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Abstract Recent IR extensions to XML query languages
such as Xpath 1.0 Full-Text or the NEXI query language of
the INEX benchmark series reflect the emerging interest in
IR-style ranked retrieval over semistructured data. TopX is
a top-k retrieval engine for text and semistructured data. It
terminates query execution as soon as it can safely determine
the k top-ranked result elements according to a monotonic
score aggregation function with respect to a multidimen-
sional query. It efficiently supports vague search on both
content- and structure-oriented query conditions for dynamic
query relaxation with controllable influence on the result
ranking. The main contributions of this paper unfold into four
main points: (1) fully implemented models and algorithms for
ranked XML retrieval with XPath Full-Text functionality, (2)
efficient and effective top-k query processing for semistruc-
tured data, (3) support for integrating thesauri and ontologies
with statistically quantified relationships among concepts,
leveraged for word-sense disambiguation and query expan-
sion, and (4) a comprehensive description of the TopX sys-
tem, with performance experiments on large-scale corpora
like TREC Terabyte and INEX Wikipedia.
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1 Introduction
1.1 Motivation

Non-schematic XML data that comes from many different
sources and inevitably exhibits heterogeneous structures
and annotations (i.e., XML tags) cannot be adequately
searched using database query languages like XPath or
XQuery. Often, queries either return too many or too few
results. Rather the ranked-retrieval paradigm is called for,
with relaxable search conditions, various forms of similarity
predicates on tags and contents, and quantitative relevance
scoring.

TopX [91,92] is a search engine for ranked retrieval of
XML data. It supports a probabilistic-IR scoring model for
full-text content conditions and tag-term combinations, path
conditions for all XPath axes as exact or relaxable constraints,
and ontology-based relaxation of terms and tag names as
similarity conditions for ranked retrieval. While much of the
TopX functionality was already supported in our earlier work
on the XXL system [87,88], TopX has an improved scoring
model for better precision and recall, and a radically different
architecture which makes it much more efficient and scalable.
TopX has been stress-tested and experimentally evaluated
on a variety of datasets including the TREC [94] Terabyte
benchmark and the INEX [56] XML information retrieval
benchmark on an XML version of the Wikipedia encyclo-
pedia. For the INEX 2006 benchmark, TopX served as the
official reference engine for topic development and some of
the benchmarking tasks.

Research on applying IR techniques to XML data has
started about 5 years ago [28,43,83,87] and has meanwhile
gained considerable attention (see [8,12,32] and the refer-
ences given there). The emphasis of the current paper is on
efficiently supporting vague search on element names and
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terms in element contents in combination with XPath-style
path conditions.

A typical example query could be phrased in the NEXI
language used for the INEX benchmark [56] as follows:

//book[about (., Information Retrieval XML)
and about (.//reference, PageRank) ]
//author [about (.//affiliation, Stanford)]

This twig query should find the best matches for authors of
books that contain the terms “Information Retrieval XML”
and have descendants tagged as reference and affiliation with
content terms “PageRank” and “Stanford”, respectively.
However, beyond such exact-match results, it should also
find books with similar content, like books about ‘“statis-
tical language models for semistructured data”, but possi-
bly ranked lower than exact matches, and if no author from
Stanford qualifies it may even provide books from some-
one at Berkeley as an approximate, still relevant result. In
addition, as an additional feature (not expressible in NEXI),
we may consider relaxing tag names so that, for example,
monographs or even survey articles are found, too.

The challenge addressed in this paper is to process such
queries with a rich mixture of structural and content-related
conditions efficiently. The method of choice for top-k similar-
ity queries is the family of threshold algorithms, developed
by [40,49,73] and related to various methods for process-
ing index lists in IR [13,15,23,74,84]. These methods scan
index lists for terms or attribute values in descending order of
local (i.e., per term) scores and aggregate the scores for the
same data item into a global score, using a monotonic score
aggregation function such as (weighted) summation. Based
on clever bookkeeping of score intervals and thresholds for
top-k candidate items, index scans can often terminate early,
when the top-k items are determined, and thus, the algorithm
often only has to scan short prefixes of the inverted lists.

Applying this algorithmic paradigm to XML ranked
retrieval is all but straightforward. The XML-specific dif-
ficulties arise from the following issues:

e Scores and index lists refer to individual XML elements
and their content terms, but we want to aggregate scores
at the document level and return documents or XML sub-
trees as results, thus facing two different granularities in
the top-k query processing.

e Good IR scoring models for text documents cannot be
directly carried over, because they would not consider the
specificity of content terms in combination with element
or attribute tags. For example, the term “transactions”
in bibliographic data sets should be viewed as specific
when occurring within elements of type <section>
or <caption> but is considered less informative in
<journalname>.
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e Relevant intermediate results of the search conditions
must be tested as to whether they satisfy the path condi-
tions of the query, and this may incur expensive random
accesses to disk-resident index structures.

e Instead of enforcing a conjunctive query processing, it is
desirable to relax path conditions and rather rank docu-
ments by a combination of content scores and the number
of structural query conditions that are satisfied.

e An efficient query evaluation strategy and the pruning of
result candidates must take into consideration the esti-
mation of both aggregated scores and selectivities of path
conditions.

e [t should be possible to relax search terms and, in par-
ticular, tag names, using ontology- or thesaurus-based
similarities. For example, a query for a <book> about
“XML” should also consider a <monograph> on
“semistructured data” as a result candidate. but such a
query expansion should avoid using similarity thresholds
that are difficult to tune manually, and it must be care-
ful to avoid topic dilution that could result from over-
expansion.

Thus, a viable solution must reconcile local scorings for
content search conditions, score aggregation, and path con-
ditions. As a key factor for efficient performance, it must be
careful about random accesses to disk-resident index struc-
tures, because random accesses are one or two orders of
magnitude more expensive than (the amortized cost of) a
sequential access. It should exploit precomputations as much
as possible and may utilize the technology trend of fast-
growing disk space capacity (whereas disk latency and
transfer rates are improving only slowly). The latter makes
redundant data structures attractive, if they can be selectively
accessed at query run-time.

1.2 System overview

TopX aims to bridge the fields of database systems (DB)
and information retrieval (IR). From a DB viewpoint, it pro-
vides an efficient algorithmic basis for top-k query process-
ing over multidimensional datasets, ranging from structured
data such as product catalogs (e.g., bookstores, real estate,
movies, etc.) to unstructured text documents (with keywords
or stemmed terms defining the feature space) and semistruc-
tured XML data in between. From an IR viewpoint, TopX
provides ranked retrieval based on a scoring function, with
support for flexible combinations of mandatory (conjunctive)
and optional (“andish”) conditions as well as advanced text
predicates such as phrases, negations, etc. The key point,
however, is that TopX combines these two viewpoints into
a unified framework and software system, with emphasis on
XML ranked retrieval.
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Fig. 1 TopX components
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Figure 1 depicts the main components of the TopX system.
Software components are shown as light-grey rectangles; the
numbered components are outlined in the following. TopX
supports three kinds of front-ends: as a servlet withan HTML
end-user interface, as a Web Service with a SOAP interface,
and asaJava API. Ituses arelational database engine as a stor-
age system,; the current implementation uses Oracle10g, but
the JDBC interface would easily allow other relational back-
ends, too. The various TopX components fall into two cate-
gories: data-entry components and query-time components.

At data-entry time, when new documents are entered, the
Indexer (1) parses and analyzes the data, and builds or updates
the index structures for efficient lookups of tags, content
terms, phrases, structural patterns, etc. When dealing with
Web or intranet or desktop data that has href hyperlinks,
TopX can use its built-in Crawler (1) to traverse entire graphs
and gather documents. An offline Ontology Service (2) com-
ponent manages optional thesauri or light-weight ontologies
with various kinds of semantic relationships among concepts
and statistical weighting of relationship strengths. This com-
ponent makes use of WordNet [42] and other knowledge
sources such as Wikipedia.

Atquery-processing time, the Query Processor (3) decom-
poses queries and invokes the top-k algorithms based on
index scans. It is in charge of maintaining intermediate top-k
results and candidate items in a priority queue, and it sched-
ules the sequential and random accesses on the precom-
puted index lists in a multi-threaded architecture. The Query
Processor can make use of several advanced components that
can be plugged in on demand and provide means for run-time
acceleration:

e The Index Access Scheduler (4) provides a suite of
scheduling strategies for sorted and random accesses to

index entries. This includes simple heuristics that are rea-
sonably effective and have very low overhead as well as
advanced strategies based on probabilistic cost models
that are even better in terms of reducing index-access
costs but incur some overhead.

e The Probabilistic Candidate Pruning (5) component is
based on mathematical models for predicting scores of
candidates (based on histogram convolution and correla-
tion estimates) and also for selectivity estimation (based
on XML tag-term and twig statistics). This allows TopX
to drop candidates that are unlikely to qualify for the top-
k results at an early stage, with a controllable risk and
probabilistic result guarantees. It gives the system a very
effective way of garbage collection on its priority queue
and other in-memory data structures.

e The Dynamic Query Expansion (6) component maps
the query keywords to concepts in the available thesaurus
or ontology and incrementally generates query expan-
sion candidates. This is interleaved with the actual index-
based query processing, and provides TopX with an
efficient and robust expansion technique for both con-
tent terms and XML tag names (i.e., element or attribute
names).

1.3 Contribution and outline

This paper provides a comprehensive view of the complete
TopX system, integrating its various technical components.
The paper is based on but significantly extends earlier con-
ference papers that relate to TopX, namely [93] on proba-
bilistic methods for efficient top-k queries, [90] on efficient
query expansion, [91] on index-based query processing for
semistructured data in TopX, and [18] on index-access
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scheduling. More specifically, the current paper makes the
following value-added contributions that extend our own
prior work: a detailed description of our scoring model for
ranked retrieval based on an XML-specific extension of the
probabilistic-IR Okapi BM25 model [79], extended tech-
niques for efficient indexing and query processing based
on hybrid forms of tree-encoding [47,48] and data-guide-
like methods [44,60], a detailed description of integrating
thesauri and ontologies, and experimental studies on the
Wikipedia XML collection of the INEX 2006 benchmark.
Overall, the research centered around TopX makes the fol-
lowing major contributions:

e comprehensive support for the ranked retrieval function-
ality of XPath Full-Text [100], including a probabilistic-
IR scoring model for full-text content conditions and
tag-term combinations, path conditions for all XPath axes
as exact or relaxable constraints, and ontology-based
relaxation of terms and tag names as similarity condi-
tions for ranked retrieval,

e cfficient and scalable techniques for content-and-
structure indexing and query processing, with demon-
strated good performance on large-scale benchmarks,

e probabilistic models for approximate top-k query
processing that predict scores in sequential index scans
and can thus accelerate queries by earlier termination and
lower memory consumption,

e judicious scheduling of sequential and random index
accesses for further run-time improvements, specifically
designed for handling XML data, and

e efficient support for integrating ontologies and thesauri,
by incremental merging of index lists for on-demand, self-
throttling query expansion.

The complete TopX system is available as open source code
from the URL http://topx.sourceforge.net.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents the query-language
functionality. Section 4 presents the scoring model for ranked
retrieval. Section 5 introduces the indexes and the query
processor of TopX [components (1) and (3) of Fig. 1].
Sections 6 and 7 discuss techniques that improve efficiency:
Sect. 6 is on scheduling strategies for random accesses for
testing expensive predicates such as structural path condi-
tions [component (4)], and Sect. 7 is on probabilistic prun-
ing of top-k candidates [component (5)]. Section 8 presents
the integrated support for thesauri and ontologies and their
efficient use in query expansion [components (2) and (6)].
Section 9 extends the basic indexing scheme by hybrid
indexes for speeding up particular kinds of queries
[extension of component (1)]. Section 10 discusses imple-
mentation issues. Section 11 presents our performance
experiments.
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2 Related work
2.1 IR on XML data

Efficient evaluation and ranking of XML path conditions
is a very fruitful research area. Solutions include structural
joins [3], the multi-predicate merge join [103], the Staircase
join based on index structures with pre- and postorder encod-
ings of elements within document trees [47] and Holistic
Twig Joins [22,59]. The latter, aka. path stack algorithm, is
probably the most efficient method [29] for twig queries using
sequential scans of index lists and linked stacks in memory.
However, it does not deal with uncertain structure and does
not support ranked retrieval or top-k-style threshold-based
early termination.

Vagena et al. [96] apply structural summaries to efficiently
evaluate twig queries on graph-structured data, and Polyzotis
etal. [75] present an efficient algorithm for computing (struc-
turally) approximate answers for twig queries. Li et al. [64]
extends XQuery to support partial knowledge of the schema.
None of these papers considers result ranking and query opti-
mization for retrieving the top-k results only.

Information retrieval on XML data has become popular
in recent years; Ref. [12] gives a comprehensive overview
of the field. Some approaches extend traditional keyword-
style querying to XML data [31,51,54]. Full-fledged XML
query languages with rich IR models for ranked retrieval
were introduced in Refs. [25,28,43,87]. Extensions of the
vector space model for keyword search on XML documents
developed in Refs. [25,45,70], whereas Li et al. [66] use lan-
guage models for this purpose. Vague structural conditions
were addressed in Refs. [67,83], Amer-Yahiaetal. [11] com-
bined this theme with full-text conditions, and Amer-Yahia
et al. [10] proposed an integrated scoring model for con-
tent and vague structural conditions. More recently, various
groups have started adding IR-style keyword conditions to
existing XML query languages. TeXQuery [7] is the foun-
dation for the W3C'’s official Full-Text extension to XPath
2.0 and XQuery [100]. Fegaras [41] extends XQuery with
ranking for keyword conditions and presents a pipelined
architecture for evaluating queries but does not consider find-
ing only the best results. Al-Khalifa et al. [4] introduced a
query algebra for XML queries that integrates IR-style query
processing.

TIX [4] and TAX [58] are query algebras for XML that
integrate IR-style query processing into a pipelined query
evaluation engine. TAX comes with an efficient algorithm for
computing structural joins. The results of a query are scored
subtrees of the data; TAX provides a threshold operator that
drops candidate results with low scores from the result set.
TOSS [55] is an extension of TAX that integrates ontological
similarities into the TAX algebra. XFT [9] is an algebra for
complex full-text predicates on XML that comes together
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with an efficient evaluation algorithm; it can be integrated
with algebras for structured XML search such as TIX.

Recent work on making XML ranked retrieval more effi-
cient has been carried out by Kaushik et al. [61] and Marian
et al. [68]. Kaushik et al. [61] uses path index operations as
basic steps; these are invoked within a TA-style top-k algo-
rithm with eager random access to inverted index structures.
The scoring model can incorporate distance-based scores, but
the experiments in the paper are limited to DB-style queries
over a synthetic dataset rather than XML IR in the style of
the INEX benchmark [56], which is using a large annotated
collection of IEEE Computer Society publications (or, lately,
an annotated version of Wikipedia).

Marian et al. [68] focuses on the efficient evaluation of
approximate structural matches along the lines of Amer- Yahia
et al. [7]. It provides different query plans and can switch the
current query plan at run-time (i.e., the join order of indi-
vidual tuples following ideas of Avnur and Hellerstein [16])
to speed up the computation of the top-k results. The paper
considers primarily structural similarity by means of outer
joins but disregards optimizations for content search.

