
Online Pairing of VoIP Conversations

Michail Vlachos † Aris Anagnostopoulos ‡ Olivier Verscheure † Philip S. Yu †

† IBM T.J. Watson Research Center
‡ Yahoo! Research

Abstract
This paper answers the following question; given a multi-
plicity of evolving 1-way conversations, can a machine or
an algorithm discern the conversational pairs in an online
fashion, without understanding the content of the commu-
nications? Our analysis indicates that this is possible, and
can be achieved just by exploiting the temporal dynamics
inherent in a conversation. We also show that our findings
are applicable for anonymous and encrypted conversations
over VoIP networks. We achieve this by exploiting the ape-
riodic inter-departure time of VoIP packets, hence trivializ-
ing each VoIP stream into a binary time-series, indicating
the voice activity of each stream. We propose effective tech-
niques that progressively pair conversing parties with high
accuracy and in a limited amount of time. Our findings are
verified empirically on a dataset consisting of 1000 conver-
sations. We obtain very high pairing accuracy that reaches
97% after 5 minutes of voice conversations. Using a model-
ing approach we also demonstrate analytically that our re-
sult can be extended over an unlimited number of conversa-
tions.

Keywords: stream clustering, binary time-series clustering, voice-
over-ip, conversation pairing

1. INTRODUCTION
The International Telecommunications industry is in the

early stages of a migration to Voice over Internet Protocol
(VoIP). VoIP is a technology that enables the routing of voice
conversations over any IP-based networks such as the pub-
lic Internet. The voice data flows over a general-purpose
packet-switched network rather than over the traditional circuit-
switched Public Switched Telephone Network (PSTN). Mar-
ket research firms including In-Stat and IDC predict that un-
til 2009 we will experience the consumer and small busi-
ness VoIP ramp-up period, and migration to VoIP will peak
in the 2010-2014 time frame. According to recent reports,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submitted to the VLDB Journal.

VoIP service revenue jumped jumped 66% to $15.8 billion
in 2006 after more than doubling in 2005, and is expected to
more than triple by 20101.

While the migration to VoIP seems inevitable, there are se-
curity risks associated with this technology that are carefully
being addressed. Eavesdropping is one of the most com-
mon threats in a VoIP environment. Unauthorized intercep-
tion of audio streams and decoding of signaling messages
can enable the eavesdropper to tap audio streams in an un-
secured VoIP environment. Call authentication and encryp-
tion mechanisms [5, 58] are being deployed to preserve cus-
tomers’ confidentiality. Preserving customers’ anonymityis
also crucial, which encompasses both the identity of the peo-
ple involved in a conversation and the relationship caller/callee
(pair of voice streams). Anonymizing overlay networks such
as Onion Routing [22] and FindNot.com [59] aim at provid-
ing an answer to this problem by concealing the IP addresses
of the conversing parties. A recent work [52] shows that
tracking anonymous peer-to-peer VoIP calls on the Internet
is actually feasible. The key idea consists in embedding a
unique watermark into the encrypted VoIP flows of interest
by minimally modifying the departure time of selected pack-
ets. This technique transparently compromises the identity
of the conversing parties. However, the authors rely on the
strong assumption that one has access to the customer’s com-
munication device, so that the watermark can be inserted be-
fore the streams of interest reach the Internet.

This work studies the feasibility of revealing pairs ofanony-
mousconversing parties (caller/callee pair of streams) by ex-
ploiting the vulnerabilities inherent in VoIP systems. Our
analysis also indicates that the proposed techniques are ap-
plicable even when the voice packets are encrypted. While
the focus of this work is on VoIP data, the techniques pre-
sented here are of independent interest and can be used for
pairing/clustering any type of binary streaming data. The
contributions of the paper function on different levels:

1. We formulate the problem of pairing anonymous and
encrypted VoIP calls.

2. We present an elegant and fast solution for the conversation-
pairing problem, which exploits well established no-
tions of complementary speech patterns in conversa-
tional dynamics.

1http://www.infonetics.com/resources/purple.
shtml?ms07.vip.nr.shtml

0

1

A

B

F

Stream A

Stream F

…

…

Binary Streams

…

…

VAD

Voice Streams

Similarity
Measure

Pairing

Figure 1: Overview of the proposed methodology

3. Our solution is based on an efficient transformation of
the voice streams into binary sequences, followed by a
progressive clustering procedure.

4. We provide a thorough analysis regarding the conver-
gence and scalability of the presented algorithm.

5. Finally, we verify the accuracy of the proposed solu-
tion on a large dataset of voice conversations.

The paper is organized as follows2. Sections 2–5 present
our solution for pairing conversations over any medium by
mapping the problem into a complementary clustering prob-
lem for binary streaming data. We introduce various intu-
itive metrics to gauge the correlation between two binary
voice streams and we present effective methods for progres-
sively pairing conversing parties with high accuracy within
a limited amount of time. Section 6 shows how the pre-
sented solution can be adapted for a VoIP framework, and
demonstrates that encryption schemes do not hinder the ap-
plicability of our approach. In Section 7 we analyze through
a modeling approach the convergence properties of the pair-
ing algorithm. We validate the accuracy of the presented
algorithm in Section 8 utilizing a large standard corpus of
conversational speech data [23]. In Section 9 we present a
proof of concept implementation of our approach within a
real network monitoring system which is deployed on top
of a parallel grid of computers. Potential solutions on the
VoIP vulnerabilities that we have revealed is the topic of
Section 10. Other applications of our pairing algorithms and
similarity measures are are discussed in Section 11. Finally,
we provide our concluding remarks in Section 12 and we
also instigate directions for future work.

2. PROBLEM OVERVIEW AND METHOD-
OLOGY

We start with a generic description of the conversation
pairing problem, with the intention of highlighting the key
insights governing our solution. We will later clarify the re-
quired changes so that the following model can be adapted
for a VoIP environment.

2.1 Pairing Voice Conversations
Let us assume that we are monitoring a setS = {S1, S2, . . . , Sk}

of k voice streams (for now supposek is even), comprising

2This work represents an extension of article [51]

a total ofk/2 conversations3. Each stream holds just one
side of a two-way voice conversation, and there exists also a
homologue voice stream that holds the other side of the con-
versation. Our objective is to efficiently reveal the relation-
ship of two-wayconversing parties. For example, assume
S2 is actually involved in a conversation withS5. We aim
at finding all relationshipsSi ↔ Sj including the example
S2 ↔ S5, such that streamsSi andSj correspond to each
one-way voice stream of the same conversation. Our ap-
proach does not require an even number of voice streams and
we also do not assume each voice stream to have a matching
pair. Any voice stream without a corresponding counterpart
is referenced to henceforth as asingletonstream. At the end
of the pairing process some streams may remain unmatched.
These will be the voice streams for which the algorithm ei-
ther does not have adequate data to identify the conversa-
tional pair with high confidence, or simply streams whose
pair does not exist in the pool of examined voice streams.

The key intuition behind our approach is that conversing
parties tend to follow a “complementary” speech pattern.
When one speaks, the other listens. This “turn-taking” of
conversation [42] represents a basic rule of communication,
well-established in the fields of psycholinguistics, discourse
analysis and conversation analysis, and it also manifests un-
der the term of speech “coordination” [13]. Needless to
say, one does not expect a conversation to follow strictly the
aforementioned rule. A conversational speech may well in-
clude portions where both parties speak or both are silent.
Such situations are indeed expected, but in practice they do
not significantly distort the results, since given conversations
of adequate length, coordinated speech patterns are bound to
dominate. We will show this more explicitly in the experi-
mental section, where the robustness of the proposed mea-
sures are tested also under conditions of network latency.

Using the above intuitions, we will follow the subsequent
steps for recognizing pairs of conversations:

1. First, voice streams are converted into binary streams,
indicating the presence of voice (1) and silence (0).

2. Second, we leverage the power of complementary sim-
ilarity measures, for quantifying the degree of coordi-
nation between pairs of streams.

3. Using the derived complementary similarity, we will
employ a progressive clustering approach for deducing
conversational pairs.

3In this paper we will not deal with multi-way conversations.

A schematic of the above steps is given in Figure 1. In
the upcoming section we place our methodology within the
context of the related work.

3. RELATED WORK
Recent work that studies certain VoIP vulnerabilities and

has attracted a lot of media attention has appeared in [52].
The authors present techniques for watermarking VoIP traf-
fic, with the purpose of tracking the marked VoIP packets.
For accomplishing that, however, initial access to a user’s
device or computer is required. In this work we achieve a
different goal; that of identifying conversational pairs,how-
ever we do not assume any access to a user’s device. The
only requirement of our approach (more explanations will be
provided later) is the provision of a limited number of net-
work sniffers, which will capture the incoming (encrypted)
VoIP traffic.

Similar in spirit to our work is also [44], where the authors
attempt to recognize which streaming movie/video a client is
watching. They achieve that by extracting a bitrate signature
of VBR encoded movies. Therefore, even though the content
(movie) is encrypted the bitrate of the packets is still easily
discernible, and can be compared against an already created
database of bitrate signatures. The authors report that given
a 40 minute trace, they are able to predict the movie correctly
with over 77% accuracy, in a databases of 26 movies.

There is also extended related work on clustering of data
streams. Guha, et al. [24] have studied the k-Median prob-
lem utilizing a one-pass algorithm and small space. Other
approaches on the same topic have been presented by Bab-
cock, et al. in [3] and by Charikar, et al. in [12]. Method-
ologies for clustering data streams have also been presented
in [37]. The above streaming algorithms sacrifice accuracy
in favor of efficiency in execution and storage space. [17]
examines general ways of scaling up machine learning tech-
niques, and in specific how to scale up the K-Means algo-
rithm utilizing Hoeffding bounds for determining the nec-
essary sample size. CluStream [1] considers stream clus-
tering at different temporal granularities, while HPStream
[2] examines clustering of high-dimensional streams and fo-
cuses only on the most meaningful dimensions. Clustering
approaches that deal specifically with binary streams have
also appeared in [38, 34].

