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Abstract The Matrix Framework is a recent proposal by
Information Retrieval (IR) researchers to flexibly represent
information retrieval models and concepts in a single multi-
dimensional array framework. We provide computational
support for exactly this framework with the array database
system SRAM (Sparse Relational Array Mapping), that
works on top of a DBMS. Information retrieval models can be
specified in its comprehension-based array query language,
in a way that directly corresponds to the underlying mathe-
matical formulas. SRAM efficiently stores sparse arrays in
(compressed) relational tables and translates and optimizes
array queries into relational queries. In this work, we describe
a number of array query optimization rules. To demonstrate
their effect on text retrieval, we apply them in the TREC
TeraByte track (TREC-TB) efficiency task, using the Okapi
BM25 model as our example. It turns out that these optimiza-
tion rules enable SRAM to automatically translate the BM25
array queries into the relational equivalent of inverted list
processing including compression, score materialization and
quantization, such as employed by custom-built IR systems.
The use of the high-performance MonetDB/X100 relatio-
nal backend, that provides transparent database compression,
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allows the system to achieve very fast response times with
good precision and low resource usage.
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1 Introduction

Information Retrieval (IR) researchers develop methods to
assess the degree of relevance of data to user queries. While
ideally such a retrieval model could be considered ‘just’
a (somewhat complicated) query for a database system, in
practice the researcher attempting to deploy database tech-
nology to IR will stumble upon two difficulties. First, data-
base implementations of IR models are still inefficient in
runtime and resource utilization if compared to hand-built
solutions. Published accounts of using DBMS software for
IR tasks reported either disappointing performance (the only
TREC-TB database result, on MySQL, achieved a query time
of 5seconds and low precision [11]) or disk resource usage
much higher than custom-built IR solutions [19]. Second,
the set-oriented query languages provided by relational data-
base systems provide a fairly poor abstraction in expressing
IR models. Specifically, the lack of explicit representation of
ordered data has long been acknowledged as a severe bottlen-
eck for developing scientific database applications [29], and
we believe the same problem has hindered the integration of
databases and information retrieval.

1.1 Approach and contributions
The main contributions of our research are: (i) SRAM, the

first system that implements the “Matrix Framework for IR”,
arecent IR proposal to express retrieval models flexibly and
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uniformly in terms of matrix operations, (ii) the design of a
new array mapping to relational database systems that allows
to instantiate and query sparse array data structures, (iii) a
number of array query translation and optimization rules that
generate efficient relational database queries for array for-
mulas, (iv) a demonstration of the benefits of generic data
compression by the DBMS to IR applications running on top
of it, (v) existence proof in case of the TREC TeraByte track
(TREC-TB) efficiency task that an IR application on top of
a DBMS can rival and even beat custom-built IR systems in
terms of query throughput, while achieving equivalent pre-
cision using minimal hardware resources.

The Matrix Framework for IR [34] maps IR concepts to
matrix spaces and matrix operations, providing a convenient
logical abstraction that facilitates the design of IR systems.
To get a flavor, this framework describes the occurrence of
terms ¢ € T in documents d € D as a two-dimensional matrix
DTy ;. The IR researchers that recently proposed this frame-
work have shown that popular IR retrieval strategies such as
TF/IDF, BIR, Language Modeling and Probabilistic Logical
modeling can be easily expressed in matrix formulas. One of
the stated goals of the Matrix Framework is to be able to easily
experiment with and compare these IR models. As such, a
usable implementation of the Matrix Framework constitutes
a highly valuable workbench for IR researchers, allowing
to test variations of IR models without engineering effort,
by just changing the IR model specifications, expressed in
mathematical notation.

Sparse array databases. A natural implementation of the
Matrix Framework is based on the array abstraction, which
can be mapped onto relational database systems. However,
this appears to be a viable solution only with specific sup-
port for processing sparse arrays. The data representation
that matrix spaces offer is very redundant compared to a
set-based representation (although documents contain only a
small fraction of the possible terms, all the presence/absence
combinations are represented explicitly). This results in
matrices that are typically very large and extremely sparse
(the density of the LD;, binary matrix, which encodes
collection_location-document associations, is lower than
0.000005% for the TREC-TB collection). One interesting
observation about the relational mapping of the sparse
document-term matrix is that the resulting physical data
structure is the equivalent of an inverted list—a best prac-
tice in custom-built IR systems.

Array query optimization. Sparse array representations
offer many opportunities for query optimization, in parti-
cular with regard to strategies that allow direct computations
on the sparse relational representations (i.e., those that avoid
materializing sparse matrices into dense intermediates). For
the main SRAM operations on sparse arrays, such as func-
tion mapping, array reshaping, aggregation, and top-N, we
present optimization rules that map these onto efficient
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relational query plans. We also discuss how aggregate
unfolding can transform aggregate computations into effi-
cient relational plans equivalent to inverted list merging.
Efficient DBMS with compression. A rather mundane dra-
wback hindering the adoption of the DBMS as a component
in IR systems has been its mediocre expression evaluation
performance, especially when compared with hand-written
programs. We make use of the MonetDB/X100 relational
engine that is specifically designed to tackle this issue. Its
architecture is tuned to modern hardware, limiting database
interpretation overhead with “vectorized execution” and
enforcing good use of parallel execution capabilities and
cache memories of modern CPUs. MonetDB/X100 in addi-
tion offers compressed column-wise storage, using a variety
of high-performance database compression schemes. These
compression schemes are transparent to users and queries,
and transform our sparse document-term matrices into com-
pressed inverted lists— another best practice in custom-built
IR systems. It is noteworthy that MonetDB/X 100 was develo-
ped for data warehousing and OLAP and is purely relational
and not specifically targeted to IR applications.

The TREC TeraByte track efficiency task is our main exam-
ple scenario and evaluation test case. We use SRAM to spe-
cify the Okapi BM25 retrieval model, and show how our
subsequent query optimizations improve query performance.
The resulting query throughput actually exceeds that of all
previously reported results with custom-built IR systems on
comparable hardware, with identical precision (most TREC-
TB participants use BM25 nowadays). In this, we see proof
of the practical viability of the Matrix Framework for IR in
general, and its SRAM sparse array implementation in par-
ticular.

1.2 Outline

Section 2 introduces the main concepts of SRAM, and
explains its mapping of sparse arrays and array queries onto
relational databases. Section 3 details the experimental setup
we used for TREC-TB. This both encompasses the retrieval
model created using SRAM, as well as some physical charac-
teristics of the TREC-TB dataset. With regards to the latter,
we focus on the compression features of the MonetDB/X100
relational database engine and their effects on the TREC-TB
dataset. Section 4 describes the experiments on TREC-TB
with a number of processing variants and SRAM array opti-
mizations. Related research in IR and DB is discussed in
Sect. 5, before we conclude and outline future work in Sect. 6.

2 Sparse relational array mapping

Although sparse array computations are not a settled topic
in the numerical analysis research field, a large amount of
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literature and software implementations exists, in particular
for two-dimensional arrays (matrices) [18]. However, such
solutions focus on the optimization of single operations rather
than full expressions (for example, many different implemen-
tations exist for matrix multiplication), assuming a specific
data encoding, or even tuned for specific hardware. This is in
contrast with the ‘database approach’ proposed here, which
turns the numerical problem into a query optimization pro-
blem, providing the following potential benefits:

— Data independence: relational expressions are transpa-
rent to the physical organization of data. The data access
optimization problem is taken care of by the relational
engine, rather than being bound to specific numerical
algorithms.

— Resource utilization: modern database engines are tuned
for effective exploitation of the (possibly limited) hard-
ware resources, and use cache-conscious, CPU-friendly
algorithms, becoming more and more attractive for
computational-intensive applications.

— Open ‘black boxes’: instead of providing ad-hoc imple-
mentations of, say, matrix multiplication or matrix trans-
position algorithms, express them as a combination of
native database primitives (join, selection, etc.). This
allows the query optimization process to take such ope-
rations into account within a larger problem and look for
the overall best query plan.

2.1 The SRAM system

The SRAM (Sparse Relational Array Mapping) system is
a prototype tool for mapping sparse arrays to relations and
array operations to relational expressions. While SRAM syn-
tax allows to express array operations on an element by
element basis, the system translates such element-at-a-time
operations to collection-oriented database queries, suited for
(potentially more efficient) bulk processing. Although SRAM
is RDBMS-independent, supporting translation to SQL que-
ries, in this paper we present relational queries expressed in
the query language of MonetDB/X100.

The life-cycle of array queries through the SRAM archi-
tecture can be summarized by the following sequence of
transformations:

1. Array comprehension syntax > array algebra
2. Array algebra — relational algebra
3. Relational algebra > relational plan.

Both array and relational algebra expressions are rewritten
by a traditional rule-based optimizer.

