summary

Based on the above comparison, we can now answer the
two questions raised in the beginning of the section.

First, how are the 4Cs characteristics of e-collaboration
systems supported by the existing approaches? As Table 3
shows, none of the approaches supports all of the 4Cs. Our
work is therefore timely in addressing this gap.

Second, in what way does our approach differ from
similar approaches? Our approach is not only a
scenario-based technique but also a model-driven
elicitation process. In comparison with similar
scenario-based approaches, our approach covers the 4Cs of
e-collaboration systems, and moreover, our approach
structures different levels of scenarios into a consolidated
hierarchy. In comparison with other model-driven
elicitation approaches, our approach performs the
elicitation in a stepwise refinement fashion, from the
contextual level to the agent interaction to agent internal.

In comparison with some elicitation approaches such as
the i* framework [64], CSRML [52], SDsituations [39],
our approach currently only focuses on the elicitation of
FRs. According to Leite et al. [35] and Oliveira and
Cysneiros [39], a scenario is bounded by a context, which is
constrained by a property called constraint. In addition,
resources and episodes (i.e., a sequence of actions in our
approach) also have constraints, which derive NFRs.
Likewise, we can add the constraint property to the
scenario, resource, action in our approach, and integrate
them into four-perspective models respectively. The
scenario notation proposed in [39] can be adopted to format
e-collaboration scenarios into a more structural way.
Cysneiros and Leite [11] also proposed a process to elicit
NFRs and trace them to UML models. The i* modeling
framework provides support for NFRs through softgoals
[64]. There are two ways to integrate NFRs to Coordination
Model and Communication Model. The first way is to
create new symbol for NFRs as an attachment to the
existing elements [11], while the second way is to treat
NFRs as a constraint attribute of the existing elements and
RE-Tools provides the functionality [50]. Both ways are
recommended.

7 Practical implications

In this section, we discuss the practical aspects of our
approach. We base our discussion on an industrial study

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

Table 3 A summary of requirements elicitation techniques for collaborative systems concerning the 4Cs characteristics (+ notation applied; - notation not

applied)

Elicitation technique Category Collaboration Connection Communication Coordination

Action-workflow loop [37] Workflow-oriented
elicitation

- - - +

3c collaboration model [19] - - + +

Workflow modeling [7] - - + +
i* [64][65] Agent-oriented

elicitation

+ + - -

Coupling analysis [51] + + + -
CSRML [52] + + - -
HOMER [62] - + - -
REG [17][18] AT-based elicitation + + - -
Lau’s approach [33] Scenario-based

elicitation
- - - -

SDsituations [39] + + - +
MAMIE [4] + - + -
VpCIS [27] Viewpoint-based

elicitation
- + - -

Collaborative observation
method [36]

Observation - - - -

Questionnaire and
interview [2]

Questionnaire and
interview

+ + + -

Silva and Hirata’s approach
[49]

Simulation + - + +

conducted by Knauss et al. [28]. The study identified four
RE challenges for collaborative industrial applications. In
what follows, we first discuss how our approach can
address these RE challenges and then show the relevance of
our approach to industrial applications.

7.1 Addressing RE challenges

Challenge 1: The management of domain and technical
knowledge across all organizational levels and actors.

As Knauss et al. reported [28], three scope levels are
identified to analyze collaborative systems. Scope level 1
presents the system’s relationships to other systems and an
external view on the system. Scope level 2 analyzes the
relationships within the system by managing the context
and mapping requirements to actors. Scope level 3 shows
the system from the perspective of a single organization.

Our approach also proposes three levels, i.e., the context
level, agent interaction level and agent internal level. The
context level can be mapped to Scope level 2 whereas the
agent interaction level and agent internal level can be
mapped to Scope level 3. Although we don’t discuss Scope

level 1 in our approach, Connection Model can also be used
at Scope level 1 to show the inter-relationships among
different systems. Besides, in our approach, domain
knowledge can be captured, described and modeled at three
levels, and technical knowledge can be managed at the
agent internal level as Collaboration Model used at this
level in essence has the ability to capture and model
technical solutions by using the means-end and
decomposition relationship.

Challenge 2: The management of stakeholder interaction
across multiple organizational boundaries and between
teams.