The objective of traditional streaming clustering algorithms
is on the maintenance of the cluster centers, while in this
work once a cluster (pair of streams) is discovered it is re-
moved from further examination. Therefore, while the previ-
ous algorithms achieve speedup by sacrificing accuracy and
retaining the necessary statistics in reduced storage space,
our speedup is attributed to the incremental (online) nature
of algorithm, while also leveraging the removal of paired
streams for additional performance boost. Finally, the ma-
jority of the above algorithms perform the clustering within
a single stream, while our focus is on clustering across mul-
tiple streams.

Algorithms that operate on multiple streams have appeared
in [57], [39]. StatStream [57] focuses on the online moni-
toring of the most correlated pair of streams, primarily for
financial (stock-market) applications. SPIRIT [39] presents
techniques for incremental computation of the SVD trans-

form between multiple streams, but it does not consider the
computation of correlation or anti-correlation especially for
all pairs of streams.

The topic of efficient similarity execution between streams,
has also been of interest in the research community; in [15],
Cormode et al., study the use of similarity measures for com-
parison of streams and focus on sketch approximations of
the Hamming Norm. Various other norm approximations,
such as dominance norms [16] and entropy norms [11], have
also appeared in the related bibliography. This work exam-
ines the use ofcomplementarysimilarity measures between
binary streaming data, which can also be seen as discovery
of the most anti-correlated pairs between multiple streams.
Therefore, related to the current problem is also the work of
Sakurai, et. al [43], that considers the problem of stream-
ing discovery of lag correlations (which is however within a
single stream).

The online clustering algorithm presented in this work has
several unique characteristics, such as: 1) Considerationof
clusters aspairs of objects (streams), which is one of the
core requirements for the application that we examine. 2)
Anytime nature of the algorithm, returning progressively iden-
tified pairs of streams before the complete execution of the
algorithm. 3) Gradual removal of paired streams, which also
results in the enhanced algorithm performance.

The methods presented in this work, exploit and adapt
data-mining techniques for depicting inherent vulnerabili-
ties in VoIP streams, which can potentially compromise the
users’ anonymity. It is interesting to note, that much of
recent work in data-mining [31, 14] has focused on how
to embed or maintain privacy for various data-mining tech-
niques, such as clustering, classification, and so on. Re-
cently, Sion, et al., have also presented techniques for au-
thenticating streams of data [46].

In the sections that follow we will provide a concise de-
scription of a Voice Activity Detector. We will also present
intuitive coordinationmeasures for quantifying the comple-
mentary similarity between binary streams. We put forward
a lightweight pairing technique based on adaptive soft deci-
sions for reducing the pairing errors and avoiding the pairing
of singleton streams. Key requirements include lightweight
processing, quick and accurate identification of the relation-
ships, and resilience to both latency and noise.

4. MEASURES OF SPEECH COORDINA-
TION

Our goal is to identify coordinated speech patterns that
indicate the presence of a two-way conversation. First we
examine how to convert a voice stream into a binary stream
indicating the portions of speech and silence, and later we
present various complementary similarity measures for the
resulting binary streams.

4.1 Voice Activity Detection
The goal of a Voice Activity Detection (VAD) algorithm

[40] is to discriminate between voiced versus unvoiced sec-
tions of a speech stream. We provide only a high-level de-
scription of a typical VAD algorithm for reasons of com-
pleteness, since it is not the focus of the current work. The
VAD process computes the energy of small overlapping speech

packets (also calledframes, with each frame being 20-30msec
in length), and employs an adaptive energy threshold that
will differentiate the voiced from the unvoiced frames. The
threshold is typically deduced by estimating the average en-
ergy of the unvoiced portions, taking also into consideration
a background noise model, based on the characteristics of
the data channel. The output of the VAD algorithm will be
“1” when there is speech detected and “0” in the presence of
silence. A simple schematic of its operation is provided in
Fig. 2.

Silence Speech Silence Speech Silence

0
1

Input

Output

Figure 2: A Voice Activity Detector can effectively recognize
the portions of silence or speech on a voice stream.

As will be explained later, the voice activity detection is
inherently provided by the VoIP protocol.

4.2 Complementary Similarity
After voice activity detection is performed, each voice stream

Si is converted into a binary streamBi. The resulting binary
stream only holds the necessary information that indicates
the speech/no-speech patterns. The objective now is to quan-
tify the complementary similarity(which we callcimilarity)
between two binary streams.

As already mentioned, the basic insight behind detecting
conversational pairs is to discern voice streams that exhibit
complementary speech behavior. That is, given a large num-
ber of binary streamsB1, B2, . . . , BN , and a query stream
Bq (which indicates the voice activity of userq), we would
like to identify the streamBj that is most complementary
similar to streamBq, or in other words, has the largest cimi-
larity.

We present different versions of cimilarity measures (Cim)
and we quantify their performance later on, in the exper-
imental section. Let us consider two binary streams,Bi

andBj . By abstractingBi andBj as binary sets, an intuitive
measure of coordination between usersi and j consists in
computing the intersection betweenBi and the binary com-
plement ofBj normalized by their union. We denote by
Cim-asym(i, j, T) this measure computed over streamsBi

andBj afterT units of time. One can readily verify that it
can be written as:

Cim-asym(i, j, T) =

∑T

t=1 Bi[t] ∧ ¬Bj [t]
∑T

t=1 Bi[t] ∨ ¬Bj [t]
. (1)

whereBk(t) ∈ {0, 1} is the binary value for userk at time
t, and the symbols∧, ∨, and¬ denote the binary AND, OR
and NOT operators, respectively.

Note that Equation (1) asymmetrically measures the amount
of coordination between speakersi andj. That is, in general,
Cim-asym(i, j, T) 6= Cim-asym(j, i, T) due to the comple-
ment operator on binary data. This measure can be seen as
the asymmetric extension of the well-known Jaccard coeffi-

cient [10]. Thus, we also refer to this measure asJaccard-
Asymmetric.

Bi \ Bj 1 0
1 0 1
0 0 0

Bi \ Bj 1 0
1 1 1
0 0 1

Figure 3: Computation of Cim-asym, Left: Numerator, Right:
Denominator

ComputingCim-asym between two binary streams is com-
putationally very light. The computation lookup table for the
numerator and the denominator is provided in Figure 3. The
numerator is increased whenBi = 1 andBj = 0, while the
denominator is not increased whenBi = 0 andBj = 1. So
Cim-asym(Bi, Bj) only rewards the presence of non-speech
of userj, when useri speaks.

Example: GivenB1 = 11100110 andB2 = 00010001 then
cim-asym(B1, B2) = 0.833 andcim-asym(B2, B1) = 0.6667.

The Cim-asym measure is also easily amenable to in-
cremental maintenance as timeT progresses. Indeed, let
V∧(i, j) andV∨(i, j) denote the running values of the nu-
merator and the denominator, respectively. The value of
Cim-asym(i, j, T) for any elapsed timeT is given by the ra-
tio V∧(i, j)/V∨(i, j). Therefore, givenn binary streams, in-
crementally computingCim-asymrequires keeping2 times
n(n − 1) values in memory. For example, when monitor-
ing n = 1000 streams and assuming each value is stored as
an16 bit integer, only 4 MBytes of memory are needed for
tracking all the required statistics.

We also consider a symmetric extension ofCim-asym. This
metric is even simpler than the previous one and is essen-
tially a (scaled) hamming distance; we denote it asCim-Ham
and we refer to it asHamming-Scaled:

Cim-Ham(i, j, T) =

T
∑

t=1

(Bi[t] ∧ ¬Bj [t]) ∨ (¬Bi[t] ∧ Bj [t]))

T

=

T
∑

t=1

XOR(Bi[t], Bj [t])

T
,

(2)

Given n binary streams, incrementally computingCim-
Ham requires keeping only

(

n
2

)

values in memory due to its
symmetric nature. Using the example above, memory re-
quirements drop to approximately 1 Mbytes given the same
assumptions. TheCim-Ham is generally more aggressive
than the asymmetric Jaccard, because it also rewards the
presence of speech patterns when the user in question does
not speak. However, our experiments indicate that the most
conservative asymmetric Jaccard metric ultimately achieves
the best detection accuracy.

Finally, we consider theMutual Information(MI) as a
measure of coordination between conversing parties [4]. Ap-
proximations of the entropy between streams have also re-
cently appeared in [11]. Entropy is a measure indicating
how much information can be obtained about one random

variableBi by observing anotherBj . Let pi,j(x, y), pi(x),
and pj(y) with x, y ∈ 0, 1 denote the joint and marginal
running averages for usersi andj afterT units of time. For
example,

pi,j(0, 1) =
1

T

T
∑

t=1

¬Bi[t] ∧ Bj [t].

The amount ofMutual Information(MI) between streamsBi

andBj is written as:

MI =
∑

x,y∈0,1

pi,j(x, y) log2

pi,j(x, y)

pi(x)pj(y) (3)

The mutual information measure requires higher process-
ing power but exhibits symmetry. Note that while at first
it seems that one needs to store 8 statistics for updating the
Mutual Information, in fact only 3 statistics are required.For
examplepi,j(0, 0), pi,j(0, 1) andpi,j(1, 0) are sufficient to
restore the remaining ones, since:

pi,j(1, 1) = 1 − pi,j(0, 0) − pi,j(0, 1) − pi,j(1, 0)

pi(0) = pi,j(0, 0) + pi,j(0, 1)

pj(0) = pi,j(0, 0) + pi,j(1, 0)

and so on.
So, givenn binary streams, it can be shown that incre-

mentally computingMI requires keeping3 times
(

n
2

)

values
in memory thanks to its symmetric nature. Thus, approxi-
mately3 MBytes of memory are required for the above ex-
ample, when monitoring 1000 streams.