Our own prior work on ranked XML retrieval has been
published in [18,93,90,91], we discussed the relationship of
these papers to the current paper in Sect. 1.3.

2.2 Top-k threshold algorithms

The state of the art on top-k queries over large disk-resident
(inverted) index lists has been defined by seminal work on
variants of so-called threshold algorithms (TA) [37,39,40,
49,50,73]. Assuming that entries in an index list are sorted
in descending order of scores, TA scans all query-relevant
index lists in an interleaved manner and aims to compute
“global” scores for the encountered data items by means of
a monotonic score aggregation function such as (weighted)
sum, or maximum, etc. The algorithm maintains the worst
score among the current top-k results and the best possi-
ble score for all other candidates and items not yet encoun-
tered. The latter then serves as a threshold for stopping the
index scans when no candidate can exceed the score of the
currently kth ranked result. The algorithm comes in three
variants: (1) the original TA approach eagerly looks up all
local scores of each encountered item and thus knows the
full score immediately when it first encounters the item. (2)
Since random accesses may be expensive and, depending on
the application setting, sometimes infeasible, the alternative
No-Random-Access Algorithm (NRA) (coined Stream-
Combine in [50]) merely maintains such worstscore and
bestscore bounds for data items based on partially computed
aggregate scores and using a priority queue for candidate
items. Its stopping test compares the worstscore of the kth
ranked result (typically coined min-k) with the bestscore
of all other candidates. (3) Hybrid approaches, such as the

Combined Algorithm (CA) [38], extend NRA by a simple
cost-model for a few carefully scheduled random accesses
to resolve the final scores of the most promising candidate
items.

Obviously, TA is more effective in pruning the index scans
and, thus, typically stops after a lower number of overall
index accesses than NRA; but NRA completely avoids expen-
sive random accesses and, therefore, can potentially achieve
better run-times. CA, finally, aims at minimizing the over-
all query cost with regard to an environment-specific cost
ratio cr /cs of random versus sorted accesses and therefore
is the most versatile approach for a wide range of system and
middleware setups.

Numerous variants of the TA family have been studied
for multimedia similarity search [27,72,98], ranking query
results from structured databases [2], and distributed pref-
erence queries over heterogeneous Internet sources such as
digital libraries, restaurant reviews, street finders, etc. [26,
69,102]. Marian et al. [69] have particularly investigated
how to deal with restrictive sources that do not allow sorted
access to their index lists and with widely varying access
costs. To this end, heuristic scheduling approaches have been
developed, but the threshold condition for stopping the algo-
rithm is a conservative TA-style test. The IR community has
also discussed various algorithms that perform smart prun-
ing of index entries in impact-sorted or frequency-sorted
inverted lists [23,71,74,13—15]; these algorithms are very
much TA-style combined with heuristic and tuning elements.
Other top-k query algorithms in the literature include nearest-
neighbor search methods based on an R-tree-like multidi-
mensional index [5,20,30,52,53] and mapping techniques
onto multidimensional range queries [21] evaluated on tradi-
tional database indexes. In this context, probabilistic estima-
tors for selecting “cutoff” values have been developed by [30,
36,86] and applied to multidimensional nearest- neighbor
queries.

3 Data model, query language and representation

This section defines our data model and presents the external
and internal representations of queries in TopX. TopX sup-
ports queries according to both the highly expressive XPath
2.0 Full-Text specification [6] and the NEXI [95] language
used in the INEX benchmark series, which is narrowing the
usage of XPath axes to only the descendant (/ /) and the self
(.) axes and introduces an IR-style about operator instead
of ftcontains in XPath Full-Text. In the following, we
will mostly refer to the simpler NEXI syntax, as it captures
most of the expressiveness needed for IR-style vague search
of XML data considered in this paper, and, as a special case,
it allows the formulation of traditional keyword queries over
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//article[//bib[about(.//item, W3C)]]
//seclabout(.//title, XML retrieval)]
//par [about (. ,native XML databases)]

Fig. 2 NEXI-style example query

XML elements. As we will see, we allow slight, XPath-like
extensions for the path structure of the NEXI syntax.

3.1 Data model

As for our data model, we focus on a tree model for semi-
structured data, thus following the W3C XML 1.0 and 1.1
specifications, but disregarding any kind of meta markup
(<!..>) and links in the form of XLink or ID/IDRef
attributes. Attributes are treated as children of the respective
element nodes, whereas text nodes are directly associated
with their preceding element parents. Section 4 provides full
details on our special handling of text nodes. Figure 6 shows
a very simple example XML document that conforms to our
model. Currently, all index structures employed by TopX as
well as our top-k-style query processing (see Sect. 5) rely on
data trees; a generalization to arbitrary data graphs is subject
of future work.

3.2 Query model

Figure 2 shows an example query written in a NEXI-style
syntax.l

According to both the XPath and NEXI specifications,
the rightmost, top-level node test of a location path is called
the target element of the query; all other node tests in the
location path denote the query’s support elements. That is,
the target element of the query defines the result granularity,
and in a strict interpretation of the query structure, only those
elements that match the query’s target element are considered
to be valid results. In the example of Fig. 2 the par element
is the target element, and the nodes labeled article, bib,
item, sec, and title are support elements.

Instead of an explicit tag name, a query may also specify a
wildcard **’ thatis matched by any tag. The special query that
consists only of a tag wildcard and some content conditions
like in

//*[about (.,native XML databases) ]

corresponds to a keyword-only query; following the INEX
notation, these queries are called content-only (CO) queries,
as opposed to content-and-structure (CAS) queries that con-
tain additional structural constraints. The example in Fig. 2
is a CAS query.

! Strictly speaking, this query is not valid NEXI, since it contains a
location path of more than two steps, but it would be allowed, with
different syntax, in XPath Full-Text, and is supported by TopX.
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Fig. 3 Initial tree representation of the example NEXI query

Using the full XPath syntax including forward and back-
ward axes, path queries form directed graphs, potentially
having cycles. However, the TopX query processor is cur-
rently restricted to directed acyclic graphs (DAGs). Note that
in NEXI, using only forward axes between location steps
and the self axis only in about operators, the formulation
of queries by the user is even restricted to trees through the
syntax.

3.3 Internal query representation

The query interpreter analyzes the query and decomposes
it into a number of navigational and content conditions that
form the nodes of the query DAG. These nodes are connected
through typed edges, which we will refer to as structural
constraints, each of which corresponds to an XPath axis such
as the descendant or the self axis. In the above example query,
the occurrences of elements labeled section and title
are navigational conditions, the required occurrences of the
terms “XML” and “retrieval” in the latter element are content
conditions, and the requirement that the section element
is connected to the title element by the descendant axis
is a structural constraint.

The engine’s internal representation of the query is purely
DAG-based and—after parsing the query—becomes inde-
pendent of the query-language-specific syntax. Figure 3
shows such an internal representation for the example of
Figure 2. Here, the leaf nodes capture content conditions
of each about operator, all non-leaf nodes correspond to
navigational conditions, and the edges capture structural
conditions.

The main building blocks for the query processing are tag-
term pairs obtained from merging the tokens in the about
operators with their immediate parents in the path query. This
also works in the DAG case, since for the content conditions,
the last preceding navigational tag is always unique. As we
will see later, there are very efficient ways of evaluating the
tag condition and the term condition of such pairs together,
and we therefore merge them into combined tag-term content
conditions in a refined version of the query DAG.
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Va
item=)[titles)| title= par= par= par=
w3c xml |retrieval| (native) | xml databases

self self self

Fig. 4 DAG representation of the example query with combined
tag-term conditions

Figure 4 shows the resulting structure for our example
query of Fig. 2. As this structure represents multiple term
conditions for the same element in different query nodes, we
now need to explicitly express that the query result must bind
the leaves’ parents with the same navigational condition (the
parents’ tag names in this case) to the very same element of
a qualifying document. For example, the three nodes labeled
par must be bound to the same result element. To capture
this constraint, we connect all conditions that refer to the
same element by a structural constraint edge that refers to
the self axis (shown as dashed lines in Fig. 4).

Note that the query representation of the original NEXI
query tree has now become a DAG. As TopX supports all
XPath axes and thus goes beyond NEXI, structural con-
straints that do not refer to the descendant axis would require
further edges. For example, if the query had a condition that
the bib element should follow the sec element, we would
simply add an edge from the sec node to the bib node refer-
ring to the following axis of XPath. This query decom-
position and internal DAG representation helps us to prepare
the query for efficient evaluation by means of content and
structure indexes.

To this end, it is helpful to consider also the transitive
closure of descendant-axis edges in the query DAG. This
is important when result candidates match some but not all
of the structural constraints and we are willing to relax the
structural skeleton of the query for an approximate result,
for example, when a document has title and par ele-
ments that contain all the specified content terms but are not
descendants of a sec element and there may not even be a
sec element in the document.

The DAG representation can easily capture such transi-
tive constraints, as shown in Fig. 5 for the example query
(where the transitive constraints are depicted as dotted lines).
We will later see that we can now conveniently view all
nodes and their outgoing edges of this transitively expanded
query DAG as the elementary query conditions on which the
query processor can operate. In slightly oversimplified terms,
the goal of the query processor then is to find documents
that match as many of these elementary query conditions as

7}

tfitem=) [title= title= par= par=
w3c xml |(retrieval| [native databases|
El T~ * kol

T selt”

Fig. 5 Transitively expanded query DAG

possible and with high scores. The actual scoring model will
be explained in the subsequent section.

Orthogonally to the query formulation, TopX can be con-
figured to return two different granularities as results: in
document mode, TopX returns the best documents for a query,
whereas in element mode, the best target elements are
returned, which may include several distinct elements from
the same document.

4 Relevance scoring model for XML ranked retrieval

In this section, we define our relevance scoring model that
we use for ranked retrieval of XML data. The model captures
the influence of content, navigational, and structural query
conditions as defined in the previous section for IR-enhanced
path queries written in the XPath Full-Text or NEXI syntax.

Recall that in element mode, only matches to the target
element of the query are returned as results, which may them-
selves be part of larger subtrees embedded into the document
tree. That is, only par elements may be returned by the
query of Fig. 2. In document mode (as demanded by some
IR applications), we consider only the best of these subtrees
in the document and return either the document root node
or some user-defined entry point which may—but does not
have to—be the target element of the query (see [77] for an
IR discussion on how to determine the best entry points).
Thus, our scoring model is based on the following building
blocks (where each of the following subsections defines in
detail what a “match” and its respective score is):

1. Content-related query conditions in about operators
(or ftcontains in XPath Full-Text, respectively) are
split into combined tag-term pairs. Each matched tag-
term pair obtains a precomputed IR-style relevance score
(Sect. 4.1).

2. XPath location steps are split into single node tests. Each
navigational query condition that is not part of a tag-term
pair contributes to the aggregated score of a matched
subtree in the document by a static score mass c if all
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transitively expanded structural constraints rooted at it
can be matched (Sect. 4.2).

3. Inelement mode, multiple valid embeddings of the query
DAG into the document tree may be found for a each
target element. In this case, we return for each target ele-
ment e in document d the maximum score of all subtrees
in d that match the query DAG and contain e (Sect. 4.3).

4. In document mode, we return for each document d the
maximum score of matched target elements in d
(Sect. 4.4).

5. In addition, Sect. 4.5 introduces IR-style extensions of
this scoring model to support advanced search features
like mandatory keywords, negations, and phrase match-
ing inside about operators.

Processing combined tag-terms as our major building blocks
for queries yields benefits for the scoring model as well as
the query processing:

e Tags provide us with an initial context for refining the
scoring weights of a given term. For example, in a cor-
pus of IEEE journal papers, the tag-term pairs par=
transactions and bib=transactions might
relate to different meanings of transactions.

e Joint tag-term pairs tighten the processing through
reduced query dimensionality and lower joint selectivity
as compared to processing inverted lists for the respective
tags and terms separately.

This model applies to both conjunctive query interpretations,
where all query conditions must be matched, and more IR-
style, so-called “andish” interpretations, where the result
ranking is only determined through score aggregations, but
some query conditions may not be matched at all.

4.1 Content scores

We first define the partial score that an element e obtains
when matched against a single about operator in the query.
We define an element ¢ (i.e., a node in an XML document
tree) to satisfy a tag-term content condition if e matches the
tag name, and the subtree rooted at e contains the term. We
refer to all the terms in this subtree as the full-content of the
element. More precisely, the full-content(e) of element e
is the concatenation of its own textual content and the textual
contents of all its descendants (in document order if ordering
is essential, e.g., for phrase matching).

The relevance of a tag-term match (e.g., derived from
term-occurrence frequencies) influences the score of the
matching element and its final ranking. More specifically,
we make use of the following statistical measures that view
the full-content of an element e with tag name A as a bag-
of-words:
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<article id=“ieee/w4043”>
<title>XML Data Management
and Retrieval</title>
<abs>XML data management systems vary
widely in their expressive power.
</abs>
<sec>
<st>Taking the Middle Ground</st>
<par>XML management systems should perform
well for both data-oriented and information-
retrieval type queries.</par>
</sec>
<sec>
<st>Native XML Databases</st>
<par>Native XML databases
can store schemaless data.</par>
</sec>
<bib>
<item>
XML Path Language (XPath) 1.0
<url>www.w3c.org/TR/xpath</url>
</item>
</bib>

</article>

Fig. 6 Example XML document

1. the full-content term frequency, ftf(t,e), of term ¢t in
element e which is the number of occurrences of ¢ in the
full-content of ¢;

2. the tag frequency, N4, of tag A which is the number of
elements with tag name A in the entire corpus;

3. the element frequency, ef(t), of term ¢ with regard to
tag A which is the number of elements with tag name A
that contain ¢ in their full-contents in the entire corpus.

Figure 6 depicts an XML example document, and Fig. 7 illus-
trates our logical view of that document, with text nodes
for each element using pre- and postorder labels [47] as
node identifiers and for tree navigation. For example, the
full term frequency (f#f) of the term xm1 for the root element
article has a value of 6, which reflects that the whole
article element has a high probability of being relevant
for a query containing the term xml. Figure 7 also shows
(fictitious) content scores for some query-relevant elements
and terms.

Now consider an elementary tag-term content condition
of the form A=t where A is a tag name and ¢ is a term that
should occur in the full-content of an element.” The score
of element e with tag name A for such a content condition
should reflect:

2 Note that we now switch to this abbreviated notation for tokenized
tag-term conditions which would conform to A[about (., t)] in
the full NEXI syntax.
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Fig. 7 Logical view of the
document with some example
full-content scores for the
query-relevant elements
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retrieval | 0.5

title
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'xml “xml data

data management
management systems
retrieval”  vary widely
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e the ftf value of the term ¢, thus reflecting the occurrence
statistics of the term for the element’s content,

e the specificity of the search term, with regard to tag-name-
specific ef4 (t) and N4 statistics for all element tags, and

e the size and, thus, compactness of the subtree rooted at e
that contains the search term in its full-content.