The next three sections introduce the array-syntax of the
SRAM front-end, the storage of sparse arrays in relational
databases, and a (not comprehensive) set of mapping rules

Table 1 Notation for arrays and relations

Symbolic Meaning
A n-dimensional array A
Aig,.iny Array A with dimension variables
10y .oy ln—1
SaeN? Shape of A (vector of dimension lengths)
A[S] n-dimensional array A of shape S
Si‘ Length of the i-th dimension of A
1Al =1 S} Size of array A
Da Domain of A values
ie N Index values vector (ig, ..., i,—1)
A (i) Array value indexed by i
e (egp) Default value (of A)
non-¢ (non-&4) Avaluev # ¢ (v #e€4)
A Relation A

A

Size of relation A

Grid(S) Populates a relation G(ig, ..., i,—1)

with the enumeration of all index
values in S

AT Relation attributes (A.1i¢g...A.1,_1)

corresponding to array indices
{0,y in—1)

All A attributes but A.1

T3,v=, (Grid(Sa)\ 1 (B))

B
<l

from array-algebra to relational algebra, respectively. Table 1
summarizes the basic notation elements used throughout this
paper for both arrays and relations. In particular, notice that
arrays and their associated relations are denoted by a different
text font: an array A is stored in the database as a relation A.

2.2 Comprehension syntax

The SRAM language defines operations over arrays declara-
tively in comprehension syntax [9], which allows to declare
arrays by means of the following construct:

A := [ <array-cell value> | <array axes> ]

The section <array axes> specifies the shape Sy of
array A, namely the number of dimensions and the domain of
each dimension, in the following form: 19 < I, ..
I,—1. The value of each dimension variable i ranges from
0 to I; — 1. Dimension variables must be specified and
named. However, their explicit domain specification can be
omitted when this is clear from the context.

The section <array-cell wvalue> assigns a value to
each cell indexed by the index values enumerated by the
<array axes> section. For example, the expression
B = [ log(A(y,x)) | %<5, y<6 1] defines a new
array B [5, 6], where the value of each cell is computed by

cyino1<
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applying the function log to cells of array A taken in trans-
posed order.

A second constructor enumerates all the array elements
explicitly. The definition of a one-dimensional explicit array
A [5] looks like this:

A := [ 10 42 0 3 1 ]

Explicit arrays of higher dimensionality can be specified by
array nesting. The following expression defines the explicit
array A [2, 5]:

A := [ [10 42 0 3 1] [7 4 19 5 6] 1

Aggregations over any array dimension are also supported
(sum, prod, min, max). For example, the summation of
array B over its second axis is expressed as:

C:= [ sum([ B(x,y) | x 1) | v 1

The shape S¢ of array C is easily identified by the rightmost
axis y.

Retrieving the fop-N values is allowed for one-dimensional
arrays only. However, the resulting array does not contain
sorted array values, but positions of the sorted values in the
original array, which would otherwise be lost during the sor-
ting. The following construct returns a dense array T, with
ST = [N ]:

T := topN(C, N, <ASC|DESC>)

The actual values can subsequently be fetched by dereferen-
cing the original array: D := C(T).

The SRAM syntax allows the definition of functions,
implemented as macros expanded symbolically by a pre-
processor at every occurrence, such as myfunc (a,b) =
(a / b) * 2.More useful functions for the scope of this
paper include matrix transposition and multiplication:

mxTrnsp(A) = [ A(7,1) i,J 1
mxMult (A,B) = [ sum([ A(i,k) *
B(k,3) | k1) | 1,31

An interesting remark is that arrays can be seen as mathema-
tical functions that map points from their index space to the
values addressed by those points. Therefore, functions can
be used in SRAM syntax as non-stored arrays. An explicit
assignment to a variable name, stores an array in the database:

<array name>:=<comprehension expression>
The next section details about storage of sparse arrays in a
relational database.

2.3 Storage of sparse arrays in a RDBMS

Many storage schemes have been proposed for sparse multi-
dimensional arrays, with strong emphasis on the special case
of two-dimensional arrays [13]. Most of them are tuned for
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specific data access patterns (e.g., Compressed Row/Column
Storage, Compressed Diagonal Storage, Skyline Storage) for
a particular application.

A generic choice for storing sparse arrays in relational
databases maps every array to one relation, where array-cells
are represented as tuples. The optimization of different data
access patterns can be achieved by means of standard relatio-
nal indexing structures on top of such relations, or by explicit
tuple clustering/sorting. In the current storage scheme, any
n-dimensional sparse array A, with ¢4 denoting its default
value, can be mapped to a relation A where each tuple enu-
merates the index values and cell value explicitly, and only
those cells for which A(i) # ¢4 need to be physically stored
in the relation:

A—>2A(g, ..., 1n—1,v)={G0,s ..., in—1, A1) |A@{) #e4}.

Notice that index columns together form a primary key for
such a relation. SRAM uses the policy to store all persistent
sparse arrays in relations that are clustered on this primary
key (e.g., using index-organized tables). This means that the
order in which the array dimensions are specified matters,
and puts the tuples in the underlying database relation in
lexicographical dimension order.

Because the nominal shape Sy of the array A is known,
the domain of the index columns in the associated relatio-
nal table A is known as well, which makes the non-stored
portion of the table, denoted as A, always computable as:
A =711 y=¢, (Grid(Sa)\ w1 (3)). The function Grid(S4)
creates a relation G(ig, ..., i,_1) filled with the enumera-
tion of all index values in the S4 domain. Although no stan-
dard relational operator can generate such a relation, most
modern RDBMS can easily be extended to provide such a
functionality. Support for fable functions, i.e., external func-
tions that can return a table, is also included in the SQL-2003
standard [14].

This storage scheme naturally extends to dense arrays, for
which the ¢ value is not specified, and therefore all the tuples
are physically stored. In case of persistent dense arrays, all
values in the primary key are present and thus form a compu-
table sequence. As an optimization, columns (ig, ..., 1,—1)
could be omitted from the dense representation, as the full
table can be produced using a view that regenerates these
columns with identity-columns, as supported by SQL-99.

The sparse array representation may also be seen as a com-
pression mechanism. In principle, this can be further exploi-
ted, by recursively removing frequent values and managing
a list of missing elements (& }‘, si , ...) from the initial table.
However, we discuss here only the simpler case of a single
level of compression. One special case worth mentioning are
boolean sparse arrays. Here, the value stored in column v is
always the same (v = £), hence for sparse boolean arrays v
can be omitted from the physical representation.
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The decision of whether to use the sparse or dense repre-
sentation for an array A depends on many factors, including
the particular application, the storage space available, and
the density of the sparse array (defined as the fraction of the
non-¢4 values). In the current incarnation of SRAM, sparse
is the default array representation.

2.4 From array algebra to relational algebra

The first translation step of SRAM queries generates an array-
algebra tree, which represents the sequence of operations
performed on the stored arrays. The following list briefly
describes the main operators of this algebra:

Array(a, S) bindsan array of shape S to its relational repre-
sentation A.

Grid(S, i) creates an array of shape S, whose values are the
index values of its i-th dimension.

Apply(A, Iy, ..., I,—1) dereferences the n-dimensional
array A, using n arrays whose values are index values
for A.

Pivot(A, P) permutes the dimensions of A following the
axis order permutation specified in P (e.g., P = [1, 0]
for matrix transposition).

RangeSel(A, O, S) selects from A the sub-array identified
by offset O from the origin and shape S.

Replicate(A, n) increases the number of dimensions by 1,
by replicating array A, n times.

Map(f, A, B, ...) maps the function f to corresponding
cells of arrays A, B, ....

Aggregate( f, j, A) collapses the first j dimensions by app-
lying the aggregation function f over the remaining
dimensions.

TopN(A, n,<ASC | DESC>) for vectors only, it returns the
indices of the first n values in the desired order.

We classify these operations based on the type of pro-
cessing required on input arrays: shape-only and content-
shape operations. For the most complex operators, we present
formal translation rules into relational algebra, using infe-
rence rule syntax: premises and conclusions appear above
and below the horizontal line, respectively.

2.4.1 Shape-only array operations

Shape-only array operations operate on the structure of arrays
(e.g., dereferencing, replicating, pivoting, slicing). This trans-
lates to relational expressions that only involve the manipu-
lation of index columns.

Apply. Dereferencing operations, i.e., the selection of array
values based on their array position, are performed by the

Apply operator:
APPIY(A7 107 ] Infl)

Each of the /; arrays, called index arrays, contains inits value
column the j-th dimension coordinates of the values to select
in A. In the current implementation, index arrays are limited
by the following constraints: they must be dense and their
value must be of integer type. As shown in Rule (APPLY),
this operator is implemented by performing a series of pri-
mary key joins between relations I --- I,_1, and a foreign-
primary key join to retrieve the correct values from relation A.
A;A Ty L3I0 - Ih
Spy=--=8,_, Vjel0---n):I;isdense
B = Apply(A. Iy, --- . In—1)
SB = S[O EB = €A
B> B =mi=x.1v=a.v (X XNx v=a.1 &)
X=TIg X1 --- X1 I

(APPLY)

In principle, all the supported reshaping operations (Pivot,
RangeSel, Replicate) may be implemented by the Apply
operator. First, a result space of the desired shape is produced
for a given operation, using the Grid operator to generate the
index arrays I, . .., I,—1; second, each cell of the result array
is filled in, fetching the correct values from the input array,
by the expression Apply(A, Iy, ..., I,—1). For example, if
A =[12345], the selection of the first three elements can
be obtained by: Apply(A, Grid([3], 0)).

