
VLDB Journal manuscript No.
(will be inserted by the editor)

Collaborative Joins in a Pervasive Computing Environment

Filip Perich, Anupam Joshi, Yelena Yesha, Tim Finin

Department of Computer Science & Electrical Engineering
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, Maryland 21250
e-mail:

�
fperic1, joshi, finin, yeyesha � @cs.umbc.edu

The date of receipt and acceptance will be inserted by the editor

Abstract Locating and obtaining context sensitive information in a mobile environment has always been a chal-
lenge. This is especially true for pervasive computing environments where in addition to limited computing and
battery resources, mobile devices cannot always rely on the help of a proxy-based wired infrastructure. Rather, a
collaboration among peer mobile entities is required. It allows entities to obtain data that may be otherwise inacces-
sible due to nature of the environment and to reduce their computation cost by reusing answers generated by other
peers. We introduce the problem of data interaction among peers in ad-hoc networks and propose a collaboration
query processing protocol based on the principles of Contract Nets. Once an entity identifies information it needs
via the help of user’s profiles, our protocol enables the device to locate data sources and obtain data matching its
specific query requiring one or more data sources. We show the effectiveness of our technique through performance
evaluation of entities querying for data while moving in a city-like environment.

Key words Ad-Hoc Networks, Distributed Join Processing, Peer-to-Peer Computing, Query Processing.

1 Introduction

We are becoming increasingly dependent on computers in our everyday lives. We have become accustomed to com-
puters connected to the Internet to provide us with information at any time we want. Naturally, we expect the same
ability while on the move. We would ideally like our mobile devices to provide us with the same information as their
stationary counterparts, but tailored to our current context. By context, we mean a collection of information that
can be used to characterize the present situation of users and their devices [16]. Such information often describes
location, time, identity and the current activity.

Locating and obtaining context sensitive information in mobile environments raises two principal challenges [18,
28] - what and how? To answer the first issue, a mobile device must be able to determine what information is needed
in order to satisfy user’s needs. Ongoing efforts, including our own results reported elsewhere, are starting to provide
good mechanisms to handle this question[28,30,12]. The second issue deals with the mechanisms a mobile device
must have in order to obtain required data. Additionally, the solutions to these challenges must still account for
the limited battery, computation, connectivity and storage resources of mobile devices. In this paper, we provide an
answer to the second - how - issue.

Two very distinct approaches have been reported in the literature to answer the how question. One type relied
on off-line pre-caching for supporting disconnected operation, pioneered in the wireless context by the Coda filesys-
tem [24], and more recently by commercial software such as AvantGo [3]. At the other end of the spectrum were
solutions exploiting traditional wireless connectivity, such as those provided by cellular networks or WLANs [19].

2 Filip Perich et al.

These solutions treat mobile devices as clients connecting to a proxy-based wired infrastructure [12,13,36]. Both
approaches have their advantages and disadvantages. While precaching techniques preserve battery power, they
are unable to provide answers outside the scope of their caches and are prone to stale data. The latter approach
clearly provides better results; however, it does so by depleting battery and wireless resources and often by incurring
monetary costs for cellular connectivity. Additionally, this approach is prone to frequent disconnections due to the
environment and mobility patterns of the device and to a possible single point of failure at the server side.

The realization of ad-hoc wireless network technologies creates an interesting variation of the problem. It allows
spontaneous connectivity among mobile devices. Here, mobile devices including hand helds, wearables, computers
in vehicles, computers embedded in the physical infrastructure, and (nano)sensors, are equipped with short range
ad-hoc networking technologies such as Bluetooth [6]. There is no longer a guarantee of infrastructure support, a
crucial requirement for traditional mobile solutions. Consequently, for obtaining data, devices can not depend on the
help of some centralized big brother server. At the same time, each device is not required to cache it all. This is
because each device can always try to connect to others in its vicinity. Thus, mobile devices are no longer standalone
entities nor simple clients. They became peers that can interchangeably function both as information consumers and
providers in order to share information among themselves and to provide utility to their users [28,30]. For example,
a car does not need to connect to a yellow page service or store an entire phone book directory in order to locate a
gas station. It should be able to find the gas station by interacting with other objects and an electronic sign of a gas
station in its vicinity.

The key aspect of this environment is the need for collaboration among peers. When a device in the pervasive
computing scenario requires information, it can only query its immediate neighbors and other devices accessible in
its vicinity. It is thus only through collaboration that a device can obtain data. Additionally, collaboration may help
mobile devices to overcome their limited resources by using computed results from previous queries held by peers.
This is especially true when performing joins over multiple data sources on resource limited mobile devices. A join
processing is required whenever a single device cannot provide an answer to a query. Rather the device may have to
horizontally join data streams from multiple devices holding the same type of data. More importantly, frequently the
device may have to vertically join data streams from different devices announcing their presence.

Existing solutions for traditional mobile systems are inapplicable [18,28]. This is due to the dynamic nature of ad
hoc wireless networks. The additional mobility of information providers, and not just information consumers, limits
data and data source availability. More importantly, not all data sources may be concurrently available. Traditional
query processing techniques, especially those performing joins, will often fail in this environment. The nature of
the environment also limits the duration of any connection between two devices as well as the possibility of a
reconnection with a given device to which we may have connected in the past. Lastly, the ad hoc nature of the
environment can cause interaction between any two devices disregarding the heterogeneous types of data they may
understand or provide [30]. Thus, the environment requires different kinds of solutions than the traditional mobile
client-server model.

The networking aspect of a collaboration in pervasive computing environments has been addressed in terms
of device discovery and routing protocols [2,6,22,31,32]. To the best of our knowledge very little work has been
done on the part of data collaboration/sharing in the pervasive computing environments, especially in the area of
processing joins over multiple data sources. Although the research on sensor networks is addressing somewhat
similar questions, as we argue in Section 2 the domains differ significantly.

In this paper, we address the problem of how mobile devices in pervasive computing environments can locate
and provide answers to user’s needs with the emphasis on collaboration and especially on providing the means for
performing joins in pervasive computing environments. We utilize our previous work on what information a user
seeks based on her current context. We take a more expansive view of context and include user beliefs, desires
and intentions stored in a user profile [30]. This allows a device to determine a priori what information a user will
need and dynamically adapt its strategies for querying its peers and for collaborating in join processing. While our
implementation builds on our specific previous work, the solution we propose is relatively agnostic – any other
technique[12] could be used to provide the what as well.

The paper builds on our previous work in defining a profile–driven data management framework for perva-
sive environments where we were concerned with data representation and discovery and with profile-based data
caching [28–30]. In this paper, we make the following new contributions:

Collaborative Joins in a Pervasive Computing Environment 3

– We propose a collaboration protocol based on the principles of Contract Nets [1,33]. Our Collaborative Query
Processing protocol (CQP) enables a device in a pervasive computing environment to locate data sources and
obtain data matching any query, regardless of whether the query is a selection or a join. The protocol extends
the traditional concept of nested loop joins. It also extends our previous work on selection queries in pervasive
computing environments [28]. CQP allows two or more devices to cooperate by executing any combination of
select–project–join queries. The protocol accomplishes the task by subdividing queries and assigning subparts
to other devices. The assignment depends on the available resources of each device. For example, CQP allows
a tourist to use her handheld device to ask for the closest cheapest laundromat that is open, given her current
location, time of the day and a price range. The protocol also allows the tourist to ask for the closest laundromat
adjacent to a Chinese restaurant – a query requiring a join over two data streams.