According to Knauss et al. [28], practitioners feel a very
high need for interactions both globally and locally in
capturing and communicating requirements. In our
approach, the interaction of stakeholders is addressed from
different aspects. Connection Model is used to outline each
agent’s boundary and capture the strategic relationships
between different agents. Besides, we designed a set of
questions to promote stakeholder interaction. For example,
question 1), 2), 3) in Section 5.2 at the context level and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

question 3), 5), 7) in Section 5.3 at the agent interaction
level will motivate the stakeholders to reflect whether they
have relationships with others and then drive them to
interact with other stakeholders.

Challenge 3: The systematic transformation from the
requirements flows into technological and strategic
decisions.

Knauss et al. [28] suggested that the transformation should
rely on two general flows of requirements, i.e. the
top-down requirements flow and bottom-up requirements
flow. According to the observation of current practice, most
practitioners like to develop scenarios in a top down
manner [46], which is effective and natural. Yet, the
difficulty with this manner is in the control of the top down
decomposition [28].

We have seen in Section 5 of the paper that our approach
uses a system of scenarios and models to tackle this
problem. The contextual scenario, agent interaction
scenarios and agent internal scenarios refine requirements
in a controllable process. However, as mentioned in [28],
only top-down requirements flow is not sufficient to
address this challenge. Therefore, we make use of the
feedbacks from stakeholders (Fig. 7) as the bottom-up
requirements flows to transform new knowledge into
emergent requirements. The refinement process is therefore
interactive by combing the top-down and bottom-up
requirements flows. Moreover, our approach offers two
models – Connection Model and Collaboration Model – to
help with the tradeoffs of technological and strategic
decisions. For example, it was reported that in many
projects [63][65][68], the SR model and SD model
contribute to elicit technical solutions.

Challenge 4: The early involvement of stakeholders.

Knauss et al. [28] suggested that early involvement of
stakeholders in requirements elicitation is crucial in
ensuring the success of collaborative systems. Our
approach addresses this challenge by asking the
stakeholders a set of questions about the system context.
Our approach also actively involves the participation of the
stakeholders in the definitions of different levels of
scenarios and the design of requirements models.

7.2 Relevance to industrial applications

The study reported by Knauss et al. [28] is based on IBM
CLM tool suite [25], which is a collaborative platform.
CLM supports a host of IBM tools, including IBM Rational
Team Concert (RTC), Rational Quality Manager (RQM)
and Rational Requirements Composer (RRC). CLM
delivers requirements management, quality management,
change and configuration management and project planning
and tracking. In this sub-section, we will use CLM to
demonstrate the relevance of our proposed approach to
industrial applications. Due to space limitation, here we
have only selected one scenario for each level to illustrate
how our approach works in CLM, as shown in Fig. 15.

We first use Connection Model to describe the Scope
level 1 of IBM CLM system (the top-left part of Fig. 15),
which focuses on the features such as target market, the
participants and so on. Then we map the context level to
Scope level 2 (the top-right part of Fig. 15) and derive the
contextual scenario, which is further modeled by
Connection Model again to analyze the relationships of
different agents in CLM. The agent interaction level and
agent internal level are mapped to Scope level 3, which
focuses on the requirements refinement using the
multi-perspective modeling approach. At the agent
interaction level, a system of agent interaction scenarios are
derived and then transformed into the four-perspective
models. In the middle of Fig. 15, the four-perspective
models for the Test Case Management scenario at the agent
interaction level are shown. At the agent internal level, a
system of agent internal scenarios are derived and then
transformed into the coordination models and collaboration
models. At the bottom of Fig. 15, the coordination model
and collaboration model for the Test Case Creation
scenario are shown.

From the above discussion, we can see that the
multi-perspective modeling approach has the potential to
apply in the industry.

8 Conclusion

Based on the 4Cs characteristics of e-collaboration systems,
this paper has proposed a four-perspective modeling
approach for eliciting user requirements of e-collaboration
systems. Each perspective model focuses on one aspect of
the e-collaboration process and contributes to one
viewpoint of a total requirement specification. Collectively,
these models provide a comprehensive view of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

Fig. 15 The multi-perspective modeling approach applied on IBM CLM tool suite.

requirements for e-collaboration systems. These models,
together with the modeling process, offer requirements
engineers a tool to elicit, analyze and represent user
requirements in a systematic way.

