
Vol.:(0123456789)1 3

Requirements Engineering (2020) 25:493–514
https://doi.org/10.1007/s00766-020-00333-1

ORIGINAL ARTICLE

Explainability as a non‑functional requirement: challenges
and recommendations

Larissa Chazette1  · Kurt Schneider1

Received: 1 December 2019 / Accepted: 19 May 2020 / Published online: 15 June 2020
© The Author(s) 2020

Abstract
Software systems are becoming increasingly complex. Their ubiquitous presence makes users more dependent on their
correctness in many aspects of daily life. As a result, there is a growing need to make software systems and their decisions
more comprehensible, with more transparency in software-based decision making. Transparency is therefore becoming
increasingly important as a non-functional requirement. However, the abstract quality aspect of transparency needs to be
better understood and related to mechanisms that can foster it. The integration of explanations into software has often been
discussed as a solution to mitigate system opacity. Yet, an important first step is to understand user requirements in terms
of explainable software behavior: Are users really interested in software transparency and are explanations considered an
appropriate way to achieve it? We conducted a survey with 107 end users to assess their opinion on the current level of
transparency in software systems and what they consider to be the main advantages and disadvantages of embedded explana-
tions. We assess the relationship between explanations and transparency and analyze its potential impact on software quality.
As explainability has become an important issue, researchers and professionals have been discussing how to deal with it
in practice. While there are differences of opinion on the need for built-in explanations, understanding this concept and its
impact on software is a key step for requirements engineering. Based on our research results and on the study of existing
literature, we offer recommendations for the elicitation and analysis of explainability and discuss strategies for the practice.

Keywords  Explainability · Software transparency · Non-functional requirements · Software quality

1  Introduction

Software systems are the primary solution for a variety of
tasks today, ranging from determining the best route from
A to B, to supporting a bank manager in analyzing whether
a customer has a suitable profile to obtain a loan. With fast
technological advancements and a wide range of new soft-
ware applications, our lives have become increasingly influ-
enced by software-supported decisions.

However, in the age of machine learning, it is often dif-
ficult to understand how outputs and decisions are computed
in these systems, since the underlying algorithms can be
complex and lack transparency [66]. If the decisions taken

by a software system are opaque, it is difficult to understand
whether these decisions are fair and what factors were taken
into consideration in the system’s internal decision-making
process. This can potentially perpetrate injustice and bias
[79]. Furthermore, the lack of transparency can potentially
result in lower user acceptance and satisfaction [27]. There-
fore, transparency is becoming increasingly necessary as a
non-functional requirement (NFR).

The recent General Data Protection Regulation of the
European Union [86] regulates the use of personal data by
algorithms and has strengthened the debate on the right to
explanations. Goodman and Flaxman discuss the impact of
this law [42]. They argue that computer scientists will have
to take the lead in designing algorithms and frameworks
that enable explanations, since there will be an increasing
demand for transparency in algorithmic decision making.

Explanations are seen as an option to mitigate the
lack of transparency in a system [33]. Through explana-
tions, the comprehensibility of a system can be improved
[68]. Hence, explainability—the ability to provide

 *	 Larissa Chazette
	 larissa.chazette@inf.uni‑hannover.de

	 Kurt Schneider
	 kurt.schneider@inf.uni‑hannover.de

1	 Software Engineering Group, Leibniz University Hannover,
Welfengarten 1, 30167 Hannover, Germany

http://orcid.org/0000-0001-6093-8875
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-020-00333-1&domain=pdf

494	 Requirements Engineering (2020) 25:493–514

1 3

explanations—can be considered as a way to achieve
transparency.

Incorporating explanations can help users understand
why a system has delivered particular outcomes, which in
effect mitigates opacity and makes decision making more
transparent. It also has an impact on trust and reliance
on the system [13], and it may avoid that users become
frustrated with it [98].

Although explainability has been addressed as a key
requirement for software-supported decisions and a means
of promoting transparency [2], there is a lack of studies
that investigate the relationship between explanations and
transparency at the level of NFRs. Furthermore, it is not
clear whether end users actually see explanations as a way
to better understand a system.

Some studies investigated the impact of explanations
on user experience [12, 61]. Other studies have investi-
gated in which situations some kinds of explanations are
more appropriate [62, 82]. To the best of our knowledge,
there are no studies that focus on the users’ opinion on
the need for explanations and on the perceived impact of
explanations on transparency. Since users are an essential
source of requirements, it is fundamental to understand
their views and what they expect from explanations for
more transparent systems. Given that consumers are an
important source of requirements, knowing their views and
what they expect from explanations for more transparent
systems is key.

The aim of this study is to investigate and understand
the users’ views and expectations, as these are important
steps toward addressing explainability as an NFR. We also
want to explore the interaction of explainability with NFRs
related to transparency, and what has to be considered to
meet the needs of users. This knowledge can help engineers
to determine potential trade-offs, costs and implications of
the integration of explanations to improve the transparency
of software systems.

We addressed this by asking users about the need for
explanations in applications that they use on a daily basis.
We conducted an online exploratory questionnaire with 107
participants. We analyzed whether aspects of the partici-
pant response could be associated with transparency-related
NFRs described in the Transparency Softgoal Interdepend-
ency Graph (SIG) [34], to understand whether and how
explanations can have an impact on transparency.

We were able to find correlations between explainability
and other NFRs related to transparency and also the exist-
ence of a double-edged sword effect. Explanations may have
a positive impact on some NFRs that affect transparency
but must be carefully designed so that they do not have the
opposite effect on software quality. We offer recommenda-
tions on how to avoid the negative effects of explanations
on usability.

To understand how requirements engineers can deal with
explainability in practice, we searched the literature to grasp
the complexity of NFRs and the related challenges. We have
found that, due to their perceived complexity and project
constraints, such requirements are rarely addressed during
the development process. We analyze this complexity in
the context of explainability and identify factors that are
of paramount importance and should be considered during
the elicitation and analysis of requirements that support the
achievement of explainability. We refer to these require-
ments as explainability requirements. Existing lightweight
activities based on user-centered design are recommended
in order to support the requirements engineering process of
explainability.

This paper is structured as follows: In Sect. 2, we present
the definition of important terms and discuss related work.
In Sect. 3, we present our research goal, the derived research
questions (RQs) and the research method. In Sect. 4, we
present the results and in Sect. 5 the threats to validity. In
Sect. 6, we discuss the double-edged sword effect of explain-
ability. In Sect. 7, we focus the discussion on the relationship
between explainability and usability and offer recommenda-
tions on how to avoid negative effects of explanations on a
system. In Sect. 8, we talk about the challenges of dealing
with NFRs in the development process. Next, we describe
the dimensions that must be considered in the requirements
engineering process of explainability. In Sect. 9, we recom-
mend lightweight activities for the elicitation and analysis of
explainability. Finally, we conclude this paper with an over-
all discussion in Sect. 10, our planned next steps in Sect. 11
and our conclusions in Sect. 12.

2 � Background and related work

According to Lipton [69], transparency can be informally
defined as the opposite of opacity or blackboxness. It means
“seeing through,” to understand the inner mechanisms by
which an algorithm works or what was learned by a model
(in the case of ML-based applications).

Interpretability is a related term and can be defined as
the level to which the user understands and can make use
of the explanations given by the system and the information
provided [95]. It is also defined as the ability to explain or
to present information in understandable terms to a human
[35]. The former definition overlaps with the concept of
explainability, which can be defined as the level to which
a system can provide explanations for the cause of its deci-
sions or outputs [95]. We adopt the former definition of
interpretability, as it is more related to the subjective aspects
of how users understand the presented information.

Understandability and interpretability are intertwined
concepts, often treated as synonyms. Therefore, we consider

495Requirements Engineering (2020) 25:493–514	

1 3

that explanations (objective factor) are operationaliza-
tions of explainability. They can be a way of improving the
understanding of a system by conveying information, thus
influencing interpretability or understandability (subjective
factor).

2.1 � Transparency

Leite and Capelli [34] discussed and defined transparency
in the context of system engineering, but also as a broader
concept, applied to processes and organizations. The authors
defined transparency as a graph of NFRs, named Trans-
parency SIG. The graph comprises 33 softgoals arranged
in three levels according to the dependency relationship
between the nodes. Transparency occupies the higher level
of decomposition, and the second level consists of five
derived softgoals which influence directly on the satisfac-
tion of a degree of transparency, being those: accessibility,
usability, informativeness, understandability and audita-
bility. We used this graph in the later iterations of the coding
process to identify those requirements in the participants’
discourse.

Hosseini et al. [51] divided transparency into four facets
to help clarify the concept and facilitate its inclusion in the
engineering of information systems: stakeholders, mean-
ingfulness, usefulness and information quality. Meaning-
fulness is defined as how the stakeholders understand the
information and what are the actions and reasons behind
it. It encompasses data transparency, which answers what
information is needed and who are the stakeholders; pro-
cess transparency answers how something is performed; and
policy transparency answers why an action is performed in
the context of transparency.

Cysneiros et al. [27] also discussed transparency as a
requirement, stating that it is considered to be a key require-
ment for self-driving cars. They presented transparency as a
prerequisite for producing more robust systems and improv-
ing the adoption rate of new technologies. The authors also
agree that being transparent to the end user is a fundamental
concern and pointed out that other related NFRs (e.g., trust
and privacy) are extremely important and should also be
considered.

Zinovatna and Cysneiros [101] investigated the interde-
pendencies between transparency and privacy. They estab-
lished them as two intertwined concepts that need to be
correctly elicited in order to determine the necessary archi-
tectural decisions.

2.2 � Explanations

The idea of embedding explanations in software systems
is not new and has been already intensely investigated in
the domain of knowledge-based systems (KBS) [61] and

by the HCI community [84]. More recently, terms like
interpretable machine learning or explainable artificial
intelligence have emerged and proposals aimed at improv-
ing the intelligibility of machine learning algorithms have
become a trending topic [60, 85, 98].

The use of explanations in those areas typically focuses
on understanding the mechanics of the learned models
during decision making [59, 90], visualizing the learned
model [46, 54, 74] or, in the case of KBS, on supporting
users to gain knowledge of a domain [49, 82].

Bunt et al. [12] examined the comprehensibility and the
desire for explanations in lightweight systems (e.g., You-
Tube, Amazon, Facebook). Interviews and a diary study
were conducted to understand the need for explanations
in the context of daily use. They concluded that the par-
ticipants rarely wanted explanations on such systems. The
researchers also noticed that most users understood the
general idea behind the system general behavior, but had
little understanding of the rationale behind more complex
decisions.

Kulesza et al. [62] explored how smart agents can jus-
tify themselves to users. They analyzed how the sound-
ness and completeness of the explanations had an effect on
the mental models that the users created from the system.
They then compared the mental models to the actual sys-
tem model.

Tintarev and Masthof [94] evaluated the impact of expla-
nations on effectiveness and user satisfaction, in the context
of recommender systems. They also set out seven possible
qualities that can be achieved through explanations (e.g.,
transparency, scrutability, trust, effectiveness, persuasive-
ness, efficiency and satisfaction), complementing or contra-
dicting each other. Doshi-Velez et al. [36] discussed how
explanations can help to achieve accountability in AI sys-
tems and in which cases explanations should be integrated.

In the aforementioned works, authors defined characteris-
tics inherent to transparency in the software context and the
relationship between transparency and other requirements.
Some works investigated the impact of explanations on
quality aspects such as acceptability, trust and effectiveness
[90, 94], while others explored how aspects of explanations
impact on the understandability of a system [62].

A study on the desire for explanations and their compre-
hensibility has been carried out by Bunt et al. [12] on the
context of lightweight systems. However, besides the desire
and need for explanations in the context of these systems,
we additionally explore the positive and negative aspects of
receiving explanations. We also investigate how explana-
tions relate to transparency at the level of NFRs. As trans-
parency has been increasingly addressed as fundamental in
systems that support or—in the future—make decisions,
understanding this concept and its related dependencies is
a key step.