When evaluating sparse arrays however, this strategy beco-
mes not viable in practice for these operators, although still
correct. Specifically, the creation of the whole theoretical
result space leads to a considerable waste of system resources.
Index values ought to be manipulated ‘in-place’ for sparse
arrays. As an example, the transposition of a matrix A can
be mapped to a simple projection: i ,—1, i,=1i,,v(A), which
swaps the two index columns. This specific operation can
be captured by the following operator: Pivot(A, [1, 0]). Also
RangeSel and Replicate translate to more efficient relatio-
nal expressions than the generic Apply approach, involving
selection and projection of index columns and cross products,
respectively.

2.4.2 Content-shape array operations

Content-shape array operations operate on both the structure
and the content of arrays. In the following, we present the
translation rules for operators Map, Aggregate, and TopN.
Map. Mapping a function over two or more arrays is a
common content-shape array operation, captured by the
array-algebra operator Map:

C =Map(f,A,B,...).
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The simple case of a function applied to one array,
B = Map(f, A), translates to the relational expression
B = 71 v=f(a.v) (@) for both dense and sparse evaluation.
For the latter however, the value of the default value must be
updated: ep = f(ca).

Consider now the dense arrays A[X, Y] and B[Y, Z] and
a function f that takes two input values. The expression
C =1 f( A(x,y).B(y.z) ) | x,y,z ] defines a
new array C[X, Y, Z], where the function f has been applied
tocells A(x, y) and B(y, z) for each possible combination of
indices x, y, z. Notice that the shape S¢ of the result array C
is defined as the union of all the input array shapes. The same
operation on relational tables A and B basically maps to a join
over the shared index columns, followed by a projection on
the value columns:

TAIUB.I,v=/(2.v,B.v) (A XainB1 B) (1)

Sparse arrays require a more complex relational mapping,
in order to take care of missing tuples in the relations (i.e.,
non-stored default values €4 and ¢p), denoted as A and B.
The generic relational translation of the operator Map for two
arrays is described by the translation Rule (MAP):

A A B;B
C =Map(f,A, B : Dy xDp — D
p(f ) f:Da B c (MAP)
Sc=84USp  ec = f(ea, eB)
4
c—c=Jc
=1

C1 = 7a1uB.1,v=f(a.v.B.v)(A Xa1ne.1 B)
C2 = TasUB.Iv=/(a.v.e5) A Xa1ns.1 B)
C3 = &.1UB.1,v=/(e4,B.v) (A Xz 1nB.1 B)
C4 = WX 1UB.1,v=f(ea,e5) B XE1nB1 B)

In general, the Map between two arrays corresponds to rela-
tional join, but as sparse arrays consist of two parts (sto-
red, omitted), there are four combinations, (stored, omitted) x
(stored, omitted) and the Map consists of the union of four
relational joins.

Aggregate. Array aggregation is supported by the operator
Aggregate, with the following syntax:

B = Aggregate(f, j, A)

The first j dimensions are dropped by aggregating over the
remaining n — j dimensions. This semantics simplifies the
translation, while not compromising the possibility of aggre-
gating over any dimension, by first performing a (almost
no-cost) Pivot operation. The supported aggregation functi-
ons f on array values are: sum, prod, min, max. The relatio-
nal evaluation of this operator on sparse arrays can be mapped
as the corresponding dense version (a standard relational
aggregate), subsequently patched for all the non-stored tup-
les in each group. For example, if a given one-dimensional
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sparse array A, with 64 = 2, is stored as a relation A that
misses x tuples, the summation over A needs to be patched
adding 2 x x to the result. This naturally extends to multi-
dimensional arrays. Before presenting the formal mapping
rule, we define the binary functions f_ and £ as follows:

f=sum= f =+, fI=x
f=prod= f=x,

f = min/max = f_ = min/max,

f= = pow
ftr=id

where the function id; always returns its first argument.

In Rule (AGGR), gs denotes the nominal group size, and
relations G, M, and B, compute the dense aggregation, the
number of missing tuples per group, and the final sparse
aggregation, respectively.

j—1
A;A gs = l_ISf4 B = Aggregate(f, j, A)
k=0

Sp=8Y"" eg=ftea go)
B> B=7; ¢ G rteamyG XM
G = T(ig=ij, - injor=in 19 (1, 10 Gy=f @) A)
M= (=i, ,inj 1=in_1,v=gs—v) (1}, ,in 1) Gv=count()A)

(AGGR)

TopN. Top-N operations are not defined in standard relatio-
nal algebra. However, most modern database systems imple-
ment such a functionality. SRAM uses an extended relational
algebra that supports Top-N operations, whose syntax is:

t'attrl <t | > ;attr2 <t | l> ;... 1(B)

where n is the number of desired tuples in the result, attrl,
attr2,..., are the ranking attributes, and <4 | |> deno-
tes <ASC|DESC> order. If no ranking attributes are spe-
cified, up to n tuples are returned with no specific order.
Rule (TOPN-DESC) describes the relational translation of
the array operator TopN(A, n,DESC). A similar rule exists
for ascending order.

First, the top n candidates are selected from the stored
relation A into relation T. Then, a second set of n candida-
tes M is created for the non-stored portion of the relation,
representing €4 values. Finally, a regular top-N is performed
on the union of these two set of candidates, and the index
column of the result relation is projected as an array value.
Notice that because the result array is defined as dense, it
does not require a materialized index column itself.

A A
B =TopN(A,n, DESC)
Sp = [n]

B = my—i, (7" [v L I(T UM))
T=7"[v{]@a) M=1"[]&)

ISal =1 n <Al

(TOPN-DESC)
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In M, the computation of A (the non-stored indices) requires
the difference of the full Grid([|A|]) with A, which in turn
could trigger generation of the full grid. However, the t"[ |
operation without any ranking attribute performs what in
SQL is a LIMIT » on the generation of A. This limits the
amount of materialized grid tuples to a maximum of |A| +n,
and in case of a sparse array it is likely to be very near n
only.

2.4.3 Simplification rules

Several rules are considered in order to simplify the generic
translation of function mapping and aggregation operations.
Expression C4 in Rule (MAP) is always removed by Rule
(EMPTY-r), as the value f(e4, €p) coincides by definition
with the default value e of the new array, which requires no
storage.

YiY=n1v—ro X F f(¥) =¢y
Y={}

(EMPTY-)

This rule, which has a great impact on the simplification of
both Map and Aggregate operations, is activated by the
arithmetic optimization, discussed in Sect. 2.4.4.

A Map operation between dense arrays A and B, for which
default values €4 and e are not defined, translates to (1) by
applying Rule (EMPTY-2), which removes both expressions
C, and C3. The same rule removes either C, or C3 in case of
a combination of dense and sparse input arrays.

A A g ~
An dea (EMPTY-A)

A further simplification is performed when arrays A and B
have the same shape, i.e., when S4 = Sp. When this condi-
tion holds, the missing index values identified by A and B can
be found in B and A respectively. Rule (SAME-S) removes
the expensive computation of A and B by means of difference
operations on tables A and B.

A; A B;B Sa =83
— (SAME-S)
A Xarngr B=A\aine1 B
B Xpini: A=B\sina1 A

By combining rules (MAP) and (SAME-S), a new transla-
tion Rule (ALIGNED-MAP) can be derived for mapping a
function f over shape-aligned sparse arrays A and B, which
uses the outer join relational operator (=p<=):

A;A  B;B Sjy=38p
C =Map(f,A,B) f:DaxDp— D¢
Sc =84 ec=f(ea, €epB)

CH C=my@aiue1),v=/(a.v.B.v) (A =><=a1np.1 B)
h(A.IUB.I)=Vie€ei:A.iVB.i
f/(A.v, B.v) = f(A.vVeEy,B.VVeEp)
(ALIGNED-MAP)

Notice that the removal of either or both expressions Cj
and C3 in Rule (MAP) corresponds to the substitution of
the outer join in Rule (ALIGNED-MAP) by left/right outer
join or inner join operations respectively. The formal rules
used to obtain such translations are similar to the ones shown
above.

2.4.4 Arithmetic optimization

During the translation from array-algebra to relational alge-
bra, a simple arithmetic analysis takes place. Common pat-
ternssuchas (x x 0)=0, (x * 1) = x,(x/1) = x,log(1) =0,
and so on, are identified and simplified. This activates Rule
(EMPTY-r), which removes predictable computations from
all translation rules, most importantly from Rule (MAP) and
Rule (AGGR).