To evaluate our approach, we have used the solution
proposal evaluation criteria suggested by Wieringa et al.
[61]. Specifically, we have:

1. clearly explained the problem to be solved by the

proposed approach.
2. demonstrated the novelty of the proposed approach

by comparing it with similar approaches.
3. described the approach in such a detail that the

approach should be replicated by other researchers.
4. illustrated the feasibility of our approach through a

real world e-collaboration example.
5. discussed the practical implications of our approach

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

based on an industrial study.
6. compared related work in detail by identifying the

similarities and differences between our approach
and the existing approaches.

The key strength of our approach is that we start from the
four characteristics of e-collaboration systems and explore
four distinct models in eliciting requirements for
e-collaboration systems. We found that there is an intrinsic
relationship between these characteristics and the
four-perspective models.

The main limitation of the proposed approach is that
creating four models at multiple levels is clearly time
consuming. However, in practice, not every scenario
contains all of the 4Cs and hence normally the number of
models for each scenario is much smaller than what has
been illustrated in this paper. There are two possible ways
to solve this problem. One is to integrate the
multi-perspective modeling approach with Agile
development [8]. The requirements engineers do not need
to create 100% accurate and detailed models for all
scenarios at the first time; instead, they can create
sufficiently accurate and detailed models for different
scenarios with the change of iterations. For example, some
scenarios are the key requirements to the e-collaboration
system, then in the first several iterations, we can create
models of the three levels for these key scenarios, while
other less important scenarios can be elicited just at the
contextual level or agent interaction level in these iterations
and refined in the following iterations. In other words, we
can create some “Just In Time” (JIT) models in the
requirements elicitation process. Another way is to
automate the text-to-model transformation. For example, by
employing natural language processing tools, we can
transform the coordination model from the scenario
through two basic steps: the syntax-level analysis and
text-level analysis. The syntax-level analysis is obtain the
grammatical structure of each requirement and extract the
necessary actions from each requirement, whereas the
text-level analysis is to analyze the relationship among
requirements and extract the workflows among actions
[58].

For complex scenarios, our suggestion is to decompose
them into a set of use cases before applying our modeling
approach. Use cases are more structural and simpler than
scenarios, which will simplify our approach and hence
improve the efficiency of our approach.

Our approach currently does not support model

management, traceability and evolution. We intent to
address these issues in future research.

We encourage RE researchers and practitioners to use
our approach and any feedback would be greatly
appreciated. We hope to conduct an industrial case study to
put our approach into practice and to observe its strengths
and limitations.

Acknowledgments
We wish to thank the reviewers for their helpful comments
and suggestions. This work was supported by the National
Natural Science Foundation of China under Grant No.
61402406 and No. 61602412, and is in collaboration
between Zhejiang Gongshang University and the
University of Manchester.

References

1. Ali H, Macaulay L, Zhao L (2009) A collaboration pattern

language for eParticipation: a strategy for reuse. In: ECEG’09,

pp 29-38

2. Alreshidi E, Mourshed M, Rezgui Y (2016) Requirements for

cloud-based BIM governance solutions to facilitate team

collaboration in construction projects. Requir Eng: 1-31.

3. Baudin V, Drira K, Villemur T, Tazi S (2004) A model-driven

approach for synchronous dynamic collaborative e-learning.