496	 Requirements Engineering (2020) 25:493–514

1 3

3 � Research goal and design

We applied the goal definition template by Wohlin et al.
[99], to formulate the goal of our research.

Goal definition: We analyze end users’ perspec-
tives about the need for explanations in software for
the purpose of investigating which non-functional
requirements are impacted by explanations and how
they relate to software transparency from the point
of view of end users in the context of an online ques-
tionnaire.

Using the Goal–Question–Metric Paradigm [5], the goal
of our study is derived into four research questions and
respective metrics, organized in the goal tree in Fig. 1. We
formulated RQ1 with the goal to assess users’ perspectives
about the need for explanations. We wanted to understand
whether users see the need for explanations in situations
of uneven objectives: when users expect something from
the interaction with the system, but this expectation is not
met. To address this point, we provided a navigation exam-
ple as a hypothetical situation. We asked users whether
they would be interested to receive an explanation in the
situation. To those who expressed interest, we asked for
a suggestion as to what would be a useful explanation in
the case. Our purpose was to understand what informa-
tion users consider relevant when receiving explanations,
which is essential knowledge for the operationalization of
explainability. We also included a question to understand
the overall need for explanations. We asked the partici-
pants when explanations should be presented: whenever
requested, just when something exceptional happens or in
both cases.

Through RQ2, our goal was to understand whether and
how participants had issues with the software systems
they use in their daily lives. We addressed this by asking
users to report a situation where they did not understand
the system behavior. Analyzing their answers helped us
understand how current issues can have a negative impact
on transparency and which NFRs can be impacted by those
issues.

Through RQ3, we wanted to assess the perceived advan-
tages and disadvantages of receiving explanations. This
helped us to identify (1) the NFRs impacted by explanations,
(2) what are the pros and cons that need to be taken into
account while considering explainability and (3) whether
the identified NFRs can have a positive or negative impact
on the transparency of the system.

We also expected to find out, through RQ4, whether there
are discrepancies between the perspectives of different age
groups on the need for explanations. Digital natives are said
to trust technologies more easily, while digital immigrants
(born before 1980 [92]) may face problems while operating
software systems. This could represent the explicit need for
different requirements varying according to the age group.

3.1 � Survey design

Based on the questions and metrics, we designed and imple-
mented an online questionnaire using LimeSurvey. It con-
tained 16 questions (11 multiple choice, five open-ended):
three on demographics, one self-assessment question on
software skills, four on software use, three on problems
with software use, three on explanation needs, one on the
frequency and one on the presentation of explanations.

Figure 2 summarizes the process of survey design and
data analysis. We performed the initial testing by using the

RQ1: What is the
current percep�on of

end-users regarding the
need for explana�ons?

Overall
Need

RQ2: Which non-
func�onal requirements
related to transparency
can be impacted by the
problems described by

the end-users?

RQ4: Are there significant
differences between the

opinions of digital
immigrants and na�ves

regarding explana�ons in
so�ware systems?

Situa�on-
specific Need

Perceived
Advantages

Perceived
Disadvantages

Influence on Achieving
Transparency

Problems

Suggested
Explana�on Impacted NFRs

Frequency of Statements
by Age Group

RQ3: What are the
advantages and
disadvantages of

receiving explana�ons
and how do they relate to

transparency?

Relevant Informa�on

contribute to
the analysis of

evaluated
metrics

Fig. 1   Research questions and related metrics

497Requirements Engineering (2020) 25:493–514	

1 3

checklist provided by Lessmann [67] to review every ques-
tion. This was followed by four rounds of pilot tests: two of
these with members of the target population and two with
members of our research group (indicated by the different
symbols in Fig. 2). In each pilot test, the respective par-
ticipant completed the survey and we discussed how the
questionnaire could be improved. The full instrument can
be found in our online material [17].

3.2 � Data collection

In late 2018, we shared the questionnaire using different
channels: LinkedIn, Twitter, Facebook, and academic mail-
ing lists. The questionnaire was publicly shared using our
personal networks. We asked people to share the ques-
tionnaire with their networks in order to try to reach more
people. Our target population included adult end users of
all ages, with different occupations, since the focus was to
understand what end users with different backgrounds have
to say about the topic.

Based on our sampling strategy, we expected the main
share of participants to come from Brazil and Germany.
Therefore, the questionnaire was provided in three lan-
guages: Portuguese, German and English. Participants had
to agree to an informed consent including a confirmation
that they are at least 18 years old. An important factor

during this phase was to gather a considerable and bal-
anced number of participants to compose two different
groups: the digital natives and the digital immigrants.

From the 171 that started the survey, 107 completed it.
We analyzed the responses from those that completed the
survey. As the qualitative questions were optional, some
respondents did not provide answers to all questions. In
this case, we were still able to analyze the responses to the
qualitative questions that were answered in order to gain
insight into the research questions.

3.3 � Analysis process

We analyzed the open-ended questions using an open-
coding approach, as described by Saldaña [87]. It consists
of a qualitative data analysis with two consecutive coding
cycles. Each cycle consisted of three phases that can be
repeated iteratively. In the first coding cycle, we used in
vivo coding, a first cycle coding method which is known
as a way to preserve the views of participants in the code
[16]. We have identified the key elements related to our
questions in their responses. A single answer could result
in more than one code, depending on its size and meaning.

In the second cycle, one researcher grouped the ini-
tial in vivo codes according to their similarities. Next, we
applied the pattern coding approach by Miles and Huber-
man [73]. This approach is a way of grouping the initial
codes into a smaller number of themes or constructs. Cate-
gories were created based on the main theme expressed by
the codes in each group. A second researcher was involved
during this phase to discuss possible meanings and reach
an agreement on the themes. We tried to preserve what
was said by the participants while defining the categories.
Hence, although some categories seem very similar and
could belong to one another, we kept them separate to
preserve the original connotation.

Subsequently, the categories were classified into groups.
If there were any correspondences between the category
and an NFR in the Transparency SIG, the category would
be identified as related to this NFR, forming a group. In
the absence of a match with a quality aspect listed in the
SIG, a new group would be created based on the mean-
ings and connections of the codes. During this phase, two
researchers coded the data independently into the final
categories to guarantee consistency. After this, they com-
pared the two coded datasets, discussed differences in the
coding process and reached an agreement about the codes.
The degree of agreement was calculated using the Cohen’s
kappa statistic [23]. The calculated value of � = 0.88 indi-
cates an almost perfect agreement [65].

Fig. 2   Survey design and data analysis

498	 Requirements Engineering (2020) 25:493–514

1 3

4 � Results

From the 107 valid responses, 90 (84.11%) came from
Brazil and 17 (15.88%) from Germany. Of the participants,
45.25% were born before 1980 and, thus, classified as digi-
tal immigrants, while 54.75% were born after it, classified
as digital natives.

On average, participants reported a good proficiency in
the use of software systems. To assess this proficiency, we
included a self-assessment question in which respondents
had to indicate which of the tasks they were able to com-
plete. It also included tasks corresponding to certain skill
levels. Most respondents claimed to have a high level of
proficiency, including participants who work with comput-
ers, are programmers or have programming skills. This
shows that, in general, participants are comfortable with
the use of software systems. This leaves out the population
of unskilled users or people who face difficulties in dealing
with technology. In any case, our population consists of a
relevant subset of all users of complex software: techni-
cally affine end users of different age groups.

When asked whether they use software applications
more for work or for personal reasons, 42.99% of the
respondents affirmed they use an equal amount for both
work and private life, while 42.99% responded that they
use them more for work and 14.02% more in private life.
This highlights the ubiquitous nature of software systems
in the lives of these individuals.

4.1 � RQ1: Need for explanations

4.1.1 � Situation‑specific need

A hypothetical situation was presented according to the
device and the applications that the participant indicated
as frequently used. The purpose of this question was to
analyze the need for explanations in situations where there
is a discrepancy between the objectives of the users and
what the system presents, for example when users’ expec-
tations are not met. Therefore, it is a necessity related to a
specific context: if what the user expects is different from
what is presented in the system.

This premise is also discussed in the work of Doshi-
Velez and Kim [35]. The authors discuss why and in
which situations explanations may be necessary and help-
ful. They argue that this need may arise from a state of
incompleteness in the information provided, where people
may need explanations to minimize gaps in understanding.

In the hypothetical situation, users would use a naviga-
tion system while driving on a route they have traveled
before, and the system would present them with a different

route than usual. We asked participants whether they
would be interested in an explanation for the route change.
To analyze the situation from two different perspectives,
where requirements may be different, this question had
two variants: (1) one where the user would be in a vehi-
cle using an onboard navigation system (OBNS) to guide
during the drive and (2) another where the user would
be a pedestrian, using public transport and depending on
the navigation system in the smartphone to consult better
routes and alternative transportation.

All participants answered the question with the smart-
phone scenario, since they indicated that they had access
to this type of device. Twenty of the 107 participants also
indicated using OBNS and, therefore, also answered the
question corresponding to this scenario. Of the resulting
127 responses, 71.65% (91) answered that they would be
interested or extremely interested in receiving an explana-
tion about the obscure situation. There was a variation in the
expressed degree of interest according to the type of device:
95% (19) of OBNS users answered they would be interested
or extremely interested, while one would not be interested at
all. 67.29% (72) of smartphone users answered they would
be interested or extremely interested, 18.69% (20) slightly
interested, 11.21% (12) indifferent and 2.80% (3) not inter-
ested at all. This may reflect that OBNS users have a more
urgent need to receive explanations, strongly related to the
type of system they use. While driving, users have less time
to make a decision and, therefore, a more urgent need for
more interpretive results.

4.1.2 � Which questions should be answered by explanations

Based on the hypothetical situation presented, we asked par-
ticipants to give a suggestion of what would be a good expla-
nation in the case. We investigated whether specific elements
were present in the responses, such as references to specific
data (e.g., time and route), or the level of abstraction of the
suggested explanation. In the coding process, we considered
to which questions the identified elements matched: what,
why or how. These questions were also present in the work
of Hosseini et al. [51], mentioned in Sect. 2.1, in which the
authors present three questions whose answers contribute to
transparency. Eighty-seven participants completed this ques-
tion, which resulted in 103 codes.

34.95% (36) of the codes refer to the what question. Par-
ticipants expressed desire in knowing which specific piece
of information supported and influenced the decision: data-
related aspects contained in that information and used during
decision making. Some code examples include “which infor-
mation led the software to take this decision,” and “which
variables are influencing the choice.” Some answers referred
to specific data, such as in this participant’s statement: “If

499Requirements Engineering (2020) 25:493–514	

1 3

there is some kind of incident, show me the route, time, pos-
sible accidents, etc.”

In 11.65% (12) of the codes, participants refer to the how
question. It reflects the users’ desire to understand the inner
reasoning process of the algorithm. Users also expressed
the wish to be able to audit or verify the behavior of the sys-
tem or to find out more about the internal model the system
built on the user. Some examples are “evaluate the capacity
of the system of generating better routes,” “to see how the
algorithm detected the changes” and “the reason the logic
changed.”

In 53.40% (55) of the codes, participants refer to the why
question. Participants expressed willingness to understand
why something happened, i.e., to better understand the rea-
sons behind a decision or event, or existing policies. It usu-
ally requires knowledge about what data are involved and
how the information was inferred. To understand exactly
how this question must be answered, the level of abstraction
of the explanation needs to be assessed. Explaining why
something happened may either need a more specific answer,
considering many variables or a very general answer, with a
higher abstraction level. Some code examples are “why the
route is not being suggested” and “benefits of the new route
when compared to the usual.”

4.1.3 � Overall need

We asked the participants about when explanations should
be presented. 66.36% (71) answered that explanations should
be presented only on demand. This reflects that users are
interested in explanations, but want to have total control
about when to receive it. It also imposes a new challenge,
since systems must have the ability to explain much of their
behavior in order to provide explanations by request. 28%
(30) answered that explanations should be shown just when
something exceptional happens (e.g., in the case of mis-
matched objectives). 3.73% (4) answered that they would
like to receive explanations in both situations (automati-
cally, when something exceptional happens and by request),
and 1.87% (2) answered that explanations should never be
presented.