Such an arithmetic analysis is particularly important in
that it provides the main mechanism for limiting the incre-
ased complexity of generic sparse array evaluation. As an
example, consider the matrix multiplication in the expres-
sionC = [sum([A(x,y)*B(y,z)|y])|x,z],where
A and B are both sparse arrays withe4 = ep = 0. Itis easily
verified that computations on the non-stored values normally
required for sparse arrays can be simply ignored, as they do
not alter the final result. In particular, this example requires
no extra processing with respect to a dense array evaluation,
because of arithmetic simplifications (x * 0) = 0, which sim-
plifies the multiplication part, and (x 4+ 0) = x, which sim-
plifies the summation part.

In addition, it is a crucial mechanism to avoid the intro-
duction of ¢ elements in intermediate results, which would
make the physical density of such arrays higher than the
nominal one and therefore make the optimization process less
reliable.

2.5 From relational algebra to a RDBMS

Section 2.4 describes mapping rules from array algebra to
relational algebra and optimizations that exploit the know-
ledge on the array domain. The result of such a mapping
and optimization phase is a purely relational query tree. As
a final translation step, this has to be expressed in the query
language offered by the RDBMS at hand.
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2.5.1 Using a SQL backend

All the relational expressions introduced in Sect. 2.4 map
trivially to SQL expressions. As a simple example, consi-
der the array expression between arrays DTy ; and Sy, with
EDT = €S = 0:

[ DT(d,t) * S(d) | d<$Ndocs, t<SNterms ].

Rule (MAP), together with optimizations described in
Sects. 2.4.3 and 2.4.4, yield the following relational algebra
expression:

TT@=DT.d,t=DT. t,v=DT.v+S.v(DT Xpr.a=s.a S).
The corresponding SQL statement

SELECT d
FROM DT,

= DT.d, t = DT.t, v = DT.v*S.v
S
WHERE DT.d = S.d

computes the correct result for the given array expression.
However, in order to obtain an efficient physical query plan
from such a declarative query specification, RDBMSs rely
on their query optimization capabilities. Here we show how
certain array properties map to SQL statements that repre-
sent hints of primary importance to the query optimization
process.

Optimization: integrity constraints. Recall from Sect. 2.3
that arrays are stored as relational tables with one column
per dimension and one additional column for values. Arrays
DT and S are therefore stored as relations DT (d, t, v) and
S (d, v). The following integrity constraints exist on index
columns: (i) DT (4, t) is the primary key of relation DT;
(i1) S (d) is the primary key of relation S; (iii) DT (d) is
a foreign key for the primary key S (d). Such constraints
greatly improve cardinality estimations, which in turn affect
choices on the mutual order and the physical implementation
of relational operators. They translate, for tables DT and S,
to the following SQL statements:

ALTER TABLE DT ADD PRIMARY KEY (d,t);
ALTER TABLE S ADD PRIMARY KEY (d);
ALTER TABLE DT ADD FOREIGN KEY (d)
REFERENCES S(d) ;

Optimization: access patterns. SRAM adopts the policy
to store persistent arrays in relations whose tuples are sorted
on their primary key. This corresponds in SQL to creating a
clustered index for each of these tables:

CREATE CLUSTERED INDEX IDX_ DT on DT (d,t)
CREATE CLUSTERED INDEX IDX S on S (d)

Creating such indexes can affect the choice of algorithms
and improve efficiency dramatically. In our example, a fast
MergeJoin algorithm would be preferred, exploiting the fact
that both tables are sorted on the join attribute.
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2.5.2 Using the MonetDB/X100 backend

This paper discusses the usage of SRAM with the
experimental MonetDB/X 100 database engine (see Sect. 3).
MonetDB/X100 currently provides a non-declarative rela-
tional query language, and does not include an automatic
query optimizer. SRAM, when used in combination with
MonetDB/X100, maps relational algebra expressions directly
onto the MonetDB/X100 query language, using an ad-hoc
relational optimizer. The logical optimization phase adopts
common strategies, such as join reordering and join elimina-
tion. Note that it is possible to limit such strategies to a small
subset of the ones usually provided by most common-purpose
SQL RDBMSs, because of the very predictable structure of
tables and queries that SRAM generates. The physical opti-
mization phase is especially tuned for exploiting the charac-
teristics of the MonetDB/X100 execution engine.

3 Experimental setup

We used SRAM to build an IR application that runs the
TREC-TB efficiency task. Section 3.1 describes the set-up of
this IR application, including the (best-practice) IR methods
we selected for it. Our main purpose with this application
is to demonstrate the flexibility and efficiency with which
IR retrieval models can be specified and implemented using
SRAM.

In Sect. 3.2 we detail on the data preparation process for
the TREC-TB dataset. Parsing and stemming phases are per-
formed by a separate program, which generates compressed
relations for the two matrices needed to bootstrap the col-
lection indexing as described by the Matrix Framework for
IR. Thereafter, in Sect. 3.3 we describe the most important
features of our MonetDB/X100 relational database backend.
Here, we will give special attention to the database compres-
sion features offered by MonetDB/X100.

3.1 TREC-TB

TREC TeraByte track [12] has introduced a task to evaluate
IR system efficiency on ranking a large web-crawled col-
lection of documents (the GOV2 collection). This data set
consists of 25 million web documents, with a total size of
426 GB. System efficiency is measured by total execution
time of 50,000 queries. Effectiveness is evaluated by early
precision (p@20) on a subset of 50 preselected queries for
which relevance judgments are available.

3.1.1 Okapi BM25 as an array query

We selected the top-scoring Okapi BM25 [33] formula as the
IR retrieval model for these experiments. Note that we select
BM2S5 just for its ubiquity and aptness for TREC-TB.
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Table 2 Global constants used for TREC-TB

Symbol Meaning

ki BM25 parameter (1.2)

b BM25 parameter (0.5)

np Number of documents (25M)
avgdl Average document length (491)

Table 3 SRAM Arrays used for TREC-TB

Name Symbol Meaning Array(type, €)  Size
LD;g 3dpp doc at location? sparse(bool,0)  12.3Gx25M
LT, dtr.r term at location? sparse(bool,0)  12.3Gx12M
TDia frp freq of (term,doc)  sparse(int,0) 12Mx25M
Sa |D| size of doc dense(int) 25M
F fr doc-freq of term sparse(int,0) 12M
Q! T term id dense(long) variable
The BM25 document scoring formula is:
S](gﬁ/[)% = Z @wp, T (2)
TeQ
np (kv +1)- fr.p
wp,7 = log <—) : o= 3
frl fro 4k (A=) +b- 22

The constants used in this formula are shown in Table 2 and
all arrays used in Table 3. Note that these arrays are defined
as in the Matrix Framework for IR (see Sect. 3.2 for more
details), although the naming conventions can differ slightly
from [34]. One can observe that the SRAM expression for the
BM25 document score is an almost direct transcription of the
mathematical formula to ASCII characters, which demon-
strates the intuitiveness of array comprehensions as an IR
query language:

s (d) = sum( [ w(d,Q(t)) | t 1)
w(d,t) = log( $Ndocs / F(t) )
* ((Skl + 1) * TD(t,d))

/ (TD(t,d) +

$k1 * ((1-Sb)+(sb*s(d)/savgdl)))

The above array expressions correspond to (2) and (3),
respectively. Notice that they are defined as functions, i.e., as
non-materialized arrays.

The arrays F;, T D; 4, and Sy contain document frequency
for terms ¢, within-document term frequency for (¢, d) pairs,
and document size (length) of documents d, respectively. The
dense array Qi enumerates the query terms for each query Q.
These query vectors are temporary objects, typically instan-
tiated inside the query, using the explicit array constructor
syntax defined in Sect. 2.2. Finally, the following expression
selects the best 20 scored documents:

D20 := topN(
S20 := [s(d)

[s(d) | 4], 20, DESC )
| d](D20)

First, the indices of the 20 highest scored documents are
retrieved from the array [s (d) | d] by the TopN () con-
struct and materialized as array D20. Then, the scores of
those documents are fetched by dereferencing the array
[s(d) | 4] with D20.

3.1.2 Application-level IR optimizations

In our TREC-TB experiments we applied three additional
best-practice IR application-level optimizations: two-pass,
score quantization and distribution.

Two-pass. The BM25 retrieval model scores each document,
regardless the number of matching query terms. Broder et al.
[8] have proposed a two-pass processing strategy based on
the heuristic that documents that contain more query terms
are likely to obtain a better score. The first pass ranks only
documents that contain a set of terms with summed weights
exceeding a pre-defined threshold. This may reduce signifi-
cantly the number of documents considered, improving exe-
cution time. Only when the first pass does not return enough
documents, a second pass is performed that considers all
documents.

We experimented with a simplified version of this
approach, where the first pass ranks only documents contai-
ning all query terms. As this strategy does not compute the
true BM25 score, we use the term BM25C for it. The C-suffix
stands for “Conjunctive”, as we look for documents that have
the conjunction of all query terms (similarly, we may call
the real BM25 computation “Disjunctive”). Thus, in TREC-
TB, our IR application first computes the top 20 documents
using the conjunctive expression, and only if | D20| < 20, it
actually computes the top-N of the disjunctive expression. If
a query has fewer terms, if these terms are more frequent, or
if these are likely to co-occur, the probability of the conjunc-
tive expression finding enough documents increases. In the
TREC-TB query set, the second pass turns out to be neces-
sary in only 15% of the queries.