E-Education applications: human factors and innovative

approaches: 44-65

4. Bendjenna H, Zarour NE, Charrel PJ (2010) Eliciting

requirements for an inter-company cooperative information

system. J Syst Inf Tech 12(4): 305-333

5. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos

J (2004) Tropos: an agent-oriented software development

methodology. Autonomous Agents and Multi-Agent Systems

8(3): 203-236

6. Bubenko JA, Persson A, Stirna J (2001) EKD - Enterprise

Knowledge Development User Guide

https://people.dsv.su.se/~js/ekd_user_guide.html. Retrieved 2

Jan 2017

7. Chebbi I, Dustdar S, Tata S (2006) The view-based approach

to dynamic inter-organizational workflow cooperation. Data

Knowl Eng 56(2): 139-173

8. Chemuturi M (2013) REM in Agile Projects. In: Requirements

Engineering and Management for Software Development

Projects. Springer, New York, pp 217-232

9. Cook N (2008) Enterprise 2.0: how social software will

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26

change the future of work. Gower Publishing, Brookfield

10. Coughlan J, Macredie RD (2002) Effective communication in

requirements elicitation: a comparison of

methodologies. Requir Eng 7(2): 47-60

11. Cysneiros LM, Leite JCSDP (2004) Nonfunctional

requirements: from elicitation to conceptual models. IEEE

Trans Softw Eng 30(5), 328-350

12. Cysneiros LM, Yu ES (2003) Requirements engineering for

large-scale multi-agent systems. Lecture Notes in Computer

Science 2603(4):39-56

13. Dahlan A, Rahman A, Abdulatif ZK, Mahmoud I, Aydin M

(2011) Collaborative healthcare system between clinics and

hospitals in Malaysia. IJCIIS 2(2): 92-100

14. Ferrari A, Spoletini P, Stefania G (2016) Ambiguity and tacit

knowledge in requirements elicitation interviews. Requir

Eng 21(1): 333-355

15. Franchi E, Poggi A, Tomaiuolo M (2013) Open social

networking for online collaboration. IJeC 9(3): 50-68

16. Franch X (2010) Fostering the Adoption of i* by Practitioners:

Some Challenges and Research Directions. Intentional

Perspectives on Information Systems Engineering 2010:

177-193

17. Fuentes R, Gómez-Sanz, JJ, Pavón J (2004) Towards

requirements elicitation in multi-agent systems. European

Meeting on Cybernetics and Systems Research. In:

EMCSR’04

18. Fuentes, R, Gómez-Sanz JJ, Pavón J (2004) Activity Theory

Applied to Requirements Elicitation of Multi-Agent Systems.

In: International Workshop on Activity Theory Based Practical

Methods for It-Design.

19. Fuks H, Raposo A, Gerosa MA, Pimentel M, Lucena CJ (2007)

The 3c collaboration model. In: Encyclopedia of

E-Collaboration. Information Science Publishing, Hershey, pp

637-644

20. Georg G, Mussbacher G, Amyot D, Petriu D, Troup L,

Lozano-Fuentes S, et al (2015) Synergy between activity

theory and goal/scenario modeling for requirements elicitation,

analysis, and evolution. Information & Software Technology

59(C): 109-135

21. Haumer P, Pohl K, Weidenhaupt K (1998) Requirements

elicitation and validation with real world scenes. IEEE Trans

Softw Eng 24(12): 1036-1054

22. He C, Mussbacher G (2016) Model-Driven Engineering and

Elicitation Techniques: A Systematic Literature Review. In:

REW’16

23. Hickey AM, Davis AM (2003) Elicitation technique selection:

how do experts do it?. In RE’03, pp 169-178

24. Hooper JW, Pei H (1982) Scenario-based prototyping for

requirements identification. ACM Sigsoft Software

Engineering Notes, 7(5):88-93

25. IBM (2017) Rational solution for Collaborative Lifecycle

Management.

https://www.ibm.com/support/knowledgecenter/en/SS2L6K_6

.0.2/com.ibm.help.common.jazz.calm.doc/topics/c_clm_overv

iew.html. Accessed 01 August 2017

26. Kaindl H (2000) A design process based on a model

combining scenarios with goals and functions. IEEE Trans

Systems, Man, and Cybernetics - Part A: Systems and

Humans 30(5): 537-551

27. Kessi K, Oussalah M, Alimazighi Z (2014) Viewpoints for

requirement engineering in a cooperative information system

(VpCIS). New perspectives in information systems and

technologies 1: 299-308

28. Knauss E, Yussuf A, Blincoe K, Damian D, Knauss A (2016)

Continuous clarification and emergent requirements flows in

open-commercial software ecosystems. Requir Eng: 1-21

29. Kock N, Davison R, Wazlawick R, Ocker R (2001)

E-collaboration: a look at past research and future challenges.