Our scoring of element e with regard to condition A=t uses
formulas of the following template:

occurrence - specificity

score(e,A=1t) = -

size(e)
Here, occurrence is captured by the fzf value, specificity is
derived from the N4 and ef4 (¢) values, and size considers the
subtree or element size for length normalization. Note that
specificity is made XML-specific by considering combined
tag-term frequency statistics rather than global term statistics
only.

We could now specialize this formula into a simple
TF-IDF-style measure, but an important lesson from text IR
is that the influence of the term frequency and element fre-
quency values should be sublinearly dampened to avoid a
bias for short elements with a high term frequency of a few
rare terms. Likewise, the instantiation of compactness in the
above formula should also use a dampened form of element
size. To address these considerations, we have adopted the
popular and empirically very successful Okapi BM25 scor-
ing model (originating from probabilistic IR for text docu-
ments [79]) to our XML setting, thus leading to the following
scoring function:

score(e, A = t)
_ kit D fift e 1o
K+ ftf(t,e)

(NA—efA(t)+O.5) )
efa(t)+0.5

with

K =k ((1 —b)+b er full content of e ftf (s, e) )

avg{>, ftf (s, e’) | ¢ with tag A}

“take middle “xml management “native xml “native xml
ground”

“xml path
language
xpath 1.0”

databases” databases
well data-oriented system store
information retrieval schemaless
type queries” data“

systems perform

9) “www w3c
org tr xpath”

Note that the function includes the tunable parameters k1 and
b just like the original BM25 model. The modified function
provides a dampened influence of the f¢f and ef parts, as
well as a compactness-based normalization that takes the
average compactness of each element type into account.

For an about operator with multiple terms thatis attached
to an element e, the aggregated score of e is simply computed
as the sum of the element’s scores over the individual tag-
term conditions, i.e.:

score(e,q) = score(e, Alabout(., t,...,tn)])
m
= Zscore(e, A=1ty) )

i=1

Note that predicates of the form about (.//A, t1,...,ty)
and //A[about (., 11, ..., t,) ] are treated equivalently in
our setting (due to merging terms with their immediate parent
tag).

4.2 Structural scores

Our structural scoring model essentially counts the number
of navigational (i.e., tag-only) query conditions that are satis-
fied by a result candidate and thus connect the content condi-
tions matched for the different about operators. It assigns
a small, constant, and tunable score mass ¢ for every nav-
igational condition that is matched and not itself part of a
tag-term pair. Recall that every navigational condition corre-
sponds to exactly one node in the query DAG. A navigational
condition is matched by an element e in document d, if all
the structural constraints, i.e., the element’s outgoing edges,
of the transitively expanded query DAG are satisfied.

To illustrate this approach, consider the example query
of Fig. 2 and its transitively expanded query DAG shown in
Fig. 5. The DAG has 14 descendant edges, some reflecting the
8 original descendant-axis conditions, some their transitive
expansions; we do not consider the self axis edges between
content conditions here. A structurally perfect result would
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match all 14 edges for the 3 non-leaf nodes of the query
DAG, earning a structure score of 3 - ¢ for the navigational
query conditions article, bib, and sec. When match-
ing the structural constraints against the document tree in
Figure 7, we see that our example document is only a near
match to the structure of the query, since the tit1le element
matchingthetitle=XMLandtitle= retrieval con-
ditions is in fact a sibling of the sec containing a par ele-
ment that is matching the par=native, par=XML, and
par=databases conditions, rather than a descendant as
demanded by the query. Thus, any (partial) embedding of the
query DAG into this document tree misses at least one struc-
tural score ¢ for the unmatched navigational sec condition.

While our current use of the tunable parameter c is rela-
tively crude (our experiments simply set ¢ = 1.0 with content
scores being normalized to <1.0 and thus put high empha-
sis on structural constraints), our scoring framework could
be easily refined in various ways. We could introduce differ-
ent ¢ values for different types of structural constraints, for
example, specific for the tag names of a query-DAG edge or
specific for the axis that an edge captures (e.g., giving higher
weight to descendant-axis edges than to following-axis or
sibling-axis edges). Or we could even make ¢ dependent on
the goodness of an approximate structural match; for exam-
ple, when a child-axis edge is not matched but the candidate
result has a descendant-axis connection with matching tag
names, we may still assign a relatively high ¢ value (but
lower than for a perfect child-axis match). Studying such
extensions is left for future work.

4.3 Element scores

In element mode, our algorithm returns a ranked list of target
elements per document, using the target element as well as
connected support elements of the query to aggregate scores
from different navigational and content conditions that match
the query DAG. For matches from multiple documents, these
ranked lists of target elements are then merged to yield the
final result ranking of target elements across documents.
We define T (d) as the set of all elements in d that match the
target element of the query; for example, any par element of
d isapotential result of our example query. When aggregating
scores for a target element e € T (d) from all elementary
content conditions C (i.e., tag-term pairs) and navigational
conditions N that are not part of a tag-term pair, we need to
find valid embeddings of the query DAG into the document
tree in the form of connected subtrees Trees(e) that contain e.
For each such subtree, the total score is the sum of the scores
for all satisfied content and structure conditions. Since there
may be multiple such embeddings for each target element,
we define the score of a target element e to be the maximum
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Fig. 8 Two embeddings of the query DAG from Fig. 5 into the
document tree of Fig. 7

aggregated score among all these embeddings S € Trees(e).

sScore(e, = max score 6‘/, + C
( q) SeTrees(e){ Z ( C]) z

e'eSNC e'eSNN
(€)]

Finding these subtree embeddings is a well studied problem
in XPath query processing [3,22,47,59,103]. Details for our
incremental, top-k-style XPath algorithm are discussed in
Sect. 5.3.

In Fig. 7, we have two matches par[6, 4] and par[9, 7]
of target elements for our example query. The correspond-
ing tree embeddings are shown in Fig. 8. Here, par[6, 4]
only matches the condition par=xml with a content score
0.3, and additionally aggregates content scores of 0.2, 0.4
and 0.5 for the matches to item=w3c, title=xml and
title=retrieval, respectively. It additionally aggre-
gates a structural score of 2 - ¢ for the matches of the two
article and bib navigational conditions, as all transi-
tive structural constraints rooted at these elements are sat-
isfied. Setting ¢ = 1.0, this yields a total score of 3.4 for
par(6,4]. Similarly, the aggregated score of par[9, 7] is
09+4+06+07+024+044+05+1+1 = 5.3, and
probably yields a better result for the query.

Note that the value of the tunable constant ¢ determines
whether we favor matching the query structure or the con-
tent conditions in the non-conjunctive (i.e., “andish”) mode.
A large value of ¢ tends to dominate the content conditions
and will make the algorithm choose results that match the
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4.5 IR extensions for advanced query features
4.5.1 Mandatory terms
xml Let M C (1, ..., m)} be a set of content conditions marked
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Fig. 9 Additional embedding in a slightly changed document

support elements of the query and neglect lower-scored con-
tent conditions that do not match the structure. A low value
of ¢, on the other hand, tends to favor the content condi-
tions and might still accept some support elements remain-
ing unmatched among the top-ranked results. As an example
for this, assume that our example document contains another
itemelement with a high-scoring match for i tem=w3c, but
connected to a 1i st parent. In this situation, there would be
another possible embedding that contains par[9, 7], which
is shown in Fig. 9. Using the default value ¢ = 1.0, this
embedding would get a total score of 4.9 as it earns only one
structural score ¢ (for the article match), even though its
content score is better than in the embedding shown in Fig. 8.
If we setc = 0.2, the embedding with the 11 st element gets
atotal score of 4.1 because of its high-scoring content match,
which is higher than the score 3.7 of the other embedding. In
conjunctive mode, on the other hand, when all query condi-
tions have to be matched by all valid results, tuning ¢ would
indeed affect the absolute scores but not the ranking among
results.

4.4 Document scores

In document mode, every document d inherits the score of its
highest-scoring targetelemente € 7' (d), and these document
scores determine the output ranking among documents.

score(d, q) = elen]g()g(l){scm"e(e, q)} “4)

For our example document and query this is p[9, 7] with a
score of 5.3.

For an andish query evaluation with only partial knowl-
edge on a document’s content and structure, score(d, q)
should be a lower bound for the final score of the document
at any time of the evaluation, and this score should monoton-
ically increase as we gain more knowledge about both the
content and structure of a result candidate. Efficient algo-
rithms for this type of processing are discussed in Sect. 5.

by a ’+’, to denote that the corresponding terms must occur
in results. Then the aggregated score of a candidate element
e of document d is defined as

(Bi +si(e)) ford e L;
score(e, t;) = (@)
0 otherwise

using, for example, 8; = 1 fori € M and ; = 0 otherwise.
This way, mandatory terms are boosted by an additional boost
factor B; for elements that occur in the inverted list for con-
dition i. If B; is chosen reasonably large (again in an IR-style
notion of vague search), e.g., 8; = 1fori € M, elements that
match the mandatory conditions are very likely to be among
the top matches regardless of their actual local scores s; ().

4.5.2 Negations

The semantics of negations for non-conjunctive (i.e., andish)
query evaluation is all but trivial. To cite the authors of the
NEXTI specification [95], “the user would be surprised if a
“—” word is found among the retrieved results”. This leaves
some leeway for interpretation and commonly leads to the
conclusion that the negated term should merely lead to a
certain score penalty and should not completely eliminate all
documents containing one of the negated tag-term pairs like
in a conjunctive setup. Thus, for higher recall, a match to a
negated query condition does not necessarily render the result
irrelevant, if good matches to other content-related query
conditions are detected.

In contrast to mandatory search conditions, the scoring of
negated tag-term pairs is defined to be constant and indepen-
dent of the tag-term pair’s actual content score s;(d). So a
result candidate merely accumulates some additional static
score mass if it does not match the negated tag-term pair.
Let N C {1, ..., m} be the set of content conditions marked

by a “—”, then the aggregated score of a candidate item e is
defined as
si(e) fori ¢ NA ftf(ti,e) >0
score(e, tj) = 1 Bi fori e NA ftf(ti,e) =0 (6)
0 otherwise

with B; = 1 fori € N and O otherwise.
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4.5.3 Phrases

Phrases in content conditions are considered as hard con-
ditions, i.e., an element is only considered a match for a
content condition with a phrase if it contains the phrase at
least once in its full content. Its score is then, for simplicity,
the sum of the scores of the phrase’s terms. Similarly to the
single-term negations, phrase negations are defined to yield a
static score mass B; for each candidate that does not contain
the negated phrase. Single-term occurrences of the negated
phrase’s terms are allowed, though, and do not contribute to
the final element score unless they are also contained in the
remaining query.

5 Query processing

The TopX query processor is responsible for the index-based
top-k query processing and candidate bookkeeping. The algo-
rithmic skeleton is based on the Combined Algorithm (CA
for short, see Sect. 2.2), which combines sequential scans of
inverted index lists with random lookups of index entries. CA
uses a round-robin-like—but multi-threaded and batched—
sorted access(SA) procedure as a baseline. These SA’s access
the precomputed inverted lists, where each inverted list cap-
tures all elements satisfying an elementary tag-term condi-
tion, sorted by descending score (hence the name “sorted
access”).

The TopX core algorithm is extended by a random access
(RA) scheduler to resolve pending conditions by random
accesses to specific entries of the inverted lists and other index
structures. This enables TopX to resolve navigational and
more complex full-text query predicates like phrase condi-
tions that could not (or only with very high costs) be resolved
through sorted access to the inverted lists alone.

In this section we focus on the SA procedure for query
processing and the score bookkeeping. We postpone a
detailed discussion of the RA scheduling to Sect. 6. In the
following subsections, we first introduce the index structures
and access primitives that we build on in Sect. 5.1, then
present our basic top-k query processor and its score book-
keeping for handling text and tag-term content conditions in
Sect. 5.2, and finally discuss how to integrate XPath structural
conditions by incremental path evaluation in Sect. 5.3.1.

5.1 Index structures

TopX uses two major kinds of indexes for content conditions
and for structural conditions, and also employs a position
index for testing textual phrase conditions. All indexes are
implemented using a relational DBMS as a storage backend
and leveraging its built-in BT -trees (see Sect. 10).
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The indexes have the following conceptual organization:

e Tag-term index For each tag-term pair we have an inverted
list with index entries of the form
(tag, term, docid, pre, post, level, score, maxscore)
where pre and post are the pre/postorder encoding [47]
of the element (pre is also used as a unique element id
within a document), /evel is its depth in the tree, score is
the element’s score for the tag-term condition, and maxs-
core is the largest score of any element within the given
document for the same tag-term condition. The entries
in an inverted list for a (tag,term) pair are sorted in a
sophisticated order to aid the query processor, namely, in
descending order of the (maxscore, docid, score) values
(i.e., using maxscore as a primary sort criterion, docid as
a secondary criterion, and score as a tertiary criterion).

e Structure index We encode the locations of elements in
documents in a way that gives us efficient tests for the
various XPath axes, e.g., to test whether an element is a
descendant of another element. To this end we precom-
pute for each tag index entries of the form
(tag, docid, pre, post, level)
where pre and post encode an element’s id and naviga-
tional position and /evel is the element’s depth in its corre-
sponding document tree. These index entries are accessed
only by random lookups for given elements.

e Position index For each term we have index entries of the
form
(term, docid, pos)
where pos is the position of the term occurrence in the
document. This index is used only for random lookups of
such positions in order to test for phrase matches.

The reason for the sophisticated sort order of index entries
in the tag-term inverted lists is the following. Our goal is to
process matching elements in descending order of scores,
according to the TA paradigm, but in addition we would also
like to process all elements within the same document and the
same tag-term match in one batch as this simplifies the testing
of structural conditions (to be discussed below). Ordering the
index entries by (maxscore, docid, score) yields the highest-
scoring matches first but groups all elements of the same
document together. Thus, when fetching the next element in
score order, we can automatically prefetch all other elements
from the same document (within the same inverted list). We
refer to this extension of the traditional one-entry-at-a-time
scanning as sorted block-scans.

An XML element is identified by the combination of the
document identifier docid and the element’s preorder label
pre. Navigation along the various XPath axes is supported
by the pre and post attributes of the structure-index entries
using the technique by [47]. pre is the rank of an element
in a preorder traversal of the corresponding document tree,
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and post is the rank in postorder traversal. This gives us
an efficient test as to whether an element e is an ancestor of
another element e, (within the same document) by evaluating
pre(e;) < pre(ez) and post(e;) > post(ep), with analo-
gous support for all the 13 XPath axes, including the child
axis by extending this schema with the level information.

Among the above indexes, the tag-term index is used for
both sequential scans and random access, whereas the struc-
ture index and the position index are used for random access
only. When we scan index entries of the tag-term inverted
lists, we immediately see not only the id of an element but
actually its full (pre, post, level) coordinates. We can keep
this in the candidate cache in memory, and when we later want
to compare another encountered element to a previously seen
one, we can perform all XPath axis tests in an extremely effi-
cient way. In addition, the structure-index BT -tree provides
us with random lookups when needed.

To support also plain text indexing of entire documents
(not necessarily only in XML format), we introduce a special
virtual element for each document with the reserved virtual
tag name *, and post a corresponding index entry to the tag-
term index. This gives us efficient support for document-level
term-only search. Similarly, tag-only lookup is supported by
the structure-index access path.