The conjunctive scoring formula multiplies the BM25
score with a (0,1) boolean that is only 1 for those documents
that have all terms:

51(31134)25(: = H (wD,T > () * Z wp., T
TeQ TeQ

This is transcribed in SRAM syntax as follows:

s(d) = prod(
* sum(

[ w(d,Q(t)) >0 [ £ 1)
[ w(d,0(t)) | £ 1)

Multiplications of arrays with such sparse (boolean) matri-
ces can significantly improve the running time of a query.
The underlying reason is that such multiplications can make
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the result sparser, and thus smaller, when considering its
representation as a relational table. This is the reason why the
conjunctive variant, being a multiplication on the disjunctive
(normal) BM25 formula, turns out to be much faster, and
makes the two-pass strategy beneficial (see Sect. 4).

Score materialization and quantization. The BM25 score
for document d is the sum of all w(d,t) term-document
scores for all terms ¢ in the query. The SRAM array func-
tion w(d, t) is quite compute-intensive, as it contains four
floating-point multiplications and additions, three divisions,
and one logarithm. It is a best-practice in IR to pre-compute
(materialize) such partial scores. In principle, SRAM could
actually use compiler techniques similar to strength reduc-
tion, to automatically extract query-independent parts from a
scoring formula, and materialize these. We consider this fur-
ther work. For these experiments, we just declared w(d, t)
as a persistent array instead of an array function.

A drawback of materializing floating-point wp 1 scores,
is that, unlike the small integer numbers fp 7, floating point
numbers are much harder to compress (see Sect. 3.3.1 for
more on compression). An alternative to storing the wp 7
values is to replace these by so-called score ranks [3]—small
integer values that are the result of quantization of floating
point scores. For example, the linear Global-By-Value quan-
tization

’ a)D,T — L
“pT = [q ' mJ b

where L and U are the minimum and maximum values of
wp.7 in the entire collection, produces integer values bet-
ween 1| and ¢ and € is a small threshold (not a default value!).
Quantization with too small integers can lead to precision loss
in retrieval, and after some experiments we settled for 8-bit
integers (bytes).

Distributed execution. Our IR application is a program that
receives a full-text query, stems the keywords into terms,
and uses SRAM to generate and run a database query (or
sometimes two queries, in the two-pass strategy), and finally
formats and returns the names of the top-N documents. A
common technique to improve IR query throughput (as mea-
sured in TREC-TB) is distributed IR query processing [5, 19].
Distribution is relatively easy in IR, as one can simply use
multiple IR retrieval setups that each index only a partition
of the full document collection. In our case, we use multi-
ple array database servers on separate machines, and the IR
application sends queries to all these servers in parallel, and
combines the top-N results in a single top-N. Notice that in
the two-pass strategy, this can happen twice; the queries for
the second phase are only sent if the total amount of scored
documents returned by all databases in the first phase is less
than N.
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We can expect the average query times of the different
servers to be identical, as the server hardware is identical
and the dataset is perfectly partitioned, However, query times
from individual servers naturally exhibit a certain variance,
and the final query answer is as slow as the slowest response.
This variation in query times may be caused by many factors
(OS scheduling, I/0O interference, network events, etc.) and
can never be fully avoided. Thus, the database servers will
be idle sometimes, waiting for a slower server, or waiting
for the network while receiving the next query or while sen-
ding aresult. The latest edition of TREC-TB therefore allows
multiple queries (from multiple query streams) to be issued
simultaneously to the IR system. The net effect in a distri-
buted architecture is that instead of spending time waiting,
all servers can always be kept busy, such that throughput
is optimized. In principle, IR system throughput then sca-
les perfectly with parallelism, which is confirmed in Sect. 4.
We implemented multiple query streams by simply running
a different instance of our IR application for each
stream.

3.2 TREC-TB data preparation

To parse the TREC-TB GO V2 collection, we used a pro-
gram that performed standard Porter stemming [31] and stop
word removal (the 19 most common words were used as stop
words). It sequentially scans all files in the collection, and for
each term itencounters writes out a term identifier and a docu-
ment identifier, to two separate files. We can view the resul-
ting single-column files as two-column [location, term]
and [location, document] relations, if we attach to each
value a (virtual) densely increasing sequence number
location. Our relational backend has support for identity
columns (#rownum), as well as tables stored in binary files,
such that these files are treated by it as database relations.
These two binary relations, in turn, represent the two sparse
boolean matrices location-term L7} ; and location-document
LDy 4, as used in the Matrix Framework for IR [34]. As men-
tioned previously, sparse boolean arrays do not need to mate-
rialize the value column because it is known to be the negated
default value. Thus, the relational representations LD and LT
of sparse boolean matrices LD; 4 and LT;; just consist of
their dimension columns (which together form the primary
key).

As described in the Matrix Framework for IR, T D; 4 is
computed from these in SRAM by a simple matrix multipli-
cation:

TD := mxMult( mxTrnsp(LT), LD )
Sq is computed as a summation over L D:
S := [ sum([ LD(1,d)

| 11) | 4]
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Scheme Bits

LD g4 LD table — 12.3 Gtuples (output file of parsing)

l major-key LD.location Location id Long #rownum 0

d minor-key LD.docid Document id Int none 32

LT}, LT table - 12.3 Gtuples (output file of parsing)

[ major-key LT.location Location id Long #rownum 0

t minor-key LT.termid Term id Long none 64

Dy}, TD table - 3.5 Gtuples, term-document info

t major-key TD.termid Term id Long PFDp— 2.13

d minor-key TD.docid Document id Int PFDy—g 11.98

fr.p TD.tf Frequency of T in D Int PF;_g 8.13

oT,D TD.score Score of T in D Float none 32

a)’T_ D TD.scoreQ Quantized score Int PFp_g 8

Sq ' D table — 25 Mtuples, document info

d key D.docid Document id Int #rownum 0

|D| D.doclen Document length Int none 32

F T table — 12 Mtuples, term info

t key T.termid Term id Long #rownum 0

fr T.ftd Doc frequency Int none 32

Ql..030000 transient Q' tables — avg. 4 tuples (query len)

t Q' .termid Term id Long none 64

Compression: PF=PFOR, PFD=PFOR-DELTA, for all base=0

Similarly, the computation of F; requires a summation over
T D; 4, whose values are first converted from term-document
frequency to term-document presence/absence:

F:=[sum([min(TD(t,d), 1) | 4 1) | t]

Table 4 shows the resulting database schema, with sugge-
stive column names for clarity of presentation.

Since we make the sparse arrays listed above persistent,
SRAM needs them clustered on their primary key (i.e., sorted
on that order). The most expensive step in data preparation
is doing so for T D; 4. Sorting its underlying relational table
corresponds exactly with creating an inverted list from a table
of postings. In all, our Pentium4 server took 7 h for all TREC-
TB data preparation.

3.3 MonetDB/X100

MonetDB/X100 is an experimental relational database
engine, optimized for high performance data warehousing
and OLAP workloads. It relies on the concept of vectorized
in-cache query execution to achieve good CPU utilization [7],
and a column-oriented storage manager that provides trans-
parent light-weight data compression [39] to improve
I/O-bandwidth utilization. An overview of the system archi-
tecture is presented in Fig. 1.

MonetDB/X100 offers a language based on standard
relational algebra, providing operators such as Scan,
ScanSelect,

Figure 1 shows an operator tree, being evaluated within
MonetDB/X100 in a pipelined fashion, using the traditional
open(), next(), close() interface from the Volcano [20] itera-
tor model. However, each next() call within MonetDB/X100
does not return a single tuple, as is the case in most traditional
DBMSs, but a collection of vectors, with each vector contai-
ning a small horizontal slice of a single column. Vectorization
of the iterator pipeline allows MonetDB/X100 primitives,
which are responsible for computing core functionality such
as addition and multiplication, to be implemented as simple
loops over vectors. This results in function call overheads
being amortized over a full vector of values instead of a sin-
gle tuple, and allows the compiler to produce data-parallel
code that can be executed efficiently on modern CPUs. Fur-
thermore, the size of a vector is chosen in such a way, that
all vectors needed by a query fit the CPU cache. This way,
we avoid materialization of tuples that are being passed from
one operator to the next, minimizing main memory access
overheads. Such a vectorized in-cache architecture allows
MonetDB/X100 query evaluation to be an order of magnitude
faster than existing technology on data- and query-intensive
workloads [7].