In the following section, we illustrate how any of the above
metrics can be used in conjunction with a progressive clus-
tering algorithm for identifying conversing pairs.

5. CONVERSATION PAIRING/CLUSTERING
In order to get insights about the pairing algorithm we first

plot how the complementary similarity of one voice stream
progresses over time against all other streams. In Figure 4
we depict the progression of cimilarity of voice streamsA
andB against all other streams, using a dataset containing
280 data streams.

One can notice that voice pairing is extremely ambivalent
during the initial stages of a conversation, but the uncertainty
decreases as conversations progress. This is observed, first,
because most conversations in the beginning exhibit a cus-
tomary dialog pattern (“hi,” “how are you,” etc.). However,
conversations are bound to evolve in different conversational
patterns, leading to a progressive decay in the matching am-
biguity. Second, some time is required to elapse, so that the
probability that two unrelated streams match by chance be-
comes sufficiently low.

Intuitively, better discrimination between conversations is
provided as additional voice data are collected. Therefore,
a simple but effective solution for tackling the conversation
pairing problem would be to compute the pairwise cimilarity
matrixM after some timeT , where each entry provides the
complementary similarity between two streams:

M(i, j) = Cim(i, j, T),

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cimilarity of all streams to stream A

Cimilarity of all streams to stream B

Most likely candidate

Most likely candidate

Time (sec)

Figure 4: Progression of complementary similarity (Jaccard-
Asymmetric) over time for voice sequences A and B, against all
other communications. The most likely pairing sequence can
be visualized as the one with the highest cimilarity.

where Cim is one of the cimilarity measures that we pre-
sented in Section 4.

Then we can pair usersi andj if we have

M(i, j) = max
`

{M(i, `)}

and

M(i, j) = max
`

{M(`, j)}.

We call this approachhard clustering, because at each
time instance it provides a rigid assignment of pairs, with-
out providing any hints about the confidence or ambiguity of
the matching. A pseudocode for this approach is provided in
Figure 6. This rigid clustering approach finds pairs for all
streams. Therefore, situations like the ones in Figure 5 will
also be assigned, even though there is no clear separation.

Additional shortcomings can also be identified with the
above hard clustering approach:

• First, it provides no concrete indication when the pair-
ing should start. When are the sufficient statistics ro-
bust enough to indicate that pairing should commence?

• In order to achieve high accuracy, sufficient data need
to be collected. This penalizes the system responsive-
ness (no decision is made until then) and additionally
significant resources are wasted (memory and CPU).

Cimilarity of all sequences to sequence X

Time (sec)

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

True Match

Figure 5: A case where no conclusion can be safely deduced.
The sequence with the maximum cimilarity after 300sec is not
the true pair of sequence X.

• Different streams will converge at different rates to their
expected similarity value. Therefore, decisions for dif-
ferent pairs of streams can (or cannot) be made at dif-
ferent times, which is not exploited by the hard clus-
tering approach.

1. Function matchStreams(S)
2. /* S contains all the streams[1 : N] */
3. compute the pairwise cimilaritiesM(si, ·)
4. max1 ← max` M(si, `)
5. smi ← sequence ID of max1
6. match sequencesi matches with sequencesmi

Figure 6: Hard matching of conversations

For a dataset withn voice sequences, each of lengthm,
the time complexity of this rudimentary pairing algorithm is
O(n2m). In the pairing algorithm that we describe below,
we will address all the previous issues, allowing the early
pairing of streams, while imposing minimal impact on the
system resources.

Using as a guide the aforementioned behavior which gov-
erns the progression of cimilarity, we construct the clustering
algorithm as anoutlier detection scheme. What we have to
examine is whether the closest match is “sufficiently distant”
from the majority of streams. Therefore, when comparing a
stream against all others, the most likely matching candidate
should not only hold the maximum cimilarity, but also devi-
ate sufficiently from the cimilarity of the remaining streams.

Figure 7 contains a pseudocode of the pairing algorithm,
while Figure 9 depicts the steps behind its execution. We
maintain the same matrixM as in the hard-clustering ap-
proach, which is updated as time progresses. Then, at every
step of the algorithm, for every stream that has not been
matched, we perform the following actions. Suppose that
at any timeT we start with the binary streamB1:

1. We perform ak-trim by removing thek most distant
andk closest matches (typicallyk = 2, . . . , 5).

2. We compute the average cMass (center of mass) of the
remaining stream cimilarities.

3. We record the cimilarity of the two closest matches
to streamB1, which we denote as max1 and max2.
We consider the closest match “sufficiently separated”
from the remaining streams if the following holds:

max1 − max2 > f · (max2 − cMass),
where thef constant captures the assurance (confi-
dence) about the quality of our match. Typical values
of f range within[0.5, 2]. Greater values off , signify a
more separable best match compared to the remaining
streams, and hence more confident pairing of streams.

4. If the above criterion does not hold we cannot make
a decision about streamB1. Otherwise we matchB1

with max1 and we remove their corresponding rows
and columns from the pairwise cimilarity matrix (Fig-
ure 8).

1. Function matchStreams(S, f)
2. /* S contains all the streams[1 : N] */
3. for (t = 0, 1, 2, . . . , T)
4. /* T is an upper bound that will depend onn (Ideally,

T = Θ(ln n)) */
5. Update the pairwise similarity matrixM(·, ·)
6. foreachunmatched streamsi

7. compute max1, max2 of M(si, ·)
8. smi ← stream ID of max1
9. trimmedMsi ← k-trim of M(si, ·)
10. cMass←mean oftrimmedMsi
11. if (max1 −max2 > f · (max2 − cMass))
12. /* streamsi matches with stream smi */
13. remove rowssi, smi from M
14. remove columnssi, smi from M
15. if (all streams are paired)return

Figure 7: Progressive algorithm for matching streams.

D

Time T+ktTime T+tTime T

... ...

M

K

K

M

Stream K is paired
with stream M

More streams are
paired

Compute distance of
remaining streams

Figure 8: The similarity/dissimilarity matrix does not have to
be completed fully, for all time instances. Matching pairs can
be removed from computation.

Notice that theoutlier detection criterionadapts according
to the current similarity distribution, being more strict in the
initial phases (wider(max2 − cMass)) and becoming more
flexible as time passes.

Furthermore, the algorithm does not need to know a priori
a bound on the required time steps for execution. As soon
as there is sufficient information, it makes use of it and it
identifies the candidate pairs.

Next, we analyze the performance of the algorithm.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

k-Trim: Remove top-k, low-k matches

From remaining
compute the center
of mass cMass

Is Best Match ‘sufficiently’ distant?

T T

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Max1

Max2

Is (Max1 - Max2) > f x (Max2 - cMass) ?

T

cMass

Figure 9: Pairing of voice conversations.

5.1 Time and Space Complexity
Compared to the hard-clustering approach that needs to re-

compute the pairwise similarity matrixM for each time step,
the progressive algorithm reduces the computational cost by
progressively removing from the distance computation the
streams that have already been paired, although the initial
stages of the algorithm are somewhat more expensive, since
in every iteration there are more operations performed than
just the update of the similarity matrixM .

So, let us analyze the time and space that our algorithm
requires. We assume that we execute the algorithm with an
initial set ofn streams, so the size of matrixM is n2, hence
the space requirement isO(n2).

For the time complexity, assume that at time stept there
areSt streams available. Then, the running time required
to execute thetth step isO(S2

t). To see that, notice that
line 5 of Figure 7, where we describe the update of cimi-
larity matrix M , requiresO(S2

t) time steps. Theforeach
loop at line 6, where we process each stream, is executed
at mostSt times and each of the commands inside the loop
can be computed in linear (inSt) time. (The most involved
is line 9 for computing thek-trim, which can be done with
a variation of a linear algorithm for computing the median.)
Therefore, the running time of every time step of the algo-
rithm isO(S2

t), in other words there exists a constantκ such
that the time per step is bounded byκ · S2

t .
Therefore, ifTr is the total running time, we have

Tr ≤ κ ·
∞
∑

t=1

S2
t .

It is now clear that the running time depends on the rate with
which streams become paired. If the streams become easily
distinguishable at early stages, then they are removed andSt

decreases fast; otherwise the running time can be arbitrarily
large. However, in practice, convergence is fast as we also
indicate with several experiments in Section 8. Figure 10 de-
picts visually the pairing process and the lifecycle of various
streams for an experiment with 280 voice streams. We plot
the cimilarity of one voice stream against all others and each
line represents a voice stream and is extended only up to
the point when the stream is paired. The true match for the
examined stream, is indicated by the thick line, and is dis-
covered after 240sec, when only 4 streams remain unpaired.

In Section 7 we also present a model for conversation pat-

terns, where we show that inO(lnn) time steps with high
probability our cimilarity measures can distinguish all pairs.
SinceSt ≤ n, we can conclude that given that model, the to-
tal number of time steps is bounded byO(n2 lnn), with high
probability. Therefore, the algorithm is efficient, because it
only introduces anO(n log n) complexity per data stream.

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

S
im

ila
rit

y

Remaining Streams over Time

280 222 74 22

Figure 10: We show the number of remaining streams at each
time instance on an experiment with 280 streams. The darker
stream indicates the actual best match which is identified after
240 seconds.

6. EXTENDING TO A VOIP NETWORK
We explain how the previous model of pairing voice con-

versations can be extended to work on a voice-over-IP net-
work. In what follows we describe the structure and trans-
mission protocol of a typical VoIP network and we illustrate
the steps for reconstructing the binary voice activity stream
from a sequence of VoIP packets.