– We design and implement a realistic experimental model for simulating a city–traffic scenario of people trav-
eling around lower Manhattan. The model is implemented on top of MoGATU [28], which is a robust frame-
work for profile–driven data management in pervasive computing environments. The model represents hand-
held/embedded computers and intersection beacons as semi–autonomous entities guided in their interactions by
profiles and context [29]. The primary objective of the model is to enable each mobile device to utilize as much
available information as possible in order to enhance the mobile device’s functionality. It uses both static infor-
mation, such as user’s preferences and information about data sources, as well as dynamic information, such
as the current context description. This allows each device, to gather, provide and possibly create data that will
be helpful to its user in near future. Each device can randomly disseminate some of its data as well as queries;
however, when answering a user’s queries each mobile device relies on its local content only.

– We demonstrate the capability of CQP by implementing it in the MoGATU framework and by evaluating its
performance in the city–traffic experimental model. We show how the protocol improves average success rate of
satisfying user queries for each entity, and how it affects the combined computing cost and network traffic for all
entities in the environment.

The remainder of the paper is structured as follows: We present related work and argue why traditional mobile
solutions are not applicable in Section 2. In Section 3, we provide an overview of the MoGATU framework and
define the CQP protocol. In Section 4, we present our experimental model and setup, and show the effectiveness of
our technique through performance evaluation. We conclude and describe directions for future work in Section 5.

2 Related Work

The problem of data management in wireless networks has drawn a significant degree of attention. The proposed
solutions primarily address problems imposed by the underlying networking technology, such as low bandwidth
and high probability of disconnection. They also address the issues related to the retrieval of location dependent
information. Existing solutions often rely on the support of a fixed, wired infrastructure. These solutions place
primary data on servers located within the wired infrastructure and treat mobile devices solely as clients. Using
this approach, all joins are executed by servers and mobile devices mostly receive updates to their materialized
views. Chrysanthis et al [26] consider disconnected operations within mobile databases by presenting a mechanism,
referred to as a “view holder”, which maintains versions of views required by a particular mobile unit. Kottkamp
and Zukunft [25] present optimization techniques for query processing in mobile database systems that include
location information. They present a cost model and different strategies for query optimization incorporating mobility
specific factors like energy and connectivity. Demers et al [15] present the Bayou architecture, which is a platform
of replicated, highly available, variable-consistency, mobile databases for building collaborative applications.

In contrast to these approaches, our work assumes no support from the fixed infrastructure. When a mobile device
requires instantaneous information (e.g. traffic updates), it may be more easily, or only accessible, from other “local”
mobile devices and not from a fixed node. A mobile device in our work is always in nomadic mode, as defined in [9].
This attribute and other characteristics of ad hoc wireless networks lead to a significantly different environment by
imposing the following additional constraints on mobile data management solutions:

4 Filip Perich et al.

Information consumers are not the only mobile devices. Information sources – other peers – can change their
locations as well. This limits data and data source availability. A device may obtain different answer to the same
query depending on its specific location and time based on what other devices are reachable.

More importantly, not all data sources may be concurrently available. Concurrent availability drastically affects
an execution of joins over multiple data streams. While in traditional approaches all sources to the streams must be
available at the same time, this may not be the case here. A device performing a join must, therefore, be able to
intelligently pre–cache relevant parts of the data which are currently accessible, while searching for the sources of
the other data. Note that we use the term stream here to capture a combination of both traditional stored data sources,
as well as the newer sensor based streaming data sources.

The nature of the environment also challenges the duration of any connection between two devices and limits
the possibility of a reconnection. Since each device moves independently of others, there is no guarantee that two
mobile devices currently connected will ever again be able to communicate between themselves. This may cause
inconsistencies.

The environment also permits interaction between any two devices disregarding the heterogeneous types of data
they may understand or provide. If these devices talk using incompatible ontologies/schemata, they will fail to answer
any query that the other device may ask. Consequently, every mobile device in the pervasive computing environment
must become more autonomous and adaptive in order to answer queries, since it can mostly depend on itself and its
local resources only [28,30]. The mobile device must be able to predict the types of information it may need in the
future and collaborate with other devices in its vicinity while locating and obtaining data on its behalf and on the
behalf of others. Essentially, these constraints render solutions for traditional mobile networks unusable.

Recently, significant research interests have been directed toward the area of sensor networks, particularly on
querying continuous data streams. The Cougar [7] and Fjords [27] projects represent two such architectures. Addi-
tionally, Chandrasekaran et al [11] present PSoup, a system for processing continuous queries over continuous data.
PSoup extends the work on Eddies [4] – a query processing mechanism, which is part of the Telegraph project [20].
Eddy enables dynamic query reordering by routing tuples between multiple operators represented as independent
threads.

Although the issues of query processing in sensor networks appear somewhat similar, the environment and the
objectives differ significantly. The goal of a sensor network is to collect, and optionally aggregate, fixed types of data
at every node, and propagate the result to the collecting base station. Once a sensor network is stabilized, each sensor
knows its peers. Each sensors simply accepts data from its peers, may aggregate the data and sends data up the stream
to its parent device or a collecting base station. It is the collecting base station that uses the sensed information. Each
sensor node represents a simple “slave” proxy or a provider but never a consumer. On the other hand, the pervasive
computing environment is dynamic and may never stabilize. Every mobile device in our environment is consumer
and interacts with others to obtain data primarily for itself. Each mobile device then only optionally becomes a proxy
or a provider for some other device in its vicinity. Hence, a mobile device is always adapting the type of data it needs
and the operations it must perform for itself and possibly for other devices. Consequently, data management in sensor
networks and ad-hoc peer-to-peer networks require different kinds of solutions.

3 Collaborative Query Processing

The CQP protocol allows mobile devices in the pervasive computing environment to help other devices in locating
and obtaining answers for queries over one or more data sources. The protocol allows the initiating mobile device
to view other devices as additional sources of raw data or pre-computed answers. By reusing data made available
by others, the system as a whole is able to provide data to a larger number of mobile nodes while still preserv-
ing system-wide resources. These resources, which are always limited, include battery and computing overhead.
Before presenting a detailed design of the protocol, we present a brief overview of the MoGATU framework for
completeness.

Collaborative Joins in a Pervasive Computing Environment 5

��������	��

���������

��������	��

����	�����

�������

��������	��

����	�������

��������

��������

����	��

��������	��

���������

����������

����

����������

���� !

����������

Fig. 1 MoGATU Entity and Interaction Model

3.1 MoGATU System Overview

MoGATU is a framework for handling serendipitous querying and data management in pervasive computing envi-
ronments [28,30]. The framework treats all devices in the environment as equal semi-autonomous peers. To provide
uniform communications functionality, and to handle data management issues, the framework abstracts all devices
in the environment in terms of Information Managers, Information Providers and Information Consumers. It also
implements several communication interfaces, currently with support for Bluetooth and Ad–Hoc 802.11. Figure 1
depicts an overview of the framework, and the integration among various devices and their resources. Each device is
only required to implement an Information Manager and at least one communication interface.

Information Providers represent the data sources available in pervasive environment. Every Information Provider
holds a partial set of heterogeneous data, a fragment, available in the whole environment and is annotated in a se-
mantic language. Given the ad-hoc nature of the environment, it may be impossible to maintain a global consistency
among all Information Providers because the network remains mostly partitioned. As a result mobile nodes attempt
to be at vicinity-consistent only.

Information Consumers represent entities that can query and update the data present in the environment. In
the current design, the Information Consumers primarily represent human users that ask their mobile devices for
context-sensitive information.

Lastly, an instance of an Information Manager (InforMa) must be present on every device. Information Man-
agers are responsible for the underlying network communication and for most of the data management functions.
Each Information Manager is responsible for maintaining information about peers in its vicinity. This information
includes the types of devices and what types of information they can provide. Information Manager also maintains
a data cache for storing instances of information obtained from other mobile devices as well as the information
provided by its local Providers. Each Information Provider stores the data instance in their base forms. The Provider
decomposes data instances that are defined using multiple ontologies of their respective base representations and
maintains a view represented as a list of pointers to the respective base fragments. Additionally, each Information
Manager may include a user profile reflecting some of the user’s beliefs, desires, and intentions, a model which has
been explored in multi-agent interactions [8]. This model significantly extends the work of [12] on profiles, which
explicitly enumerates data and its utility. In contrast, using the BDI concept, our profiles adapt to the environment
by varying both data and their utility over time and current context [29]. The Information Manager uses the profile
to adapt its caching strategies [30] and to initiate a collaboration with peers in order to obtain desired information.