5.2 Basic top-k query processing

In order to find the top-k matches for a CAS query with
m content and n structural constraints, scoring, and ranking
them, TopX scans all tag-term index lists for the content con-
ditions of the decomposed query in an interleaved manner.
Without loss of generality, we assume that these are the index
lists numbered L through L,,. In each scan step, the engine
reads a large step of b consecutive index entries (with the
tunable parameter b typically being in the order of 100s or
1000s). These batches include one or more element blocks
that correspond to all elements of the same document in the
same index list. The element blocks are then hash-joined with
the partial results for the same document previously seen
in other index lists. These hash joins take place in memory
and immediately test the navigational constraints specified in
the query using the pre/post encodings stored in the inverted
lists. Also, scores are aggregated and incrementally updated
into a global score at this point. Note that the way we focus
on inexpensive sequential scans leaves uncertainty about the
final scores of candidates and therefore implies some form
of internal bookkeeping and priority queue management not
only for the intermediate top-k results, but for all candidates
that may still qualify for the final top-k.

When scanning the m index lists, the query processor col-
lects candidates for the query result and maintains them in
two such priority queues: one for the current top-k items, and
another one for all remaining candidates that could still make

it into the final top-k. The core query processor maintains the
following state information:

e the current cursor position pos; for each list L;,
e the score values high; at the current cursor positions,
which serve as upper bounds for the unknown scores in
the lists’ tails,
e a set of current top-k items, d; through di (renumbered
to reflect their current ranks) and a set of documents d;
for j = k + 1..k + g in the current candidate queue Q,
following a basic data structure containing
e a set of evaluated query dimensions (i.e., tag-term
index lists) E(d) in which d has already been seen
during the sequential scans or by random lookups,

e aset of remainder query dimensions E (d) for which
the score of d is still unknown,

e a lower bound worstscore(d) for the total score of
d,

e an upper bound bestscore(d) for the total score of d,
which is equal to
bestscore(d) := worstscore(d) + Z high,

veE(d)
(N

(which is not actually stored but rather computed from
worstscore(d) and the current high, values when-
ever needed).

Unlike the text-only case considered in the initial TA family,
we cannot derive the worstscore(d) bound for adocument d
simply from the scores for the already evaluated conditions.
Instead, to compute worstscore(d), we have to take into
account the structural conditions which makes computing
this bound more complex. Section 5.3 explains in detail how
worstscore bounds are computed in this case.

In addition, the following information is derived at each
step:

e the minimum worstscore of the current top-k results,
coined min-k, which serves as the stopping threshold,

e and for each candidate, a score deficit §(d) = min-k —
worstscore(d) that d would have to reach in order to
qualify for the current top-k.

The invariant that separates the top-k list from the remain-
ing candidates is that the rank-k worstscore of the top-k queue
is at least as high as the best worstscore in the candidate
queue. The algorithm can safely terminate, thus yielding the
correct top-k results, when the maximum bestscore of the
candidate queue is not larger than the rank-k worstscore of
the current top-k, i.e., when

i t d)} > best d 8
dértl(};l_k{wors score(d)} > dgtlgx—k{ estscore(d)}  (8)

=: min-k
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current top-k candidates in Q
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— bestscore(d)
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—
-

o(d)

worstscore(d)

Fig. 10 Top-k and candidate bookkeeping

We will refer to Eq. 8 as the min-k threshold test. More gen-
erally, whenever a candidate in the queue Q has a bestscore
that is not higher than min-k, this candidate can be pruned
from the queue. Early termination (i.e., the point when the
queue becomes empty) is one goal of efficient top-k process-
ing, but early pruning to keep the queue and its memory
consumption small is an equally important goal (and is not
necessarily implied by early termination). Figure 10 illus-
trates the corresponding bookkeeping for the intermediate
top-k result queue and the candidate queue.

We maintain two priority queues in memory to implement
the threshold test: one for the current top-k results with items
prioritized in ascending order of worstscores, and one for the
currently best candidates with items prioritized in descending
order of bestscores. The first queue contains only items whose
worstscore(d) > min-k and the latter has items whose
worstscore(d) < min-k but whose bestscore(d) > min-k.

Note that keeping a large candidate priority queue in mem-
ory at any time of the query processing may be expensive.
Efficient implementations of the basic TA algorithm may
deviate from the strict notion of instantaneously maintained
priority queues. Alternative approaches may use a bounded
queue or merely keep all valid candidates in an unsorted pool
and iterate over that pool periodically, e.g., after large batches
of b sorted access steps (with b in the order of 100s or 1000s
of individual index entries) or whenever needed to test the
stopping condition.

5.3 Incremental XPath evaluation

Whenever the index scans have fetched a document’s ele-
ment block for an elementary content condition, we compare
this set against other element blocks from the same doc-
ument, namely those that we have already found through
sorted block-scans on index lists for other query conditions.
At this point, we compare element blocks for the same docu-
ment against each other, thus testing structure conditions and
aggregating local scores. This is performed efficiently using
in-memory hash joins on the pre and post labels. Docu-
ments that have at least one element in each element block
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satisfying all structure conditions that can be tested so far are
kept for later testing of additional conditions; all other can-
didates can be pruned to save valuable main memory. The
document’s worstscore is defined as the highest worstscore
among the elements (and their embeddings in the document)
that match the query’s target element.

In document mode, we use the worstscore of the rank-k
document of the current top-k document list to determine
the min-k threshold as before; in element mode, we use the
worstscore of the rank-k element among the current top-k
documents to determine the min-k threshold.

5.3.1 Incremental path algorithm

The in-memory structural joins for a candidate d are per-
formed incrementally after each sequential block-scan on d
on a different tag-term index list, i.e., whenever we gain
additional information about a candidate document’s ele-
ment structure. In the following we describe the algorithm for
these joins in more detail. We introduce a novel approach for
incremental path testing that combines hash joins for content-
related query conditions and staircase joins (from the XPath
Accelerator work [47,48]) for the structure.

Figure 11 first illustrates the algorithm for a fully evalu-
ated candidate document d and the example query of Fig. 2;
we will later extend the approach for partially evaluated can-
didates. The figure shows all element blocks for d depicted as
(score, [pre, post]) triples for all element blocks that have
been mapped to the individual nodes of the query DAG. This
is the case when all query conditions have been successfully
tested on d by a combination of sorted and random accesses
to our indexes. We denote the element block of document d
associated with query node n as elements(d, n). For exam-
ple, the rightmost element block in Fig. 11

par=database

0.071 [389, 388]
0.068 [354, 353]
0.041 [375, 378]
0.022 [372, 371]

refers to the element block of candidate d for the target con-
tent condition par=database (including stemming) of the
example query of Fig. 2. Each of the entries represents a
distinct element of the candidate document d. The boldface
element entry 0.068 [354, 353] refers to the par element
with the pre label 354 matching the (stemmed) term “data-
base” among its full-contents. This element has the highest
total content score for the three keywords “native”, “xml”,
and “database”, and in fact, this element also aggregates the
highest overall score with regard to the whole query. Thus,
it will determine the document’s final score.

The incremental path algorithm performs a recursive tree
traversal along the node structure of the query, with
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Fig. 11 Path evaluation on a
candidate’s element structure for
the query of Fig. 2
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0.309 [50, 165]  0.115[352,388]  0.242 [354,353] 0.173[71,69]  0.071 [389, 388]

0.096 [402, 412]

individual elements e € elements(d, n) being joined at each
query node n for score aggregation. Note that, although d has
valid matches for each of the query conditions, it is still possi-
ble that the entire query is not satisfied by d in a conjunctive
sense, since at least one element embedding has to form a
connected path structure that matches the whole query pat-
tern. Since only those elements that are specified as target
elements by the query are defined to be valid result elements
and to obtain a non-zero score, we have to start evaluating the
candidate at the elements matching a target query condition
which corresponds to the par node in our example. Starting
with these targets, we traverse the query tree in two opposite
directions to make sure we start with a valid result element.
For each of the target elements, we aim at maximizing the
aggregated score of a connected path from a target leaf, viaits
parent nodes, and down to its valid siblings. The top-scoring
target element finally yields the document’s score.

In the example structure of Fig. 11, we initialize the algo-
rithm by first hash-joining (on the element id) all element
blocks for the three query conditions that refer to the tar-
get par element, namely the par=native, par=xml and
par=databas content conditions, grouping all scores for
the same element. We see that the par=native condi-
tion has only few matches with 3 matching elements for
that candidate; par=xml has the highest number of results,
namely, 11 matches; and par=database has 4 matches.
After hash-joining all three element blocks for that query tar-
get dimension, there are still 15 distinct target elements left,
each of which is already a valid match for the query (namely,
the 15 distinct elements in the union of the three blocks for
the par element).

For each of these, we have to start a recursive tree traversal
for the remaining query dimensions and scores to combine
them with elements found for them, using staircase joins to
test the structural conditions. For simplicity, we only con-
sider the element with the preorder label 354 (emphasized

0.211 [170, 347]
0.163 [352, 388]
0.113 [38,45]

0.185 [357,359]  0.171 [68, 66] 0.068 [354, 353]
0.160 [65, 64] 0.159 [163,161]  0.041 [375, 378]
0.149 [347,343]  0.022 [372, 371]
0.136 [166, 164]
0.125 [354, 353]
0.112 (313, 311]
0.101 [55, 53]
0.099 [329, 326]
0.087 [357, 359]
0.085 324, 321]

in boldface) here, which yields the best aggregated score of
0.435 so far. The parent query condition sec yields 5 more
elements out of which only the one with the preorder label
351 qualifies for further traversal by its pre- and postorder
labels. Navigating down from there, we find a title ele-
ment that satisfies the descendant constraint and hence adds
a content score of 0.278 to the overall score of element 354.
Coming back to the sec element, element 354 accumulates
a structural score of 1.0 as all structural constraints for the
section element are satisfied. Similarly, the second par-
ent iteration yields the only article root element with a
preorder label of 1 and a static local score of 1.0. From here,
we recursively navigate down two levels via the bib and
item=w3c query conditions which are also found to pro-
vide valid element matches that contribute to the aggregated
score of element 354 with values of 1.0 and 0.096, respec-
tively, after checking their pre- and postorder labels. Finally,
element 354 obtains an aggregated score of 3.809 which also
makes it the top-scored element out of the 15 distinct target
elements for the target par condition. Note that it is also the
only element that satisfies this query in a conjunctive sense.

Conjunctive mode The algorithm has the option to termi-
nate an element’s evaluation in conjunctive mode if any sub-
tree recursion or single query dimension yields a local score
of 0 for the path traversal on that candidate. The evaluation in
conjunctive mode considers if at least one query condition i

1. has not been fully evaluated yet (3¢ with i ¢ E(d))
through the sequential block-scans, so we do not yet
know if the candidate will still satisfy the query con-
junctively, and the candidate is kept in the queue,

2. has been tested (i.e., i € E(d)), e.g., through a ran-
dom lookup, but the inverted list L; does not contain any
match for that document, and the candidate is dropped,
or
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3. hasbeen tested (i.e.,i € E(d)), but there is no valid path
from a target element to any of the elements at dimension
i based on their pre/postorder labels, and the candidate
is dropped.

In all three cases, the document and, thus, all its target
elements obtain a worstscore(d) of 0. In the first case,
bestscore(d) is assigned a positive value as the document is
not yet evaluated at all query dimensions and may still pro-
vide a valid path match for all query conditions. Note that
we may already take partial knowledge about the candidate’s
structure into account in order to provide a bestscore(d)
bound that is as tight as possible. In the latter two cases, the
document obtains also a bestscore(d) = 0, and thus the
evaluation of d terminates, and d can be safely pruned.

Andish mode In andish mode, the evaluation of d is not ter-
minated due to a single failed query condition, but
worstscore(d) is increased as soon as one of the query’s
target elements is positively matched against d and it further
increases with more satisfied conditions for further
support elements that are connected to the target element.
Similarly, bestscore(d) is not reset to 0 if a single condition
fails, but the algorithm assumes that other element blocks
for the remaining query conditions may still contribute to the
document’s score, even if we cannot match any path starting
from a target element in the sense of a Boolean XPath-like
evaluation anymore.

Unsurprisingly—but in contrast to conventional database
queries—conjunctive query evaluations are more expensive
to evaluate for a top-k engine than the andish counterpart,
because the [worstscore(d), bestscore(d)] intervals con-
verge more slowly and low-scoring content matches cannot
be compensated for queries with a drastically reduced con-
junctive join selectivity. In the following, we will focus on
the andish evaluation strategy as the more interesting but also
more difficult case for XML IR involving incremental path
validations. The conjunctive mode is kept as an option to
support Boolean-XPath-like query evaluations as demanded
by some applications.

5.3.2 Optimizations for partially evaluated candidates

Now consider the situation with partially evaluated candi-
dates, i.e., with element blocks available in memory for some
but not all nodes of the query DAG. To resolve this situa-
tion, we introduce the notions of virtual support elements
and virtual target elements. They provide means for achiev-
ing tighter worstscore bounds early in the execution, so that
the pruning of candidates works more effectively.

Virtual support elements With only partial knowledge
about the document structure, our query processing algorithm
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Fig. 12 Partially evaluated candidates

could erroneously terminate evaluations when the path struc-
ture is interrupted at any node in the query DAG (the same
issue would arise with any other XML join algorithm.). In the
example structure of Fig. 12, the evaluation cannot continue
after the hash joins on the target elements as no matches for
the sec conditions are available; so the worstscore bound
would be 0.410 (which is way off from the final score of that
document, namely, 3.809). Moreover, if the query target node
has not yet been evaluated, there would not even be an anchor
node to start the evaluation process, because the remainder of
the candidate’s element structure would simply not be rea-
chable. This would render the worstscore and bestscore
bounds overly conservative and slow down the top-k query
processor.

In order to avoid these situations, we introduce the notion
of virtual support elements for the inner nodes of the query
DAG with a local score of 0 and an any-match option for the
pre- and postorder-based staircase joins, thus conceptually
attaching entries of the form

0.01% *]

to each element block. These “wildcard” elements may be
joined with any “real” element-block or with other virtual
support elements for navigation through unevaluated navi-
gational query conditions. Even after an element-block for
an inner node is fetched from disk, we keep the virtual nav-
igational element for that node. This way, the content nodes
serve as synapses for connecting subtrees, without having
to necessarily make the actual random lookup for the con-
necting path condition. In andish evaluation mode, we can
now safely increase the worstscore of a candidate d without
having to assume a connected path structure, and this allows
us to compute tighter worstscore and bestscore bounds
taking into account all the evaluated query conditions. In
many cases, the bestscore of a candidate document based
on its content-related query conditions might already make
it eligible for pruning without having to perform the actual
random lookups for the structural conditions.
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Virtual target elements As mentioned above, the lack of
a target element in a candidate’s currently known element
structure would prevent our algorithm from further process-
ing the candidate and would keep the bestscore bound
unnecessarily high. Similarly to the virtual support elements,
which mainly serve to reason more accurately about a candi-
date’s worstscore, we also introduce the notion of virtual tar-
get elements with a local score of 0 and the same any-match
option for the pre- and postorder-based staircase joins. The
difference between the two kinds of virtual elements is that
a virtual target element helps us to more accurately restrict
a candidate’s bestscore, whereas the worstscore has to be
zero anyway as long as no valid target element has been
detected.