4.2 � RQ2: Perceived problems in understanding
software

To answer RQ2, we asked respondents to indicate whether
they could remember having problems understanding the
behavior of any software they previously listed as of regular
use. Then, we asked whether they could report a situation
when this happened.

Twenty-four participants answered the open-ended ques-
tion, which resulted in 19 valid answers. We interpreted each
answer and tried to identify whether they could be associated

with a quality characteristic listed in the NFR framework.
This association indicates whether the perceived problems
could negatively impact on NFRs related to transparency.
A negative impact on an interrelated NFR can result in a
negative impact on transparency, since the related goals
contribute to the achievement of transparency. Usability,
for example, is one of the NFRs related to transparency.
Hence, problems classified as impacting on user-friendliness
indicate a usability problem and may require better usability
engineering, in order to contribute to a higher level of soft-
ware transparency.

68.42% (13) of the responses were related to the NFRs
usability, with explicit correspondences to a perceived
impact on its sub-dependencies uniformity, simplicity, intui-
tiveness, adaptability and user-friendliness. 31.58% (6) were
related to informativeness, impacting on the sub-depend-
encies clarity, completeness, correctness and consistency.
These sub-dependencies are NFRs that need to be fulfilled
in order to achieve the requirements in the higher level. For
more details about the meaning of each NFR, please consult
the Transparency SIG [34].

While usability refers to the quality of presentation and
interaction between the user and the system, informative-
ness refers explicitly to the information presented. It is
already well known that usability problems may impact on
the user understanding of the system and prevent the user
from successfully completing a task. These problems may
have negative consequences and may result in the abandon-
ment of the use of the system [47]. Participants also reported
problems while trying to obtain information from a system.
They reported situations where they could not understand
the information presented, being by lack of completeness,
as evidenced in the following quote from one of the partici-
pants: “The system was not explicit about the public trans-
port routes, nor if it was necessary to take more than one
line” or clarity, as in “I tried to identify which transport I
could take. The information usually comes a bit muddled. I
cannot always get the information I need.”

4.3 � RQ3: Advantages and disadvantages
of explanations

To answer RQ3, we asked participants to name three advan-
tages and three disadvantages of receiving explanations.
Ninety-one participants answered the question related to
the advantages of receiving explanations, resulting in 214
valid responses. As one answer can generate more than one
code (as explained in Sect. 3), their responses resulted in 231
codes. Eighty-five participants answered the question related
to the disadvantages, resulting in 164 valid responses. After
the coding process, 176 codes were generated from it.

Figures 3 and 4 show tree maps of the advantages and
disadvantages, respectively, organized in groups and the

500	 Requirements Engineering (2020) 25:493–514

1 3

underlying categories. Each category is followed by the
number of codes and its respective percentage relative to
the total number of codes.

By analyzing the participants’ responses, we could iden-
tify associations with the usability, informativeness, under-
standability and auditability requirements in the Transpar-
ency SIG. These associations indicate how explainability
can impact these NFRs. We have created the relationship
group to gather all categories of responses in which partici-
pants expressed their personal impressions about the pos-
sibility of explanations having a negative or positive impact
on their relationship with the system.

4.3.1 � Informativeness and understandability

These two qualities are grouped together, because their con-
cepts overlap at times. Informativeness can be defined as
the quality of providing or conveying information to, for

example, facilitate understanding. This information, how-
ever, must be correctly formulated (in comprehensible lan-
guage), so it can be understandable.

Advantages 20.35% (47) of the 231 codes correspond
to responses in which users perceived receiving explana-
tions as a way to facilitate the understanding of a system
by conveying information. This understanding can be either
specific, related to the current situation, or a piece of data,
or more general, related to the whole context of the system.
Some sample quotes are: (understanding) “how the software
works” and “what is being shown.”

6.49% (15) of the codes correspond to responses in which
users perceive explanations as a way to reduce obscurity
or clarify doubts. This category encompasses responses
where participants explicitly see explanations as a way of
mitigating system’s obscurity, providing clearer information.
5.19% (12) of the codes express users’ beliefs that explana-
tions may support during decision making. Both codes
could be identified in this participant’s statement: “(Expla-
nations) allow my decisions to be made on the basis of clear
information.”

1.73% (4) of the responses refer to other codes, including
those that explicitly mention information as an advantage.
The aforementioned results show how users believe that
explanations can convey information better and lead to an
overall better understanding of different software aspects.
Explanations may have a positive influence on the informa-
tiveness of a system and, therefore, on its transparency level.

Disadvantages 13.56% (24) of the 177 codes are related
to the concern that explanations may actually, rather than
facilitate, hinder understanding. This may be the case, if
explanations are not provided in a language appropriate to
the user or are poorly elaborated. This can be noted in the
following statement: “If the explanation comes in a very
technical language, the user may not understand it.”

27.12% (48) of the codes express the users’ belief that
explanations can actually only bring unnecessary informa-
tion. They affirmed that explanations may be too lengthy,
repetitive, irrelevant or useless. One participant stated:
“Explaining what is already known makes information bor-
ing and irrelevant.” 1.69% (3) express users’ concerns about
explanations failing to reduce obscurity or even adding
more. Both categories impact directly on the understandabil-
ity, since information must be concise and comprehensible
enough in order to be well understood.

4.3.2 � Usability

Advantages 10.82% (25) of the 231 codes comprise
responses in which participants considered receiving expla-
nations as a way to facilitate the use of a system. They also
see explanations as a way to support them to better operate

Fig. 3   Groups of categories related to the perceived advantages

Fig. 4   Groups of categories related to the perceived disadvantages

501Requirements Engineering (2020) 25:493–514	

1 3

the system. Some quote examples are: “better operation”
and “increases the usability of the device.”

6.93% (16) evidence the users’ belief that explanations
are a way to guide the use of a system, enabling faster famil-
iarization or working as a tutorial. 5.63% (13) referred to the
possibility that explanations help the user to become profi-
cient in the operation of the system, knowing all available
features and mastering its operation. 5.19% (12) express the
belief that explanations may support time efficiency, assist-
ing the user in making faster decisions or having more agil-
ity while operating the system. 2.16% (5) refer to the possi-
bility that explanations may be a way to prevent users from
making mistakes, supporting them during decision-making
situations. Other responses (0.87%) mention simplicity as
an advantage and affirm that explanations may help users to
know that the system is working properly.

Disadvantages In 15.82% (28), participants expressed
worry about explanations impairing the use of a system.
Users were concerned that the UI becomes polluted with the
excess of explanations or notifications, with the interruption
of the workflow, and with explanations being too distracting.
3.39% (6) express concern with the use of computational
resources when incorporating explanations into a system,
consuming storage space, memory and CPU resources, or
data volume. 9.04% (16) refer to the possibility that receiv-
ing explanations may be time consuming, as users may have
to invest time to consume explanations. Some participants
also expressed the opinion that explanations may be a waste
of time.

4.3.3 � Relationship

Advantages 12.99% (30) of the responses express the posi-
tive impression of the participants regarding explanations
in a system. Some state that explanations improve the expe-
rience of using a system and avoid frustrations. 7.36% (17)
state that receiving explanations may help to establish a
relationship of trust with the user. A participant affirmed
that explanations may help to “increase confidence in soft-
ware and its developers.” 3.90% (9) expressed the users’
view of explanations as a way to put the user in control.

This advocates for the positive impact of explanations on
the relationship with the system. By providing explanations,
users may feel more comfortable and satisfied. Also, by dis-
closing the reasoning behind a decision, explanations can
be used to increase trust in the system. Some participants
affirmed that explanations allow them to decide whether the
system decision can be accepted. The responses also indi-
cated the desire of the participants to have control of the
system (locus of control). This is a phenomenon in psychol-
ogy [40] and is a factor considered by usability designers
to ensure this sense of control to the end users. It is also an

important aspect on the human–computer interaction that
impacts on the perceived quality of the system [77].

Disadvantages 19.77% (35) of the responses address
the negative impression of the participants about receiving
explanations in a system. In this case, participants expressed
concerns about explanations being annoying, inconvenient,
tiring or boring. 6.21%(11) of responses state that receiving
explanations may result in loss of control.

Explanations may have a negative impact on the relation-
ship with the users and trigger negative feelings (e.g., feel-
ing annoyed). Users may feel uncomfortable while receiving
explanations, and a bad relationship with the system may
cause them to abandon the use. Participants also perceive
as negative if they do not have the option to disable expla-
nations when they are not desired. This can be observed
in the following statement: “It would be interesting if I
could request the explanation just when I wanted. If it is
not requested, makes it inconvenient.” This conclusion is in
accordance with the feeling of being in control, previously
discussed. It is also supported by the findings presented in
Sect. 4.1.3, when participants expressed the desire to receive
explanations whenever they request them.

Auditability 3.46% (8) of responses address the possi-
bility of explanations leading to a better understanding of
the technical aspects of the system. This category includes
answers in which participants relate explanations with the
ability to understand the internal process of the algorithm, as
well as being a way to check its behavior. They also consider
explanations as a way to find out more about the internal
model that the system has created of the user. 3.03% (7)
related explanations to more data transparency.

Auditability is the group with less answers, which can
indicate that end users may not be so interested in knowing
specific details about the inner workings of systems. From
the 11 responses, seven are related to data transparency. Par-
ticipants show a level of concern about what is happening
with their data. To mitigate this, explanations may be a way
to inform users about how their data are being processed and
for what purpose they are being collected. In 3.90% (9) of
the responses, participants explicitly mentioned transpar-
ency as an advantage. This is, once more, a clear indication
of the influence of explainability on achieving transparency.

4.4 � RQ4: Perception according to age group

While digital natives grew up in the digital age and interact
with digital systems since their childhood, digital immi-
grants acquired the familiarity with digital systems in adult-
hood. Digital natives are suggested to have experienced a
specific technological socialization shaped by a distinct ICT
environment, which can be assumed to result in characteris-
tic cognitive and behavioral patterns [83]. Supporters of this
concept believe that they relate to technology in a different

502	 Requirements Engineering (2020) 25:493–514

1 3

way than the earlier generation. They are also said to be
more comfortable with new technologies and have a stronger
tendency to trust them easier [50]. To understand whether
those generational differences were found to be related with
different opinions and expectations regarding explanations,
the following hypothesis were formulated:

H1
0
:	� There is no difference in the answers with respect

to the advantages of explanations between digital
natives and digital immigrants.

H2
0
:	� There is no difference in the answers with respect

to the disadvantages of explanations between digital
natives and digital immigrants.

With regard to the advantages and disadvantages of expla-
nations, no statistically significant differences were identi-
fied between the two groups [18]. Nor have we been able
to find any significant differences with regard to a different
impact on the relationship with the user or any of the other
quality aspects. However, the respondents of this question-
naire had a high degree of technical knowledge, which may
have had a considerable impact on the results. The popula-
tion of unskilled users or people facing difficulties in dealing
with technology may have different requirements in terms
of explainability.

5 � Limitations and threats to validity

The participant selection strategy resulted in some limita-
tions. The questionnaire was distributed online in order to
reach as many potential respondents as possible. However,
responses of the reached participants may not reflect the
needs and perceptions of the whole population. We only got
responses from Germany and Brazil which also threatens
the global generalizability of our findings. Another issue is
that participants likely have a good level of technological lit-
eracy to answer an online questionnaire. This was confirmed
by the findings in Sect. 4, where respondents affirmed to
have a good technological proficiency level. Therefore, they
may not represent people who face difficulties when using
software systems and are likely to have different needs for
explanations.

In view of these facts, our sample does not represent the
population of Brazil or of Germany as a whole. It is rather a
slice of the population of technologically literate end users.
This may result in a limitation of the generalization of the
results. Although we do not claim generalizability of our
findings beyond the group of participants, they represent the
perspectives of a part of this population, which may give us
a hint about the overall perspective.