3.2 Data Representation

As mentioned in Section 3.1, every mobile device can hold a subset of the globally available heterogeneous data.
Since the pervasive environment is by definition an open system, there are no restrictions or rules on what data and
how the data are present. To narrow this vast space of possibilities, we have previously argued for every instance
of any data in the environment to be annotated in an ontology / schema [28]. In MoGATU, ontologies are defined
using the DARPA Agent Mark-up Language (DAML) [21]. This semantically rich language allows the specification

6 Filip Perich et al.

of numerous types of data and also defines relationship among classes and their properties. For example, we define
ontologies for weather and traffic updates [29].

As a simple example, one can imagine each ontology to represent one tabular relational schema. For example,
one can imagine all gas stations stored in one table, although the table may be horizontally fragmented over many
devices in the environment. This, however, drastically reduces the power of ontologies by removing any relationship
information between data instances, such as inheritance or cardinality constraints. For example, this way one cannot
automatically deduce that a Chinese restaurant is an Asian cuisine restaurant without an explicit attribute stating so.
Nevertheless, this way each instance of data can be perceived as a tuple that uses data from one or more ontologies /
schemata.

In this paper, we concentrate on query processing only and do not take into account the time necessary for
reasoning over the ontology knowledge, e.g. whether a Chris’s Gyro is a Greek restaurant. Additionally, each base
data instance is grounded in only one ontology and includes a globally unique identifier – a property inherited from
DAML. Data instances representing combined information from multiple ontologies, such as a result of a join, also
carry a locally unique identifier for the resulting “tuple” and the original global identifiers for the data instances
used to produce this combined tuple. Each Information Manager assigns a local timestamp to each new data instance
before placing it into the cache. This can be used to calculate recency for each cached data during a query execution.
Additionally, each Information Provider assigns a lifetime to every object it produces. The lifetime represents a time
period after which the data should be invalidated and purged from cache.

3.3 Query Representation

As introduced in Section 1, one important challenge is to determine what data a mobile device should obtain in order
to satisfy user’s needs. A device can either wait for a user to ask an explicit query and then attempt to obtain the
answer by contacting its peers in the vicinity. Alternatively, the device can attempt to proactively obtain data before
a user asks for it. We argue that proactive data querying is a preferred solution as it allows the device to cache data
while available in the hope of future use [28,30]. We have also argued that the use a profile is vital in order to allow
the device to reason about its user’s needs. Consequently, MoGATU distinguishes between two types of queries: (i)
explicit queries and (ii) implicit queries generated from user’s profiles.

We are concerned with how these queries can be satisfied, especially when they required multiple data streams,
i.e. they require that a join be done over data available in the current vicinity. We use explicit queries to measure the
overall performance of the framework. Explicit queries are asked by users and answered by their respective mobile
devices. Devices attempt to answer these queries using their local resources only. Implicit queries, on the other hand,
are inferred by each mobile device from a user’s profile. These queries are executed in order to provide data for
future explicit queries. The implicit queries are excluded from the overall success performance value.

Like the data they operate over, queries are also defined using a DAML ontology, specifically DAML-S [14],
which is a standard evolving in the Semantic Web community; however, for the purposes of this paper, we abstract
the query representation using a familiar select–from–where form. Figure 2 shows the abstract query specification
form. More formally, a query represents a tuple defining a set of ontologies in use (O), selection list (�), filtering
statement (�), and cardinality (�) and temporal (�) constrains:

���
	����������� � � � � � � ��� (1)

Each query defines ontologies / schemata which are used in constructing the filtering clause and for final pro-
jection of matching data instances. The cardinality of the ontology list also specifies the degree of the query. The
cardinality represents the number of joins that must be performed for obtaining an answer. The filtering clause rep-
resents a combination of boolean conjunctive and disjunctive predicates. A devices uses its cached data as well as
its current geographical position and time of the day, if available, as inputs to these predicates. This allows a mo-
bile device to place a dynamic query asking for the closest local gas station. It also allows a device pose a static
query asking for a Chinese restaurant located on the W 72nd Street. Along with string and numerical comparisons,
the filtering clause supports basic calculations, such as addition and multiplication. Additionally, the filtering clause
supports more advanced predicates based on the ontology specification, such as a distance computation between two

Collaborative Joins in a Pervasive Computing Environment 7

SELECT (select_list)
FROM (ontology_list)
WHERE (conjunct_disjunct_predicate_list)
LIMIT [minCardinality, maxCardinality]
TIME neededBy

Fig. 2 Abstract Query Specification

geographical objects. The query also specifies the cardinality constraints on the answer and the time deadline by
which a query execution should complete or terminate.

3.3.1 Explicit Query A user, or some other Information Consumer, can explicitly submit a query to the mobile
device. In return the mobile device, represented by the Information Manager, attempts to answer the query by exam-
ining its local resources only. It evaluates the filtering statement � , over any combination of data instances that are
present in local fragments. These data instances must be defined using a subset of ontologies from the ontology list
O. The Information Manager continues examining the data until the size of the answer is within the cardinality con-
straints � or the allowed time, � , has expired. For selection queries over data from a single source, the Information
Manager directly scans and evaluates data instances stored in one local fragment. For queries requiring joins over
data from multiple sources, the Information Manager first checks whether a similar query was previously executed
and if its result could be used. If no such result view is found or the cardinality constraint has not been satisfied, the
Information Manager performs the necessary join operations over its local fragments and returns the final result.

3.3.2 Implicit Query via User Profile The Information Manager on each device may include a user profile. The
profile specifies a subset of beliefs and desires that the mobile device should know [30]. The knowledge contained
in the profile is initially defined using DAML. Upon loading the profile, the knowledge is converted into implicit
queries including constraints describing time,location ranges, and the probability of the query being asked by the
user. For example, a profile may contain preferences stating that the user likes to eat lunch between noon and 2pm.
Additionally, the profile may state that the user prefers to eat at Chinese restaurants. Therefore, the Information
Manager combines these two beliefs into an implicit query, which attempts to collect and maintain the location
of at least one Chinese restaurant in the vicinity from 11:45am until 2pm. The details of reasoning over profiles
to generate queries is beyond the scope of this paper, and we refer readers to [30]. Each desire and belief can be
represented as a following tuple:

� 	�����	����! "	$#%�&�$	'�(�)�*� � � � � � �,+�� � �,- � (2)

O, � and � define the set of ontologies in use, the selection list and the filtering statement, respectively. � repre-
sents the minimal cardinality of the answer that the query should return when evaluated locally. + and � represent the
location and time when the implicit query should be actively evaluated. Finally, P represents the probability between
[0..1] that the user will, in fact, ask a question that uses the data obtained by executing the implicit query. Therefore,
the implicit queries are used for proactive caching of remote data instances using a semantics based approach [30]
that are believed to be useful in answering future explicit queries. As stated earlier, we use explicit queries to evaluate
the performance of our approach so as not to reward the system for proactively cached data which does not get used.

3.4 Collaboration Protocol

We now present the detailed design of the CQP protocol. CQP is based on the principles of Contract Nets [1,33].
Any device in the environment can initiate the protocol. Other devices in the vicinity of the originating device can,
at their will, collaborate by helping in answering queries over one or more data streams. In this paper, we are not
interested in studying incentive-driven mechanisms and under what conditions a device or its user is willing to allow

8 Filip Perich et al.

Fig. 3 Message and state flow in the Collaborative Query Processing protocol

the device to participate. We only assume that each device has a certain degree of willingness to help - a probability
that a device responds to a query. The message and state flow of the protocol is shown in Figure 3.