We consider the framework depicted in Figure 11.N VoIP
subscribers are connected to the Internet either directly via
their ISP providers, or behind VoIP gateways on traditional
PSTN networks. Those VoIP subscribers may use a low-
latency anonymizing service composed of a set of overlay
network nodes. Each VoIP stream traverses a possibly dis-
tinct set of IP routers, a subset of which are assumed to have
VoIP sniffing capabilities. Each sniffer pre-processes thein-

coming VoIP traffic and forwards the resulting data to a cen-
tral processing unit.

P
S

T
N

 N
e
tw

o
r
k

P
S

T
N

 N
e
tw

o
r
k

B����A

A����B

R1 R2

VoIP network

sniffers

VoIP

Gateway

VoIP
Gateway

Figure 11: VoIP Framework. A set of customers with direct
access to the IP network or behind a PSTN network. A set
of IP routers (light boxes), a subset of which are VoIP sniffers
(dark boxes) that forward preprocessed VoIP data to a Central
Processing Unit.

A voice signal captured by a communication device goes
through a series of steps in preparation for streaming. Fig-
ure 12 summarizes some of the following concepts. A voice
signal is continually captured by the microphone of a com-
munication device. The digital signal is segmented and passed
over to a Voice Activity Detection (VAD) unit. This feature
allows VoIP devices to detect whether the user is currently
speaking or not by analyzing voice activity. Whenever the
voice activity is below a certain adaptive threshold, the cur-
rent segment is dropped. Note that if the VAD algorithm is
not sophisticated enough, actual voiced segments may get
wrongly filtered out [41]. The filtered signal is then passed
through a voice codec unit (e.g., G.729.1 or GSM) that com-
presses the input voice segments to an average bitrate of
approximately10 Kbps. Those compressed segments are
encrypted using 256-bit AES [5] and packetized using the
Real-time Transport Protocol (RTP). Each RTP packet con-
sists of a 12-byte header followed by20ms worth of en-
crypted and compressed voice. It is important to note that all
RTP headers are in the clear [5]. Various RTP header fields
are of great interest for our purpose. In particular, the Pay-
load Type (PT) field enables easy spotting of VoIP streams,
the Synchronization Source (SSRC) field uniquely identifies
the stream of packets, and the Timestamp field reflects the
sampling instant of the first byte in the RTP payload. Fi-
nally, each RTP packet is written to a network socket.

6.1 Separating the Voice Streams
For recasting the problem into the setting that we previ-

ously studied, we need first to reconstruct the binary streams
indicating the voice activity of each one-way communica-
tion. Given the above transmission protocol, a VoIP sniffer
that gathers incoming internet traffic can identify and sepa-
rate the different voice streams and also convert them into
binary streams that indicate periods of activity or silenceas
follows:

1. The RTP PT field is used to segregate VoIP packets
from different data traffic (see Figure 13).

Figure 12: A voice signal captured by a communication device
goes through various steps in preparation for streaming.

Payload Type SSRC TimeStamp

RTP protocol

Compressed and encrypted voice data… …Sequence Number

Recognize VoIP data

Recognize Stream
Position into Stream

Figure 13: Fields of the RTP protocol that are used

2. Each different voice stream can be tracked by its unique
RTP SSRC field.

3. Finally, the binary stream indicating the presence of
speech or silence, is inherently provided by the VoIP
protocol, given the presence or not of a voice packet.
Packets are only sent during speech activity which con-
stitutes an indirect way of reconstructing the binary
voice activity stream. For a given RTP SSRC value
(stream ID), a sniffer measures the difference of two
consecutive Timestamp values (inter-departure time of
packets) and generates a one (or a zero) if the differ-
ence is equal to (or larger than) the segmentation in-
terval of20ms. Thus, each binary stream results from
the aperiodic inter-departure time of VoIP packets de-
rived from the Voice Activity Detection (VAD), which
is performed within the customer’s communication de-
vice. In Figure 14 we visualize this process.

6.2 Advantages and Discussions
Several are the advantages of the aforementioned method-

ology:

• A very important first outcome, is that the technique
operates on the compressed data domain. Because we
do not need to decompress the voice data to perform
any action, this immediately gives a significant perfor-
mance advantage to the approach.

• A second observation, is that the presented methodol-
ogy is also valid even when the voice data is encrypted.
This is true because for performing voice activity de-
tection we merely exploit the presence of the packet as
an indication of speech. Note, that because the data
can still be encrypted, the privacy of the conversation
content is not violated.

• Finally, the presented algorithm is robust to jitter and
network latency. Jitter has no effect on the RTP Time-

wall-clock

time

20 m
sec

100 m
sec

120 m
sec

200 m
sec

220 m
sec

240 m
sec

After 20msec

After 120msec

After 140msec

After 200msec

After 260msec

After 280msec

Packet

RTP timestamp

packets

Figure 14: Usage of RTP Timestamp for reconstructing the bi-
nary voice activity sequence

stamp values, which are assigned during the data trans-
mission and measure theinter-departurepacket time.
Network latency only affects the arrival of the first packet,
since synchronization of subsequent packets can be re-
constructed by the corresponding RTP timestamps. In
our experiments we do not assume a zero-latency net-
work. Instead we show that our method is indeed re-
silient to latency.

We briefly elaborate on certain issues or questions that
may arise given the dynamic nature of the system:

a) We do not assume that the network sniffers are able to
track all voice streams. Singleton streams can be present.
This does not pose a problem for our algorithm since we do
not enforce pairing of all streams. We depict this fact lucidly
in the experimental section.

b) The cardinality of voice conversations captured by the
sniffer changes over time as calls start and/or terminate. There-
fore, one should pair streams that commence at approxi-
mately the same time (within twice the assumed worse net-
work latency). This gives rise to multiple cimilarity arrays
formed by voice streams with similar arrival times. We demon-
strate this notion in Figure 15. In the experiments we only
consider the case where allk voice streams are concurrent,
since this illustrates better the scalability and accuracyof our
approach under the maximum possible load.

c) Finally, it is worth noting that the RTP Sequence Num-
ber field together with the Timestamp values help avoid blindly
concluding a packet has been filtered out by the VAD unit
while, in fact, it has been dropped by the network. However
losses are seldom in commercial VoIP networks and in this
work we do assume a lossless VoIP framework.

7. THEORETICAL ANALYSIS
We present a theoretical analysis on the performance of

the pairing protocol. The objective is to demonstrate the fast
(and accurate) convergence of the pairing algorithm. While
in the experimental section we will demonstrate the pairing

time

Cimilarity

matrix 1
Cimilarity

matrix 2

Cimilarity

matrix 3

Figure 15: Asynchronous arrival of multiple voice streams at
the sniffer. Creation of multiple cimilarity arrays for streams
that are first captured at approximately the same time.

accuracy for 1000 real voice conversations, a natural ques-
tion that arises is whether accuracy is compromised when the
matching algorithm is challenged with an increasing num-
ber of voice streams. This section answers specifically this
question. Our analysis indicates that the necessary time to
correctly pair all the streams increases onlylogarithmically
in the number of streams, therefore the accuracy of the pair-
ing algorithm scales very gracefully with larger problem in-
stances.

7.1 Model
In order to capture and model the relationship between the

pairwise complementary similarity between various conver-
sations, we need first to assume a model for 0/1 VAD pat-
terns that are used as input for our clustering algorithm.

The simplest generative model for the 0/1 patterns, would
be to assume a Bernoulli process, wherePr(Bi[t] = 1) =
pij andPr(Bi[t] = 0) = 1 − pij , if usersi andj are partic-
ipating in a conversation. However, a plot of the distribution
of 0’s and 1’s clearly suggests, that a more accurate model
should follow an exponential trend (see Figure 16).

0 2 4 6
0

5

10

15

20

25

30

Time(sec)

O
cc

ur
en

ce
s

of
 1

Speaker 15

0 10 20
0

10

20

30

40

50

60

Time(sec)

O
cc

ur
en

ce
s

of
 0

Speaker 15

0 5 10
0

20

40

60

80

Time(sec)

O
cc

ur
en

ce
s

of
 1

Speaker 45

0 2 4 6
0

20

40

60

80

Time(sec)

O
cc

ur
en

ce
s

of
 0

Speaker 45

Figure 16: Histograms of speech and silence pattern for 2
speakers.

Our observations are coherent with the related bibliogra-
phy, which utilizes exponential on-off sources for modeling
voice traffic [9, 29, 36]. Therefore, for every two users par-
ticipating in a conversation, we assume that they alternate
between conversation segments (a segment where one of the
two user transmits and the other receives is followed by a
segment that the first user receives and the second one trans-
mits, and so on), and the duration of the segment that useri
transmits follows a geometric distribution (the discrete ana-
log of the exponential distribution) with parameterpi.

This generative model is equivalent to a process that is
controlled by the two-state Markov chain of Figure 17. At
state “SR” useri sends (speaks) while his/her partner re-

ceives (listens) and at state “RS” useri receives and the other
party sends. Similar approaches have also be employed for
traffic modeling over telephone networks [9, 29, 36]. One
can conceive more complex models where there are states
where no user speaks or where both users speak concur-
rently; the techniques of this section can extend to those as
well.

The aforementioned Markov chain has a stationary distri-
bution, and the probability under the stationary distribution
that useri is transmitting equals

ri =
1 − qi

2 − pi − qi

, (4)

where we defineqi = pj if user i is involved in a conver-
sation with userj; the reader can verify that Equation (4)
satisfies the equation

[

ri

1 − ri

]

=

[

pi 1 − pi

1 − qi qi

]T

·

[

ri

1 − ri

]

.

Furthermore, in order to accommodate for errors in trans-
mission or for two users talking or pausing simultaneously,
we augment the model by adding some noise. In particu-
lar, we assume that every bit of every stream is flipped with
some probabilityθ (θ < 1/2), and that all the streams and
all the time points are independent.