Some of our conclusions also might have been affected
by limitations due to a small sample size. Although over

a hundred participants provided a substantial body of
responses, an even higher number could have led to more
reliable results. However, our analysis process included cod-
ing which is labor intensive. Thus, we consider that 107
participants from the target population are a good start to
exploring the field.

Further studies should be conducted to explore the need
for explanations in the context of people with less or no
technological literacy. Nevertheless, even with a high level
of technological knowledge, the participants still expressed
the need for explanations.

With respect to RQ2, we could identify some of the
NFRs affected by the problems described, but we cannot
be sure that there are no other NFRs affected. This can be
due to a mono-operation bias. It is not possible to identify
all potential impacted NFRs only by assessing the problems
that participants had with daily applications. Further studies
should also consider the impact of different contexts on the
relationships with other NFRs.

The use of a questionnaire as an instrument, as well as
the use of qualitative analysis, causes a mono-method bias.
The impact of the questionnaire on this bias is that it is a
single source of data and allows only a limited explanation
of our findings. Further experiments need to be conducted,
where the same questions can be evaluated in the context of
a deployed system. Regarding the qualitative analysis, its
subjective nature may have affected the findings. To mitigate
this, we used in vivo coding to adhere closely to the language
of the respondents. In addition, during the second cycle, two
researchers coded the data into the final categories to ensure
consistency. Both coders compared and discussed the results
of their coding process in order to reach an agreement on the
assigned codes, thus increasing the reliability of the findings.

Another potential threat was the use of a hypothetical
scenario to ask questions. It may have produced responses
that do not match the behavior of people who would be in
the same situation in a real-world setting. We tried to mini-
mize this by making sure that the questions were high in
psychological realism: The participants confronted a situ-
ation they would likely experience in their everyday lives
[6]. Since we wanted to understand the needs of the average
end user, we focused on common everyday applications.
Hence, another concern is that the findings might not reflect
the effect of explanations in more sensitive scenarios (e.g.,
using software recommendation to make business decisions
or decisions with critical/ethical consequences) due to the
kind of applications we discussed. Indeed, the results can-
not be generalized to the complex context of such systems.
However, the fact that explanations are desired even in the
context of lightweight systems may indicate that they can
also be useful in more complex contexts.

Good question wording and instrumentation layout
are also crucial for the results of a survey. We followed

503Requirements Engineering (2020) 25:493–514	

1 3

guidelines and conducted pilot tests to ensure these aspects.
Yet, the order of questions in the questionnaire may have had
an impact on the participants’ understanding of whether we
were asking questions about the need to receive explanations
in a general context or related to the more specific contexts
of previous questions. We acknowledged, however, that this
might be useful for participants who may have trouble imag-
ining other scenarios in which they might need explanations.

6 � The double‑edged sword effect
of explainability

One aspect that conveys the complexity and the challenges
of dealing with NFRs is that they can be interacting. This
means that the attempts to achieve one NFR can hurt or help
the achievement of another [22]. In our study, we could iden-
tify how explainability interacts with other quality attributes
related to transparency. Explainability can both help or hurt
the achievement of other important NFRs, indicating the
existence of a double-edged sword effect.

By investigating RQ2 and RQ3, we found that expla-
nations may have an impact on NFRs related to transpar-
ency. We identified impacts on usability, informativeness,
understandability and auditability. These requirements have
an impact on the level of transparency, demonstrating that
explainability and transparency are related. By investigating
RQ2, we could assess how problems with understanding the
behavior of simple software systems may have an impact on
system transparency.

We could also understand how shortcomings in some
NFRs (in this case, usability and informativeness) may have
an impact on the user’s understanding of the system. On
the positive side, explanations may potentially help to solve
these shortcomings. However, if not correctly elicited and
analyzed, explanations may have a negative impact on the
same quality aspects. The relationship between the user and
the system, which relates mainly to feelings of control and
trust, can also be affected either positively or negatively by
explanations.

Explainability was perceived as a way of achieving infor-
mativeness, by conveying more information about aspects of
the system. By considering explainability in a system, it is
possible to provide a better level of interpretability, facilitat-
ing the understanding of the system or the current scenario.
This is due to the fact that users are given more information
about the system and its outcomes. Consequently, users may
feel that they make more conscious decisions, since they can
better understand what is happening.

Explanations may also help to improve the usability of
the system, facilitating the use and teaching the user how
to better operate it. They can guide the user during the
use of the system, working as a tutorial, to introduce the

software features. They can also help users get acquainted
with the system, helping when they are stuck in a situation
or to have a better understanding of all features available.
Explanations may also help users to be more time effi-
cient, accomplishing tasks faster.

The auditability of the system may also benefit from
explanations, especially with regard to its technical
aspects and data transparency. In the case of data trans-
parency, participants expressed a desire to know how
their data are used and how it contributes to algorithmic
intelligence.

At the same time that explanations can be an advantage
that facilitates the understanding of the system, they can also
have the opposite effect if they are not correctly designed.
Results have shown that explanations can, in contrast, hin-
der understanding if they are not displayed in a language
that meets user’s needs and expectations.

This highlights the need for attention when considering
including explanations in a system. It is always necessary to
consider the target users and which language is most appro-
priate. Otherwise, explanations may add more obscurity
to the understanding of the information, instead of helping
to mitigate it. Responses also pointed to the possibility of
receiving unnecessary information as a disadvantage. This
indicates that software engineers must pay attention to what
is to be explained and if the user really needs to receive an
explanation about it.

Appropriate design choices regarding explainability need
to be made, so that explanations do not pollute the interface
and harm the experience. Users expressed concerns about
whether the use of resources such as CPU, memory, stor-
age space, data volume and battery could be impaired by
this additional feature. Software engineers must also pay
attention to how the explanations can be integrated without
compromising the performance of the system. Participants
also expressed concern that they may need too much time
to read and understand the explanations. This is antagonistic
to the identified advantages of time efficiency, indicating that
explanations shall not be time consuming.

On this basis, explainability clearly has a double-edged
sword effect. It can act both as a synergistic NFR that con-
tributes to the achievement of other NFRs related to trans-
parency and as an antagonistic requirement. While consider-
ing the integration of explanations in a system, the goal may
be to add transparency, facilitating the system use and its
understanding, but it may result in the opposite effects. The
outcome will strongly depend on the design choices during
requirements analysis.

This highlights the need for a careful requirements analy-
sis. A key step toward a successful outcome is the identifi-
cation of the interdependencies among NFRs, assessing the
relationship between explainability and other requirements,
potential conflicts and trade-offs.

504	 Requirements Engineering (2020) 25:493–514

1 3

Having conflicts between NFRs means that fulfilling one
requirement can affect another’s achievement. The conflict
between usability and security is often pointed as a classic
example of such conflicts [25, 45, 57]. A system module
may require security mechanisms, which may increase its
complexity and, consequently, make the interaction with the
system more complex [14].

Mairiza and Zowghi [70] identified three kinds of con-
flicts between NFRs: absolute conflict, when two NFRs are
always in conflict; relative conflict, when a pair of NFRs are
sometimes in conflict depending on factors such as stake-
holders agreement and the architectural decision to opera-
tionalize the NFR; and never conflict, when a pair of NFRs
never conflict.

Explainability was not included in the analysis in the
study mentioned above. In our study, we were able to iden-
tify that the double-edged sword effect of explainability
suggests a relative conflict. The positive or negative effect
depends on how explainability is refined to more fine-
grained requirements and how they interact with other
NFRs.

We can notice this phenomenon when participants point
to the advantages and disadvantages of receiving explana-
tions. Taking the case of usability, explanations will either
have a positive effect by supporting user-friendliness, guid-
ing the user during the use of the system and supporting
the user in achieving proficiency in the system operation
or have the complete opposite effect and impair the use
by providing too many notifications. This will depend on
how the explanations are designed and operationalized
and how this design is consistent with established usabil-
ity principles.

Although it is certainly rewarding to investigate all inter-
actions of explainability with other NFRs, this would go
beyond the scope of a single publication. Since usability
is an essential aspect of software systems and fundamental
for user satisfaction, in Sec. 7 we explore the relationship
between explainability and usability in more details. We
also outline recommendations for the design of explana-
tions, based on state-of-the-art heuristics, to avoid a negative
impact of explainability on a system.

7 � Usability through and despite explanations

There was a time when usability was a secondary concern:
when computers were so expensive and used by only a small
amount of people who mostly performed very specialized
tasks. The popularization of computers shifted this percep-
tion, as then all sorts of consumers had access to personal
computers. Nowadays, user interfaces are a major way to
differentiate products in the market and it is what adds value
to a software product [75].

Usability is also rated as one of the most important NFRs
by practitioners [4]. In an empirical study which investi-
gated the importance of quality requirements in the industry,
usability was among the top five in importance for product
managers, project leaders and developers, for all types of
projects in various domains [31]. According to a study by
Groen et al. [43], it was one of the most frequently identified
software qualities in the feedback of users from app stores.

Usability also has an effect on trust, since it favors a better
comprehension of the contents and tasks that the consumer
must realize to achieve a goal and reduces the likelihood of
error [38]. According to the ISO/IEC 25010 [53], trust is
perceived as a key pillar to the user satisfaction levels and it
has a strong impact in the continuity of use.

Explainability is linked to both transparency and usability.
Explanations may help improve the usability of the system
and increase the level of trust, impacting on user satisfac-
tion. Yet, not every kind of software should provide expla-
nations to make its usability clear. Good usability design is
about having intuitive software, without the need for explicit
explanations on how to use it. However, in situations where
the system is too complex, explanations can be a good way
to mitigate the complexity of the system and help the user to
better operate it. On the one hand, the higher the usability or
transparency of a system, the less the explanation is needed.
On the other hand, well-designed explanations may increase
the usability of highly complex or opaque systems.

We analyzed the participants’ answers on the disadvan-
tages of explanations and selected the negative character-
istics that they identified. Our goal was to understand what
were the most commonly identified issues and whether
they could be prevented by applying principles of usability
engineering.

We found out that, by using well-known usability heu-
ristics, as suggested by Nielsen [75], most of the negative
effects reported by the participants can be prevented. This
finding endorses two of our assumptions: (1) the close rela-
tionship between explainability and usability and (2) how
state-of-the-art heuristics can prevent the possible negative
effects of explanations in a system, without the need for
unknown new methods.

We summarize the findings in Table 1. We list the per-
ceived negative aspects corresponding to each class, as
described in the participants’ answers. Then, we link the
issue to a usability heuristic that can mitigate the negative
effects.

Usability Heuristic “Simple and Natural Dialogue”:
The participants mentioned both the possible negative char-
acteristics of the explanations and the undesirable aspects
of the information provided by the explanations. Explana-
tions may be repetitive, unnecessary, inopportune, long and
not objective, while information may be redundant, useless,
irrelevant and excessive.

505Requirements Engineering (2020) 25:493–514	

1 3

These characteristics are contrary to the idea of present-
ing only essential content to the user, as recommended by
the principle of simple and natural dialogue. According to
this principle, user interfaces should be simplified as much
as possible presenting exactly the information the user
needs, when it is needed.

One of the elements included in this principle is the con-
cept of less is more. This concept recommends to identify
the information that is really important for the user and that
will help the user to perform the task, avoiding unnecessary
extra information.

Participants also pointed to some aspects that may nega-
tively impact usability. They mentioned that receiving expla-
nations may be distractive, interruptive, or pollute the UI
with excessive notifications. In this case, the interface should
be kept as clean as possible, avoiding cluttered information.

The amount of information will also have an influence on
user performance. Any piece of information is something
that users will have to look at while navigating, so their per-
formance will be slowed down and they can perceive it as
being time consuming.

Usability Heuristic “Speak the Users’ Language”: Par-
ticipants also mentioned negative aspects of explanations
that may hinder understanding. In their perspective, the
information presented may lead to confusion or misinfor-
mation, while the language in which the information is pre-
sented may be too difficult, complicated, technical or incom-
prehensible. These aspects suggest that the language used is
not an accessible language, something that is recommended
by the usability principle of speaking users’ language.