6 Random access scheduling

The query processing algorithm presented in the previous
section is driven by sequential scans on the tag-term index
lists, and its incremental path evaluation aims to piggyback
the testing of structural conditions on these scans or post-
pone them altogether. However, there are various situations
in which extra tests with higher costs are unavoidable. We
refer to such tests as expensive predicates. Probing candidates
as to whether they satisfy such a predicate will involve RAS to
structure indexes and possibly other disk-resident data struc-
tures. In this section, we will first characterize expensive
predicates in Sect. 6.1, and then we will discuss heuristics
for scheduling the necessary probing steps in Sect. 6.2. In
addition, it turns out that we can turn the impediment of hav-
ing to perform some random accesses into an opportunity:
sometimes it can be beneficial from an overall efficiency
viewpoint to deviate from the sequential scan strategy and
schedule judiciously chosen random-access steps at appro-
priate points even for tag-term conditions. In certain situa-
tions, such a mixed strategy of interleaving sequential
accesses with random accesses allows pruning of result can-
didates and may terminate the threshold algorithm much
earlier. Therefore, we have developed also a cost-based
scheduling method for deciding when to issue random
accesses; this will be presented in Sect. 6.3.

6.1 Expensive predicates

Certain structural conditions in queries cannot be tested by
sorted access to the tag-term index alone, and TopX then
resorts to random accesses on the structure index. Also, aux-
iliary query hints in the form of expensive text predicates
like phrases (*“...”), mandatory terms (+), and negations (—)
are often used to improve the retrieval effectiveness and
may require random accesses to disk-resident data struc-
tures. The challenge for a top-k query processor lies in the

efficient implementation of these additional query constraints
and their integration into the sorted versus random access
scheduling paradigm. Thus, generalizing the notion of expen-
sive predicates defined in [26], a query predicate is consid-
ered expensive if it cannot be resolved at all through sorted
access alone or relying on sorted access alone would entail
very high costs (e.g., because it would need scan an index
list (almost) to its very end).

It follows that tag-only structural conditions (i.e., with-
out an associated content term) are expensive, because they
cannot be tested with inverted indexes on tag-term pairs at
all but require random accesses to the structure index. The
author//affiliation conditioninthe query / /book
[about (., Information Retrieval XML)]1//
author//affiliation would be an example. Phrase
tests are expensive because they require additional accesses
to positional information that is not included in the inverted
lists, and negations are expensive because, unless we per-
formed a random access to test the absence of an element in
an inverted list, we would have to scan entire lists regardless
of the document’s score in a negated condition.

6.2 Min-probe heuristics

The key idea of our probing heuristics is to postpone the
testing of expensive predicates by RA’s as much as possible,
and perform these tests only when their evaluation would
push a candidate into the current top-k results. To this end
we maintain a score gap value for each candidate, which is the
additional score mass that the candidate would immediately
earn if we now learned that all expensive predicates were
true. To this end we extend our run-time data structures by
two additional bit vectors for each candidate in the pool:

e P(d): a set of unevaluated expensive predicates in con-
tent conditions, e.g., phrase conditions, that d still has to
match, and

e O(d): a set of unevaluated structural conditions that d
still has to match.

P(d) and O(d) are dependent on the structure of the query
at hand. Suppose the query has m content conditions and n
structural conditions. Then initially P(d) < {1, ..., m} con-
tains those content conditions that refer to expensive pred-
icates such as phrase conditions, and O(d) is initialized by
{1, ..., n},1i.e., contains all structural conditions in the query.
For example, in the query

/larticle//sec[about(.,undersea “fiber optics cable” -satellite)

the initial P(d) for each candidate contains the conditions
“sec=fiber” (2), “sec=optics” (3), “sec=cable” (4) because of
the phrase condition, and “sec=satellite” (5) for the negation,
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but not “sec=undersea” (1) as this is not involved in any
expensive predicate; thus we set P(d) = {2, 3, 4, 5}.

We define the score gap gapp(d) that a candidate d can
earn for the conditions in P (d) as the accumulated score from
content conditions that have already been evaluated on the
tag-term index with scores s; (¢) for elements in d:

gapp(d) = Y_si(e) fori € E(d)N P(d) )

i=1

Without knowing that the conditions in P(d) are actually
satisfied, the worstscore bookkeeping for the candidate d
could not consider this score mass. Only when we know that
the expensive predicates in P(d) do indeed hold, we can
safely increase the worstscore of d by gapp (d).
Analogously, we define the score gap gapo (d) as the score
mass that a candidate would accumulate if all structural con-
ditions in O (d) were now known to be true for the candidate:

gapo(d) = ¢ (10)
i=1

where ¢ is the constant defined in Sect. 4.2. The overall
gap gap(d) of a document d is then defined as the sum of
gapp(d) and gapo(d). The gap of a document represents
the maximal additional score the document would achieve if
all expensive predicates were evaluated to true.

In order to keep the updates for a candidate’s score bounds
monotonic, the lower worstscore(d) bound of a candidate
must not include any evaluated conditions that belong to an
expensive predicate, i.e., it can only consider conditions in
E(d)\ P(d).Sowe are conservative on the worstscore bound.
The bestscore bound, on the other hand, remains unaffected,
because, even when we have not yet tested a predicate, we
can be sure that d will not accumulate more score mass than
we already assumed for the best possible case.

Now we are in a position to define our Min-Probe sche-
duling heuristics: we schedule the RA’s for alli € P(d) only
if

worstscore(d) + gap(d) > min-k (11)

which is the natural adaptation of the necessary-predicate-
probe strategy of [26] to our setting where SA’s are consid-
ered inexpensive and RA’s expensive.

The value of gap(d) increases whenever we see a candi-
date in list i € E(d) during the index scans; so our heuris-
tic scheduling criterion tends to be fulfilled only at a late
stage of the query processing for most candidates. In fact,
we schedule RAs for the unresolved predicates on d only if
we know that this will promote the candidate to the (current)
top-k results and will then lead to an increase of the min-k
threshold (which in turn would typically lead to an increased
pruning of remaining candidates). This way, only the most
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promising candidates are tested; for the great majority of can-
didates, worstscore(d) + gap(d) will never exceed min-k.

Note that a sequence of RA’s to test multiple expensive
predicates for the same candidate can be terminated as soon
as bestscore(d) < min-k, i.e., the candidate fails on suffi-
ciently many conditions and is then dropped from the queue.
This additional optimization is easily implemented using our
run-time data structures for bookkeeping.

6.3 Cost-based random access scheduling

While the Min-Probe scheduling heuristics presented in the
previous subsection is light-weight in terms of overhead, it
does not take into account the actual benefit/cost ratio of
random versus sorted accesses and would never consider
RA’s for tag-term conditions. This subsection presents the
Ben-Probe scheduler that applies a cost model to choose the
next operation among sorted accesses, random accesses for
content conditions, and random accesses for expensive pred-
icates (limited to structural conditions here for clarity of pre-
sentation).

Ben-Probe estimates the probability p(d) that document
d, which has been seen in the tag-term index lists E(d) and
has not yet been encountered in lists Ed) =[1...m] —
E(d), qualifies for the final top-k result by a combined score
predictor and selectivity estimator. These predictors are
explained below.

We break down the query structure into the following basic
subquery patterns:

tag-term pairs: for content conditions
descendants: tag pairs for transitively expanded descen-
dant conditions

e twigs: tag triples of branching path elements for transi-
tively expanded descendant conditions

We estimate, whenever we consider scheduling RA’s for a
candidate d, the selectivity of the o(d) not yet evaluated nav-
igational conditions using these patterns. Here the selectivity
o; of a navigational condition o; is the estimated probability
that a randomly drawn candidate satisfies the navigational
condition o;. We estimate these selectivities by precomputed
corpus frequencies of ancestor-descendant and branching
path elements, i.e., pairs and triples of tags. Note that this
is a simple form of an XML synopsis for this kind of sta-
tistics management. It could be replaced by more advanced
approaches such as those in [1,65,76,101], but our experi-
ments indicate that our simple approach already yields a very
effective method for pruning and identifying which candidate
should be tested when by explicitly scheduled RA’s.

The Ben-Probe scheduler compares the cost of making
random accesses (1) to inverted tag-term index lists, or (2)
to indexes for navigational conditions versus (3) the cost of



TopX : top-k query processing for semistructured data

99

proceeding with the sorted-access index scans. For all three
cost categories, we consider the expected wasted cost (EWC)
which is the expected number of random or sorted accesses
that our decision would incur but would not be made by
an (hypothesized) optimal schedule that could make random
lookups only for the final top-k and would traverse index lists
with different and minimal depths.

For looking up unknown scores of a candidate d in the
index lists E(d), we would incur |E(d)| random accesses
which are wasted if d does not qualify for the final top-k
result (even after considering the additional score mass from
E(d)). We can estimate this probability as

Pld ¢ top-k] =1— p(d)
=1-ps(d)-qd), (12)

where g (d) is our selectivity estimator (see below) and ps(d)
is the score predictor

psd)y=P| > S >8d)]|S < high (13)
icE(d)

where §(d) = min-k —worstscore(d) —o(d) - ¢, S; denotes
the random variable which captures the probabilistic event
that document d has a score of s; (d) for content condition i,
and o(d) is the number of currently unevaluated navigational
conditions for d. Since this may involve the sum of two or
more random variables, this entails computing the convolu-
tion of the corresponding index lists’ score distributions to
compute this probability, using either a parameterized score
estimator or compact and flexible histograms (see [93] for
details). ¢ (d) is a correlation-aware selectivity estimator

s =(1= I (1= 1) 0

ieE(d)
where/; denotes the length of list L ;, and /;; denotes the (esti-
mated) number of documents that occur in both L; and L ;
(see [18] for a more detailed derivation). Note that this way,
we are able to incorporate any available information about
score convolutions, index list selectivities, and correlations
between tag-term pairs into the final estimation of p(d). Then
the random accesses to resolve the missing tag-term scores
have expected wasted cost:

EWCra-c(d) := [E(d)|- (1 = ps(d) - q(d)) - 2—1; 15)

where E—R is the cost ratio of RA’s and SA’s.

As for path conditions, the random accesses to resolve all
o(d) navigational conditions are “wasted cost” if the candi-
date does not make it into the final top-k, which happens if the
number of satisfied conditions is not large enough to accu-
mulate enough score mass. Recall from our scoring model
that each satisfied navigational condition earns a static score

mass c. Denoting the set of unevaluated navigational con-
ditions as Y, we can compute the probability ¢’(d) that a
candidate d accumulates enough score mass for navigational
constraints to achieve, together with additional scores from
content conditions, a score above min-k:

q'(d) = P[Y'is satisfied]
Y'cY

-P Z Si > min-k —worstscore(d) —|Y’| - ¢

icE(d)
where the sum ranges over all subsets Y’ of the remaining
navigational conditions Y. P[Y’ is satisfied] is estimated as

P[Y' is satisfied] = H oy - H(l —0oy), (16)
vey’ vey’

assuming independence for tractability; here, the o, are the
selectivities of the unevaluated navigational conditions. For
efficiency, rather than summing up over the full amount of
subsets Y/ C Y, a lower-bound approximation can be used.
That is, we do not consider all subsets Y’ but only those that
correspond to a greedy order of evaluating the navigational
conditions in ascending order of selectivity, thus yielding a
lower bound for the true cost. Then the random accesses for
path and twig conditions have expected wasted cost:

EWCra-s(d) := o(d) - ¢'(d) - Z—‘; (17)

The next batch of b sorted accesses to each content-related
index list incurs a fractional cost for each candidate in the
priority queue, and the total cost is shared by all candidates
in the candidate priority queue Q. For a candidate d, the
sorted accesses are wasted if either we do not learn any new
information about the total score of d, that is, when we do
not encounter d in any of the lists in E(d), or if we encounter
d, but it does not make it to the top-k. The probability qf (d)
of not seeing d in the ith list in the next b steps is defined as

qib(d) =1— P[dinnext b elementsof L; | i € E(d)]

_1 li — pos; b

- n li — pos;
b

=1-- (18)
n

where /; is the length of the ith list, pos; is the current scan
position in that list, and n is the number of documents.

We can compute the probability ¢?(d) of seeing d in at least
one list in the batch of size b as

qb(d) = 1 — P[d not seen in any list]
=1- [] @ (19)

icE(d)

So the probability of not seeing d in any list is 1 — ¢”(d).
The probability that d is seen in at least one list, but does not
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make it into the top-k, can be computed as

q5(d) == (1 = ps()) - ¢"(d) (20)

The total costs for the next batch of b sorted accesses in each
of the m tag-term index lists is shared by all candidates in Q,
and this finally incurs expected wasted cost:

b-m
EWCsa i= ——=+ > 45(d)
ol £

b-m

=7 % (=g"@)+1-ps@) - ¢"@)
b-m

= “or dZé (1= ps@ - q"@) e

We initiate the random accesses for tag-term score lookups
and for navigational conditions for a candidate d if and only
if

EWCRA-C(d) < EWCgp A EWCRA_S(d) < EWCsa

with RA’s weighted to SA’s according to the cost ratio cr /cs.
We actually perform the random accesses one at a time in
ascending order of content-related (for tag-term pairs) and
structural selectivities (for navigational conditions). Candi-
dates that can no longer qualify for the top-k are eliminated
as early as possible and further random accesses for them are
canceled.

7 Probabilistic candidate pruning

The TA-style min-k threshold test is often unnecessarily con-
servative, because the expected remainder score of a doc-
ument is typically much lower than the actual sum of the
high; bounds for i ¢ E(d) at the current scan positions,
which could make more candidates eligible for pruning at an
early stage of the query processing. Of course, using plain
expectations for pruning would not give us guarantees for not
missing any of the true top-k results. But we would expect
that the final sum of the s;(d) scores in the remainder set
E(d) is lower than the sum of the high; bounds with very
high probability. Thus, we refer to Eq. 22 as the probabilistic
threshold test:

pld) =e¢ (22)

That is, if the probability p(d) (the probability that the
document qualifies for the final top-k introduced in the previ-
ous section) was below some threshold ¢, e.g., between 1 and
10%, then we might decide to disregard d and drop the can-
didate from the queue without computing its full score, thus
introducing a notion of approximate top-k query processing
but with a controlled pruning aggressiveness for which we
can derive probabilistic guarantees for the result precision.
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The previous considerations provide us with score
predictions for individual candidate items at arbitrary steps
during the sequential index accesses. These probabilistic pre-
dictions in our query processing strategies lead to probabilis-
tic guarantees from a user viewpoint, if we restrict the action
upon a failed threshold test to dropping candidates, but we
still stop the entire algorithm only if the entire queue runs
out of candidates. In this case the probability of missing an
object that should be in the true top-k result is the same
as erroneously dropping a candidate, i.e., pruning errors are
assumed to be uniformly distributed among all items discov-
ered during index processing; and this error, call it py,igs, 1S
bounded by the probability ¢ that we use in the probabilistic
predictor when assessing a candidate. For the relative recall
of the top-k result, i.e., the fraction of true top-k objects that
the approximate method returns, this means that

Plrecall =r/k] =
P[ precision =r/k ] =

k _
= (I")(l - pmiss)r Pmiss (k=)

< ('r‘)(l — &) ek (23)

where r denotes the number of correct results in the approxi-
mate top-k. We can then efficiently compute Chernoff—
Hoeffding bounds for this binomial distribution.