We designed CQP while keeping in mind the underlying environmental characteristics. CQP attempts to address
issues caused by resource limitations as well as different mobility patterns of a device and its dynamic vicinity. In
order to overcome the frequent disconnections and low bandwidth, we expect each device to process as much data
locally as possible before sending results back to its peers. We do so by decomposing DAML-annotated queries
into selection queries over base ontologies and their possible combinations. Additionally, to overcome the network
limitations we employ a Contract Net based negotiations among peers to determine which device will provide what
data. For this we build upon our previous experience in service and data discovery as well as our previous work on
MoGATU [2,10,28,30]. We employ both gossiping and pull-based techniques for advertising data and for querying
peers. Finally, whenever possible we attempt to utilize the underlying routing protocol for routing packets between
mobile peers; however, in order to overcome the uncertainty of the ad hoc environment, CQP does not need to obtain
all data before it terminates as detailed in Section 3.4.6.

The resulting CQP protocol consists of a contract agreement phase, used by a device to discover peers with
required data and for peers to agree on their tasks and desired outcome, the streaming phase, where peers process
data locally and send results to their peers, and a termination phase, where peers independently finalize their query
processing operations. We now detail each phase and their steps.

3.4.1 Call for Query When a mobile device concludes it needs to satisfy some of the beliefs and desires stored
in the user’s profile, the device converts the requirement into an implicit query [30]. Initially, the mobile device
attempts to satisfy the implicit query by using only its local cache. When the device is unable to reach the desired
cardinality for the answer, the device determines one or more sub-queries and asks other devices in its vicinity
to answer them. The mobile devices constructs a call–for–query message. The message contains the sub-query,
cardinality requirements and the time deadline by when the complete answer should be delivered. The message also
includes the time when a winner will be announced. The mobile device sends the message to its current peers and
starts its bid–submission timer. The mobile device is now a contractor.

As depicted in Figure 4, the mobile device may require help from one or more devices in its vicinity. For queries
involving only one data stream, the mobile device needs to ask one peer at a time to scan its local fragment matching
the particular query. For queries involving two data streams, the mobile device may again simply ask one peer to
perform the entire query over its local fragments and return the results; however, the mobile device may decide to
ask the peer for only one stream and join the output with its local stream. To the extreme, the contractor may even
ask one peer to scan one stream, another peer to scan the second stream, and a third peer to perform the join using
data from the other two peers as inputs. The CQP protocol is sufficiently abstract to allow any of these approaches.

Collaborative Joins in a Pervasive Computing Environment 9

Fig. 4 Possible Query Executions over Two Streams

Unlike traditional join techniques, the CQP protocol does not require all input streams to be concurrently avail-
able. A mobile device can use the CQP protocol to cache only one input stream which is currently available. The
device can then delay the join until the other stream becomes available in time and space. Therefore, a mobile device
is able to better utilize the serendipitous nature of the environment. Additionally, the protocol enables chaining of
multiple collaborations, allowing devices to collaboratively execute a query of almost any complexity.

3.4.2 Bid Submission Upon receipt of a call–for–query, a mobile device infers whether it should interact in the
proposed collaboration. A mobile device wishing to collaborate, calculates the cardinality of an answer that it can
provide for the contractor in the allowed time. If for some reason the mobile device does not believe it can satisfy
the proposal, the device simply ignores the call–for–query. On the other hand, when the mobile device determines
that it can provide a valid answer, the device returns a bid estimating the cardinality and time epoch that it will take
to compute its answer. The responding mobile device then starts a timer awaiting a bid–award message and its role
becomes that of a bidder.

3.4.3 Bid Award When a contractor’s timer for bid submission expires, the contractor evaluates all successfully
received bids. For multiple bids, the contractor chooses the bidder that promises to deliver the most data in the
shortest possible time. The contractor creates a bid–award message, starts an ack timer, and sends the message to
the bidding peer. The devices attempts to contact the peer at most n-times before discarding the current session.

3.4.4 Acknowledgment Once the bidder submits its initial response (bid), it awaits a bid–award message. If the
bidder does not receive the message before its timer expires, the bidder resends its bid message at most n-times more
before discarding the current session. If the bidder does not receive the bid–award message after n trials, the bidder
assumes someone else was awarded the bid and discards the current session. On the other hand, when the bidder
receives the message on time, the bidder, now a winner, sends back an ack message. The winner starts its sync timer
and awaits for ack from the contractor. Similarly, the contractor waits at most n-times the period of the sync timer
for receiving ack message from the winner before again discarding the current session.

3.4.5 Streaming Data Once the winner and contractor receive ack messages from each other, the winner is ready
to start sending an answer in terms of data instances and the contractor is ready to accept them. The contractor
continuously asks for the next data instance until it either receives end–of–stream or stream–error message or until
the stream deadline timer expires.

The contractor is effectively treating other peers as data streams. These streams can consist of one data type but
also of a combined stream whenever the source peer is sending a result of a join operation. In order to preserve
the limited bandwidth, the receiving peer can further send an additional selection query to further filter the results
calculated by the source peer. This way the source peer may is instructed to process its outgoing stream before
actually send it out as to avoid sending out unnecessary data objects that will be dropped by the receiving device.

3.4.6 Termination As hinted above, the CQP protocol can terminate based on two counts. First, the protocol ter-
minates when the winner has sent its entire answer, as defined by its maximal cardinality in the agreement, and the
contractor has successfully received it. Otherwise, the protocol can terminate when a timer expires. A timer expires
when the original agreed deadline passes. A timer can also expire when a partition occurs in the ad-hoc network due
to the mobility of either the contractor, the winner or any other routing mobile device. Therefore, both contractor
and winner terminate the session either once a timer has expired or after a predefined period of inactivity.

10 Filip Perich et al.

3.4.7 Error Handling In order to overcome possible errors caused by network partitions and resource limitations,
our protocol operates on a best effort basis only. When a device determines it needs to obtain additional data, it
initiates the CQP protocol and interacts with the winner. If the interactions fails before the contract is satisfied,
the initiating device can attempt to find other source after a parametrized period of time. Additionally, we employ
a caching policy for storing local results as well as data received from peers. Finally, we have chosen the initial
contract agreement interaction for two reasons. First, the device is able to collect a catalog its vicinity based on the
given query and select the most applicable peer for interaction. Secondly, by requiring a longer initial interaction we
can overcome situations when a device is in range only for the agreement and disappears as soon as agreement is
reached but execution fails.

3.4.8 Join Query over Two Streams In this environment, we have to differentiate between two kinds of join execu-
tion. One join execution involves only one device operating over two local streams and thus it can employ any join
algorithm it desires. The other kind of join involves one or more network streams as shown in Figure 4. These streams
represent data sent to the processing device by its peers. For this type of join processing, the device may be unable
to use any advanced hashing or sorting techniques as it cannot influence the stream order or size. Therefore, for our
implementation we have chosen to use the traditional nested-loop join processing algorithm. If a device is able to
cache the entire network stream locally, then the device can again use any algorithm it desires. Although, speed is
an important factor in traditional query processing, we do not envision it to be as important in ad hoc environments
since the complexity and amount of data should be relatively smaller than for traditional database problems.