The identification of an appropriate vocabulary for the
interface must take into account aspects such as the needs
and expectations of different users, cultural factors and the
vocabulary used in the domain.

Following this heuristic, it is necessary to avoid the use
of technical terms that may be unfamiliar to the user and to

pay attention to how the explanation is designed so that there
is no ambiguity or vagueness.

8 � The dimensions shaping explainability

NFRs are not mere descriptions of the quality characteris-
tics of the system. They are central to understanding how
these quality characteristics translate into functional require-
ments and constraints that must prevail and are fundamental
aspects for the design of a system [64]. NFRs are difficult to
fix later on in a project and should be considered from the
start. According to Cysneiros et al. [26], dealing with NFRs
from the very beginning of software development and inte-
grating this knowledge with functional conceptual models
lead to cost savings and to higher customer satisfaction.

NFRs, however, are traditionally a difficult topic due to
their fuzzy nature and trigger debates among requirements
engineers about their meaning and scope [41]. NFRs have
three main aspects that transmit their complexity: They can
(1) be subjective in nature, since some solutions to NFRs
may be considered accomplished by some people, but not by
others; (2) be relative in nature, since the degree to which
they are perceived as met also varies according to the per-
son and the context; (3) be interacting, since the attempts
to achieve one NFR can hurt or help the achievement of
another [22].

In addition to these challenges, factors spread across dif-
ferent dimensions need to be considered during the require-
ments engineering process. As explainability is still an
emerging requirement, there is no structured knowledge of
which factors should be considered during the analysis of
this NFR. Our goal is to convey knowledge that facilitates
the elicitation and analysis of explainability. We present
the factors that will either influence the consideration of

Table 1   Negative effects
identified in participants’
answers and the correspondent
usability heuristics that may
mitigate them, following
Nielsen’s usability principles
[75]

Negative effect Usability heuristic [75]

Informativeness/
understandability

Unnecessary
information

Explanation: repetitive, unnecessary,
inopportune, lengthy, lack of objectivity

Simple and natural
dialogue

Information: unnecessary, excessive,
redundant, useless, irrelevant

Hinders
understanding

Confusing, misinformation Speak the users’
languageLanguage: difficult, complicated,

technical, incomprehensible
Adds obscurity Vague, obscure, unclear, ambiguous

Usability Impairs the use Distractive, lack of focus Simple and natural
dialogueDisrupts flow, interruption

Excessive information on screen,
polluted UI

Time consuming Loss of time, time consuming
Decreases dynamism and speed

506	 Requirements Engineering (2020) 25:493–514

1 3

explainability as a necessary NFR within a system, or the
design choices toward its operationalization.

In order to identify these factors and the challenges sur-
rounding NFRs, we manually reviewed the existing litera-
ture by searching for papers on NFRs published in two key
requirements engineering sources: the Requirements Engi-
neering Journal and the proceedings of the IEEE Require-
ments Engineering Conference. For a better coverage, we
also looked for papers of interest in the listed references.
We combined the findings of this search with the findings
of our survey and the knowledge found in the explainability
literature.

As a result, we present below the dimensions that affect
the elicitation and analysis of explainability. Figure 5 illus-
trates these dimensions.

8.1 � Users’ needs and expectations

The first factor is to consider the users’ needs and expecta-
tions with regard to explanations. Different groups of users
will certainly have different expectations, experiences with
technical systems, personal values, preferences and needs.
Such aspects also mean that individuals can perceive quality
differently.

As part of RQ1, we investigated the need for explanations
in both a general and a more specific context, in situations
of uneven objectives. The participants expressed interest in
receiving explanations in both of the contexts under inves-
tigation. In a situation of uneven objectives, where their
expectations are not met, most of the participants expressed
interest in receiving an explanation. The difference between

navigation on smartphones and on OBNS also had an impact
on the answers, suggesting that the need for explanations
varies according to the context in which the user is using
the application.

Users’ individual needs and expectations may also have
an effect on the need for the granularity of the information
to be provided. With regard to the questions to be answered,
the respondents were especially interested in getting answers
to what and why questions. These answers have a higher
granularity level than answers to how questions, which give
more details about the system’s inner reasoning process.

Based on our findings, we assume that answers to what
and why questions might be more important when present-
ing explanations to the non-expert user. Knowing specifics
of the internal workings cannot be so desirable, which cer-
tain stakeholders might perceive as a positive outcome. This
is because some companies might be reluctant to disclose
information on lower-level rationale to the public as it could
harm their competitive advantage [20].

Generational differences are an example of an aspect
which could impose different requirements. However, by
investigating RQ4, we did not find any significant varia-
tions in the perspectives of the different generations of par-
ticipants on explainability.

In addition, negotiating requirements is not only about
considering and balancing the individual expectations of the
stakeholders, but also balancing those expectations with a
number of other factors: cultural values, laws and norms,
corporate values, domain aspects, and more practical project
constraints such as time and budget [30, 78]. Rich elicitation
approaches (e.g., empirical methods) can be used to under-
stand social and human factors as well as context-dependent
aspects that will later on be translated into more specific
requirements.

8.2 � Cultural values

Culture is the collective mindset that distinguishes the mem-
bers of one group of people from another. Different cultures
require different types of information, process it differently
and require different designs of information systems [19].
Systems are influenced by the respective national environ-
ments in which they are deployed, such that the respective
culture strongly influences their design [63].

Cultural values refer to the ethos of a group or society
[80]. They influence the need for a given system quality and
how it should be operationalized [63]. The European Ethics
Guidelines for Trustworthy AI [37] are an example of values
that represent the common vision of a group. Such values
vary between cultures. For instance, while some cultures are
more concerned with data privacy and the ethics of software
systems, the largest proportion of internet users in some
emerging economies claim to trust the internet [1]. Hence, in

Fig. 5   Different dimensions shaping the analysis and operationaliza-
tion of explainability

507Requirements Engineering (2020) 25:493–514	

1 3

such cultures the need for explanations and what is expected
in terms of explanations can be perceived differently.

8.3 � Corporate values

Corporate values refer to the strategic vision and values of
the organization [93]. With the omnipresence of software
systems and the age of artificial intelligence, the importance
of integrating human values into software becomes more
evident. Organizations have made considerable efforts to
define their public values statements, including values such
as corporate integrity, respect and honesty [97].

However, integrating such values in the systems we pro-
duce is not a task embedded in the everyday routine of a
project. As Whittle [97] observes, even in cases in which
companies consider values during software development,
the approach is limited to creating a values-driven culture
instead of having it integrated in software.

While explainability can be a means of providing greater
transparency in software systems, if there are no clear laws
requiring the company to satisfice a certain level of explain-
ability, having explanation as an NFR would depend on the
company’s own values and interests. In the case of self-
driving cars, according to Cysneiros et al. [27], different
car manufacturers are likely to prioritize NFRs according to
specific selling points of their brands. For instance, the deci-
sion of satisficing explainability within a system may stem
from a corporate interest in achieving more transparency, to
improve the users’ trust in the system, or to provide a better
user experience.

In Sect. 6, we saw that explainability can help the audit-
ability of a system by conveying information about its inner
working or technical aspects. In this case, software compa-
nies must weigh how much information they are willing to
disclose about the system’s internal behavior. This is neces-
sary in order to balance the needs of users with the disclo-
sure of valuable proprietary information and trade secrets.

8.4 � Laws and norms

Cultural values resonate in the conception of laws and
norms. The European Union has adopted a specific data
protection legislation (GDPR) to protect citizens’ data. A
certain degree of explainability is also required under this
law. Other countries either have their own separate data pro-
tection law or no specific legislation.

Laws and norms may impose constraints that have to
be met despite the corporate values. Software systems are
required to comply with them or face sanctions. These laws,
regulations and policies need to be analyzed and accom-
modated during the definition of requirements for a new
system [91]. They have a direct impact on how companies

prioritizes qualities and can influence the system architec-
ture [11].

8.5 � Domain aspects

Domain aspects are an essential aspect on the analysis of
NFRs, since needs change depending on the domain [21].
Each software domain has quality characteristics that are
of particular importance and may deserve more attention.
The relative priority among NFRs may change as the char-
acteristics of the environment in which the system operates
differ [96].

Domain aspects dictate whether explanations are more
urgent and how they should be designed. Explainability in
some areas may be an optional requirement, focusing on
enhancing user experience, while in others it may be a fun-
damental quality. The degree and extent to which an expla-
nation is needed to support or justify a decision vary accord-
ing to the criticality of the domain.

Critical systems impose different sets of NFRs when
compared to non-critical ones. In more critical domains
such as medical, financial and autonomous systems, explain-
ability may be more urgent. For instance, in the case of a
simple navigation system, explanations that inform the user
about the chosen route or the causes of a route change can be
viewed as an additional feature that impacts on user experi-
ence and product satisfaction. However, in the case of sys-
tems that support medical diagnosis, the lack of explanations
of the reasons for a given diagnosis can have a much more
dramatic impact, with ethical consequences [79].

8.6 � Project constraints

Project constraints are more practical aspects (also known
as non-technical aspects [15]), such as available resources
(e.g., time, money, technologies, manpower). Such aspects
have a strong influence during requirements engineering and
may take precedence over others [4].

The project constraints have to be considered during
the elicitation and analysis of explainability. In the end,
all dimensions need to be balanced considering these non-
technical aspects. It is quite idealistic to claim that we must
consider all dimensions, without bearing in mind that every
project faces resources limitations that must be balanced
against the desired quality.

The need for explainability and the effort involved in
meeting it must be balanced with what it represents for the
company in terms of resources. Excessive quality can lead to
unnecessary costly design of the software system, unneces-
sary use of the resources needed to operate the system and
trade-offs where other important attributes are negatively
affected [39].

508	 Requirements Engineering (2020) 25:493–514

1 3

9 � Recommendations: user‑centered design
for explainability

Developing software-based systems that can be operated
intuitively is a fundamental concern of software engineer-
ing and human–computer interaction (HCI). Seffah et al.
[88] discuss human-centered software engineering, where
the focus in system development shifts toward putting the
goals, needs and wishes of the users in the first place.
The idea of human-centered software engineering is to
implement some of the techniques used in human-centered
design (HCD).

The HCD philosophy encompasses user-centered
design (UCD) principles. In Sect. 7, we have discussed
how heuristics based on well-known usability principles
can avoid some of the possible negative effects of explana-
tions. These heuristics are commonly used during usability
engineering and are based on UCD principles. Due to the
close relationship between usability and explainability, we
propose that the elicitation, analysis and design of explain-
ability be integrated with usability engineering to avoid
the undesired negative effects of explanations.

We encourage the use of UCD techniques, since usabil-
ity engineering (UE) should always be incorporated into
any software project in order to favor a good user expe-
rience. However, we are also aware that many software
development teams are still underusing these techniques
[89]. Software and UE professionals sometimes find it
difficult to define whether and why certain UE tools and
methods are better suited in a specific development context
than others [88].

Another reason for encouraging this is the challenge of
aligning research and practice. This challenge is familiar
to researchers, since it is often difficult that practition-
ers find a way to integrate research proposals in the busy
day-to-day life of the industry [5]. There are indications
that the methods and techniques coming from the research
community have been rarely adopted by practitioners [4].

As researchers, we have to take action in investigat-
ing methods and techniques which are aligned with the

practice and offer advantages for practitioners instead of
more overhead. Therefore, we propose to concentrate on
well-investigated concepts and user-centered approaches,
instead of conceiving a complete new process with unfa-
miliar activities for the engineering of explainability. In
view of this, we suggest lightweight UCD activities which
do not add too much overhead into the process.