Project, Aggr, TopN, Sort, Join.
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Fig. 1 MonetDB/X100 architecture (IR query example)

The processing power of MonetDB/X100 can make the
system extremely I/O-hungry on certain queries. If the data-
base does not fit main memory, the only solution to this pro-
blem is to increase the available I/O bandwidth. This can be
done by adding more hardware, or by optimizing the DBMSs
buffer manager for bandwidth utilization. With respect to
the latter, MonetDB/X100 employs a buffer manager, cal-
led ColumnBM, that relies on a column-oriented storage
scheme, to avoid reading unnecessary columns from disk.
Further, the granularity of disk accesses is in blocks of several
megabytes, to optimize for fast sequential I/O.

In MonetDB/X100 we take the point of I/O-bandwidth uti-
lization even further, by integrating ultra light-weight column
compression, that happens on the boundary between RAM en
the CPU cache (whereas other compressed database systems
typically target the disk-RAM boundary). These compres-
sion schemes are integrated into the DBMS in such a way, that
data blocks are stored in compressed form in memory (such
that more data fits the buffer cache), and data is only decom-
pressed on-demand, at vector granularity, directly into the
CPU cache, where it is fed into the operator pipeline, without
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writing the uncompressed data back to main memory, as can
be seen in Fig. 1.

For compression to improve speed when using RAID sto-
rage systems delivering hundreds of megabytes per second,
we need decompression routines that can uncompress several
gigabytes of data per second. To reach such speeds, we
recently introduced the compression algorithms PFOR and
PFOR-DELTA [39], that are designed to sacrifice some per-
formance in terms of compression ratio, in exchange for fast
decompressibility.

3.3.1 FOR, PFOR and PFOR-DELTA

Frame Of Reference (FOR) is a database compression
method that stores numerical table columns in a disk-block
as the increment to a certain base value. The increments
are represented in a small integer, with a fixed bit width b.
Each disk-block may define a different base value and b.
We recently proposed PFOR (Patched FOR), an extension of
FOR [39] that stores values as either a code or an exception.
In PFOR, codes are small integer increments to a base, like in
FOR. Exception values are stored in uncompressed form at
the end of a disk block walking backwards. PFOR-DELTA is
PFOR on the differences between subsequent column values.

PFOR and PFOR-DELTA can handle data distributions
with outliers better than FOR, because they can represent
outliers as exceptions, allowing b to stay low. This makes
them better suited to compress inverted lists, which con-
sist of increasing integer document identifiers that contain
a term (or gaps, the differences between subsequent identi-
fiers). Custom-built IR systems routinely employ compres-
sion of inverted lists [38]. Recently in IR there is a trend
towards compression schemes that sacrifice some compres-
sion ratio for better decompression speed. Carryover-12 is a
recent example of such a compression scheme [2].

Table 5 shows that on a number of IR datasets, PFOR-
DELTA is 5-6 times faster than Carryover-12, at a cost of
15-20% lower compression ratio. Given the bandwidth pro-
vided by modern multi-disk hardware (i.e., 300—600 MB/s),
and IR compression ratios of around 3, a CPU needs to be
able to produce 1-2 GB/s of uncompressed data just to keep
up with the disks. As the CPU needs to compute the IR
ranking as well, decompression bandwidth must actually be
significantly higher to prevent the IR system from being I/O
bound. The main drivers behind the high speed in PFOR and
PFOR-DELTA are their vectorizable algorithms, i.e., they
decompress column values without control dependencies (if-
then-else), using a technique called “patching”. By avoiding
if-then-elses, modern CPUs are not slowed down by branch-
misprediction events, and the vectorization exposes data par-
allelism which modern super-scalar CPUs can exploit using
loop pipelining and speculative execution to reach high IPC
(Instructions Per Cycle) [39].
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Table S PFOR-DELTA vs carryover-12

PFOR-DELTA carryover-12

Comp Comp Dec Comp Comp Dec

ratio MB/s MB/s  ratio MB/s  MB/s
INEX 1.75 679 3053 2.12 49 524
TREC fbis 3.47 788 3911 4.26 98 740
TREC fr94 3.12 682 3196 3.49 84 689
TREC ft 3.13 761 3443 347 84 704

TREC latimes  2.99 742 3289  3.30 79 683

As Table 4 shows, the full index (the D, T, and TD (docid,
score) tables) occupies approximately 29 GB uncompres-
sed when we ignore the termid column in 7D and replace
it with a range index of negligible size. After compressing
TD.docid using PFOR-DELTA, and quantizing and com-
pressing TD . score using PFOR, the total index size is redu-
ced to roughly 9 GB.

4 TREC-TB experiments

We now report on experiments running the TREC-TB 2005
efficiency task with our IR application on top of SRAM and
MonetDB/X100.

For these experiments, we used a a dual-CPU 3GHz Pen-
tium Xeon (only 1 CPU used for processing) with 4GB of
main memory, and a software-RAID system consisting of 12
disks. The estimated system cost is EUR 4000. In all tests we
run each query twice, which allows presenting results of cold
and hot runs. The hot run represents pure processing time for
a query, while the cold run gives insight into the overhead
of fetching the data from disk. In all experiments presented
in this section we used a full Terabyte TREC dataset and a
subset of 5,000 randomly chosen queries.

In the following, we describe a number of IR and array
optimization techniques, of which Table 6 displays the suc-
cessive results.

4.1 Basic BM25 query

The array-query presented in Sect. 3.1.1 for the BM25 retrie-
val model results in the following physical query plan for the
MonetDB/X100 database system: '

' For clarity, we simplify these relational plans to take just the top-N on
the relation representing the sparse array. Rule (TOPN-DESC) would
add some elaborate (yet cheap) operators to take care of default values
entering a top-N.

TopN (
DenseAggr (
Project (
FetchJoin (
FetchJoin (
MergeJoin (Scan(Q), TD, TD.termid = Q.termid),
T, T.termid = Q.termid),
D, D.docid = TD.docid),
[ D.docid, scores = BM25(TD.tf,D.doclen,T.ftd)]),
[ score = sum(scores) 1),
[ score DESC ], 20)

Here, the computation of partial scores, as in (3), has been
replaced by the macro BM25 () for sake of clarity.

The above plan can be viewed as a logical relational plan
by substituting Denseaggr for Aggr, and MergeJoin and
FetchJoin for Join.

Since termidis the first attribute of the primary key, which
is ordered, the join with the (tiny) query table ¢ can be handled
with a MergeJoin. This join has a sequential access pattern
and only touches those disk blocks actually needed; thus is
quite fast. The fetch-joins perform a foreign key-join with
an identity column (both T. termid and D.docid are of type
#rownum) of the small, memory-resident, tables D and T. This
particular kind of join is especially efficiently implemented
in MonetDB/X100 as a pointer-based lookup.

Some additional performance analysis showed that of the
1.58s this query takes (see Table 6) in the hot run, almost
1.35 are spent in aggregation. Dense aggregation can be app-
lied if the GROUP-BY is a single cardinal attribute with a
known domain size. In this case, docid indeed is a cardinal
between 0 and 25 M. Internally, dense aggregation creates an
in-memory array, used to keep all aggregate totals, that can
be accessed by position. Even though the minor ordering of
the TD table on docid will cause “nice” sequential passes
over this array for each term in the query, the required initia-
lization of all 25M floating point aggregate totals to a value
of 0.0, and the processing of this 25M result by the top-N
operator, make dense aggregation a costly operator.

We also experimented with hash aggregation, but doing
so made the queries twice slower. In the TREC-TB queries,
hash aggregation inserts on average 1.4M documents (from
the total 25 M) into a hash table, and each aggregate value is
processed 3 to 4 times (i.e., as many terms as a query has). The
inefficiency of the hash aggregation is explainable as relatio-
nal implementations of this operator tend to be optimized for
the inverse usage pattern (i.e., updating few aggregate values
many times). For this reason, we stuck to dense aggregation.

4.2 Aggregate unfolding

Consider the following SRAM query, where terms are enu-
merated explicitly, and dereferenced in an aggregate:

10 42 ]

Q := [
S [ w(d,Q(t))

(d) = sum(

| £ 1)
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The very low cardinality of array Q; (i.e., few query terms),
together with the availability of explicit query term id’s in
the SRAM expression, make the array optimizer consider an
alternative plan, where the summation over the query terms
is unfolded to a series of additions:
s(d) = w(d,10) + w(d,42)

Apart from avoiding the aggregate and transforming it into
a computation (Project), this approach has the additional
benefit that the join between TD and the query ¢ is transfor-
med into |Q| — 1 MergeOuterJoins. What is more, because
TD has termid as the major column of its primary key, all
selected tuples appear consecutively and the RDBMS can use
an efficient clustered RangeSelect operator per term, which
avoids scanning TD. termid by using a fast index lookup. As
MonetDB/X100 stores relations in a column-wise fashion,
only those columns that are used must be read from disk.”
The fact that we do not need to scan TD.termid therefore
means that the unfolded approach needs to perform less I/O.

TopN (
Project (
MergeOuterJoin (
RangeSelect ( TD1=TD, TD1l.termid=10 ),
RangeSelect ( TD2=TD, TD2.termid=42 ),
TD1.docid = TD2.docid),
[ S.docid = MAX(TD1l.docid, TD2.docid),
score = TDl.scoreQ + TD2.scoreQ 1),
[ score DESC ], 20)

Because the additionw (d, 10) + w(d, 42) represents
a Map(+, A, B) operation between shape-aligned arrays,
Rule (ALIGNED-MAP) could join the corresponding tables
by means of a MergeOuterJoin operation.