J Syst Inf Tech 5(1): 1-8

30. Kock N, Lynn GS (2012) Research article electronic media

variety and virtual team performance: the mediating role of

task complexity coping mechanisms. IEEE Trans Profes

Comm 55(4): 325-344

31. Kulkarni D, Ahmed T, Tripathi A (2012) A generative

programming framework for context-aware CSCW

applications. TOSEM 21(2): 11

32. Lang M, Duggan J (2001) A tool to support collaborative

software requirements management. Requir Eng 6(3):

161-172

33. Lau LMS (2008) Scenarios for e-collaboration are only part of

the story. In: Encyclopedia of E-Collaboration. Information

Science Publishing, Hershey, pp 547-553

34. Le Dinh T, Rinfret L, Raymond L, Dong Thi BT (2013)

Towards the reconciliation of knowledge management and

e-collaboration systems. Interactive Technology and Smart

Education 10(2): 95-115

35. Leite JCSDP, Hadad GDS, Doorn JH, Kaplan GN (2000) A

scenario construction process. Requir Eng 5(1): 38-61

36. Machado RG, Borges MRS, Gomes JO (2008) Supporting the

System Requirements Elicitation through Collaborative

Observations. Groupware: Design, Implementation, and Use.

Springer Berlin Heidelberg

37. Medina-Mora R, Winograd T, Flores R, Flores F (1992) The

action workflow approach to workflow management

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

27

technology. In: CSCW’92

38. Nuseibeh B, Kramer J, Finkelstein A (2003) ViewPoints:

meaningful relationships are difficult! In: ICSE’03, pp

676-681

39. Oliveira ADPA, Cysneiros LM (2006) Defining Strategic

Dependency Situations in Requirements Elicitation. In:

WER’06, pp. 12-23

40. Oliveira MD, Viana D, Conte T, Vieira S, Marczak S (2013)

Evaluating the REMO-EKD technique: A technique for the

elicitation of software requirements based on EKD

organizational models. In: EmpiRe’13

41. OMG (2011) 2.4.1 superstructure specification.

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

Accessed 11 May 2016

42. Pavón J, Gómez-Sanz JJ, Fuentes R (2005) The INGENIAS

methodology and tools. In: Agent-Oriented Methodologies.

IGI Global, Hershey, pp 236-276

43. Plihon V, Ralyté J, Benjamen A, Maiden NAM, Sutcliffe A,

Dubois E, et al (1998) A reuse-oriented approach for the

construction of scenario based methods.

ftp://sunsite.informatik.rwth-aachen.de/pub/CREWS/CREWS

-98-22.pdf. Retrieved 10 June 2016

44. Riemer K (2010) E-collaboration systems: identification of

system classes. In: E-collaboration technologies and

organizational performance: current and future trends. IGI

Global, Hershey, pp 176

45. Rolland C, Achour CB, Cauvet C et al (1998) A proposal for a

scenario classification framework. Requir Eng 3(1): 23–47

46. Rolland C, Souveyet C, Achour CB (1998). Guiding goal

modeling using scenarios. IEEE Trans Soft Eng 24(12):

1055–1070

47. Ross DT (1977) Structured analysis (SA): A language for

communicating ideas. IEEE Trans Softw Eng 3(1): 16-34

48. Rutkowski AF, Vogel DR, Van Genuchten M, Bemelmans TM,

Favier M (2002) E-collaboration: the reality of virtuality.