9.1 � A short summary of UCD

UCD is a multidisciplinary design approach to interactive
systems development that aims to make systems usable and
useful by focusing on the users, their needs and require-
ments. It considers human factors and uses the knowledge
and techniques of usability engineering, being an effective
approach to overcome the limitations of traditional system-
centered design [71]. UCD increases effectiveness and effi-
ciency and enhances human well-being and user satisfaction.
It also counteracts possible adverse effects of use on human
health, safety and performance [52].

Seffah and Metzker [89] discuss ways of filling the exist-
ing gap between software and usability engineering prac-
tices. This gap primarily concerns the non-involvement of
usability experts in the process and the lack of user-centered
practices within software development. By integrating more
user-centered practices, there is a shift of focus in systems
development toward putting the goals, needs and wishes of
the users in the first place. Established UCD best practices
and UE methods should be a core part of every software
development activity [88]. Hehn and Uebernickel argue that
usability engineering should be integrated into the require-
ments engineering process, combining the human-oriented
aspect of the former with the more formal, technology-
driven aspect of the latter [48].

Table 2 summarizes the main differences between the
traditional and user-centered practices. Traditional prac-
tices focus on the system itself and its features, while user-
centered practices focus on understanding how the humans
using the system perform their tasks and how the system
can support them.

Table 2   Traditional practices
in comparison with human-
centered practices, adapted
and extracted from Seffah and
Metzker [89]

Traditional practices User-centered practices

Technology/developer-driven User-driven
System component focus User solution focus
Individual contribution Multidisciplinary teamwork
Focus on internal architecture Focus on external attributes
Product quality Quality in use
Implementation prior to human validation Implementation based on user-validated feedback
Establishing the functional requirements Understanding the context of use

509Requirements Engineering (2020) 25:493–514	

1 3

We considered existing UCD practices and selected a set
of essential activities that can be useful in the elicitation and
analysis of explainability requirements. We call these activi-
ties essential, because we believe they are the basic set of
activities that are needed for a meaningful design of explain-
ability. We decided to focus on activities rather than on the
process itself, as this enables activities to be integrated into
different development processes (e.g., traditional and agile)
and gives our recommendations more flexibility. Further-
more, as these activities are part of usability engineering,
the elicitation and analysis of explainability can be merged
with the usability engineering tasks, if existing.

According to Cooper et al. [24], UCD activities roughly
consist of:

–	 Understanding users’ desires, needs, motivations and
contexts.

–	 Understanding business, technical and domain opportuni-
ties, requirements and constraints.

–	 Using this knowledge as a foundation for plans to create
products whose form, content and behavior are useful,
usable and desirable, as well as economically viable and
technically feasible.

These activities allow the analysis of all the dimensions nec-
essary for the proper design of explainability (Fig. 5): laws
and norms, users’ needs and expectations, domain aspects,
corporate values, cultural values and project constraints.

We consider the specific activities of two existing usabil-
ity engineering processes in order to build up our proposed
essential set: The goal-directed design process proposed by
Cooper et al. [24] and the usability engineering lifecycle by
Mayhew [72]. We combine them with classic requirements
engineering activities as described by Alexander and Beus-
Dukic [3].

The activities in our set are organized in four groups that
can be iteratively performed. We start by exploring how
qualitative techniques can be used to discover the NFRs
within the system and how they support discovering the
need for explainability. After the need for explainability
is identified, user research needs to be carried out where
aspects about users, context and domain are better under-
stood and personas can be designed. Next, a negotiation
and trade-off analysis phase takes place, in which the inter-
actions between requirements are analyzed, and the require-
ments are prioritized accordingly. Afterward, a prototyping
phase is needed to observe the effect of explainability and
its operationalizations on user experience.

9.2 � Discovering the need for explainability

Explainability must only be considered if it is really required.
Qualitative research techniques can be used to support this

discovery [3]. The purpose is to gather as much information
as possible about stakeholders, users, their environment,
their expectations, the domain and the project itself.

Qualitative techniques help to understand behaviors, atti-
tudes and details about the domain such as the technical,
business and environmental contexts. Interviews, workshops
and ethnographic field studies are some of the techniques
that can be used for this purpose. Doerr et al. [32] propose a
method that includes workshops for capturing the important
quality aspects and eliciting NFRs. Conducting workshops
with stakeholders is an opportunity to identify the main
goals, challenges, as well as qualities and constraints.

During this activity, the dimensions cited in Sect. 8
strongly influence this discovery and should be taken into
account. It may be the case that the corporate values influ-
ence the need for explainability, arising from a corporate
commitment to transparency or a desire to provide a better
user experience. Or that legal restrictions apply and require
the company to consider explainability and implement it in
the system. It also may be the case that the degree of critical-
ity of the domain requires the system to be explainable. The
needs and expectations of the user, as well as the culture in
which the system operates, are also key factors to consider.
Lastly, all these aspects must be considered in relation to the
project constraints.

In this phase, we also recommend the use of NFR cata-
logues and SIGs for the identification and negotiation of
NFRs [81]. They can be used to capture knowledge and also
allow documentation of the interdependencies found within
the project, thus facilitating traceability of requirements
[28].

9.3 � Explanations for different personas

Understanding the user is the main focus of UCD and one of
the main aspects that influence a positive impact of explain-
ability in a system. The engineer must understand the users,
their cognitive behavior, their attitudes and the character-
istics of the tasks that they must perform [44]. Once again,
qualitative techniques such as interviews and ethnographic
studies provide important information on the actual needs
and expectations of users with regard to the system and the
information to be received.

Creating personas is a useful technique to identify and
define different types of potential users for a system. It sup-
ports the identification, description and prioritization of user
groups [44]. In the first step, personas hypotheses can be
created on the basis of experience and vision. Hypotheses
may be used as a first draft to identify groups of users to
participate in a more thorough analysis.

By modeling different personas, it is possible to model
different user groups and consider each group’s particular
needs in terms of explanations. Personas may be used as a

510	 Requirements Engineering (2020) 25:493–514

1 3

support during the identification and operationalization of
requirements, to check whether the requirements meet the
needs of the identified groups.

Modeling personas requires consideration of aspects such
as user roles, level of user domain and technical expertise
and cultural values. Domain aspects also need to be under-
stood in order to understand the particularities of a domain
and what users need to know in order to perform their tasks
within a system. Using personas, it is also possible to iden-
tify the main challenges, what elements of the process really
need to be explained, and how to communicate information
in a user-friendly manner. As discussed earlier, the domain
language also needs to be considered and can be matched to
specific user profiles.

In our study, we were able to observe the importance of
contextual aspects when we were able to detect variations in
the need for explanations based on the context in which the
participant was inserted. It is therefore essential to under-
stand the context within which the system is being used and
how the system fits into the everyday life of the user. This
understanding makes it possible to assess when an explana-
tion may be needed and what needs to be explained in dif-
ferent contexts of use.

Using task analysis and ethnographic techniques, it is
possible to observe the needs that users are unable to exter-
nalize in interviews and to gain a deeper understanding of
the context and domain. Contextual inquiries allow inter-
views to be conducted in the user environment, so that all
aspects are analyzed in a real context [8].

9.4 � Requirements negotiation and trade‑off
analysis

To analyze the impact of explanations on other NFRs, it
is necessary to refine explainability into more fine-grained
requirements (e.g., softgoals). As previously mentioned, a
positive or negative impact depends on how explainability is
refined to the functionality level and how these functionali-
ties interact with other NFRs in the system. In practice, the
elicitation of NFRs, functional requirements and architec-
ture has to be intertwined, since sometimes a refinement of
non-functional aspects is not possible without detailing the
functionality or architecture [32].

Existing approaches and tools to support stakehold-
ers in the identification of conflicts between NFRs can
be either experience, model or mathematically based [7,
9]. Requirements catalogues can be used during vari-
ous phases of software development projects, including
elicitation and architecture design [70]. They can also be
used during trade-off analysis to identify the interdepend-
encies between requirements and understand how more
fine-grained requirements (e.g., softgoals) may impact

other NFRs [22]. In the context of this work, we used the
Transparency SIG as a catalogue to help us gain a better
understanding of the interplay between transparency and
other NFRs.

The project constraints also need to be considered
within this activity, including what is feasible given
budget, time, technology constraints and other limita-
tions. For instance, it may be that what is needed to satis-
fice explainability is limited by the project constraints, or
that providing a specific type of explanation is not in the
interest of the company, as trade secrets may be revealed.
Stakeholders such as executives, managers, developers,
usability designers, law scholars and system architects may
be heard during requirements negotiation in order to rec-
oncile possible conflicts between stakeholder objectives
and to prioritize requirements.

9.5 � Prototyping and testing

Prototype review has been especially effective in identi-
fying usability issues and optimizing the design of users
interfaces. Building prototypes allows the team to capture
and validate assumptions about the desired software char-
acteristics [39].

Prototyping is widely used in the field of usability engi-
neering and is a lightweight way to test a system [3]. It
allows to collect feedback from stakeholders during the
requirements process to validate whether the requirements
meet their expectations. In a survey study that included
HCI practitioners, computer-based mock-ups and paper
prototypes were the primary responses when asked about
the usability tools, processes and languages they used in
their organizations [55].

Usability tests are usually part of the development pro-
cess. Prototypes can be validated with real user groups,
assessing whether the explanations fulfill their needs or
hurt usability. The use of mock-ups can help to identify
design flaws and to assess the effect of explanations on
user experience. It is also possible to compare whether the
represented model of the system (e.g., how the system is
presented to the user) matches the users’ mental models.

The concept of mental models [56], which has long
been studied and discussed in the HCI community in par-
ticular [58, 76], refers to the mental image that users have
of the behavior of a system. Mental models offer a deep
understanding of people’s motivations and thinking pro-
cesses [100]. The closer the system is to the user’s mental
model, the better the usability and understandability of
the system. Think-aloud and other traditional methods of
usability testing [72, 75] should be put in place to evaluate
the effect of explainability.

511Requirements Engineering (2020) 25:493–514	

1 3

10 � Summary

Software systems are deeply integrated into daily life and
are becoming increasingly complex. This increasing com-
plexity results in a lack of transparency that hinders under-
standing and negatively affects trust [29]. In this way, it
becomes more important to consider NFRs such as trans-
parency in software systems [97].

In a study with 107 participants, we explored whether
explanation is transparency related, whether explanations
can help satisfice transparency and what are the advantages
and drawbacks of built-in explanations based on end-user
perception. We have been able to identify that explain-
ability is not only a means of achieving transparency and
building trust, but is also linked to other important NFRs.
Explanations can, however, have both a positive and a neg-
ative impact on a system. We referred to this phenomenon
as the double-edged sword effect of explainability.

Usability is one of the NFRs that can be either posi-
tively or negatively affected by explainability. It is an
essential NFR for system quality and strongly influences
factors such as user experience, user satisfaction and trust.
Therefore, to prevent the negative impact of explanations
on usability, we explored the relationship between explain-
ability and usability in more detail. We provide concrete
recommendations for reconciling explanations with usabil-
ity through the use of UCD techniques.

Although NFRs are fundamental for software quality,
they remain a challenge for practice. We reviewed the lit-
erature manually in order to gain a better understanding
of the challenges of dealing with NFRs and how they are
approached during requirements engineering. One of the
challenges is that these aspects are often unknown to pro-
fessionals and therefore difficult to understand and ana-
lyze. We refer to such aspects as dimensions. To support
requirements engineers, we have identified the different
dimensions that should be involved during the require-
ments engineering process when considering explainabil-
ity. These dimensions should be considered during the
elicitation, analysis and design of explainability.

User-centered techniques can support requirements
engineers to elicit requirements that are more aligned
with these dimensions, as well as with user needs and con-
text. We therefore selected and suggested a selection of
well-known lightweight UCD activities that can be easily
incorporated into the requirements process. This strategy
prevents the inclusion of complex steps in the development
process, which would potentially be difficult to execute in
practice.

We are aware of the difficulties in integrating UCD
techniques into the development process and how HCI and
SE are still sometimes seen as two separate fields [55].

However, as we move toward developing systems with
more human-centered values, we need to start integrating
such practices into our software development processes.