Note that the very same probabilistic guarantee holds for
the precision of the returned top-k result, simply because
recall and precision use the same denominator & in this case.
The predicted expected precision then is

k r
E [precision] = Z P [ precision =r/k] - %
r=>0
=1-c¢ 24)

This result yields a compact and intuitive assumption on
the result quality that the approximate top-k algorithms pro-
vides compared to the exact top-k algorithm without proba-
bilistic pruning in terms of relative precision or recall, i.e.,
the overlap of two result sets.

In practice, the score differences between the top-ranked
items are often very marginal for many real-world, large
corpora and scoring models such as TF-IDF or BM25. Our
experiments on various data collections using human rele-
vance judgments for query results indicate that with increas-
ing pruning aggressiveness, the user-perceived result quality
decreases at a much lower rate than the relative overlap
measures.
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8 Dynamic and incremental query expansion

Query expansion is a successful method to improve recall
for difficult queries. Traditional query expansion methods
select expansion terms whose thematic similarity to the orig-
inal query terms are above some specified threshold, e.g.,
using the Rocchio [80] method or Robertson and Spirck-
Jones [78] weights, thus generating a non-conjunctive (or
“andish”) query of much higher dimensionality. However,
these methods typically incur three disadvantages: (1) the
threshold for selecting expansion terms needs to be care-
fully handtuned for each query, (2) an inappropriate choice of
the threshold may result in either not improving recall (if the
threshold is set too conservatively) or in topic dilution (if the
query is expanded too aggressively), and (3) the expansion
may often result in queries with a large number of terms,
which in turn leads to poor efficiency when evaluating such
expanded queries. For XML, these problems are even worse,
as not only terms can be expanded, but also tags; while we
focus on term expansions in this paper, the proposed tech-
niques can be applied for expanding tags as well.

The query expansion approach used in TopX addresses all
three problems by dynamically and incrementally merging
the inverted lists for the potential expansion terms with the
lists for the original query terms. We introduce a novel notion
of best match score aggregation that only allows for the best
match per expansion group to contribute to the final score,
thus reflecting the semantic structure of the query directly
in the query processing and score aggregation. The algo-
rithm is implemented as an Incremental Merge operator that
can be smoothly integrated with the query processing frame-
work presented before. In the following, we first introduce
thesaurus-based query expansion in Sect. 8.1. Section 8.2
then shows how incremental expansion of single query terms
is integrated in the query processing, and Sect. 8.3 explains
how expansions of phrases are processed.

8.1 Thesaurus-based query expansion

We generate potential expansion terms for queries using a
thesaurus database based on WordNet [42]. WordNet is the
largest electronically available, common-sense thesaurus
with more than 120,000 semantic concepts, consisting of
single terms and as well as explicitly identified phrases, and
more than 300,000 handcrafted links that define the way how
the concepts or synsets (i.e., sets of synonyms that refer to
the same meaning) in the WordNet graph are related. The
basic structure of WordNet with regard to the hypernym
relationship is essentially that of a tree which is the reason
why WordNet is often referred to as a hierarchical thesaurus
(HT).

8.1.1 Word sense disambiguation

Query expansion techniques used in IR typically suffer from
the following two common phenomena of word usage in
natural language:

1. Polysemy A term can have different meanings depending
on the context that it is used in.

2. Synonymy Multiple terms have the same meaning;
together with (1) the situation may become mutually con-
text sensitive.

In order to address these problems, a query term ¢ is mapped
onto a WordNet concept ¢ by comparing some form of textual
context of the query term (i.e., the description of the query
topic or the summaries of the top-10 results of the original
query when relevance feedback is available) against the con-
text of synsets and glosses (i.e., short descriptions) of possible
matches for ¢ and its neighbors in the ontology graph. The
mapping uses a simple form of Word Sense Disambiguation
(WSD) by choosing the concept with the highest similarity
of each two context pairs.

As an example for our efforts, consider the term “goal”
which yields the following different word senses when
queried in WordNet:

1. {goal, end,...}—the state of affairs thata plan is intended
to achieve and that (when achieved) terminates behavior
to achieve it; “the ends justify the means”

2. {goal}—a successful attempt at scoring; “the winning
goal came with less than a minute left to play”

and two further senses. By looking up the synonyms of these
word senses, we can construct the synsets {goal, end, con-
tent, cognitive content, mental object} and {goal, score} for
the first and second meaning, respectively. As each of the
meanings is connected to different concepts in the ontology
graph, a reliable disambiguation and choice of the seed con-
cepts is a crucial precondition for any subsequent expansion
or classification technique.

Now the key question is of course: which of the possible
senses of a word is the right one? Our approach to answer this
question is based on word statistics for some local context
of both the term that appears in a part of a document or a
keyword query and the candidate senses that are extracted
from the concept graph.

8.1.2 Independent mapping
In [89], we coined the first approach the Independent Map-

ping or Independent Disambiguation, because each term or
n-gram (i.e., a set of n adjacent terms) out of a given word
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sequence (which is a keyword query in our application) is
mapped individually onto its most likely meaning in the con-
cept graph without taking the mapping of the sequence “as
a whole” into account (considering also the relationships
between the mappings of these terms or n-grams).

In order to identify the largest possible subsequences of
n-grams out of a given sequence, let us first consider a word
sequence wi, . . . , Wy,. Starting with the first word w at posi-
tion i = 1 in the sequence and a small lookahead distance
m’ of at most five words, we use a simple window parsing
technique to determine the largest subsequence of words that
can be matched with a phrase contained in WordNet’s synsets
to identify an initial set of possible word senses s;, , . .
If we have successfully matched the current sequence
Wi, ..., Wiy, We increment i by m’ and continue the map-
ping procedure on the suffix of the sequence; if we could
not match the current sequence onto any phrase denoted by a
WordNet concept, we decrement m’ by 1 and try the lookup
again until m’ = 1. After performing that subroutine, i is
again incremented by 1 until i = m. Fortunately, phrases
of length 2 or 3 hardly ever exhibit more than one distinct
meaning in WordNet, whereas in fact most single keywords
match more than one semantic concept and, thus, are highly
ambiguous.

For a given term or n-gram ¢, we consider the query that
it occurred in as the local context con(t) of t. For a candidate
word sense s, we extract synonyms, all immediate hyponyms
and hypernyms, and also the hyponyms of the hypernyms
(i.e., the siblings of s in the HT). Each of these has a synset
and also a short explanatory text, coined “gloss” in the Word-
Net terminology. We form the union of the synsets and cor-
responding glosses, thus constructing a local context con(s)
of sense s extracting also n-grams from synsets and glosses.
As an example, the context of sense 1 of the word “goal”
(see Fig. 13) corresponds to the bag of words {goal, end,
state, affairs, plan, intend, achieve, ..., content, cognitive
content, mental object, perceived, discovered, learned, ...,
aim, object, objective, target, goal, intended, attained, . .. },
whereas sense 2 would be expanded into {goal, successful,
attempt, scoring, winning, goal, minute, play, . .
game, sport, ... }.

The final step toward disambiguating the mapping of a
term onto a word sense is to compare the term context con(t)
with the context of candidate concepts con(sy) through
con(sp) in terms of a similarity measure between two bags
of words. The standard IR measure for this purpose would be
the cosine similarity between con(t) and con(s;), or alter-
natively the Kullback-Leibler divergence [17] between the
two word frequency distributions (note that the context con-
struction may add the same word multiple times, and this
information is kept in the word bag). Our implementation
uses the Cosine [17] similarity between the TF-IDF vectors
of con(t) and con(s;) for its simpler computation.

.,Sl'p.

., score, act,
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Fig. 13 Visualization of the concept neighborhood graph for one pos-
sible meaning of the word “goal”

Finally, we map term ¢ onto that sense s; whose context
has the highest similarity, i.e., the lowest cosine distance, to
con(t). We denote this word sense as sense(t). If there is no
overlap at all, e.g., if the context denoted by a keyword query
consists only of a single term, namely the one that is about
to be expanded, we choose the sense that has the highest
a-priory probability, i.e., the one with the lowest IDF-value.

8.1.3 Edge similarities

There have been various efforts proposed in the literature
aiming to quantify semantic similarities of concepts in Word-
Net [42]. We believe that among the most promising ones are
those that aim to model concept similarities on the basis of
term and phrase correlations over large, real-world data col-
lections. These measures exploit co-occurrence statistics for
terms (or n-gram phrases) to estimate the semantic related-
ness of terms and, hence, concepts in a given corpus. Ideally,
this is the same corpus that is also used for querying. A mea-
sure often referred to for this purpose is the Dice coefficient.

As for Dice coefficients, the similarity between to senses
S1 and S is defined as

o df (i Aj)
df(t;) +df ()

wheret;; € S;andt, ; € S, respectively, and df (t1,; Aty })
is the cardinality of documents that contain both #1 ; and 75 ;.

dice(S1, $2) = maxs, xs, [ 2

] (25)

8.1.4 Path similarities

To implement the similarity search for two arbitrary, not
directly connected concepts S| and S, we employ Dijkstra’s
shortest path algorithm [33] to find the shortest connection
between S; and Sy. Then, interpreting the edge similarities
as transition probabilities, the senses’ final path similarity
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sim(S1, S»2) for apath (vy, ..., vx) of length k with vy = §

and vy = $ and (v;,vi41) € Vifori =i,...,k—1is
defined as

k—1
sim(S1, 2) = [ [ dice(vi. vis1) (26)

i=1

If there is more than one path that minimizes the length,
we choose the one with highest path similarity sim to yield
the final concept similarity.

8.2 Incremental merge operator

TopX can either automatically expand all terms and/or tags
in a query or only those where the user requested expansion;
this is done using the ~ operator asin the query / /article
[about (~title,~xml) ]. For simplicity, we discuss
only expansion of terms; the expansion of tags can be imple-
mented analogously.

For an elementary content condition of the form A =~1;
and an expansion set exp(t;) = {t1,...,tp} with corre-
sponding similarities sim(t;, t;;), we merge the correspond-
ing p inverted index lists L;; ... L;p, in descending order of
the combined maxscore that results from the maximum local
score s;j(d) of an expansion term #; in any element of a
document d and the thesaurus-based similarity sim(t;, t;;),
keeping the block structure intact. Moreover, to reduce the
danger of topic drift, we consider for any element e only its
maximum combined score from any of these lists, i.e.,

score(e, A =~1;) ;= max sim(t;,t;)
tij€exp(ti) ’
-score(e, A = tjj) (27)

with analogous formulations for the worstscore(d) and
bestscore(d) bounds as used in the baseline top-k algorithm.

The actual set of expansions is typically chosen such that
for a content condition A=~ t;, we first look up the poten-
tial expansion terms f#;; € exp(t;) with sim(t;, t;;) > 0,
where 6 is a fine-tuning threshold for limiting exp(t;). It is
important to note that this is not the usual kind of thresh-
old used in query expansion; it is merely needed to upper-
bound the potential expansion sets and to yield a baseline for
comparisons to a static expansion technique. Then the index
lists for the expanded content conditions A= t; 1, A= ti7, . ..
are merged on demand (and, hence, incrementally) until the
min-k threshold termination at the enclosing top-k opera-
tor is reached, by using the following scheduling procedure
for the index scan steps: the next scan step is always per-
formed on the list L;; with the currently highest value of
sim(t;, tjj) - high;j, where high;; is the last score seen in
the index scan (i.e., the upper bound for the unvisited part
of the list). This procedure guarantees that index entries are
consumed in exactly the right order of descending
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Fig. 14 Example schedule for Incremental Merge

sim(t;, t;j)-s;j(d) products. Figure 14 illustrates this process.
Here, the scan starts with the list for A=¢f; with a combined
upper bound of 1.0 - 0.9 = 0.9 and continues until the block
for document d1 is encountered. As the maxscore of this
block (1.0 - 0.4 = 0.4) is below the upper bound of the list
for A=t (0.9 - 0.8 = 0.82), the scan continues in that list.

The scans on the expansionindex lists are opened as late
as possible, namely, when we actually want to fetch the first
index entry from such a list. Thus, resources associated with
index-scan cursors are also allocated on demand.

As a side effect of combining multiple lists, documents
and elements may occur multiple times in the merged out-
put. We cannot easily drop all but the first occurrence of
a document as different elements from following blocks in
other lists could satisfy the structural constraints and lead
to subtrees with higher total scores. Hence, dropping them
would make us run into the danger of reporting false neg-
atives and potentially prune candidates from the top-level
queue too early. However, these potential matches can eas-
ily be detected through further merging the expanded lists
and iteratively polling the Incremental Merge operator for
the next element block in descending order of the combined
similarity and block scores. This yields a new, more conser-
vative bestscore bound that considers for already evaluated
incremental merge dimensions, instead of the already known
score, the maximum of this score and the current 4i gh; bound
for this dimension.

8.3 Evaluating expanded phrases

If a term is expanded into at least one phrase, local scores
for this expansion cannot be fetched from materialized index
lists but need themselves to be computed dynamically. This
poses a major problem to any top-k algorithm that wants to
primarily use sorted accesses. A possible remedy would be
that the global top-k operator “guesses” a value k” and asks
the dynamic source to compute its top-k’ results upfront, with
k" being sufficiently large so that the global operator never
needs any scores of items that are not in the local top-k’. We
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Fig. 15 Dynamic expansion of
a content condition with a phrase

0.242 [354, 353]
0.185 [357, 359]
0.160 [65, 64]

believe that this is unsatisfactory, since it inherently is very
difficult to choose an appropriate (i.e., safe and tight) value
for k', and this approach would destroy the incremental and
pipelined nature of our desired operator architecture.

TopX treats such situations by running a nested top-k oper-
ator on the dynamic data source(s), which iteratively reports
candidates to the caller (i.e., the global top-k operator), and
efficiently synchronizes the candidate priority queues of
caller and callee. The callee starts computing a top-oo result
in an incremental manner, by whatever means it has; in par-
ticular, it may use a TA-style method itself without a speci-
fied target k, hence top-oo. It gradually builds a candidate
queue with [worstscore'(d), bestscore’ (d)] intervals for
each candidate d. The caller periodically polls the nested top-
k operator for its currently best intermediate results with their
score intervals. Now the caller integrates this information into
its own bookkeeping by adding bestscores to the bestscores
of its global candidates and worstscores to the worstscores
of its global candidates. From this point, the caller’s process-
ing simply follows the standard top-k algorithm (but with
score intervals). This method nicely provides a non-blocking
pipelining between caller and callees, and gives the callees
leeway as to how exactly they proceed for computing their
top results. Note that the caller may terminate (and terminate
all callees) long before a callee has really computed its final
top results.