SR RS

pi qi

1 − pi

1 − qi

Figure 17: The two-state Markov chain that describes the talk-
ing alternating process between useri and the conversing party.

7.2 Computing the Cimilarity Measure
Now we prove our main result, Theorem 7.1, which shows

that the cimilarity measures are able to correctly match the
conversing users using only a small amount of collected data,
and with low probability of error. After the presentation of
the theorem and its proof, we comment on the theorem im-
plications.

THEOREM 7.1. Assume that there aren users participat-
ing in n/2 conversations according to the communication
model of Section 7.1. Then inO(ln n) time steps a cimilar-
ity measure can distinguish the correct pairings with high
probability4.

PROOF. We present the analysis ofJaccard-Asym. We fo-
cus on stream 1 and we assume that we try to find the pairing
communication stream. The model described in the previ-
ous section induces a Markov chain, and the state in which
the chain is at timet contains information about the states
of each pair, as well as about which bits have been flipped
due to noise. Furthermore, the evolution of the streams of
4We say that a limiting statement holds “with high probability”
(abbreviated “whp.”) if it holds with probability that is at least
1 − 1/nc for some constantc > 0.

user 1 and useri—whether participating in a conversation or
not—induces a Markov chain{X(t) : t = 1, 2, . . . } on the
state spaceΣ = {(S1, Si, E1, Ei)}, with S1, Si ∈ {S,R},
E1, Ei ∈ {N,Y }, whereS1 (Si) indicates whether user1
(i) transmits or receives andE1 (Ei) indicates whether there
is an error in the stream of user1 (i) at the current time point
(i.e., if the bit of the user is flipped). The transition probabili-
ties of the Markov chain are defined by the probabilities that
users 1 andi switch their state fromS to R or vice-versa,
and the probabilities of a bit being flipped due to noise. For
example, if users1 andi are not involved in a conversation
we have

Pr(Xt+1 = (S,R, Y,N) | Xt = (S, S,N, Y)) =

= p1(1 − pi)θ(1 − θ)

This Markov chain is irreducible and aperiodic, so it has
a stationary distribution, sayπ. Then we can compute, for
example,

π((S,R,N, Y)) = r1(1 − θ)θ,

if users 1 andi are conversing and

π((S,R,N, Y)) = r1(1 − ri)(1 − θ)θ,

if they are not. Instead of computing them explicitly, one
may see that these expressions follow from Equation (4), by
interpreting the stationary probability of a state as the frac-
tion of time that the chain spends in the state as time goes to
infinity.

Furthermore, we define a functionBi : Σ 7→ {0, 1},
which indicates the bit at the current time point of users 1
andi; for example,B1(S, S,N, Y) = 1 andBi(S, S,N, Y) =
0. Let Σ1 ⊂ Σ be the set of statesσ for which B1(σ) = 1
andBi(σ) = 0 (i.e.,Σ1 = {(S, S,N, Y), (S,R,N,N),
(R,S, Y, Y), (R,R, Y,N)}) and letΣ2 ⊂ Σ be the set of
statesσ for which B1(σ) = 1 or Bi(σ) = 0. We can also
compute the probability ofΣ1 andΣ2, for example,

π(Σ1) = π((S, S,N, Y)) + π((S,R,N,N)) +

π((R,S, Y, Y)) + π((R,R, Y,N)).

Notice then that the complementary similarity of streams1
andi during the time interval[1, T] is given by the expres-
sion

Ri(T) = Cim-asym(1, i, T) =
1
T

∑T

t=1 1Σ1
(Xt)

1
T

∑T

t=1 1Σ2
(Xt)

,

where1S(·) is the indicator function of eventS (i.e.,1S(x) =
1 if x ∈ S and 0 otherwise).

Since the Markov chain is ergodic (irreducible and aperi-
odic), the above summations converge to their expectation
under the stationary distribution, for example,

lim
T→∞

1

T

T
∑

t=1

1Σ1
(Xt) = π(Σ1),

whereπ is the stationary distribution of the Markov chain.
A similar result holds for the summation at the denominator.
Therefore, in order to show that our algorithm succeeds in

distinguishing the user that communicates with user1 from
the rest of the users, we show first, that the valuesRi differ
by a significant amount depending on whether useri is in-
volved in a communication with user 1 or not. Furthermore,
we have to show that the convergence to these values takes
place fast, and for that we will demonstrate that for a rela-
tively small value ofT the ratioRi(T) is close to the value
under the stationary distribution for every useri.

By using Equation (5) (and the pertinent equation forΣ2)
we get after some tedious calculations:

Eπ[Ri] = Eπ[Cim-asym(1, i)]

=
π(Σ1)

π(Σ2)
=

r1 + θ2 − 2r1θ

r1 + 2θ − 2r1θ − θ2

if useri is the party conversing with user1, and

Eπ[Ri] = Eπ[Cim-asym(1, i)] =

r1−r1ri+θ−3r1θ−riθ+4r1riθ−θ2+2r1θ2+2riθ
2−4r1riθ

2

1−ri+r1ri−θ+r1θ+3riθ−4r1riθ+θ2−2r1θ2−2riθ2+4r1riθ2
,

if user i is not conversing with user1, whereri is the ex-
pected fraction of the conversation that useri is transmitting,
and its value is given in Equation (4).

Let us now examine the algorithm’s ability to discriminate
between the actual conversation partner of user 1, and some
other user. As we will see, this depends on the ratiosr1

andri, and in general it is optimal whenr1 ≈ 1/2, that is,
when the two parties talk in equal proportions. Conversely,
in the extreme situation that there are four streams consisting
of two conversations in which only one user speaks per pair
(i.e., r1 = 0 or 1, and similarly for the other two parties)
it is impossible to correctly distinguish the two conversing
pairs. Therefore, values ofr1 that approach1/2 allow for
more pattern variability and thus intensify distinguishability.

Assume that user 1 is conversing with user 2, and consider
some other useri. Let us define the quantity

Diff (i) = max{Eπ[Cim-asym(1, 2)] − Eπ[Cim-asym(1, i)],

Eπ[Cim-asym(2, 1)] − Eπ[Cim-asym(2, i)]}.

Note that we define this quantity only for the sake of analy-
sis; the algorithm does not know it since it does not know
that user 2 is the one who converses with user 1. In words,
Diff (i) gives the difference between the cimilarities of the
actual partner of user1 (i.e., user 2) and useri (or the cor-
responding value for user 2 since the cimilarity function that
we consider is asymmetric; whichever is higher). High val-
ues of Diff(i) indicate that either user 1 or user 2 is able to
deduce that useri is not the actual partner. In Figure 18 we
show how this difference behaves for various values ofr1

and ri. What we can see, is that assuming that each user
talks at least10% of the time, there will be a difference of at
least0.15. If we assume that each user speaks at least30%
of the time then the difference is at least0.29, and under the
assumption that all users speak about the same time, the dif-
ference is at least0.35. Hence, we can decide that user 1
converses with user 2.

Now we show that the empirical averages, which give the
cimilarity measures that our algorithm computes, are close
to the expected values. Since the summands are not in-
dependent random variables, we cannot employ a Chernoff

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r
i

D
iff

(i)

r
1
=0.1, 0.9

r
1
=0.2, 0.8

r
1
=0.3, 0.7

r
1
=0.4, 0.6

r
1
=0.5

Figure 18: The difference of the gaps between the actual part-
ner of user 1 (or user 2) and some other useri, for different
values of the ratior1, for θ = 0.1.

bound. Nevertheless, it turns out that since the Markov chain
converges fast we can obtain similar exponential bounds.
This is formalized by some recent results that make use of
the spectral properties of the Markov chain, or make use of
information-theory tools (e.g., [21, 32]). The following the-
orem is found in [21].

THEOREM 7.2. Let X1,X2, . . . ,Xn be a sequence gen-
erated by a time-reversible finite Markov chain with eigen-
value gapε starting from an initial distributionq. Then

Pr

(∣

∣

∣

∣

∣

1

T

T
∑

t=1

1S(Xt) − π(S)

∣

∣

∣

∣

∣

> β · π(S)

)

≤

(

2 +
βε · π(S)

5

)

· Nq · e
− 1

20
π(S)2εβ2T ,

whereNq =
∥

∥

∥

q√
π

∥

∥

∥

2
.

We can apply the theorem for our scenario, usingT = c ·
lnn for an appropriately chosen constantc = c(p1, pi, q1, qi, θ),
as follows: The Markov chain is time-reversible, and the
eigenvalue gapε is a constant (which also depends onp1, pi, q1, qi, θ).
By application of Theorem 7.2, we get that for

T = c · lnn =
60

π(Σ0)2εβ2
· lnn,

whereπ(Σ0) = min{π(Σ1), π(Σ2)}, we have

Pr

(∣

∣

∣

∣

∣

1

T

T
∑

t=1

1Σ1
(Xt) − π(Σ1)

∣

∣

∣

∣

∣

>
β

3
· π(Σ1)

)

= o

(

1

n3

)

,

and that

Pr

(∣

∣

∣

∣

∣

1

T

T
∑

t=1

1Σ2
(Xt) − π(Σ2)

∣

∣

∣

∣

∣

>
β

3
· π(Σ2)

)

= o

(

1

n3

)

,

for sufficiently largen, if we assume that the valuesr1, ri,
andθ are constant with respect ton. This implies that

Pr (|Ri(T) − Eπ(Ri)| > β · Eπ(Ri)) = o

(

1

n3

)

.

Essentially, we have shown that the computed cimilarity be-
tween users 1 andi is within β of its expected value, with

high probability. By employing a union bound we finally
deduce that afterT = c′ · lnn time steps (withc′ equal to
the maximum value ofc among all user pairs) the cimilarities
for all the

(

n
2

)

user pairs are close to their expected (under
the stationary measure) values with probabilityo(1/n).