11 � Future directions

While explainability has become an important design con-
cern, it is still under-specified [10]. NFRs are generally
poorly understood in comparison with other aspects of
the software. There is often terminological confusion with
respect to what a given quality aspect means and its charac-
teristics. It is often the case where the same term is under-
stood in different ways [4]. In the case of explainability, a
common terminology needs to be investigated in order to
facilitate the discussion and analysis of this NFR during the
requirements engineering process.

There is also a need to investigate the interrelationships
between explainability and other requirements to understand
their interactions and taxonomy. In order to bridge this gap,
we want to build a SIG of explainability and its interdepend-
encies as a next step to support the requirements engineering
process.

Experiments also need to be conducted to evaluate the
effect of explanations in deployed systems. We also want
to carry out a more in-depth analysis of how the design of
explainability would work in practice and the challenges
involved, validating our recommendations through empirical
studies. Our key purpose is to develop more comprehensive
guidelines for practice.

12 � Conclusion

Non-functional requirements are difficult to elicit, negotiate
and validate. Often, there are also trade-offs between NFRs.
Usability may conflict with security: Entering a password
may bring more steps to the interaction with the system but
protects users’ data at the same time. When considering soft-
ware transparency, even aspects of the same quality attribute
may conflict with each other. We concluded that the integra-
tion of explanations needs to be carefully evaluated to suit
the expectations and particularities of users. Requirements
engineers need to explore the costs and benefits of present-
ing explanations to the user and what they mean in terms of
functional and non-functional requirements.

We focused on the relationship between usability and
explainability because of the significant influence of usabil-
ity on software quality. Although one should support the
other, poor design and implementation of explanations could
do more harm than good. Therefore, we recommend a set
of lightweight user-centered activities to support the design
of explanations. These recommendations are based on the

512	 Requirements Engineering (2020) 25:493–514

1 3

findings of our study and on existing literature and can be
integrated into the requirements engineering process. We
present them as an initial proposal. Empirical evaluations
and refinements should be the next step toward more matu-
rity and better understanding of this research topic.

In this paper, we explored explainability as an NFR and
its interaction with other requirements related to software
transparency. We hope that our findings and conclusions will
help to establish realistic activities to cope with explainabil-
ity in practice. These activities should support the elicitation
of explainability requirements and help requirements engi-
neers to conceive explainable systems that do not compro-
mise user experience.

Acknowledgments  Open Access funding provided by Projekt
DEAL. This work was supported by the research initiative Mobilise
between the Technical University of Braunschweig and Leibniz Uni-
versity Hannover, funded by the Ministry for Science and Culture of
Lower Saxony. We thank colleagues Wasja Brunotte and Nils Prenner
for their feedback on the manuscript.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 2019 cigi-ipsos global survey on internet security and trust. https​
://www.cigio​nline​.org/inter​net-surve​y-2019 (2019). Accessed 30
Nov 2019

	 2.	 Abdollahi B, Nasraoui O (2018) Transparency in fair machine
learning: the case of explainable recommender systems. In:
Human and machine learning, pp 21–35. Springer

	 3.	 Alexander IF, Beus-Dukic L (2009) Discovering requirements:
how to specify products and services. Wiley, Hoboken

	 4.	 Ameller D, Ayala C, Cabot J, Franch X (2012) How do software
architects consider non-functional requirements: an exploratory
study. In: 2012 20th IEEE international requirements engineering
conference (RE), pp 41–50

	 5.	 Anderson N, Herriot P, Hodgkinson GP (2001) The practitioner-
researcher divide in industrial, work and organizational (IWO)
psychology: where are we now, and where do we go from here?
J Occup Org Psychol 74(4):391–411

	 6.	 Aronson E, Wilson TD, Brewer MB (1998) Experimentation in
social psychology. Handb Soc Psychol 1:99–142

	 7.	 Berander P, Damm LO, Eriksson J, Gorschek T, Henningsson
K, Jönsson P, Kågström S, Milicic D, Mårtensson F, Rönkkö K
et al (2005) Software quality attributes and trade-offs. Blekinge
Institute of Technology, Karlskrona

	 8.	 Beyer H, Holtzblatt K (1997) Contextual design: defining cus-
tomer-centered systems. Elsevier, Amsterdam

	 9.	 Boehm B, In H (1996) Identifying quality-requirement conflicts.
IEEE Softw 13(2):25–35

	 10.	 Bohlender D, Köhl MA (2019) Towards a characterization of
explainable systems. arXiv​:1902.03096​

	 11.	 Breaux TD, Vail MW, Anton AI (2006) Towards regulatory com-
pliance: extracting rights and obligations to align requirements
with regulations. In: 14th IEEE international requirements engi-
neering conference (RE’06), pp 49–58. https​://doi.org/10.1109/
RE.2006.68

	 12.	 Bunt A, Lount M, Lauzon C (2012) Are explanations always
important?: a study of deployed, low-cost intelligent interactive
systems. In: Proceedings of the 2012 ACM international confer-
ence on intelligent user interfaces, pp 169–178. ACM

	 13.	 Bussone A, Stumpf S, O’Sullivan D (2015) The role of explana-
tions on trust and reliance in clinical decision support systems.
In: 2015 international conference on healthcare informatics, pp
160–169. IEEE

	 14.	 Carvalho RM (2017) Dealing with conflicts between non-func-
tional requirements of UbiComp and IoT applications. In: 2017
IEEE 25th international requirements engineering conference
(RE), pp 544–549. IEEE

	 15.	 Carvallo J.P, Franch X, Quer C (2006) Managing non-techni-
cal requirements in cots components selection. In: 14th IEEE
international requirements engineering conference (RE’06), pp
323–326. IEEE

	 16.	 Charmaz K (2006) Constructing grounded theory: a practical
guide through qualitative analysis. Sage, Thousand Oaks

	 17.	 Chazette L (2019) Survey data - perception of end-users
regarding the need for explanations in software systems. https​
://doi.org/10.5281/zenod​o.32611​27

	 18.	 Chazette L, Karras O, Schneider K (2019) Do end-users want
explanations? Analyzing the role of explainability as an emerg-
ing aspect of non-functional requirements. In: 2019 IEEE 27th
international requirements engineering conference (RE). IEEE

	 19.	 Choe JM (2004) The consideration of cultural differences in
the design of information systems. Inf Manag 41(5):669–684

	 20.	 Chromik M, Eiband M, Völkel ST, Buschek D (2019) Dark
patterns of explainability, transparency, and user control for
intelligent systems. In: IUI workshops

	 21.	 Chung L, Nixon BA (1995) Dealing with non-functional
requirements: three experimental studies of a process-oriented
approach. In: 1995 17th international conference on software
engineering, pp 25–25. IEEE

	 22.	 Chung L, do Prado Leite JCS (2009) On non-functional
requirements in software engineering. In: Conceptual mod-
eling: foundations and applications, pp 363–379. Springer

	 23.	 Cohen J (1968) Weighted kappa: nominal scale agreement pro-
vision for scaled disagreement or partial credit. Psychol Bull
70(4):213–220

	 24.	 Cooper A, Reimann R, Cronin D (2007) About face 3: the
essentials of interaction design. Wiley, Hoboken

	 25.	 Cranor LF, Garfinkel S (2004) Guest editors’ introduction:
secure or usable? IEEE Secur Priv 2(5):16–18

	 26.	 Cysneiros LM, do Prado Leite JCS, Neto JDMS (2001) A
framework for integrating non-functional requirements into
conceptual models. Requir Eng 6(2):97–115

	 27.	 Cysneiros LM, Raffi M, do Prado Leite JCS (2018) Software
transparency as a key requirement for self-driving cars. In:
2018 IEEE 26th international requirements engineering confer-
ence (RE), pp 382–387. IEEE

	 28.	 Cysneiros LM, Werneck VM, Kushniruk A (2005) Reusable
knowledge for satisficing usability requirements. In: 13th IEEE
international conference on requirements engineering (RE’05),
pp 463–464. IEEE

http://creativecommons.org/licenses/by/4.0/
https://www.cigionline.org/internet-survey-2019
https://www.cigionline.org/internet-survey-2019
http://arxiv.org/abs/1902.03096
https://doi.org/10.1109/RE.2006.68
https://doi.org/10.1109/RE.2006.68
https://doi.org/10.5281/zenodo.3261127
https://doi.org/10.5281/zenodo.3261127

513Requirements Engineering (2020) 25:493–514	

1 3

	 29.	 Cysneiros LM, Werneck VMB (2009) An initial analysis on
how software transparency and trust influence each other. In:
WER

	 30.	 Damian DE, Zowghi D (2003) An insight into the interplay
between culture, conflict and distance in globally distributed
requirements negotiations. In: Proceedings of the 36th annual
Hawaii international conference on system sciences, 2003, pp
10. IEEE

	 31.	 De La Vara JL, Wnuk K, Berntsson-Svensson R, Sánchez J, Reg-
nell B (2011) An empirical study on the importance of quality
requirements in industry. In: SEKE, pp 438–443

	 32.	 Doerr J, Kerkow D, Koenig T, Olsson T, Suzuki T (2005) Non-
functional requirements in industry-three case studies adopting
an experience-based NFR method. In: 13th IEEE international
conference on requirements engineering (RE’05), pp 373–382.
IEEE

	 33.	 Doran D, Schulz S, Besold TR (2017) What does explainable
ai really mean? A new conceptualization of perspectives. arXiv​
:1710.00794​

	 34.	 do Prado Leite JCS, Cappelli C, (2010) Software transparency.
Bus Inf Syst Eng 2(3):127–139

	 35.	 Doshi-Velez F, Kim B (2017) Towards a rigorous science of
interpretable machine learning. arXiv​:1702.08608​

	 36.	 Doshi-Velez F, Kortz M, Budish R, Bavitz C, Gershman S,
O’Brien D, Schieber S, Waldo J, Weinberger D, Wood A
(2017) Accountability of ai under the law: the role of explana-
tion. arXiv​:1711.01134​

	 37.	 Ethics guidelines for trustworthy ai. (2019) https​://ec.europ​
a.eu/digit​al-singl​e-marke​t/en/news/ethic​s-guide​lines​-trust​
worth​y-ai. Accessed 30 Nov 2019

	 38.	 Flavián C, Guinalíu M, Gurrea R (2006) The role played by
perceived usability, satisfaction and consumer trust on website
loyalty. Inf Manag 43(1):1–14

	 39.	 Fotrousi F, Fricker SA, Fiedler M (2014) Quality requirements
elicitation based on inquiry of quality-impact relationships.
In: 2014 IEEE 22nd international requirements engineering
conference (RE), pp 303–312. IEEE

	 40.	 Frese M (1987) A theory of control and complexity: Implica-
tions for software design and integration of computer systems
into the work place. In: Psychological issues of human com-
puter interaction in the work place. North-Holland Publishing
Co., NLD, pp 313–337

	 41.	 Glinz M (2007) On non-functional requirements. In: 15th IEEE
international requirements engineering conference (RE 2007),
pp 21–26. IEEE

	 42.	 Goodman B, Flaxman S (2017) European union regulations on
algorithmic decision-making and a “right to explanation”. AI
Mag 38(3):50–57

	 43.	 Groen EC, Kopczyńska S, Hauer MP, Krafft TD, Doerr J
(2017) Users—the hidden software product quality experts?
A study on how app users report quality aspects in online
reviews. In: 2017 IEEE 25th international requirements engi-
neering conference (RE), pp 80–89. IEEE

	 44.	 Gulliksen J, Göransson B, Boivie I, Blomkvist S, Persson J,
Cajander Å (2003) Key principles for user-centred systems
design. Behav Inf Technol 22(6):397–409

	 45.	 Gutmann P, Grigg I (2005) Security usability. IEEE Secur Priv
3(4):56–58

	 46.	 Hamel L (2006) Visualization of support vector machines with
unsupervised learning. In: Proceedings of 2006 IEEE sym-
posium on computational intelligence in bioinformatics and
computational biology