Within the TopX engine, nested top-k operators are pri-
marily useful for handling phrase matching in combination
with query expansion. In general, it will be too expensive to
precompute and materialize an inverted list for all possible
phrases. But if we merely index the individual words, we can-
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not simply look up the combined scores in local index lists
as we would need for an Incremental Merge. Our solution
is to encapsulate phrase conditions in separate top-k opera-
tors and invoke these from the global top-k operator in the
pipelined manner described above.

For an Incremental Merge expansion that includes at least
one phrase, we incrementally merge lists of partially eval-
uated candidates obtained from a nested top-k operator for
each phrase in descending order of candidate bestscores. For
single-keyword expansions, the score obtained from a single
inverted list will already be the final score for that candidate
and expansion; for phrase expansions, the score will be a
partial score obtained from one or more local keyword con-
ditions of the phrase.

Figure 15 depicts the situation for an example expansion of
the tag-term pair par=database into par=database,
par="database”,and par=storedge having similar-
ities 1.0, 1.0, and 0.8, respectively. A nested top-k operator
is utilized to generate a dynamic index list for the phrase
expansion par= “data base” which aggregates phrase
scores with respect to individual element scores. Phrase tests
are now used to prune individual elements and do not nec-
essarily render the whole candidate document invalid, when
the test failed only for some of the elements.

9 Hybrid index structures

As shown in Sect. 5.1, the pre/postorder labeling scheme
can efficiently evaluate the descendant axis in location paths.
However, it might degenerate for deeply nested path expres-
sions with low selectivity (i.e., few matches), because they
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require many joins to evaluate. Data-guides [44], on the other
hand, with their ability to encode entire location paths into a
single label or bucket id, are a perfect method to address this
issue, but they do not support the descendant axis in location
paths well. Although we might try to precompute all descen-
dant path relaxations and materialize them in our inverted
index for all bucketid-term pairs, this would hardly be feasi-
ble for an XML collection with a complex schema or diverse
structure such as the INEX IEEE collection.

As an example, consider the seemingly inconspicuous
path expression

//article//sec//p

which contains three descendant-axis steps and yields exactly
520 distinct bucket ids (i.e., distinct root-to-leaf paths) in the
data-guide structure for the INEX IEEE collection. Thus,
an intriguing idea would be to perform the relaxation (for a
reasonable amount of choices in the expansion possibilities)
again directly in the query processor, now using the Incre-
mental Merge approach to dynamically expand a location
path with descendant steps into a number of similar paths
using the child axis only.

Incorporating data-guides in our structure-aware query

processing requires significant extensions of our data struc-
tures. Analogously to the tag-term index that includes the
pre/postorder labeling scheme, we now index and query for
bucketid-term pairs as the main building blocks for our query
processing strategies. This bucketid-term index contains, for
each bucketid-term pair, entries of the form
(bucketid, term, docid, pre, post, level, score, maxscore)
that are sorted in the same block structure as the tag-term
index. We also maintain a bucket index that corresponds to
the structure index and contains, for each bucket id, entries
of the form
(bucketid, docid, pre, post, level).
The data-guide and all its distinct path-to-bucketid mappings
can typically be kept in-memory for the type of document col-
lections we investigate; into main memory when the engine
starts. The memory consumption of the data-guide is typi-
cally negligible; for the INEX IEEE collection the data-guide
has about 10,000 distinct path entries.

Each content condition in the query now opens a sequen-
tial scan on this index. All assumptions on random accesses
for content and navigational conditions follow analogously
to the pre/postorder labeling scheme. Using bucketid-term
pairs for querying only provides a structural filter for element
contents, since the paths do not provide unique identifiers for
the elements as required for joining their scores. In partic-
ular, evaluating branching path queries only on the basis of
data-guides would make us run into the danger of returning
false positives. Therefore, structural joins are furthermore
performed on the pre-/postorder labels in the form of a hybrid
index which serves two purposes:

//article//sec//

//article//sec//p=
database

/
Incr.M el‘Fe
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Fig. 16 Dynamic expansion of the descendant axis for a data-guide-
like location path

1. We use data-guides for query rewriting only, and encode
whole paths into a compact bucket id with lower selec-
tivity than simple tags.

2. We perform structural joins on pre-/postorder labels, and
thus are able to reuse our efficient join algorithm and
implementation.

The latter point enables the query rewriter to dynamically
select the most appropriate index structure for individual
query nodes and to efficiently process mixed query condi-
tions, with some navigational conditions referring to data-
guide locators and some using individual tag conditions.

Figure 16 depicts the approach for the example location
path //article//sec//par that is merged into a con-
tent condition with the term “database”. Let us assume that
the data-guide lookup yields only three different matching
paths with respect to the child axis, namely for /article/
sec/par, /article/sec/ssl/par,and /article/
sec/ss2/par. Note that it is also possible to incorporate
path similarities at this point, e.g., along the lines of [81,82],
as indicated by the figure. An Incremental Merge operator
is used to determine the order in which inverted index lists
for the respective bucket-id-term pairs are merged, again
merging whole element blocks and propagating them for the
structural joins with other element blocks at different query
dimensions for each candidate.

The query rewriter can incrementally query the data-guide
for all path prefixes and break up the location path into a tag
sequence (thus switching from data-guides to the pre/post-
order scheme) as soon as the amount of distinct bucket ids
for the path prefix exceeds a certain threshold value. The
exact choice on when to keep a location path with descen-
dant steps for being processed with a data-guide, and when
to split the path into a sequence of single navigational tags is
collection-dependent. Initializing a huge amount of database
cursors for the Incremental Merge algorithm may become
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more expensive than the actual query execution; we found a
threshold of 12-24 a good choice for the INEX IEEE col-
lection. Although we do not consider data-guides to be a
panacea for addressing lowly selective structure (with few
matches), dynamically switching between data-guides and
tag-term pairs in fact allows us to efficiently cover a broad
range of XML data collections with different structural char-
acteristics.

Note that supporting data-guides and tag-term pairs simul-
taneously in our inverted block-index organization is space-
consuming, since it roughly doubles the index size. The
decision on whether to index a collection using only data-
guides or only tag-term pairs depends on the amount of vari-
ations of paths in the collection, thus considering the different
salient properties of each index structure. Note that the com-
pact in-memory data-guide may be further kept for filtering
invalid edges in the pre/postorder mode, too, preventing the
algorithm from performing unnecessary random lookups for
generally unsatisfiable structural constraints.

10 Implementation
10.1 Database-backed index implementation

TopX uses a relational DBMS as a storage backend. In the
following, we discuss the schema setup using Oracle 10g
with the option of leveraging space-efficient index only tables
(I0Ts) [57] and the index key compression feature for our pri-
mary storage structures; all schema definitions can be trans-
fered analogously to other DBMS’s or file managers.

The tag-term index is implemented by an IOT with
attributes concatenated in the order (tag, term, maxscore,
docid, score, pre, post, level). This is directly used for effi-
cient sequential scanning of index lists for tag-term pairs.
To also enable efficient random access to the tag-term index,
we have created a B*-tree index over the complete range of
attributes in this table in the order (docid, tag, term, score,
maxscore, pre, post, level). By keeping all query-relevant
attributes redundantly in the index (and thus forcing a full
replication of the data), we prevent the DBMS from perform-
ing more expensive index-access-per-rowid plans (i.e., hid-
den random accesses between the index and the base table).

The structure index is implemented as another IOT with
attributes concatenated in the order (docid, tag, pre, post,
level). There are similar database tables for the hybrid indexes
discussed in Sect. 9.

10.2 Multi-threaded query processing

The general TopX architecture comprises a three-tier, multi-
threaded hierarchy consisting of
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1. themain threadthat periodically maintains the data struc-
ture for the candidate bookkeeping and optionally
updates the probabilistic predictors for candidate pruning
and the adaptive scheduling decisions after each batch of
b sorted index accesses,

2. the scan threads that iteratively read and join input tuples
on top of the list buffers for a batch of b sorted accesses,
and

3. the buffer threads that continuously refill a small buffer
cache and control the actual disk I/O for each index list.

This three-level architecture builds on the observation that
candidate pruning and scheduling decisions incur overhead
and should be done only periodically, and joining and eval-
uating score bounds for candidate may incur high CPU load
(in particular for path query evaluations), whereas the actual
sequential index accesses are not critical in terms of CPU
load.

To optimize query execution time, we need to ensure con-
tinuous and asynchronous disk operations throughout the
whole query processing. With the above strategy of divid-
ing index scans and candidate pruning into different threads,
disk operations might get temporarily interrupted at the syn-
chronization points, namely when all scan threads are sus-
pended and the main thread is active with pruning. Therefore,
apart from the result set prefetching at the database connec-
tor (e.g., ODBC or JDBC) or disk caching effects (which
we cannot easily control), we add an additional small buffer
for each physically stored index list that does not exceed
the default batch size that is initially scheduled for the first
round of round-robin-like index list accesses (e.g., a max-
imum of 1,000 tuples). We add an additional tier of buffer
threads responsible for the actual disk reads and buffered
index lists lookups to completely decouple the physical I/O
performance from the query processing.

Then all scan threads solely work on top of these buffers
which are constantly refilled by the tier of decoupled buffer
threads with asynchronous disk I/O until the query process-
ing terminates. This way, we experience no startup delays
after notifying the scan thread which makes multi-threaded
scheduling with different batch sizes per thread feasible,
because the disk operations are not interrupted. The actual
buffer threads are suspended, too, when the intermediate read
buffer is filled to the maximum value, and they are notified
when the buffer falls below some minimum fill threshold
(e.g., a minimum of 100 tuples). The maximum buffer sizes
may be chosen proportionally to the size b of the scheduled
batches. Note that random accesses are triggered by the main
thread that directly accesses the inverted lists. This type of
access greatly benefits from the internal page-caching strat-
egy of the underlying DBMS.

Figures 17 and 18 demonstrate the advantages of the
multi-threading architecture in two small experiments, both
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40 Table 1 Source data sizes of the test collection used
#Docs #Elements #Features Size
30 Single Single
CPU CPU, TREC-TB 25,150,527 n/a 2,938M 426 GB
Single- Multi- INEX-IEEE 16,819 18M 142M 743MB
Threaded Threaded, INEX-Wiki 659,204 131M 632M 6.5GB
$ 20 LAN, [ LAN,
35.19 35.23
10 didate is found to be promoted into the top-k queue which
happens much less frequently than updates on the candidate
queue. A particularly nice feature of this architecture is that
0 the more CPU-intensive XPath evaluations (see Sect. 5.3) can

Fig. 17 Multi-threading versus single-threading on a single CPU sys-
tem
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Fig. 18 Multi-threading versus single-threading on a dual CPU system

conducting a batch of 50 TREC 2003 Web track queries for
the topic distillation task on the GOV collection [34], but
on two different hardware configurations. Figure 17 shows
a wallclock run-time of 35.2's for both the multi- and single
threaded configuration (the latter scheduling SA batches in a
simple round-robin style) using a single-CPU notebook (with
a 1.6 GHz Centrino CPU) connected to an Oracle server via
a 1 GB LAN. This demonstrates the I/O boundedness of the
algorithm for this particular configuration which is exactly
what we would expect. The situation changes, however, when
queries are executed directly on the server machine that also
hosts the Oracle database (with a 3 GHz dual Xeon CPU) and
tuples are read directly from the RAID disks. Figure 18 shows
that the wallclock run-time significantly drops from 20.9s in
single-threaded mode to 8.3 s in multi-threaded mode which
demonstrates that a single thread cannot exhaust the full /O
bandwidth on the server and the algorithm becomes CPU
bounded. So multi-threading is a crucial performance issue,
in particular on multi-CPU machines.

This way, the scan threads are totally decoupled from each
other. Synchronization (object locking) for shared data struc-
tures only takes place when a candidate is pulled from the
cache and the queue is updated, or when (occasionally) a can-

easily be made truly parallel at the level of the scan threads,
because they just work concurrently on different documents.

11 Experiments
11.1 Setup and data collections

We focus our experiments with textual data on the TREC
Terabyte collection which is the largest currently available
text corpus with relevance assessments, consisting of about
25 million documents with a size of roughly 425 GB and 50
queries from the 2005 Terabyte Ad-Hoc task [94].

For XML on the other hand, we chose the INEX IEEE
collection consisting of roughly 17,000 XML-ified CS jour-
nal articles and the 6 GB INEX Wikipedia [35] collection
with about 660,000 XML-ified Wikipedia articles, yielding
more than 130M elements and the respective batch of the 125
INEX 2006 Ad-Hoc queries. We also provide comparative
studies from the official results of the INEX 2005 and 2006
benchmarks. Table 1 summarizes these collection statistics.
In terms of bytes sizes and number of tuples contained in the
inverted index (denoted by #Features in Table 1), the new
INEX Wikipedia corpus is an order of magnitude larger than
the previous INEX IEEE collection.

On a mainstream server machine with a dual XEON-3000
CPU, 4GB of RAM, and a large SCSI RAID-5, indexing
these collections took between 280 min for INEX-Wiki and
14h for Terabyte, including stemming, stopword removal
and computing the BM25-based scores. The materialization
of the Bt -indexes required roughly the same amount of time
as it included sorting a large intermediate table.

11.2 Evaluation metrics

As for efficiency, we consider abstract query execution costs
cost :=#SA 4 cr/cs #RA

i.e., a weighted sum of the number of tuples read through
sorted and random accesses from our disk-resident index
structures, as our primary metric analogously to [39]. The
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costratio cr /cs of a single sorted over a single random access
has been determined to optimize our run-time figures at a
value of 150 which nicely reflects our setup using Oracle
as backend and JDBC as connector, with a relatively low
sequential throughput but good random access performance
because of the caching capabilities of the DBMS.

As for effectiveness, we refer to the relative and absolute
precision values, as well as the non-interpolated mean aver-
age precision (MAP) [24,97] which displays the absolute
(i.e., user-perceived) precision as a function of the absolute
recall, using official relevance assessments provided by
TREC or INEX. Furthermore, the following, more sophis-
ticated and XML-specific metrics were newly introduced for
the INEX benchmark 2005 [62]:

e nxCG The normalized extended Cumulated Gain
metrics is an extension of the cumulated gain (CG) met-
rics which aims to consider the dependency of XML
elements (e.g., overlap and near-misses) within the
evaluation.

e ep/gr The expected-precision/gain-recall metric finally
aims to display the amount of relative effort (where effort
is measured in terms of the number of visited ranks)
that the user is required to spend when scanning a sys-
tem’s result ranking. This effort is compared to the effort
an ideal ranking would take in order to reach a given
level of gain relative to the total gain that can be
obtained.

Wallclock run-times were generally good but much more
sustainable to these very caching effects, with average CPU
run-times per query being in the order of 0.3 s for Wikipedia
and 1.2 for Terabyte, and wallclock run-times being 3.4 and
6.2 s, respectively. All the reported cost figures are sums for
the whole batch of benchmark queries, whereas the precision
figures are macro-averaged. Altogether, the various algorith-
mic variants and pruning strategies described before open
a huge variety of possible experiments and setups; and the
following runs can merely try to provide a comprehensive
overview over our most meaningful results.