3.4.9 Example of Join Execution Among Peers To illustrate how the protocol works, let us consider a mobile device
A with query joining two streams . and / , e.g. restaurants and gas stations. We should note that the device can only
collect data currently available in its vicinity. As a result, the device is never guaranteed that it will ever hold a
complete result to its query. Instead, the device tries to collect as much data as available. The device, therefore,
attempts to first contact someone who can completely satisfy the query. If that fails the device can then ask for each
data stream separately and perform the join itself or with help of another peer. More importantly, the device can ask
for one stream and delay the query for the second stream for a fixed period of time. This is especially important in
pervasive computing environments where the concurrent availability of all required sources is not guaranteed. For
example, let us consider the presence of two other devices: First device, B, contains data for stream . and is available
now. The second device, C, contains data for the stream / and will become available in 10 minutes. Using the CQP
protocol, device A asks device B first to execute the complete query, and then to execute a sub–query over stream .
only. Device A caches the result and periodically checks for a presence of someone holding stream / . Once device C
becomes available, it is asked to collaborate in performing another select sub–query over its stream. Device A then
uses the incoming result to immediately join the two streams . and / . This would be impossible using traditional
techniques because those return either a valid answer or no data at all.

4 Performance Experiments

In this section, we show the improvement of the system performance of the MoGATU framework when using the
CQP protocol. To do so, we have converted the concept of the MoGATU framework to function as a part of the
GloMoSim simulator [35]. GloMoSim is a scalable simulation environment for wireless and wired networks. It
is designed using a discrete event simulation capability provided by Parsec. We have implemented the MoGATU
framework at the application layer with support for all features defined in the original architecture [28]. Each device
includes the Information Manager, Information Providers and one Information Consumer representing a user. The
Information Manager can advertise and solicit information about other mobile devices in its vicinity applying tra-
ditional epidemic/gossiping techniques used for mobile environments. It also can advertise and solicit Information
Providers as well as send out bulk data. Most importantly, each Information Manager uses the CQP protocol for
query execution. This new version of MoGATU derives implicit queries and adjust its caching strategies via profiles.
We used Intel Pentium 4 1.4GHz desktops with 256MB RAM each, running Linux 2.4.18-5. The GloMoSim and the
MoGATU extension are written in C.

Collaborative Joins in a Pervasive Computing Environment 11

The goal of our environment is to study the performance of the CQP protocol in ad hoc networks. For that we have
decided to employ an experimental spatio-temporal environment representing a city scenario, closely resembling a
four-hour period in lower Manhattan in New York City. Entities in our environment represent moving objects such
as pedestrians’ handhelds or devices embedded in bicycles or cars. Entities also represent stationary objects such as
store beacons or intersection lights.

For our experimental environment we chose 893 nodes – 793 stationary intersection beacons and 100 users,
described below. We use 793 intersection beacons as the number is equivalent to the number of intersections in the
lower Manhattan model. We use these beacons as sources for information about their locations, e.g., each intersection
beacon has some knowledge of its vicinity. The users in the environment move around and optionally query the
intersection beacons but also other users in their current vicinity. We put a restriction that only users can execute
joins while beacons can provide answers to only one stream query at a time. This is to make the users work “harder”
for their information.

Users in our model can represent pedestrians, people traveling using public transport and people driving in cars.
For our experiments reported here, we choose the parameters of our environment (speed of movement and direction
of movement) to mimic vehicular traffic, cars and their drivers. Given that this represents the higher end of the speed
parameter and thus leads to frequent changes in the “vicinity” of a user, it represents the worst case scenario for
our approach. This is somewhat mitigated however by the fact that a car in a city drives in a more predictable and
organized fashion (along roads) than a device allowed to walk completely randomly (direction– and speed–wise)
through a two-dimensional space. The use of a city traffic environment thus enables us to better examine the CQP
protocol performance in realistic scenarios, and our particular choice of parameters will stress the protocol.

Within the environment, we measure the system performance in terms of the average success rate of answering
explicit queries per user. We measure the average computing cost each user’s device spends answering its explicit
and implicit queries. We then measure and compare it to the average computing cost each device spends answering
queries posed by other devices in its vicinity. Finally, we measure the network traffic incurred by each device for
answering its queries and the traffic due to answering queries for its peers. For our experiments, we either vary or
measure the following parameters:

To avoid confusion, in the remaining part of the paper we refer to user’s devices simply as cars and to other
devices as beacons. Again we would like to emphasize the fact that user’s devices are not required to be just cars,
they can be bicycles or handheld devices carried by pedestrians.

– Query Success Rate – The Average Query Success Rate represents a fraction of explicit queries that each device
is able to answer using its local fragments. Initially, a device of every user has an empty cache. The device can
obtain data by either accepting bulk advertisements from intersection beacons or by executing implicit queries
that were derived from a profile.

– Profile Accuracy – A Profile Accuracy measure represents how closely a user profile resembles the real actions
of the particular user. Completely accurate profile knows the precise explicit queries as well as the location and
time the query is going to be asked. At the same time, a completely accurate profile does not imply a 100% query
success rate. A car knowing a complete profile may still be unable to obtain the required data due to its limited
resources and to the nature of the environment. For example, a car driving in New York City will most likely be
unable to answer queries involving the current weather conditions in Washington, D.C. 0% accurate profile has
no knowledge while the profiles of accuracy from 1% to 99% are synthetically constructed as permutation of the
complete profile to on average be able to answer that many explicit queries. For example, 50% accurate profile
should on average be able to answer 50% of explicit queries.

– Willingness to Help – This value represents the probability of a car responding to a call–for–query given that it
can provide a valid answer matching the needs of the requested query. Willingness level set to 0% implies no
help from other cars in the vicinity, while willingness set to 75% implies that car is willing to help three times
out of four whenever it can.

– Computing Cost – Computing Cost represents the average amount of energy used by a user’s device for perform-
ing operations while pursuing either its goals or goals of its peers. We create an abstract function converting each
operation a car can perform to a value depending on the complexity of the operation and the time it takes to com-
plete the operation. We sum the values of all operations performed by each car during the simulation into a single

12 Filip Perich et al.

Fig. 5 Intersection Representation

scalar value. One can see this abstract value as an average number of instructions or the energy consumption per
car.

– Network Traffic Cost – Network Traffic Cost represents the average number of packets sent and received by each
car for pursuing its goals or goals of other peers. We count the number and size of packets each car sends and
receives when attempting to satisfy its implicit queries. We also count the number and size of packets each car
sends and receives when helping others.

We use the results to these metrics to measure the effectiveness of the CQP protocol by comparing and ultimately
studying the trade-offs between:

1. Query Success Rate vs. Profile Accuracy 4.2.1
2. Computing Cost vs. Profile Accuracy 4.2.2
3. Query Success Rate vs. Willingness to Help 4.2.3
4. Computing & Network Cost vs. Willingness to Help 4.2.4
5. Query Success Rate / Computing Cost vs. Willingness to Help 4.2.5

4.1 Experimental Setup

4.1.1 Environment As mentioned above, we have created a realistic model mapping streets and their intersections
south of the 72nd Street in Manhattan. We have calculated intersections between two or more streets by creating
vertexes in a directed graph. Our resulting model is represented as graph with 793 intersections (vertexes). Each
intersection is assigned an (x,y) coordinate. Additionally, each intersection is assigned a list of its neighboring in-
tersections, i.e. endpoints of their edges. This allows us to obtain an angular direction and distance to the next
intersection. Figure 5 exemplifies what information each intersection has and how it relates to the map.

4.1.2 Beacon Entity For our simulation scenario, we assigned a stationary beacon to each intersection for a total
of 793 beacons. Each beacon implements an instance of MoGATU and is able to transmit up to a distance of 125m
with a maximum throughput of 2Mbps. A beacon represents a computationally limited resource; however, it is able
to provide a base of location-dependent data and has a vast supply of energy. For example, a beacon at the 52nd
Street and 5th Avenue may contain information about restaurants, movie theaters and the latest traffic conditions
within 200 meters. Although, each beacon holds a large amount of data and is willing to share it with others, it does
not have the capability to perform joins over multiple streams. In other words, each beacon provides only scanning
capabilities over its local resources.