	 47.	 Hartson R, Pyla PS (2012) The UX book: process and
guidelines for ensuring a quality user experience. Elsevier,
Amsterdam

	 48.	 Hehn J, Uebernickel F (2018) The use of design thinking for
requirements engineering: an ongoing case study in the field of
innovative software-intensive systems. In: 2018 IEEE 26th inter-
national requirements engineering conference (RE), pp 400–405.
IEEE

	 49.	 Herlocker JL, Konstan JA, Riedl J (2000) Explaining collabo-
rative filtering recommendations. In: Proceedings of the 2000
ACM conference on computer supported cooperative work, pp
241–250. ACM

	 50.	 Hoffmann CP, Lutz C, Meckel M (2014) Digital natives or digital
immigrants? The impact of user characteristics on online trust. J
Manag Inf Syst 31(3):138–171

	 51.	 Hosseini M, Shahri A, Phalp K, Ali R (2016) Foundations for
transparency requirements engineering. In: International working
conference on requirements engineering: foundation for software
quality, pp 225–231. Springer

	 52.	 ISO 9241-210:2019 Ergonomics of human-system interaction—
Part 210: human-centred design for interactive systems. Stand-
ard, International Organization for Standardization, Geneva CH
(2019)

	 53.	 ISO/IEC 25010:2011 Systems and Software Engineering-
Systems and Software Quality Requirements and Evaluation
(SQuaRE)—System and Software Quality Models. Standard,
International Organization for Standardization, Geneva CH
(2011)

	 54.	 Jakulin A, Možina M, Demšar J, Bratko I, Zupan B (2005) Nom-
ograms for visualizing support vector machines. In: Proceed-
ings of the eleventh ACM SIGKDD international conference on
knowledge discovery in data mining, KDD ’05, pp 108–117.
ACM, New York, NY, USA

	 55.	 Jerome B, Kazman R (2005) Surveying the solitudes: an
investigation into the relationships between human computer
interaction and software engineering in practice. In: Seffah A,
Gulliksen J, Desmarais MC (eds) Human-centered software
engineering—integrating usability in the software develop-
ment lifecycle. Springer, Netherlands, pp 59–70. https​://doi.
org/10.1007/1-4020-4113-6_4

	 56.	 Johnson-Laird PN (1983) Mental models: towards a cognitive
science of language, inference, and consciousness, 6. Harvard
University Press, Cambridge

	 57.	 Yee Ka-Ping (2004) Aligning security and usability. IEEE Secur
Priv 2(5):48–55

	 58.	 Kieras DE, Bovair S (1984) The role of a mental model in learn-
ing to operate a device. Cognit Sci 8(3):255–273

	 59.	 Kim B, Glassman E, Johnson B, Shah J (2015) ibcm: Interactive
Bayesian case model empowering humans via intuitive interac-
tion. Massachusetts Institute of Technology, Cambridge, MA

	 60.	 Koh PW, Liang P (2017) Understanding black-box predictions
via influence functions. arXiv​:1703.04730​

	 61.	 Konstan JA, Riedl J (2012) Recommender systems: from algo-
rithms to user experience. User Model User-Adapt Interact
22(1–2):101–123

	 62.	 Kulesza T, Stumpf S, Burnett M, Yang S, Kwan I, Wong WK
(2013) Too much, too little, or just right? Ways explanations
impact end users’ mental models. In: 2013 IEEE symposium on
visual languages and human centric computing, pp 3–10. IEEE

	 63.	 Kummer TF, Leimeister JM, Bick M (2012) On the importance
of national culture for the design of information systems. Bus Inf
Syst Eng 4(6):317–330

	 64.	 Landes D, Studer R (1995) The treatment of non-functional
requirements in mike. In: European software engineering con-
ference, pp 294–306. Springer

	 65.	 Landis JR, Koch GG (1977) The measurement of observer agree-
ment for categorical data. Biometrics 33(1):159–174

http://arxiv.org/abs/1710.00794
http://arxiv.org/abs/1710.00794
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1711.01134
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://doi.org/10.1007/1-4020-4113-6_4
https://doi.org/10.1007/1-4020-4113-6_4
http://arxiv.org/abs/1703.04730

514	 Requirements Engineering (2020) 25:493–514

1 3

	 66.	 Lepri B, Oliver N, Letouzé E, Pentland A, Vinck P (2018) Fair,
transparent, and accountable algorithmic decision-making pro-
cesses. Philos Technol 31(4):611–627

	 67.	 Leßmann H (2017) Durchführung einer umfrage-studie zur nut-
zung von code-reviews in der praxis. Master’s thesis, Leibniz
Universität Hannover, Fachgebiet Software Engineering

	 68.	 Lim BY, Dey AK (2009) Assessing demand for intelligibility in
context-aware applications. In: Proceedings of the 11th interna-
tional conference on Ubiquitous computing, pp 195–204. ACM

	 69.	 Lipton ZC (2018) The mythos of model interpretability. Commun
ACM 61(10):36–43

	 70.	 Mairiza D, Zowghi D (2010) Constructing a catalogue of con-
flicts among non-functional requirements. In: International con-
ference on evaluation of novel approaches to software engineer-
ing, pp 31–44. Springer

	 71.	 Mao JY, Vredenburg K, Smith PW, Carey T (2005) The state of
user-centered design practice. Commun. ACM 48(3):105–109

	 72.	 Mayhew DJ, Mayhew D (1999) The usability engineering lifecy-
cle: a practitioner’s handbook for user interface design. Morgan
Kaufmann, Burlington

	 73.	 Miles MB, Huberman AM (1994) Qualitative data analysis: an
expanded sourcebook. Sage, Thousand Oaks

	 74.	 Možina M, Demšar J, Kattan M, Zupan B (2004) Nomograms
for visualization of naive Bayesian classifier. In: Boulicaut JF,
Esposito F, Giannotti F, Pedreschi D (eds) Knowledge discovery
in databases: PKDD 2004. Springer, Berlin, pp 337–348

	 75.	 Nielsen J (1994) Usability engineering. Elsevier, Amsterdam
	 76.	 Norman DA (1987) Some observations on mental models. In:

Human-computer interaction: a multidisciplinary approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
pp 241–244

	 77.	 Norman KL (1991) The psychology of menu selection: designing
cognitive control at the human/computer interface. Ablex Pub.
Corp., Norwood, NJ

	 78.	 Otto PN, Antón AI (2007) Addressing legal requirements in
requirements engineering. In: 15th IEEE international require-
ments engineering conference (RE 2007), pp 5–14. IEEE

	 79.	 O’Neil C (2016) Weapons of math destruction: how big data
produces inequality and threatens democracy. Penguin Random-
house Ltd, New York

	 80.	 Pacey A (1983) The culture of technology. MIT Press, Cambridge
	 81.	 Paech B, Kerkow D (2004) Non-functional requirements engi-

neering-quality is essential. In: 10th international workshop on
requirements engineering foundation for software quality

	 82.	 Papadimitriou A, Symeonidis P, Manolopoulos Y (2012) A gen-
eralized taxonomy of explanations styles for traditional and social
recommender systems. Data Min Knowl Discov 24(3):555–583

	 83.	 Prensky M (2001) Digital natives, digital immigrants. On Horiz
9(5):1–6

	 84.	 Pynadath DV, Barnes MJ, Wang N, Chen JY (2018) Transpar-
ency communication for machine learning in human-automation
interaction. In: Human and machine learning, pp 75–90. Springer

	 85.	 Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust
you? Explaining the predictions of any classifier. In: Proceed-
ings of the 22nd ACM SIGKDD international conference on

knowledge discovery and data mining. Association for Comput-
ing Machinery, New York, NY, USA, pp 1135–1144. https​://doi.
org/10.1145/29396​72.29397​78

	 86.	 Regulation (eu) (2016) 2016/679 of the European parliament and
of the council of 27 april 2016 (general data protection regula-
tion). https​://eur-lex.europ​a.eu/eli/reg/2016/679/oj

	 87.	 Saldaña J (2015) The coding manual for qualitative researchers.
Sage, Thousand Oaks

	 88.	 Seffah A, Gulliksen J, Desmarais MC (2005) An introduction
to human-centered software engineering. In: Seffah A, Gul-
liksen J, Desmarais MC (eds) Human-centered software engi-
neering—integrating usability in the software development
lifecycle. Springer Netherlands, Dordrecht, pp 3–14. https​://doi.
org/10.1007/1-4020-4113-6_1

	 89.	 Seffah A, Metzker E (2004) The obstacles and myths of usability
and software engineering. Commun ACM 47(12):71–76

	 90.	 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra
D (2017) Grad-cam: visual explanations from deep networks via
gradient-based localization. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp 618–626

	 91.	 Siena A, Mylopoulos J, Perini A, Susi A (2009) Designing law-
compliant software requirements. In: International conference on
conceptual modeling, pp 472–486. Springer

	 92.	 Tapscott D (2010) Grown up digital: how the net generation is
changing your world. Int J Mark Res 52(1):139

	 93.	 Thomsen S (2004) Corporate values and corporate governance.
Corp Gov Int J Bus Soc 4:29–46

	 94.	 Tintarev N, Masthoff J (2012) Evaluating the effectiveness of
explanations for recommender systems. User Model User-Adapt
Interact 22(4–5):399–439

	 95.	 Tomsett R, Braines D, Harborne D, Preece AD, Chakraborty S
(2018) Interpretable to whom? A role-based model for analyzing
interpretable machine learning systems. CoRR arXiv​:1806.07552​

	 96.	 Vanwelkenhuysen J (1996) Quality requirements analysis in
customer-centered software development. In: Proceedings of the
second international conference on requirements engineering, pp
117–124. IEEE

	 97.	 Whittle J (2019) Is your software valueless? IEEE Softw
36(3):112–115

	 98.	 Winkler J.P, Vogelsang A (2017) What does my classifier learn?
A visual approach to understanding natural language text clas-
sifiers. In: International conference on applications of natural
language to information systems, pp 468–479. Springer

	 99.	 Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wess-
lén A (2012) Experimentation in software engineering. Springer,
Berlin Heidelberg. https​://doi.org/10.1007/978-3-642-29044​-2

	100.	 Young I (2008) Mental models: aligning design strategy with
human behavior. Rosenfeld Media, New York

	101.	 Zinovatna O, Cysneiros LM (2015) Reusing knowledge on
delivering privacy and transparency together. In: 2015 IEEE
fifth international workshop on requirements patterns (RePa),
pp 17–24. IEEE

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1007/1-4020-4113-6_1
https://doi.org/10.1007/1-4020-4113-6_1
http://arxiv.org/abs/1806.07552
https://doi.org/10.1007/978-3-642-29044-2

	Explainability as a non-functional requirement: challenges and recommendations
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Transparency
	2.2 Explanations

	3 Research goal and design
	3.1 Survey design
	3.2 Data collection
	3.3 Analysis process

	4 Results
	4.1 RQ1: Need for explanations
	4.1.1 Situation-specific need
	4.1.2 Which questions should be answered by explanations
	4.1.3 Overall need

	4.2 RQ2: Perceived problems in understanding software
	4.3 RQ3: Advantages and disadvantages of explanations
	4.3.1 Informativeness and understandability
	4.3.2 Usability
	4.3.3 Relationship

	4.4 RQ4: Perception according to age group

	5 Limitations and threats to validity
	6 The double-edged sword effect of explainability
	7 Usability through and despite explanations
	8 The dimensions shaping explainability
	8.1 Users’ needs and expectations
	8.2 Cultural values
	8.3 Corporate values
	8.4 Laws and norms
	8.5 Domain aspects
	8.6 Project constraints

	9 Recommendations: user-centered design for explainability
	9.1 A short summary of UCD
	9.2 Discovering the need for explainability
	9.3 Explanations for different personas
	9.4 Requirements negotiation and trade-off analysis
	9.5 Prototyping and testing

	10 Summary
	11 Future directions
	12 Conclusion
	Acknowledgments
	References