IEEE Trans Profes Comm 45(4): 219-230

49. Silva APCD, Hirata CM (2012) A simulation-based method

for eliciting requirements of online CIB systems. Lecture

Notes in Business Information Processing, 140:34-52

50. Supakkul S, Chung L (2012) The RE-Tools: A

multi-notational requirements modeling toolkit. In: RE’12, pp

333-334

51. Sutcliffe A (2001) Requirements engineering for complex

collaborative systems. In: RE’01, pp 110-117

52. Teruel MA, Navarro E, López-Jaquero V, Montero F,

González P (2011). CSRML: a goal-oriented approach to

model requirements for collaborative systems. In: ER’11, pp

33-46

53. Treude C, Storey MA (2012) Work item tagging:

Communicating concerns in collaborative software

development. IEEE Trans Soft Eng 38(1): 19-34

54. Uchitel S, Kramer J, Magee J (2001) Detecting implied

scenarios in message sequence chart specifications. ACM

SIGSOFT Soft Eng Notes 26(5): 74-82

55. Valacich JS, Dennis AR, Nunamaker JF (1991) Electronic

meeting support: the GroupSystems concept. Int J

Man-Machine Studies 34(2): 261-282

56. Van Lamsweerde A (2001) Goal-oriented requirements

engineering: a guided tour. In: RE’01, pp 249-262

57. Wang Y (2005) E-collaboration: a literature review.

http://conference.iproms.org/sites/conference.iproms.org/files/

PID172674.pdf. Accessed 10 October 2014

58. Wang Y, Jiang B, Wang T (2016) Using workflow patterns to

modeling and validating service requirements. In:RePa’16

59. Wang Y, Zhao L, Wang X, Yang X, Supakkul S (2013)

PLANT: A pattern language for transforming scenarios into

requirements models. IJHCS 71(11): 1026-1043

60. White SA (2004) Introduction to BPMN.

http://www.ebm.nl/wp-content/uploads/2010/05/Introduction_

to_BPMN.pdf. Retrieved 8 June 2016

61. Wieringa R, Maiden N, Mead N, Rolland C (2006)

Requirements engineering paper classification and evaluation

criteria: a proposal and a discussion. Requir Eng 11(1):

102-107

62. Wilmann D, Sterling L (2005) Guiding agent-oriented

requirements elicitation: HOMER. In: QSIC’05

63. Yu ES (1994) Modelling strategic relationships for process

reengineering. Doctoral Dissertation, University of Toronto

Toronto

64. Yu ES (1997) Towards modelling and reasoning support for

early-phase requirements engineering. In: RE’97, pp 226-235

65. Yu ES (2001) Agent orientation as a modelling paradigm.

WIRTSCHAFTSINFORMATIK 43(2): 123-132

66. Yu ES (2001) Agent-Oriented Modelling: Software versus the

World. In: Agent-Oriented Software Engineering II. Springer,

Berlin, pp 206-225

67. Yu ES, Mylopoulos, J, Lesperance Y (1996) Modelling the

organization: New concepts and tools for re-engineering.

IEEE Expert: 16-23

68. Zowghi D, Coulin C (2005) Requirements elicitation: a survey

of techniques, approaches, and tools. In: Engineering and

managing software requirements. Springer, Berlin, pp 19-46

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Responses to Reviewers’ Comments

Based on the review comments and suggestions, we have carried out further research into related work that
has been published in REJ and RE Conference series and this has been reflected in the revised manuscript.
We have also improved the description of the paper and the quality of the figures. In the following section,
we describe how we have addressed your concerns in the revision.

1. Overall Responses to Review Comments

x Figures: Fig. 1, Fig. 2, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 10, Fig. 11, Fig. 12, Fig. 14 and Fig. 15

are revised to improve the quality and readability of these figures.
x Case study: We have stated in the conclusion that the real case study will be conducted in the future

work.
x Related work: We have compared our work to some of closely related work that has been published in

REJ and RE Conference series, This work is cited in the manuscript as [2], [28], [32], [35], [45], [51],
[61]. Of these references, [2] and [51] are new, added in this revision, to demonstrate our continuous
review of related work. Table 3 is also updated.

x Writing style: We have reviewed the entire manuscript in detail and corrected several typos and
grammatical errors. For example, we changed “in this section” to “in this sub-section” when referring to
a sub-section.

Response to reviewer comments Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2. Response to reviewer 1’s comments:

>>>
While the paper is more polished now, but the main issue of industrial and practical relevance remains. In the
opinion of this reviewer it cannot be proved in argumentative way and with a simple example (as currently in
section 7). For this to be acceptable to a top journal a real case study needs to be conducted.
<<<
Answer: Thank you for your comment. We agree with you that the only way to demonstrate the industrial
and practical relevance of our work is through a real world case study or application. In this paper, we
believe that we have laid down a solid foundation for our proposed approach. In our future work, we hope to
conduct real world validation of our approach.

2. Response to reviewer 2’s comments:
>>>
Please check in the paper reference to "all", in particular at page 23 lines 13/14.
At 7.2 it should refer to Sub-Section and not Section (In this section ...).
<<<
Answer: Thank you for spotting this mistake. We have made appropriate corrections.

>>>
Please make the Figures easier to read, in special Fig. 15.
<<<
Answer: We have improved the quality of the following figures: Fig. 1, Fig. 2, Fig. 4, Fig. 5, Fig. 6, Fig. 7,
Fig. 8, Fig. 10, Fig. 11, Fig. 12, Fig. 14 and Fig. 15. We hope that the figures are now more readable.

>>>
Be more specific about the transformation from scenarios to the coordination model (page 24, lines 55/59).
<<<
Answer: Thank you for the suggestion. We have added the explanation about the transformation from
scenarios to the coordination model in the conclusion.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