Table 6 clearly shows the effect of eliminating the aggre-
gation from the query plan, which accounted for 1.35 s both
cold and hot: performance improves to 468 ms (cold) and
328 ms (hot).

The query plan obtained by unfolding the sum aggregate
coincides with the well known Document-At-A-Time (DAAT)
IR processing model [37]. It is interesting to note that the
system does not need to be explicitly instructed to imple-
ment such a strategy. It comes as the result of a more generic
rewriting rule, which can be applied to a variety of patterns
that do not necessarily find an equivalent in the IR application
domain. The equivalence with the DAAT processing model
is completed by the observation that the clustered storage of
arrays discussed in Sect. 2.3 makes the T'D; 4 array act as an
inverted list for this processing model.

2 Column-wise storage also has disadvantages, as the number of I/O
requests it needs gets multiplied by the amount of columns. In the future,
we plan to use PAX [1] storage in our IR database schema, to avoid this
disadvantage.

@ Springer

Table 6 SRAM and MonetDB/X100 on TREC-TB

Run name (+ added feature) p@20 Avg (ms)
Cold Hot

BM25 0.546 1826 1584

BM25U (4unfolding) 0.546 468 328

0.546 439 333
0.546 194 65
0.543 161 63

BM25UC (+compression)
BM25UCM (+materialization)
BM25UCMQ (4quantization)
BM25UCMQC (+4conjunctive) 0.538 109 13
BM25UCMQC2 (+2-Pass) 0.547 117 21
12-disk 3 GHz Pentium4 4 GB RAM server
BM25UCMQC2D (+Distributed 8-way) 0.547 - 11.3
BM25UCMQC2D8 (48 Streams) 0.547 - 32
8 dual-core 2 GHz AthlonX2 2 GB RAM workstations

4.3 Compression, materialization and quantization

Both in the BM25 and the BM25U run, we used uncom-
pressed columns. This means that, in case of BM25U, which
only touches the TD.docid and TD.tf columns, we read
32 + 32 = 64 bits per tuple. If we used the compressed vari-
ants of these columns instead (see Table 4), the per tuple cost
is reduced significantly to 11.98 4 8.13 = 22.11 bits.

Table 6 shows, however, that using the compressed TD
table improves the cold run only marginally. The reason is
that the unfolded query is fully computation-bound on the
BM25 expression. However, if we estimate the I/O time as
the difference between the cold and hot runs, we can still
see the benefit of compression (140 ms uncompressed versus
106 ms compressed). The hot run is only slightly slower than
in the uncompressed case, which illustrates that decompres-
sion overhead is very minimal. When we use the materialized
T DY ,, which avoids computation of partial BM25 scores, we
see a significant performance enhancement.

One drawback of the materialized representation is that
TD. score is a 32-bits floating-point, which is not easily com-
pressible. Quantization substitutes TD. score for the 8-bits
TD. scoreQ, which reduces the tuple size to 19.98 bits. This
size reduction saves another 33 ms in the cold run, bringing
itdown to 161 ms. One should note that quantization slightly
reduces the precision.

4.4 Conjunctive and 2-Pass

In Sect. 3.1.2, we described a conjunctive strategy that multi-
plied the document scores with a boolean (0,1) constant that
is only 1 if that document contains all terms:

s(d) = (

(

)) > 0 |
)) |

1)

prod( [ w(d,
d 1)

o(t t
* sum( [ w(d,0Q(t t

7
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Although this expression is a superset of the one for the nor-  Table 7 Performance compared to custom IR systems
mal BM25 qgery, we describe here a number of optimizations - Index p@20 CPUs Time per
that make this formula much faster to compute. By unfol- size (GB) query (ms)
ding both aggregates, as explained in the previous section,
. . . s Indri 100 0.5610 1 1724
the expression above is rewritten into:
Wumpus 14 0.5310 1 91

s(d)=(w(d,$tl)>0)*(w(d,$t2)>0) *... Zettair 44 04770 1 390

*(w(d,stl)+w(d, St2)+...) MonetDB/X100 9 0.5470 1 117

The arithmetic optimization and rules (MAP), (EMPTY-1),
and (EMPTY-A) translate the multiplications in the expres-
sion above to projections on top of join operators. In contrast,
for the additions in the second line, according to Rule (ALI-
GNED-MAP), full outer join operators are needed.

If W denotes the relation corresponding to each partial
score w (d, $tj), the join sequence for a 3-term expression
becomes as follows (ignoring projections):

(th X g Wrz Mg Wl3) Mg (th ==y WzZ —pa—y Wt3)

Notice that all join and outer-join equality conditions are on
the attribute d, which is the only dimension of the corre-
sponding array, thus the key attributes for all the relations
W'/ . This allows the simplification of outer-join operators to
join operators [16], as all the NULL-padded tuples produced
by outer-joins will be subsequently discarded by the joins on
the same key:

(th Xy Wt2 Xy WIS) Xy (th Mg sz Xy W[3)

The same conditions allow to verify that the expression above
contains redundant key equi-join operations. Standard join
elimination techniques [10] reduce it to the following expres-
sion:

Wt] Mg sz X g Wt3

Finally, standard join order optimization [35] can schedule
the execution of the most selective join operations first, to
reduce as soon as possible the cardinality of intermediate
results. In IR words, this means computing the score of the
less frequent terms first, exploiting the typical skew of the
Zipfian term distribution to discard document candidates
early.

Replacing the outer-joins by joins in the order of cardi-
nality (i.e., term frequency) has as effect that the number
of candidate documents quickly decreases. Whereas the top-
N in the default plan chooses among 1.4 M documents on
average, in the conjunctive case the average amount of can-
didates is down to 62K, such that the query executes much
quicker in the hot run (from 63 to 13ms). The number of
candidates still varies widely, and in 15% of the TREC-TB
queries, the conjunctive strategy yields in fact less than the 20
documents required for P@20. This explains the deteriora-
tion in precision to 0.53, visible in Table 6. This deterioration
is mitigated using the 2-pass strategy, settling our cold run at
117 ms and the hot run at 21 ms.

4.5 Distributed experiments

For the distributed experiments, we used our LAN with eight
workstations, all dual-core 2 GHz Athlon64X2 CPUs with
2GB RAM and two 200 GB SATA disks. These Linux PCs
(each worth around $800), are slightly slower than the 3 GHz
Xeon server in the hot runs: it averages 23 ms (vs. 21). The
main advantage of the distributed setup is that only the hot run
matters: thanks to database compression, the entire dataset
(9GB) fits in the combined RAM buffer pool of the § PCs
and I/O is eliminated as a performance factor.

However, as our results show, the speedup with eight
machines is far from perfect (it decreases from 23 only to
11 ms). This is caused by a quite significant variance in ser-
ver response times. With eight servers, the slowest one, which
determines the overall query latency, takes twice as long as
the fastest (11 vs. 5.5ms). Even the slowest server (11 ms) is
not fully busy, as part of the time is spent on network com-
munication. In a real IR system, however, such load imba-
lance and communication latency do not necessarily affect
throughput, as the system will be handling multiple queries
continuously such that load imbalance differences between
servers even out, and network communication of one request
is hidden behind computation time of another. In the Ter-
aByte TREC efficiency task of 2006, this is mimicked by
the ability to run multiple queries (“streams”) concurrently.
The last line in Table 6 shows that with eight concurrent stre-
ams eight servers are able to process around 300 queries per
second, taking an amortized 3.2 ms per query only (vs. 23 ms
for one server).

4.6 Discussion

To put our results in perspective, Table 7 summarizes the
efficiency and precision of three custom IR engines that were
made available for comparative runs in the 2006 TeraByte
Track. These runs were performed on the same hardware
as our single server MonetDB/X100-based runs, using the
same 2005 efficiency topics, and operating on cold data. This
makes for a fair comparison of the various systems. Note
that this particular setting (cold, single-server) does not favor
MonetDB/X100, as the 8.5/s throughput achieved (117 ms
latency), is 36 (!) times lower than the 8-PC distributed run.
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Table 7 illustrates that the MonetDB/X100-based results
are competitive, loosing only to Wumpus in terms of effi-
ciency (117 vs. 91 ms on cold data). In terms of precision,
MonetDB/X100 scores second as well, after Indri (0.561 vs
0.547). However, Indri’s win in terms of precision, comes at a
significant cost in terms of execution time (117 vs 1,724 ms).
MonetDB/X100. We see these results as proof that a read-
oriented compressed column-store with strong attention paid
to expression evaluation efficiency (the vectorization in
MonetDB/X100) can achieve the same raw performance as
a custom-built IR system. Thus, we do think that the extreme
take in MonetDB/X100 on optimizing database architecture
to the needs of modern hardware caters to the needs of a
number of application areas where more traditional database
architectures currently simply fail on raw speed, and IR is one
of those areas. Sticking to the topic of database architecture,
we have shown that generic light-weight database compres-
sion can enhance I/O based IR performance. On serious disk
subsystems, such as our 12-disk RAID with its 350MB/s
read bandwidth, the multi-GB/s decompression bandwidths
of schemes like PFOR-DELTA can accelerate I/O (traditio-
nal compression methods such as 1zip are too slow for this).
Database compression is even more important in the distri-
buted IR runs, as it allows a cluster of cheap machines to
keep the main indices resident in the aggregate RAM of the
cluster (the “Google” approach [5]). When operating inside
RAM, with I/O removed from the performance equation, fast
decompression has an even more direct impact on overall
query throughput. Just like with efficient expression evalua-
tion thanks to vectorization, the IR application benefits from
the low-level idea of compression between RAM and CPU
cache boundaries transparently offered by a DBMS, without
any low-level computer architecture-conscious engineering
required.