Summarizing the findings of our analysis:

• Using the presented complementary similarity measures,
we will eventually pair all streams with very low prob-
ability of error.

• The cimilarity measures converge exponentially fast to
their expected values.

• As a consequence, the number of time steps required
to match all the streams increases only logarithmically
in the number of streams.

The third conclusion is particularly important, because it
hints on the pairing performance for a large number of streams.
We illustrate an example of the logarithmic increase in the
convergence rate in Figure 19 using the previously used switch-
board conversation data. Here, we plot the number of time
steps required to achieve an accuracy of90% as the number
of users increases. We repeat the experiment 10 times with
different sets of voice conversation for each stream cardinal-
ity and on the figure we report the average execution time
over the 10 runs. One can easily distinguish a logarithmic
trend.

90% accuracy

Number of Streams

T
im

e(
se

c)

20 50 100 200 300 500 750 1000
0

20

40

60

80

100

120

140

10

Figure 19: The number of time steps required in order to be
able to achieve accuracy90%, as a function of the number of
users (linear interpolation of the points also shown).x-axis is
on logarithmic scale.

Concluding comments on the analysis:Some of the con-
stants that appear in the proof are a result of applying the
general theory on Markov chains, and so they are an over-
estimate. In practice, one should still experience an expo-
nential convergence rate albeit with lower constants than the
ones provided by the analysis.

Note also that although our generative model for the con-
versations is fairly general and realistic, one can consider
even more generic scenarios. For example, in [36], in addi-
tion to the two-state model presented here, the authors con-
sider richer Markovian models; our results can be extended

for those cases as well. More interestingly, one can consider
more general stochastic processes, where, for example, the
probabilitiespi or the noiseθ might change over time. Al-
though in this case we cannot model the system as a Markov
chain, stochastic domination arguments can show that our
results carry in those cases, as long as the streams of non-
conversing users and the noise remain mutually independent.

8. EXPERIMENTS
As our experimental testbed we used real telephony con-

versations from switchboard data [23], which contained 500
pairs of conversations for a total of 1000 voice streams and
consisted of multiple pairs of users conversing on diverse
topics. Such datasets are typically used in many speech
recognition contests for quantifying the quality of different
speech-to-text processes. The specific dataset that we used,
consisted actually of quite noisy conversational data and the
length of each conversation is 300 sec. The original voice
data have been converted to VoIP packets (using the protocol
described in the VoIP section), then fed onto a local network
using our custom made workload generator and recaptured
by the planted data sniffers.

8.1 Comparison of Cimilarity Measures
In this initial experiment we compare the pairing accu-

racy of the three presented complementary similarity mea-
sures. We utilize the hard clustering approach which does
not leave any unassigned pairs, therefore it introduces the
largest amount of incorrectly classified pairs. However, since
the hard clustering follows a more aggressive pairing strat-
egy, this experiment essentially showcases the best possible
convergence rate for the various complementary similarity
measures.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(sec)

A
cc

ur
ac

y

Mutual Information
Hamming−Scaled
Jaccard−Asym

Figure 20: Pairing accuracy between 3 measures.

Figure 20 presents the pairing accuracy of the Mutual In-
formation (MI), Jaccard Asymmetric and Scaled Hamming
measures. Every 10 seconds we calculate the accuracy of
the hard clustering algorithm by pairing each of the voice
streams with the stream that depicts the maximum comple-
mentary similarity. Notice than in this way we do not nec-
essarily impose a 1-to-1 mapping of the streams (hence, a
stream may be paired with more than one streams). We re-
port the results using the 1-to-n mapping, since we discov-

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Figure 21: Progressive pairing for Asymmetric Jaccard. Left: f = 1/2, Middle: f = 2/3, Right: f = 1

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

maximum possible
accuracy

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

maximum possible
accuracy

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

maximum possible
accuracy

Figure 22: Progressive pairing for Asymmetric Jaccard using 50 singleton streams (their matches are not in the pool of monitored
streams). Left: f = 1/2, Middle: f = 2/3, Right: f = 1

ered that it consistently achieves more accurate results than
the 1-to-1 mapping.

On the figure we can observe that the Asymmetric-Jaccard
measure is the best overall performer. It achieves faster con-
vergence rate than the Mutual Information (90% accuracy
after 120sec, instead of 150sec for the MI) and also a larger
amount of correctly classified pairs at the end of the experi-
ment. The Scaled-Hamming measure appears to be quite ag-
gressive in its pairing decisions in the beginning, but flattens
out fairly quickly, therefore it cannot compete in terms of
accuracy with the other two measures. Since different mea-
sures appear to exhibit diverse convergence rates, as possible
future work it would be interesting to explore the possibility
of alternating use for the various measures at different stages
of the execution, in order to achieve even faster pairing de-
cisions.

In general, the results of this first experiment are very en-
couraging, since they indicate that the use of simple match-
ing measures (like the Asymmetric Jaccard) can achieve com-
parable or better pairing accuracy than more complex mea-
sures (such as the Mutual Information). For the remainder
of the experiments we will focus on the Asymmetric-Jaccard
measure, and specifically on its performance using the pro-
gressive pairing algorithm.

8.2 Progressive Clustering Accuracy
The progressive algorithm presented in the paper has two

distinct advantages over the hard clustering approach:

1. It avoids the continuous pairwise distance computa-
tion by leveraging the progressive removal of already
paired streams.

2. It eliminates almost completely the incorrect stream
pairings.

The second goal is achieved by reducing the aggressive-
ness of the pairing protocol, which in practice will have a
small impact on the convergence rate (compared to the hard
clustering approach). Recall that the progressive algorithm
classifies the stream with the maximum cimilarity value (max1)
as a match, if

max1 − max2 > f · (max2 − cMass).

The valuef essentially tunes the algorithm’s convergence
rate. Smaller values off mean that the algorithm is more
elastic in its pairing decisions, hence achieving faster con-
vergence, but possibly introducing a larger amount of incor-
rectly classified pairs. By imposing largerf values, we re-
strict the algorithm in taking more conservative decisions.
This way fewer mistakes are made, at the expense of more
prolonged convergence time.

Figure 21 presents the accuracy of the Asymmetric-Jaccard
using values off = 1/2, 2/3, 1. The darker part of the
graph indicates the correctly classified pairs, the medium
gray the incorrect pairings, and the white part are the remain-
ing streams for which no decision has yet been made. From
the graph, one can observe that for the examined dataset,
f = 2/3 represents the best compromise between conver-
gence rate and false pairing rate. The final pairing results af-
ter 300sec are: correctly paired= 972, incorrectly paired=
6, undecided= 24. Contrasting this with the hard clustering
results at 300sec (correctly paired= 982, incorrectly paired=
18), we see that we can achieve fewer false assignments,
while being quite competitive on the correct assignments and

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Figure 23: Progressive pairing for Asymmetric Jaccard using the criterion max1 > k · cMass. Left: k = 1.5, Middle: k = 2, Right:
k = 2.5

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Figure 24: Progressive pairing for Asymmetric Jaccard using the criterion max1 > c · σ + cMass. Left: c = 4, Middle: c = 4.5,
Right: c = 5

at the same time accomplishing a progressive clustering that
is computationally less demanding.

Comparison with other clustering approaches: We also
compare our previous stream pairing criterion scheme against
two other approaches:

• The first criterion of comparison is the following:

max1 > k · cMass.

• The second one assumes a gaussian distribution of cim-
ilarity values and attempts to find outliers in such a data
distribution, therefore the matching criterion is the fol-
lowing:

max1 > c · σ + cMass.

whereσ is the standard deviation of the cimilarity val-
ues, after excluding the cimilarity value of the best max
(i.e. themax1 value).

The clustering accuracy for these two pairing criterions
are depicted on Figures 23 and 24 for different parameter
values. We observe that the first criterion exhibits very low
matching accuracy. The second criterion presents matching
accuracy that reaches85%, but it is still lower than our pair-
ing criterion, which performs a better separation of the best
candidate match against all the remaining streams.

8.3 Clustering Accuracy and Singleton Streams
In the previous experiment we had at our disposal both

pairs for all conversations. Now we examine whether accu-
racy is impacted by the presence of singleton streams, that is,

streams that have no homologue voice streams (possibly be-
cause it was routed through a different network router with-
out sniffing capabilities). Now, we remove 50 random voice
streams and we transmit only the remaining 950 ones. Each
of these 50 streams correspond to one-way of a conversation.
Hence, out of the 950 streams that are ultimately captured,
50 conversations cannot be correctly paired. The maximum
possible streams that can be correctly identified is 900.

The results for these experiments for the different values
of f are provided in Figure 22. Since now we cannot pos-
sibly achieve 100% accuracy (due to the singleton streams)
we also indicate on the graph the maximum achievable ac-
curacy (900/950). We repeat the experiment 10 times, re-
moving each time a different set of 50 streams from the pool
of 1000. The graphs indicate the average accuracy over the
10 runs of the algorithm. The results are almost identical as
in the scenario without any singleton streams, indicating the
resilience of the algorithm, which correctly did not pair the
majority of the singleton streams with the remaining voice
conversations.

8.4 Resilience to Latency
We conduct experiments which indicate that the matching

quality is not compromised by potential end-to-end network
delay. For simplicity of exposition we assume an end-to-end
delay for each stream that remains constant as time passes
(even though on a real network, delay will vary over time).