4.1.3 Car Entity In the experiment, we use 100 cars, which represent the other type of devices in our environment.
Cars can also transmit up to a distance of 125m and have a maximum throughput of 2Mbps. Each car can move
freely according to the mobility model, which will be described below. Initially, every car is assigned a profile, which
represents the beliefs and desires of its driver with a certain degree of accuracy. No car has any other data when the
simulation starts. Therefore, to obtain data a car must either be close to another device in the environment, i.e. pass a
beacon, when the other device is broadcasting spam data. Alternatively, a car must be able to infer an implicit query
based on the profile. The car can then use the implicit query to interact with other devices in its vicinity, regardless
of whether those are cars or beacons. Unlike beacons, a car represents a computationally powerful device but with
a limited amount of data. When a car is willing to collaborate, it can help in processing a query over single and
multiple streams.

Collaborative Joins in a Pervasive Computing Environment 13

4.1.4 Mobility Model To allow cars to move in a more organized manner than the random-way-point model pro-
vides, we have extended the work on the smooth random-way-point mobility model [5]. That authors of that model
defined how a moving object can accelerate, decelerate and move in random-way-point pattern. In our model, each
car drives from one intersection to another. Our model also accounts for acceleration and deceleration of an object;
however, our object does not have to come to a full stop in order to change its direction. Additionally, we account
for all traffic lights in the environment.

When a car starts, it is assigned its initial location, preferred speeds, acceleration properties, and parking delay
and frequency. We set the turning and maximum speeds to 17.5mph and 35mph, respectively. Additionally, we fixed
the minimum and maximum acceleration to -4m/s and +2.5m/s as suggested in [5]. After collecting all traces of all
100 cars, the average speed was 21.4mph, which is similar to a realistic traffic and speed patterns in a city.

In the simplest case, a car emulates a tourist driving randomly throughout the city. The car starts by accelerating
to its maximum speed and tries to maintain the maximum speed while it is not too close to the next intersection. Once
the car is approaching an intersection, it decides on its next move. It may decide to turn left or right and therefore
decelerates to its turning speed. The car may also decide to continue going straight, if possible, and so it maintains its
current speed. Alternatively, the car may notice a yellow or red light and initiate the process of coming to a complete
stop. The car continues to move in a similar fashion for a random amount of time bound by the value of parking
frequency. Otherwise, the car stops moving and waits for an amount of time up to the value of parking delay before
continuing to drive until the end of the simulation.

Alternatively, some cars emulate taxi drivers. The car follows the same speed and turning principles as in the
previous case; however, instead of making semi-random decisions at each intersection, the car pre-computes its
route, i.e. a shortest path to the destination, and follows the route to the final destination. This emulates an actual taxi
driver being asked by a passenger to drive to a particular location in the city. Once the car reaches the destination, it
waits for a fixed amount of time before servicing the next passenger.

For our environment, we computed mobility traces for 50 taxi drivers and 50 mobility traces for tourist drivers.
We used the resulting traces as inputs to GloMoSim for the 100 mobile nodes emulating cars in our environment.

We have deliberately chosen tourists in cars rather than tourists walking as examples for this paper because it
represents a “bad” scenario for us. Given the speed of motion of cars, it is possible that by the time a data source is
discovered and selected by the protocol, it would have moved out of range. Our experiments therefore report results
under stress conditions. These experiments conducted under more favorable conditions that assume people rather
than cars will clearly lead to better results. We also did not choose to use bicyclists because they simply represent
cars driving at slower speeds.

4.1.5 Data, Profiles and Queries For our experiments, we have defined 10 distinct ontologies. Each ontology
defines five attributes and their respective interrelationships. For example, one ontology depicts an abstraction of a
restaurant database, while other ontology is an abstraction of traffic conditions measured and used by both cars and
intersection beacons. We have then created 4096 data instances of each ontology, and distributed those between the
intersection beacons. For ontologies using (x,y) coordinates, e.g. a restaurant location, we place the data to beacons
in that location. Thus a beacon knows only about restaurants in its immediate vicinity. For ontologies not following
(x,y) coordinates, we distributed the data randomly. Some ontologies included the concept of time, and thus data
availability depended on both location and the time of the day. For example, a traffic jam warning information is
available only when the jam occurs.

We have constructed 36 distinct queries for each car, each containing between 1 and 16 conjunctive boolean
predicates. One half of queries were static in the sense that the filtering clause for these queries was fixed and did
not depend on the location and time a query is asked, e.g. “Where is the National Art Gallery?”. Other queries were
dynamic in the sense that their filtering clause depended upon the car’s location and the time of the day, e.g. “Where
is the closest Chinese Restaurant?”. Out of the 36 queries, 18 queries involved one data stream, 12 queries required
joins over two data streams and 6 queries required the joining of three data streams. We note that intersections
can help in answering queries involving only one stream as specified in Section 4.1.2. In addition to specifying a
query, a car is also provided with the query prerequisite information describing the time, location, frequency and the
probability that the query will be asked. Therefore, the total number of queries placed during the entire simulation
depended on mobility pattern of each car and on satisfying the query prerequisites.

14 Filip Perich et al.

Additionally, we constructed profiles for each car with a varying accuracy from 0% to 100% by steps of 20%.
The 0% accurate profile contained no information. A completely accurate profile represented a knowledge enabling
a car to compute implicit queries equivalent to the 36 queries each car could ask. The other four cases held a
permuted subset of the complete profile, such that the data collected using the implicit queries could answer on
average only that many explicit queries. We synthetically computed the incomplete profiles, such that given all
global databases, the number of entries returned by executing the union of explicit and implicit queries divided
by the required cardinality of answers was close to the desired accuracy rate. Note, however, that even the precise
knowledge of the user explicit queries is insufficient because no car knows its precise location at a future point in
time when a dynamic query is posed. Additionally, since queries were constructed randomly and only a limited
amount of data existed, it was often the case that no valid answer could be delivered or no such answer existed. On
the other hand, this does not limit the accuracy of our experiments. No car in a real environment has a complete
global knowledge of all data. Consequently, the car cannot always determine whether a query can yield a result with
the desired cardinality.

4.2 Computation Performance

This Section presents the empirical results of 100 cars driving in 5000 x 9000m environment that closely resembles
lower Manhattan. The cars drive through the environment for a period of 4 hours. The cars can interact with other cars
and with 793 stationary intersection beacons. For that the cars initiate the CQP protocol to execute queries involving
one, two or three streams. We refer to queries involving one stream as simple queries, while queries involving more
than one stream are referred to as complex queries.

4.2.1 Query Success Rate vs. Profile Accuracy In the first experiment, we measure how profile accuracy improves
the average query success rate. We vary the profile accuracy of each car from 0% to 100% with an incremental step of
20%. For each step, we calculate the average success rate of answering all explicit queries per car. We also calculate
the average success rate of answering explicit queries involving only one, two or three streams. We obtain the rate
by giving a partial credit to all cars. If n represents the number of queries asked by a car, . represents the cardinality
of the answer obtained for query i and 0 represents the desired cardinality for query i, then a car has a total partial
credit, from 0 to n: 1243�576 �&28� . � 0��0 (3)

We look at two different scenarios: In the first case, no car is willing to help with answering queries proposed by
peers. In the second case, each car has a willingness–to–help level set to 75%. Consequently, in this case each car
responds, on average, to three out of four call–for–query messages by sending its matching bid when the car has a
valid answer. Figures 7 A & B plot the obtained results for willingness levels equal to 0% and 75%, respectively.