11.3 Terabyte runs
11.3.1 Baseline top-k competitors and scheduling options

We start with an overview on text data comparing the TopX
with the most prominent variants of the TA-family of algo-
rithms [39] such as TA, NRA, and CA, and a DBMS-style
full-merge algorithm. Figure 19 presents the average cost
savings of our extended scheduling strategy (Ben-Probing)
which outperforms all our three top-k baseline algorithms by
factors of in between 25 and 350%.
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Fig. 19 Execution costs for TopX compared to various top-k baselines
and a computed lower bound on Terabyte, for varying k

The DBMS-style merge join first joins all documents in
the query-relevant index lists by their id and then sorts the
joined tuples for reporting the final top-k results (eventually
using a partial sort). For k = 10, the non-approximate TopX
run with the conservative pruning already outperforms this
full-merge by a factor of 550%, while incurring query costs
of about 9,323,012 compared to 54,698,963 for the full-
merge. Furthermore, we are able to maintain this good per-
formance over for a very broad range of k; only queries of
considerably more than 1,000 requested results would make
our algorithm degenerate over the full merge approach. The
approximate TopX with a relatively low probabilistic pruning
threshold of ¢ = 0.1 generally performs about 10-20% lower
execution costs than the exact TopX setup which conforms
exactly to the pruning behavior we would expect and the
probabilistic guarantees for the result quality we provide in
Sect. 7.

Even for k = 1, 000, there is a 30% improvement over the
best remaining baselines for these large values of k, namely
full-merge and NRA which itself has almost converged to
full-merge. Note that the end user of top-k results (as in
Web search) would typically set k to 10-100, whereas appli-
cation classes with automated result post-processing (such
as multimedia retrieval) may choose k values between 100
and 1,000. Especially remarkable is the fact that we con-
sistently approach the absolute lower bound for this family
of algorithms (see also [18]) by about 20% even for large &,
whereas both the CA and NRA baselines increasingly degen-
erate; CA even exceeds the full-merge baseline in terms of
access cost for k > 500. For ¢ = 0.1, we already touch the
lower bound with hardly any loss in result precision (see also
Fig. 20).

Note that we measured the average query cost for the origi-
nal TA algorithm with full random lookups for each candidate
with a value of 154,188,975 already for k = 10, which could
not even be plotted on the same scale as the other variants
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Fig. 20 Relative versus absolute (i.e., user-perceived) retrieval preci-
sion and the cost-ratio as functions of & on Terabyte, for k = 10

for the default cost ratio cr/cs = 150 (but also for lower
ratios).

11.3.2 Pruning effectiveness on text

TopX yields acomparably good effectiveness on the Terabyte
topics, with a peak mean average precision (MAP) of 0.19
and a peak precision@ 10 of 0.5, given that we use a standard
BM25-based scoring function for text data. Figure 20 inves-
tigates the detailed probabilistic pruning behavior of TopX
for the full range of 0 < ¢ < 1 for a fixed value of k = 10,
with ¢ = 1.0 (i.e., the extreme case) meaning that we imme-
diately stop query processing after the first batch of b sorted
accesses. Since Terabyte is shipped with official relevance
judgments, we are able to study the result quality for both
the relative precision (i.e., the overlap between the approxi-
mate and the exact top-k) and the absolute precision (i.e., the
fraction of results officially marked as relevant by a human
user for a particular topic), as well as MAP. Note that the
recall-dependent MAP values are inherently low for £k = 10.

We also see that the relative precision drops much faster
than the absolute precision which means that, although dif-
ferent documents are returned at the top-k ranks, they are
mostly equally relevant from a user’s perspective. Particu-
larly remarkable is the fact that the

cost-ratio(&) := CoStapprox(€)/COStexact

of the approximate TopX runs with probabilistic pruning over
the cost of the exact TopX runs generally drops at a much
faster rate than both the absolute and relative precision val-
ues. That is for ¢ = 0.4, we have less than 20% of the exe-
cution cost of the exact top-10, but we still achieve more
than 65% relative precision (which confirms our probabilis-
tic guarantees, see Sect. 7); and we even have less than 10%
loss in absolute precision according to the official relevance
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Fig. 21 Execution costs for TopX compared to the Structlndex and
full-merge competitors on INEX-IEEE, for varying k

assessments on Terabyte. We observed this trend for all col-
lections and query setups we considered so far.

11.4 INEX-IEEE runs
11.4.1 XML-top-k competitors

In addition to the full-merge baseline, which is inspired by
the Holistic Twig Join of [22,59,29] in the XML case, two
state-of-the-art XML-Top-k competitors were evaluated:

e StructIndex, the algorithm developed in [61] which
uses a structure index to preselect candidates that satisfy
the path conditions and then uses a TA-style evaluation
strategy with eager random access to compute the top-k
result.

e StructIndex’, an optimized version of the
StructIndex top-k algorithm, using also the extent
chaining technique of [61].

Figure 21 shows that already the conservative TopX
method without probabilistic pruning (¢ = 0) reduces exe-
cution costs by 300-500 percent. A detailed analysis shows
that TopX reduces the number of expensive RA’s even by
an absolute factor of 50 to 80 (!) compared to the TA-based
StructIndex competitors on INEX in both the
Min-Probe and Ben-Probe configurations, with very
good rates of inexpensive SA’s. StructIndex™ even
exceeds StructIndex in terms of RA’s and thus incurs
fewer SA’s than StructIndex or TopX but much higher
overall execution costs.

Here, the simple Min-Probe scheduling even slightly out-
performs Ben-Probe on INEX, in terms of saving random
accesses to the navigational tags. For the XML case, the
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Fig. 22 Precision and mean-average-precision (MAP) as functions of
¢ on INEX-IEEE, for k = 10

Ben-Probing was limited to scheduling RA’s to the naviga-
tional tag conditions in the auxiliary table TagsRA only.
A fully enabled Ben-Probe scheduling to content conditions
could have further decreased the execution cost but was
omitted here, because the Min-Probe competitor inherently
cannot determine RA’s to content conditions (see also [26,
18]). Recall that random accesses strongly affect running
times, because they incur in a (empirically measured) run-
time factor of about 150 in our specific hardware and database
setup.

11.4.2 Pruning effectiveness on XML

Figure 22 shows that again the relative precision value
degrades at a much higher rate than the absolute result pre-
cision in terms of relevant elements found. This means that
different results are returned at the top ranks, but they are
equally good from a user perspective according to the official
relevance assessments of INEX. Again, the recall-dependent
MAP values are inherently low for k = 10; for k = 1, 000
we achieved a remarkably good MAP value of 0.17.

Fig. 23 Official INEX-IEEE
’05 benchmark results of TopX

INEX 2005: Results’ Summary

metric: nxCG,quantization: strict
task: SSCAS

11.4.3 Comparative studies

For the INEX 2005 setting, the benchmark included a set
of 40 keyword-only (CO) and a distinct set of 47 structural
queries (CAS) with relevance assessments that were eval-
uated on the INEX-IEEE corpus. While the results for CO
queries were reasonable with a peak position 19 out of 55
submitted runs for the generalized nxCG @ 10 metric (which
is not surprising as we use a rather standard content scoring
model), TopX performed very well for CAS queries, ranking
among the top-5 of 25, with a peak position 1 for two of the
five official evaluation methods. The two officially submit-
ted TopX CAS runs finally ranked at position 1 and 2 out
of 25 submitted runs for the strict nxCG@ 10 metric with a
very good value of 0.45 for both runs, and they still rank at
position 1 and 6 for MAP with values of 0.0322 and 0.0272,
respectively.

Figure 23 shows the nxCG and ep/gr plots for the two
CAS runs, one with and one without considering expensive
text predicates which performed almost equally well in this
case. We see that TopX quickly reaches a maximum in the
cumulated gain measure at about 50% of the returned ranks
and then saturates, which is an excellent property for a top-k
engine, because the best results are typically detected and
returned at the first ranks already. Particularly nice is also the
high peak of the second TopX run in the ep/gr metric which
makes this run stand out in comparison to its competitors.

11.5 INEX-wikipedia runs

As for Wikipedia, we provide a detailed comparison of the
CO and CAS interpretations of the INEX queries. As opposed
to the INEX-IEEE ’05 setting, each of the 125 new INEX-
Wikipedia 06 queries comes shipped in the CO and CAS
flavors. The following runs aim to compare the different
performance issues between CO and CAS for our system.

INEX 2005: Results’ Summary
metric: ep-gr,quantization: strict
task: SSCAS

compared to all participants
(using the ep-gr and nxCG
metrics)

nXCG

effort-precision
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Fig. 24 Execution costs reported for the CAS and CO queries as
functions of k on Wikipedia, fore = 0.0 and ¢ = 0.1

11.5.1 CO versus CAS

Figure 24 shows that we generally observe similarly good
performance trends as for Terabyte or IEEE, with cost-
savings of a factor of up to 700% for CAS and 250% for CO
when compared to full-merge, and the performance advan-
tage remains very good even for large values of k, because
we never need to scan the long (i.e., highly selective) element
lists for the navigational query tags which has to be performed
by any non-top-k-style algorithm, e.g., when using Holistic
Twig joins.

Figure 25 depicts a detailed comparison of the query costs
being split into individual sorted (#SA) and random (#RA)
index accesses for the CO and CAS flavors of the Wikipedia
queries. It shows that we successfully limit the amount of
RA to less than about 2% of the #SA according to our cost
model. This ratio is maintained also in the case of structured
data and queries which is a unique property among current
XML-top-k engines.

11.5.2 Pruning effectiveness for CO versus CAS

Figure 26 demonstrates a similarly good pruning behavior
of TopX for both the CO and CAS queries on Wikipedia,
again showing a very good quality over run-time ratio for
the probabilistic candidate pruning component. As expected,
these runs confirm the fact that CAS queries are signifi-
cantly less expensive than CO queries for TopX, because
for the structure-constrained queries we largely benefit from
the lowly selective, precomputed inverted lists over com-
bined tag-term pairs. Note that official relevance judgments
for the 2006 Wikipedia benchmark as required for comput-
ing the absolute precision figures are not yet available, such
that absolute precision values are omitted here.

40
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Fig. 25 #SA and #RA for full-merge versus TopX, for k = 10 and
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Fig. 26 Relative retrieval precision and cost-ratios for the CAS and
CO queries as functions of ¢ on Wikipedia, for k = 10

11.5.3 Expansion efficiency for CO versus CAS

Figure 27 finally shows an impressive run-time advantage
for the dynamic query expansion approach compared to both
full-merge and TopX when performing static expansions
(measured for the CAS case). The reported numbers reflect
large, automatic thesaurus expansions of the original
Wikipedia queries based on WordNet, with up to m = 292
distinct query dimensions (i.e., keywords and phrases embed-
ded into the structure of the CAS query).

11.5.4 Comparative studies
For the INEX 2006 setting, 114 out of the 125 initial queries

come with human relevance assessments and were therefore
used to compare different engines. There was no separate

@ Springer



M. Theobald et al.

112
120
B #RA
100 T *
C#saA
80 T
B
£ 607
;E:
40 T
20 T
0
CAS - CAS - CAS-
Full TopX - TopX -
Merge Static Dynamic
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evaluation of the CAS queries and the strict evaluation mode
was dropped, and hence the relative performance of TopX
was comparable to 2005 with a rank of 24 out of 106 sub-
mitted runs for the generalized ep/gr metric. However, INEX
2006 introduced a new retrieval task, AllInContext, where a
search engine first had to identify relevant articles (the fetch-
ing phase), and then identify the relevant elements within the
fetched articles (the browsing phase). This task can be easily
mapped to the TopX document evaluation mode, and in fact
TopX performed extremely well with ranks of 1 and 2 (two
TopX runs with different parameters) for the generalized pre-
cision/recall metric (gP) [63] at 50 results. Figure 28 shows
the gP plots for the two runs (the two bold red lines at the top
of the chart), one with and one without considering expen-
sive text predicates which performed almost equally well in
this case.

12 Conclusions and future work

TopX is an efficient and effective search engine for non-
schematic XML documents, with the full functionality of
XPath Full-Text and supporting also the entire range of text,
semistructured, and structured data. It achieves effective
ranked retrieval by means of an XML-specific extension
of the probabilistic-IR BM25 relevance scoring model, and
also leverages thesauri and ontologies for word-sense dis-
ambiguation and robust query expansion. It achieves scal-
ability and efficient top-k query processing by means of
extended threshold algorithms with specific priority-queue
management, judicious scheduling of random accesses to
index entries, and probabilistic score predictions for early
pruning of top-k candidates.
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Fig. 28 Official INEX-Wikipedia’06 benchmark results of TopX com-
pared to all participants for the AlllnContext task (using the gP metric)

TopX has been the official host used for the INEX 2006
topic development phase, and its Web Service interface has
been used by the INEX 2006 Interactive Track. During the
topic development phase, more than 10,000 CO and CAS
queries from roughly 70 different participants were conduc-
ted partly in parallel sessions over the new Wikipedia XML
index. The complete TopX indexing and query processing
framework is available as open source code at the URL http://
topx.sourceforge.net.

12.1 Lessons learned

TopX uses arelational database system to manage its indexes,
relying on 30years of database research for efficient index
structures, updates, and transaction management. In fact, this
solution has turned out to be flexible and easy to use, espe-
cially for complex precomputations of scores and corpus sta-
tistics that require joins and aggregations, However, the price
we had to pay for this convenience was high overhead com-
pared to dedicated index data structures like inverted files,
both in run-time and in storage space. Run-time suffered from
the expensive interface crossing incurred by JDBC and access
layers inside the database server. Customized inverted files,
on the other hand, would provide more light-weight storage
management. Preliminary experiments with file-based stor-
age have shown a speedup for sorted and random accesses of
up to a factor of 20, while requiring an order of magnitude
less storage space.
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The self-throttling query expansion mechanism introduced
in TopX is a major advantage over existing solutions, with
respect to both effectiveness and efficiency. However, for
robust query expansion, the quality of the underlying ontolo-
gies and thesauri is critical. So far, we have been mostly
relying on WordNet, but we plan to use richer, high-quality
ontologies [85] and we would also like to explore domain-
specific ontologies.

12.2 Future work

Our future work on this subject will focus on four major
issues:

e Weplan to extend the tree-oriented view of XML data into
a graph-based data model that includes both intra-docu-
ment references among elements and inter-document
links given by XLink pointers or href-based hyperlinks.
In terms of functionality, we can build on the initial work
by [46] along these lines, but one of the major challenges
is to ensure efficiency given the additional complexity of
moving from trees to graphs.

e We want to address extended forms of scoring and score
aggregation, most notably, proximity predicates. This
may involve handling non-monotonous aggregation
functions and will mandate significant extensions to our
top-k search algorithms.

e We plan to reconsider our indexing methods and inves-
tigate specialized data structures for inverted lists, most
notably, to exploit various forms of compression [104],
efficient support for prefix matching [19], and special
structures for speeding up phrase matching [99].

e We consider re-implementing core parts of the TopX
engine in C++, replacing the relational database back-
end with our own storage system including a customized
implementation of inverted block indexes. Notwithstand-
ing the good performance of our current system, we would
expect to gain another order of magnitude in run-time
efficiency by this kind of specific and more mature engi-
neering.

We believe that the integration of DB and IR function-
alities and system architectures will remain a strategically
important and rewarding research field, and we hope to make
further contributions to this area.
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