For this experiment we assume that each stream experi-
ences a different global latency, drawn randomly from a uni-
form distribution within the range[0, 2δ], whereδ is the ob-
served one-way network latency. We conduct 4 sets of ex-
periments with valuesδ = 40, 80, 160, 240msec, therefore

50

100

150

200

250

300

240

160

80

40

0

200

400

600

800

1000

Time(sec)

Maximum Latency per stream (msec)

C
o
rr

e
c
tl
y
 P

a
ir
e
d

960 (6)

966 (6)

970 (8)

972 (6)

840 (4)

832 (4)

822 (2)

818 (4)

50

100

150

200

250

300

240

160

80

40

0

200

400

600

800

1000

Time(sec)

956 (0)

956 (0)

926 (0)

926 (0)

506 (0)

504 (0)

476 (0)

440 (0)

C
o

rr
e

c
tl
y
 P

a
ir
e

d

Maximum Latency per stream (msec)

Figure 25: Accuracy of progressive pairing under conditions of end-to-end network delay. The graph depicts the correctly paired
streams, while in the parenthesis we provide the number of incorrectly paired ones. Left: f = 2/3, Right: f = 1

the maximum possible synchronization gap between 2 pair-
ing streams can be up to2δ.

Figure 25 displays the pairing accuracy using the two clus-
tering parameters that produce the least amount of misclas-
sifications,f = 2/3 and f = 1. The 3D areas indicate
the number of correctly paired streams, while on top of the
surface we also indicate in parenthesis the number of incor-
rect pairings. We report the exact arithmetic values for the
mid-point of the experiment (150sec) and at the end of the
experiment (300sec). Generally, we observe that the cluster-
ing approach is robust even for large end-to-end latency. The
accuracy of the pairing technique is not compromised, since
the number of misclassified pairs does not increase. For la-
tency of 40–80msec, the correctly classified pairs still re-
main approximately970/1000. This number drops slightly
to 960/1000 for 240msec of latency, but still the number of
misclassified pairs does not change. Therefore, latency af-
fects primarily theconvergence rate, since ambiguity is in-
creased, however accuracy is not compromised.

One can explain these results by noting that complemen-
tary similarity is most dominantly affected by the long speech
and silence segments (and not by the very short ones). The
long speech and non-speech patterns between conversing users
are not radically misaligned by typical network end-to-end
latencies, therefore the stream similarities in practice do not
deviate significantly from their expected values.

Summarizing the experiments, we have shown that the
progressive algorithm can achieve pairing accuracy that reaches
96–97%, while it can be tuned for faster convergence or min-
imization of false classifications. Singleton streams alsodo
not penalize the algorithm accuracy. More significantly, we
have demonstrated that the clustering performance is not af-
fected by the network latency, since latency does not sig-
nificantly affect the dominant temporal dynamics between
conversational patterns.

9. SYSTEM DEPLOYMENT
We provide a brief description of a real system deployment

of the conversation pairing algorithm, which is executed on
top of the stream processing middleware (System S) [30] de-
veloped at IBM Research.

The stream processing core (SPC) middleware represents
an API implementation for effective parallel execution of op-
erators on streaming data, which is executed on top of a grid
of parallel connected CPUs (Blade Servers). The basic no-
tion of SPC is that of a processing element (PE). Each PE
can be considered as an operator on a stream, which per-
forms a specific task, accepting input from other PE’s and
sending output to some others. Therefore, the execution of a
complex algorithm can be visualized as a processing graph,
where PE’s define their input and output.

SPE SPA VBF

SGD

SPM

PCP

JAE

DFE PSD

DSN DNV

DFE PSD

DFE PSD

SPE SPA VBF

SPE SPA VBF

JAE DSN DNV

PCP

MU

PSD

MU

DFE PSD

SPE SPA VBF

Ideal

Results

Real

Results

… from sniffer

… from sniffer

… from sniffer

… from sniffer

Figure 26: Stream Processing Graph instantiated in our stream
processing unit: The nodes are the application operators and
the edges represent the streams. The application operators
include feature extraction, speaker detection, stream pairing,
windowed join, etc. and are running on various, possibly re-
mote, processing devices.

We implemented the progressive conversation pairing (PCP)
algorithm as a processing element on top of the SPC mid-
dleware. The PCP is just a portion of a full scale appli-
cation which performs real-time speaker identification and
conversation pairing over VoIP conversations. The stream
processing unit is fed by various remote sniffers, each carry-
ing several compressed speech signals. These streams flow
through a processing graph such as the one illustrated in Fig-

ure 26. The nodes correspond to PE’s (stream operators) and
the edges represent the streams. The processing elements in-
clude fast feature extraction from compressed speech signals
(DFE), progressive speaker detection in quantized feature
space [28] (PSD), stream binarization (SGD), progressive
stream pairing of conversing parties (PCP). The results of
the speaker detection and the conversation pairing are joined
(JAE) in order to obtain both the conversing pairs and the
identities of the speakers. Finally, the results are improved
through techniques of probabilistic denoising (DSN).

The complete processing graph consists of 54 processing
elements (PEs) running on 21 distinct computer nodes (Fig-
ure 26). The complete system can support real-time pro-
gressive detection of 300 conversations (600 streams), which
effectively translates into processing of more than 10,000
speech frames per second. In order to support this high input
load, the more complex operators (like the speaker detection
[19]) needed to be replicated at multiple nodes. The conver-
sation pairing element (PCP) given its progressive computa-
tion nature was particularly lightweight and therefore could
handle the load on a single CPU.

Figure 27: The visualization interface of the system deployment

In figure 27 we provide a snapshot of the graphical user
interface that displays the system results. The main window
provides a visualization of the speakers and conversations
that are identified so far. Detected speakers are indicated
by the existence of their photograph on the main window,
and detected conversations are portrayed as lines. Pictures
are connected with lines when both speakers and conversa-
tions are correctly discovered. The right part of the window
captures the various system statistics, such as error rate and
stream load for the speaker detection, the conversation pair-
ing and the denoising elements. The interested readers are
encouraged to watch a video demonstration of the system
deployment and the presented GUI.5

10. DISCUSSION AND POTENTIAL SOLU-
TIONS

5 http://www.cs.ucr.edu/∼mvlachos/voice/demo.wmv

We have shown that the pairing of anonymous conver-
sations is made possible because one can reconstruct the
speech-silence signature of each voice stream through ex-
ploitation of the VAD in the VoIP protocol. Therefore, one
could envision several ways of “tricking” the protocol into
constantly sending all voice packets. We elaborate on vari-
ous issues that may arise in those situations:

• First, one could turn off the VAD on the client side,
hence forcing the client into sending all voice pack-
ets. This is an ability that may be provided by the tele-
com or VoIP provider company. While this seems as
an obvious or direct solution, this is something that
the providers might not be willing to do. We point
out VAD is an inherent mechanism of many voice pro-
tocols because of the tremendous bandwidth savings
that can lead to. Studies show that an average person
speaks only 40–60% of the time during a telephone
conversation [49, 6, 50]. These numbers are also ver-
ified in our dataset; the percentage of silence is very
high reaching59.2831%. Therefore, sending only the
voice packets reduces the average bitrate and enhances
overall coding quality of speech. In cellular radio sys-
tems (for instance, GSM and CDMA systems) based
on Discontinuous Transmission (DTX) mode, this fa-
cility is essential for enhancing the system capacity by
reducing co-channel interference and power consump-
tion in portable digital devices [18, 20, 7]. In order
to mask the complete absence of the “silent” packets,
Comfort Noise Generation [54] techniques are typi-
cally deployed, which provide the impression of con-
tinuous conversation. However, Comfort Noise (CN)
RTP packets can be easily detected and removed. Re-
call that the RTP Header of VoIP packets is not en-
crypted. CN RTP packets are indicated by a Payload
type of 13, which means that an 8 KHz CN codec
has been utilized (for more details see also IETF RFC
3389, athttp://www.rfc-editor.org/rfc/
rfc3389.txt).

Because of the above, it is unlikely that the VoIP pro-
tocol will abandon the VAD feature. Comfort Noise
packets can be easily filtered out and the binary speech-
silence sequence can be thus still easily constructed.
While certain carriers may provide the ability of dis-
abling VAD (eg. Vonage), one can ask the question
why would a VoIP provider let some people use much
more bandwidth than others (yet pay the same bill)?

For the above reasons this scenario is considered un-
likely to happen.

• The second way for constantly sending packets, is to
include a background sound source, that is above the
VAD level (e.g. play music on the background while
talking on the phone). This could trick the VAD into
sending all the packets. It is indeed a plausible scenario
and could be utilized as a defense mechanism. Imple-
mentation of this approach could potentially require a
significant amount of reverse engineering and techni-
cal expertise, since the VAD mechanism is designed to

distinguish the difference between ‘speech’ and ‘non
speech’. That is, between speech and{silence, noise,
etc.}. The fact that VAD levels are adaptive is also
expected to make the process even more challenging.
This, however, raises also the question of whether sound
quality has to be compromised or latency will be in-
troduced in the system. For example, if someone’s
bitrate is too high, then the respective VoIP packets
might be given a lower priority than someone else’s
with lower bitrate. In any case, a source sending a
substantial amount of additional packets is expected to
have a larger latency in the communication, which one
might (or might not) be willing to accept.

11. ADDITIONAL APPLICATIONS
While in this work we have presented how complemen-

tary stream clustering could be utilized in pairing anony-
mous VoIP conversations, there are a number of other direct
or indirect applications where this methodology could also
be useful:

1) The coordination measures of a conversation can be uti-
lized in assessing the quality of an online VoIP conversation
[48, 25]. For example, if the complementary similarity in a
two-way conversation is not above a properly defined thresh-
old, then this might provide an indication of problematic
communication between the speakers, therefore hinting on
the presence of network latency, dropped packets, or other
network problems. Therefore, the coordination measures
can provide a level of assurance regarding the quality-of-
service (QOS) for an online communication.

2) Consider a room withn people, where microphones are
placed at different locations recording the on-going conver-
sations. While the microphones can capture multiple con-
versations based on their placement, if the room contains at
leastn (properly situated) microphones, then Independent
Component Analysis techniques (ICA) can be used to effec-
tively unmix the original sources, and therefore reconstruct
the original 1-way communications of each person [33, 27].
Afterwards, techniques like the one described in the paper,
can determine the complementary 1-way communications,
and therefore help assemble the original conversations by
recombining the separated speech of each person.