The results for 0% accurate profile in the first scenario define our base–line. These results specify the average
query success rate a car can obtain using only intersection beacons in its vicinity. Each car could answer its explicit

Duration 4 hours
Space (x,y) 5000 x 9000m

Tx Range 125m
Tx Throughput 2Mbps

Data 10 ontologies, each 4096 entries
Entities 100 cars (C); 793 beacons (B)

Profile Accuracy C: any; B: none
Will to Help C: any; B: 0/join,100%/select

Initial Distribution C: no data; B: local data

Fig. 6 Experiment Parameters

Collaborative Joins in a Pervasive Computing Environment 15

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Profile Accuracy (%)

Q
ue

rr
y

S
uc

ce
ss

 R
at

e

queries involving 1 stream
queries involving 2 streams
queries involving 3 streams
all queries combined

(a) Willingness to Help = 0%

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Profile Accuracy (%)

Q
ue

rr
y

S
uc

ce
ss

 R
at

e

queries involving 1 stream
queries involving 2 streams
queries involving 3 streams
all queries combined

(b) Willingness to Help = 75%

Fig. 7 Query Success Rate vs. Profile Accuracy

queries using only the bulk data advertised by peers, i.e. intersection beacons. The base–line overall query success
rate was 0.193. The base-line query success rate for explicit queries involving one, two and three streams were 0.260,
0.177 and 0, respectively.

As expected, a more accurate profile yields a higher average query success rate. In the first case, complete profile
accuracy improved the overall success rate from original 0.193 to 0.387. This is a 100% improvement to results
obtained using 0% accurate profiles. In the second case, a complete profile accuracy together with 75% change of
help from other cars improved the overall success rate from 0.193 to 0.439. That is a 127% improvement.

At the same time, the average success rate never reached 1. This implies that no car, on average, was able to
answer all explicit queries. The best outcome was in the second case, which yielded only 0.506 for queries joining
two streams. The best overall average success rate was then 0.439, again in the second scenario. These results are
due to the fact that some car asked queries that could not be answered by anyone in its current and/or past vicinity.
The queries were not answered either because no answer existed in the environment or because no device with the
answer was ever in the vicinity of the querying car. In addition, an important factor was the speed of each car in the
environment. On average, the cars traveled at 21.4mph. Consequently, some interactions could not been completed
because the two interacting peers moved away too soon.

4.2.2 Computing Cost vs. Profile Accuracy In the next experiment, we measured how much work a car has to
perform for itself. We again vary the profile accuracy of each car from 0% to 100% with an incremental step of 20%.
For each step, we then calculate the Computing Cost by measuring the operations and time it required to execute
the operations. We consider only those operations that a car performs while executing its implicit queries. We do not
include the cost inflicted upon cars caused by other devices requesting help. Similarly to the previous experiment,
we look at two different scenarios. The first scenario sets the willingness to help to 0%, and the other scenario sets
willingness to help to 75%. Figure 8 shows the results.

As expected, the computing cost quickly increases with more accurate profile. With a 0% accuracy level of a
profile, no car derives any implicit query. Therefore, a car incurs no computing cost with a 0% accurate profile. For
other accuracy levels, the cost increases by almost a factor of two from one accuracy level to the next. This is due to
the fact that each car has more implicit queries it needs to answer, half of which cannot be answered as suggested in
Section 4.2.1. This can also be validated from the fact that the costs from the two scenarios, 0% and 75% willingness

16 Filip Perich et al.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Profile Accuracy (%)

C
os

t o
f C

om
pu

ta
tio

n

no willingness to help
75% willingness to help

Fig. 8 Computing Cost vs. Profile Accuracy

0 12.5 25 37.5 50 62.5 75 87.5 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Willingness to Help (%)

Q
ue

rr
y

S
uc

ce
ss

 R
at

e

queries involving 1 stream
queries involving 2 streams
queries involving 3 streams
all queries combined

Fig. 9 Query Success Rate vs. Willingness to Help

to help, closely resemble each other. Even though cars are more willing to help in the second case, they still cannot
provide answers to the other half of queries.

4.2.3 Query Success Rate vs. Willingness to Help After establishing the experimental base line in Section 4.2.1,
we measure how the different willingness to help levels improve the average query success rates. We set the profile
accuracy to 80%. This means that each car has an almost complete knowledge about the types, time and location
of queries its user is likely to ask. We now vary the willingness to help level, i.e. car degree of collaboration, from
0% to 100% with incremental steps of 25%. To one extreme, no car is willing to help others at all, while in the
other extreme the car is always trying to help whenever it is able to. We use the same approach as used in the first
experiment to calculate the partial credit for each car, and to plot the results in Figure 9.

Collaborative Joins in a Pervasive Computing Environment 17

0 12.5 25 37.5 50 62.5 75 87.5 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Willingness to Help (%)

Fr
ac

tio
n

of
 R

es
ou

rc
es

 U
se

d
fo

r H
el

pi
ng

 O
th

er
s

Computing Resources
Transmitted Packets
Received Packets

Fig. 10 Cost Helping Others vs. Willingness to Help

The measured results show that the CQP protocol improves the average query success rate for each car. The
total query success rate is 0.37 when no car is willing to help. The total query success rate is 0.433 when all cars
are willing to help. This is a 13.5% improvement. We are, however, more interested in the performance of explicit
queries over two and three data streams. The success rates for queries over two and three streams are 0.425 and 0.103
respectively when no car is willing to help . The help of all cars yields success rates 0.506 and 0.15 respectively.
For the queries over three data streams, the rate of improvement is 45.6%. Therefore, the CQP protocol significantly
improves the execution of joins.

4.2.4 Computing & Network Cost vs. Will to Help Although, every car, on average, improves its query success
rate, the cost of the improvement is not without some cost. In exchange for better success rates, each car pays in
terms of its computing cost and additional network traffic. In this experiment, we compare how much of the total
resources was, on average, allocated to helping others. We do so by collecting and calculating the fraction of total
cost (computing and traffic) that a car used to help other peers. Again, we set the profile accuracy level to 80% and
vary the willingness to help level from 0% to 100% with an incremental step of 25%. We collect the total amount
of computing costs used by each car as well as the amount of computing done on behalf of others. The latter cost
includes evaluation of call–for–query messages, submission of bids, performing selection and join operations for
peers, for sending data to peers, and for collaboration-related timer processing. We also collect the total amount
of data send and received by each car and differentiate among traffic inflicted while helping peers and traffic for
answering the car’s own implicit queries. We display the values in Figure 10. We note that the vertical axis defines a
fraction of resources used for helping others, and the displayed range is only between 0 and 0.5.

The results show that the cost for helping others increases both in terms of computing resources and network
traffic; however, the computing costs expended for helping others is at most one third of the total resource consump-
tion and the traffic cost is at most 11%. Interestingly, the fraction of received data vs. the total amount of received
data does not significantly change. The fraction is equivalent to 10.4% when nobody is willing to help and 11.1%
when everyone is willing. This is due to the fact that as a car receives and accepts more call–for–query messages
causing many request for subsequent data instances matching the query, other cars experience the same pattern.
Therefore, both the number of data received when helping others and the amount of data received in total increase
proportionally.

18 Filip Perich et al.

0 12.5 25 37.5 50 62.5 75 87.5 100
0

0.01

0.02

0.03

0.04

0.05

Willingness to Help (%)

Q
ue

ry
 S

uc
ce

ss
 R

at
e

pe
r T

ot
al

 C
om

pu
tin

g
C

os
t

80% accurate profile

Fig. 11 Query Success Rate per Computing Resources vs. Willingness to Help

4.2.5 Success Rate / Computing Cost vs. Will to Help In this last experiment, we measure how different willingness
to help levels affect the ratio of utility to cost. In our experiments, utility is represented by the average query success
rate per each car. We then represent the cost value in terms of the total computing cost per car. Again, we set the
profile accuracy level to 80% and vary the willingness to help level from 0% to 100% with an incremental step of
25%. We collect the average success rate for answering explicit queries and the average computing cost. We the
show the results in Figure 11.