SRAM. The relational DAAT query plans that perform inver-
ted list merging, used here to achieve our highest performance
results, are not new at all, but we do consider it a major suc-
cess that we were able to generate these plans automatically,
basically starting from the mathematical formula that defines
BM25. We are convinced that the array paradigm proposed
in the Matrix Framework for IR can only be implemented
using sparse arrays (materializing arrays like LT or T D
is simply infeasible on non-trivial collections). The SRAM
approach of mapping its generic array expression language
onto a relational representation of sparse arrays, turned out
to be a fruitful source of a large collection of query optimiza-
tion strategies. This collection is by no means complete, and
we are currently working on ways to incorporate strategies
like max-score pruning and Term-At-A-Time processing. One
can foresee that the rules described in this paper can acce-
lerate a wider family of IR models, e.g., all that depend on
the aggregation (summation) of a number of scores. It is our
objective to verify this claim in the near future and express
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and experiment with an ever wider collection of IR models
and retrieval strategies, exactly coinciding with the original
intention of the Matrix Framework.

Additional retrieval models. The same collection index
based on L D; 4 and LT; ; matrices can be used to implement
other retrieval models described in [34]. We briefly discuss
the Language Modeling approach [22,30]:

S;‘[A)/} = Z a)D,T (4)
TeQ
wp,r =log(x- P(T|D)+ (1 —2) - P(T)) (5
A P(T|D)
=rank l0g (m + 1) (6)
JT.p fer
P(T|D) = Dl P(T) = .

where fcr and ny denote collection term-frequency and col-
lection size (number of locations), respectively.

Formulas (5) and (6) produce equivalent rankings (indi-
cated by =pank). The latter uses a presence (as opposed to
presence/absence) weighting scheme [32] and can be imple-
mented more efficiently, as it assigns a zero weight to terms
that are not present in a document. In sparse matrix operati-
ons, this means less computation.

The following SRAM expression implements Language
Modeling with presence weighting scheme:

s (d) = sum([ w(d,Q(t)) | £ 1)
w(d, t) = log( $1 * ptd(t,d)

/(1 - $1) * pt(t)) + 1)
ptd(t,d) = TD(t,d) / s(d)
pt(t) = Fc(t) / S$Nlocs

with the additional array fcr created at indexing time:
Fc := [ sum([ LT(1,t) | 1 1) | t 1.

An interesting area for future research includes automatic
mathematical reformulations such as the one from Formula
(5) to Formula (6). The system would be allowed to consider
the two versions as equivalent when the query asks for a
ranking, with the TopN syntax, but not for the actual scores.

5 Related work

The idea to use DBMS technology as a building block in an
IR system is pursued e.g., in [21], where the authors store
inverted lists in a Microsoft SQLServer and use SQL queries
for keyword search. Similarly, in [19] IR data is distributed
over a PC cluster, and an analysis of the impact of concurrent
updates is provided. Our approach arrives at similar strategies
as this previous work, but rather than hand-crafting a data-
base schema and query to one particular information retrieval
model, we show how to generate these automatically from
high-level array formulas. In this sense, we extend the state
of the art with respect to flexibility.
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In this work, we also try to push the state of the art of
DB+IR efficiency. The physical DB techniques for powe-
ring our IR application and their effectiveness/performance
trade-off are demonstrated here on a much larger collection
(500GB TeraByte TREC vs. 500MB in [19]) and show
significantly faster retrieval performance, using a relatively
modest hardware infrastructure. In the TREC benchmark
there were a few attempts to use database technology,
e.g., [28]. However, most of these systems used a DBMS
for effectiveness tasks only, where the system efficiency was
not an issue. Only one TeraByte TREC submission used a
system built on top of the MySQL DBMS [11], but its preci-
sion and speed (5 s per query) were disappointing compared
to other participants.

Our experiments show the importance of database com-
pression for IR applications, both to reduce disk I/O as well
as memory footprint, such that (in a distributed system) the
entire index can become memory-resident. Several commer-
cial database systems use compression; especially node poin-
ter prefix compression in B-trees (e.g., supported by DB2)
canreduce the size IR tablesifthey e.g.,use (termid, docid)
as primary key. Our PFOR extends FOR, a light-weight data-
base compression scheme for compressing correlated inte-
gers [17]. Compression is an important topic in IR, and the
superiority of inverted lists over signature files is credited to
its effectiveness [38]. Early IR compression work focused
on exploiting the specific characteristics of gap distributions
to achieve optimal compression ratio (e.g., using Huffman
or Golomb coding tuned to the frequency of each particu-
lar term with a local Bernoulli model [24]). More recently,
attention has been paid to schemes that trade compression
ratio for higher decompression speed [2,36], a point taken to
the extreme by our PFOR-DELTA.

While IR applications are commonly developed as
custom-built applications or (less commonly) implemented
on top of database systems, we are not aware of previous work
using the array data-model as a “gluing layer” for DB+IR.
Prior work by our own group has explored use of arrays in
DB+IR, using dense arrays only [4]. The formalism propo-
sed by the Matrix Framework for IR [34] is infeasible with
a dense array implementation, hence our current interest in
sparse arrays. Sparse matrix operations have also been des-
cribed in [25] as a query optimization problem, confirming
the potential of database technology for array processing,
but there the objective was to compile these into a standa-
lone program, rather than storing and querying sparse arrays
in a DBMS.

There has been prior work on array databases, either by
integrating arrays as first-class citizens in the relational data
model, or by using an ADT/blob approach.

The array query language AQL [27] has been an important
contribution toward the integration of arrays in the relational
model. AQL is a functional array language geared toward

scientific computation. The authors show that inclusion of
array support to their nested relational language entails the
addition of two functions: an operator to produce aggregation
functions and a generator for intervals of natural numbers.
The AQuery system [26], targeting financial stock analysis,
uses the concept of “arrables”, ordered relational tables, and
an extension of SQL based on the clause ASSUMING ORDER.
However, it only supports uni-dimensional arrays.

The ADT/blob approach has been pursued in [23], where
an algebra for the manipulation of irregular topological struc-
tures is applied to the natural science domain. The RasDa-
Man DBMS is a domain-independent array database system,
implemented as an abstract data type in the O, object orien-
ted DBMS [6, 15]. Its RasQL query language is a SQL/OQL
like query language based on a low level array algebra.

6 Conclusions and future work

We presented SRAM, an array database system that works
on top of the MonetDB/X100 relational database engine.
We described its array comprehension-based query language,
and explained a number of mapping and optimization rules
for translating queries on sparse arrays into efficient queries
on relational tables. Our claim that array comprehensions are
a flexible way for IR researchers to express ranking formu-
las, is aligned with the recently proposed Matrix Framework
for IR, and is demonstrated here in case of the BM25 model
in the context of the TREC TeraByte track (TREC-TB). It
turns out that our mapping and optimization rules are able to
automatically generate an efficient relational plan equivalent
to the DA AT strategy for processing inverted lists, right from
the BM25 formula. The top performance and precision on
TREC-TB, that rivals custom-built IR systems, further shows
that it is feasible to use generic DB technology for IR. The
MonetDB/X100 relational engine originally developed for
data warehousing, with its database architecture specifically
designed to match modern computer architecture (i.e., taking
into account CPU parallelism, caches and branch prediction)
was able to provide the raw muscle normally achieved by
hand-written programs (such as IR systems). Also, the fea-
ture of transparent database compression with a number of
high-performance compression schemes, was a good match
for the sparse array relations.

In future work, we will further extend SRAM to automate
a number of tasks that were left here to the IR application,
such as score materialization and distribution. We will also
test SRAM on a series of retrieval tasks (text, video, XML) to
see how far the successes achieved on BM25 extend to other
retrieval models. As for MonetDB/X100, we are investiga-
ting in detail the further possibilities of various compression
schemes, both in the sense of architecture-conscious perfor-
mance study and optimization, as well as in the sense of

@ Springer



168

R. Cornacchia et al.

extending its compression functionality towards lossy
compression schemes that could be used for automatic score
quantization with quality guarantees.
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