The utility to cost ratio remains constant. The ratio value for no willingness to help is higher, 0.021, because no
car ever responded to a call–for–collaboration. In this case each car spent the least amount of resources. Moreover,
each querying car in this case utilized resources of local intersection beacons only. In the other cases where cars
are willing to help, we see that the ratio value stabilizes at 0.017. This is due to the fact that even though each car
executes more computations, and thus has a larger computing cost, each car is also able to improve its overall query
success rate. Therefore, the increasing computing cost is justified by the improving rate of query success rate.

5 Conclusions and Future Work

We have presented the design and implementation of the Collaborative Query Processing protocol. This novel pro-
tocol enables devices in pervasive computing environments to locate data sources and obtain data matching any
query. In the simplest case, the query can be a selection scan over one stream; however, the query can also be a join
of multiple streams. The protocol combines the traditional concept of nested–loop joins and our previous work on
selection queries in pervasive computing environments together with the principles of Contract Nets. The features
of the protocol enable any device, regardless its limited computing, memory and battery resources, to collaborate
with other peers in its vicinity in order to obtain an answer for its explicit queries. We have shown how the protocol
improves the overall system performance defined by the number of successfully answered explicit queries. We have
also shown how the protocol affects the combined computing cost and the network traffic inflicted on each mobile
device.

In this paper, we have not addressed the issues concerning privacy and incentive for devices to participate in
information exchange. Although these are valid issues, our focus in this paper was first to enable mobile devices to
exchange data in pervasive computing environments. Colleagues in our group are developing policy based security
and privacy mechanisms for such environments[34,23]. Similarly, we have not addressed the problem of ontology /
schema translation. This is an important objective for our future work since any two devices understanding different

Collaborative Joins in a Pervasive Computing Environment 19

(incompatible) types of ontology can meet in this serendipitous environment. A simple solution is to ignore devices
one does not understand; however, that is clearly not an efficient solution as it limits the amount of data available
in the environment. Therefore, a presence of an ontology translator will most likely become paramount. There has
been some work on this problem but the proposed solutions are still in their preliminary stages and often require a
vast computing and memory resources [17]. Lastly, we have not addressed the notion of update transactions, though
we have done some initial work on e-commerce type transactions [1] in these environments.

6 Acknowledgments

This work was supported in part by NSF awards IIS 9875433, 0070802 and 0209001, and DARPA contract F30602-
00-2-0591. The authors also thank Sasikanth Avancha and Jeffrey Undercoffer for their help in writing this paper.

References

1. S. Avancha, P. D’souza, F. Perich, A. Joshi, and Y. Yesha, P2P M-Commerce in Pervasive Environments, ACM SIGEcom
Exchanges, 2003.

2. S. Avancha, A. Joshi, and T. Finin, Enhanced Service Discovery in Bluetooth, IEEE Computer (2002).
3. AvantGo, http://avantgo.com/.
4. R Avnur and J. Hellerstein, Eddies: Continuously Adaptive Query Processing, SIGMOD, 2000.
5. C. Bettstetter, Smooth is Better than Sharp: A Random Mobility Model for Simulation of Wireless Networks, MSWiM’01,

2001.
6. Bluetooth SIG, Specification, http://bluetooth.com/.
7. P. Bonnet, J. Gehrke, and P. Seshadri, Towards Sensor Database Systems, MDM, 2001.
8. M. Bratmann, Intentions, Plans, and Practical Reason, Harvard University Press, 1987.
9. O. Bukhres, S. Morton, P. Zhang, E. Vanderdijs, C. Crawley, J. Platt, and M. Mossman, A Proposed Mobile Architecture for

Distributed Database Environment, Tech. report, Indiana University, Purdue University, 1997.
10. D. Chakraborty, F. Perich, S. Avancha, and A. Joshi, DReggie: Semantic Service Discovery for M-Commerce Applications,

Workshop on Reliable and Secure Applications in Mobile Environment, SRDS, October 2001.
11. S. Chandrasekaran and M. Franklin, Streaming Queries over Streaming Data, VLDB02, 2002.
12. M. Cherniak, E. Galvez, D. Brooks, M. Franklin, and S. Zdonik, Profile Driven Data Management, VLDB, 2002.
13. P. Chrysanthis and E. Pitoura, Mobile and Wireless Database Access for Pervasive Computing, ICDE, 2000.
14. DAML Services Coalition, DAML-S: Semantic Markup For Web Services, http://daml.org/services/.
15. A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and B. B. Welch, The bayou architecture: Support

for data sharing among mobile users, IEEE Workshop on Mobile Computing Systems & Applications, 1994.
16. A. Dey, G. Abowd, and D. Salber, A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-

Aware Applications, Context-Aware Computing, Human-Computer Interaction Journal (2001).
17. D. Dou, D. McDermott, and P. Qi, Ontology Translation and Translating Ontologies on the Semantic Web, WWW, 2003.
18. M. Franklin, Challenges in ubiquitous data management, Informatics, 2001.
19. IEEE 802.11 Working Group, Ad-hoc 802.11, http://ieee802org/11.
20. J. Hellerstein, M. Franklin, S. Chandrasekaran, A. Deshpande, K Hildrum, S. Madden, V. Raman, and M. Shah, Adaptive

Query Processing: Technology in Evolution, IEEE Data Engineering Bulletin, 2000.
21. J. Hendler, DARPA Agent Markup Language, http://daml.org/.
22. D. Johnson and D. Maltz, Dynamic source routing in ad hoc wireless networks, Mobile Computing, 1996.
23. Lalana Kagal, Tim Finin, and Anupam Joshi, Trust-based security in pervasive computing environments, IEEE Computer 34

(2001), no. 12, 154–157.
24. J. J. Kistler and M. Satyanarayanan, Disconnected operation in the coda file system, Thirteenth ACM Symposium on Oper-

ating Systems Principles (Asilomar Conference Center, Pacific Grove, U.S.), ACM Press, 1991, pp. 213–225.
25. H. Kottkamp and O. Zukunft, Location-aware query processing in mobile database systems, Selected Areas in Cryptography,

1998.
26. S. Lauzac and P. Chrysanthis, Utilizing versions of views within a mobile environment, Conference on Computing and Infor-

mation, 1998.
27. S. Madden and M. Franklin, Fjording the Stream: An Architecture for Queries over Streaming Sensor Data, ICDE, 2002.

20 Filip Perich et al.

28. F. Perich, S. Avancha, D. Chakraborty, A. Joshi, and Y. Yesha, Profile Driven Data Management for Pervasive Environments,
DEXA, 2002.

29. F. Perich, S. Avancha, A. Joshi, Y. Yesha, and K. Joshi, On Data Management in Pervasive Computing Environments, Tech.
report, UMBC CSEE, 2002.

30. F. Perich, A. Joshi, T. Finin, and Y. Yesha, On Data Management in Pervasive Computing Environments, TKDE (2003),
accepted for publication.

31. C. Perkins and P. Bhagwat, Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers,
ACM SIGCOMM Communications Architectures, Protocols and Applications, 1994.

32. C. Perkins and E. Royer, Ad hoc on-demand distance vector routing, IEEE Mobile Computing Systems and Applications,
1999.

33. R. Smith, Readings in distributed artificial intelligence, ch. The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver, 1988.

34. J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal, and A. Joshi, A secure infrastructure for service discovery and access in
pervasive computing, ACM MONET: Special Issue on Security in Mobile Computing Environments 8 (2003), no. 2, 113–
125.

35. X. Zeng, R. Bagrodia, and M. Gerla, GloMoSim: A Library for Parallel Simulation of Large-Scale Wireless Networks, Work-
shop on Parallel and Distributed Simulation, 1998.

36. Y. Zhang and O.Wolfson, Satelitte-Based Information Services, ACM MONET (2002).