3) The online complementary similarity measures that we
put forward can also find great utility in generic load-balancing
problems [56, 8, 26, 35]. Such problems arise very naturally
in client-server architectures and the objective is to identify
clients with complementary demand patterns. This is very
useful because it allows the grouping of clients and their as-
signment on a single server, hence maximizing the utility
time of the system, or conversely reducing its idle time. For
example, in a computer grid where multiple processes are
being executed, the objective is to discover processes/threads
with complementary usage pattern (CPU/ hard-disk usage)
that can be placed under the same computing space. This
situation can be quite common for processes that wait the re-
sults of other processes, and therefore rarely exhibit overlap-
ping executions. Other typical scenarios of load-balancing

can be encountered in a variety of network applications, where
the intention is to assign clients with complementary packet
rates to the same server. Load balancing in a streaming envi-
ronment has also been of great interest recently [55, 53, 45].
While in this paper we only consider pairs of complementary
stream patterns because of the focus of this work, comple-
mentary pairing of multiple stream is also possible, which
could effectively handle the aforementioned problems.

12. CONCLUSIONS
We have presented results indicating that intercepted VoIP

data can potentially reveal private information such as pairs
of conversing parties. Careful analysis of the voice packets
coupled with an effective complementary pairing of voice
activities can achieve high accuracy rates. We have also
demonstrated that data encryption schemes cannot throttle
the pairing of conversations. Many avenues are still open for
investigation. Areas that that we are currently exploring are
the provision for distributed execution [47] of our pairingal-
gorithm, as well as the alternating usage of multiple distance
measures at different execution stages of the algorithm. The
ultimate objective of such efforts are to provide a pairing
algorithm that exhibits fast convergence, in addition to be-
ing robust and accurate. We believe that our algorithms and
pairing models could be of independent interest, for general
pairing of binary streaming data. Closing, we would like to
point out that the main objective of this paper was not to sug-
gest ways of intercepting VoIP traffic for malicious reasons,
but merely to raise the awareness that privacy on Internet
telephony can be easily compromised.

13. REFERENCES
[1] C. Aggarwal, J. Han, J. Wang, and P. Yu. A Frame-

work for Clustering Evolving Data Streams. InProc.
of VLDB, 2003.

[2] C. Aggarwal, J. Han, J. Wang, and P. Yu. A Frame-
work for Projected Clustering of High Dimensional
Data Streams. InProc. of VLDB, 2004.

[3] B. Babcock, M. Datar, R. Motwani, and
L. O’Callaghan. Maintaining Variance and k-Medians
over Data Stream Windows. InProc of PODS, 2003.

[4] S. Basu.Conversational Scene Analysis. PhD thesis,
Massachusetts Institute of Technology, 2002.

[5] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and
K. Norrman. The secure real-time transport protocol
(srtp). InIETF RFC 3711, March 2004.

[6] A. Benyassine, E. Shlomot, H.-Y. Su, D. Massaloux,
C. Lamblin, and J.-P. Petit. ITU-T Recommendation
G.729 Annex B: a silence compression scheme for use
with G.729 optimized for V.70 digital simultaneous
voice and data applications. InIEEE Communications
Magazine, Vol 35(9): 64–73, 1997.

[7] F. Beritelli, S. Casale, and G. Ruggeri. Performance
Evaluation And Comparison Of Itu-T/Etsi Voice Activ-
ity Detectors. InIEEE Signal Processing Letters, Vol.
9(3): 85-88, 2002.

[8] A. Bestavros. Load Profiling: A Methodology for
Scheduling Real-Time Tasks in a Distributed System.
In Proc. of ICDCS, 1997.

[9] P. T. Brady. A Statistical Analysis of On-Off Patterns
in 16 Conversations. InBell System Technical Journal,
47(1):73-91, 1968.

[10] A. Z. Broder. On the resemblance and containment of
documents. InProc. of the Compression and Complex-
ity of Sequences. IEEE Computer Society, 1997.

[11] A. Chakrabarti, K. D. Ba, and S. Muthukrishnan. Es-
timating Entropy and Entropy Norm on Data Streams.
In STACS, pages 196–205, 2006.

[12] M. Charikar, L. O’Callaghan, and R. Panigrahy. Bet-
ter Streaming Algorithms for Clustering Problems. In
Proc. of ACM Symposium on Theory of Computing,
2003.

[13] H. Clark and S. Brennan. Grounding in Communica-
tion. In L. B. Resnick, J. Levine, & S. D. Teasley (Eds.),
Perspectives on socially shared cognition, pages 127–
149, 1991.

[14] C. Clifton, M. Kantarcioglu, A. Doan, G. Schadow,
J. Vaidya, A. K. Elmagarmid, and D. Suciu. Privacy-
preserving data integration and sharing. InDMKD,
pages 19–26, 2004.

[15] G. Cormode, M. Datar, P. Indyk, and S. Muthukrish-
nan. Comparing Data Streams Using Hamming Norms
(How to Zero In). InIEEE Trans. Knowl. Data Eng.
15(3): 529-540, 2003.

[16] G. Cormode and S. Muthukrishnan. Estimating Domi-
nance Norms of Multiple Data Streams. InProc. of An-
nual European Symposium on Algorithms, pages 148–
160, 2003.

[17] P. Domingos and G. Hulten. A General Method for
Scaling Up Machine Learning Algorithms and its Ap-
plication to Clustering. InProc. of ICML, 2001.

[18] R. Fulchiero and A. S. Spanias. Speech enhancement
using the bispectrum. InIEEE ICASSP, pages: 488–
491, 1993.

[19] G. N. Ramaswamy, J. Navratil, U. V. Chaudhari and R.
D. Zilca. The IBM System for the NIST 2002 Cellu-
lar Speaker Verification Evaluation. InIEEE ICASSP,
Hong-Kong, April 2003.

[20] G. Gabor and Z. Gyorfi. On the Higher Order Distri-
butions of Speech Signals. InIEEE Transactions. on
Acoustics, Speech, and Signal Processing, Vol 36(4):
602–603, 1998.

[21] D. Gillman. A Chernoff bound for random walks
on expander graphs.SIAM Journal on Computing,
27(4):1203–1220, 1998.

[22] D. Goldschlag, M. Reed, and P. Syverson. Onion rout-
ing for anonymous and private internet connections.
In Communications of the ACM, volume 42, February
1999.

[23] D. Graff, K. Walker, and A. Canavan.
Switchboard-2 phase ii. LDC 99S79 –
http://www.ldc.upenn.edu/Catalog/, 1999.

[24] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering Data Streams: Theory and
Practice. InIEEE TKDE, Vol. 15, No. 3: 515-528,
2003.

[25] F. Hammer, P. Reichl, and A. Raake. The Well-
Tempered Conversation: Interactivity, Delay and Per-

ceptual VoIP Quality. InIEEE International Confer-
ence on Communications (ICC), 2005.

[26] M. Harchol-Balter and A. B. Downey. Exploiting
Process Lifetime Distributions for Dynamic Load Bal-
ancing. In ACM Transactions on Computer systems
15:3, 1997.

[27] A. Hyvrinen. Fast and Robust fixed point algorithm
for independent component analysis. InIEEE Trans on
Neural Networks, 10(3): 626-634, 1999.

[28] I. H. Tseng and O. Verscheure and D. S. Turaga and U.
V. Chaudhari. Quantization for Adapted GMM-Based
Speaker Verification. InIEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), May 2006.

[29] J. Jaffe, L. Cassotta, and S. Feldstein. Markovian model
of the time patterns of speech. InScience, 144:884-886,
1964.

[30] N. Jain, L. Amini, H. Andrade, R. King, Y. Park,
P. Selo, and C. Venkatramani. Design, implementation,
and evaluation of the linear road benchmark on the
stream processing core. InSIGMOD, pages 431–442,
2006.

[31] M. Kantarcioglu, J. Jin, and C. Clifton. When do data
mining results violate privacy? InProc. of SIGKDD,
pages 599–604, 2004.

[32] I. Kontoyiannis, L. A. Lastras-Montãno, and S. P.
Meyn. Relative Entropy and Exponential Deviation
Bounds for General Markov Chains. InInternational
Symposium on Information Theory, 2005.

[33] T.-W. Lee, A. Bell, and R. Orglmeister. Blind source
separation of real world signals. InProc. of IEEE In-
ternational Conference Neural Networks, pages 2129–
2135, 1997.

[34] T. Li. A General Model for Clustering Binary Data. In
ACM SIGKDD, 2005.

[35] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,
and S. Zhou. Process Migration. InACM Computing
Surveys 32:3, 2000.

[36] D. Minoli. Issues in packet voice communications. In
Proceedings of the Institution of Electrical Engineers,
126(8):729-740, 1979.

[37] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha,
and R. Motwani. Streaming Data Algorithms for High
Quality Clustering. InProc. of ICDE, 2002.

[38] C. Ordonez. Clustering Binary Data Streams with K-
means. In8th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery, pages
12 – 19, 2003.

[39] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming
Pattern Discovery in Multiple Time-Series. InProc. of
VLDB, pages 697–708, 2005.

[40] T. V. Pham, M. Kepesi, G. Kubin, L. Weruaga, M. Sig-
mund, and T. Dostal. Time-frequency analysis for
voice activity detection. InProc. of the 24th IASTED
International Conference on Signal Processing, Pat-
tern Recognition, pages 244–249, 2006.

[41] R. V. Prasad, A. Sangwan, H. Jamadagni, C. M.C,
R. Sah, and V. Gaurav. Comparison of voice activ-
ity detection algorithms for VoIP. InProc. of Interna-

tional Symposium on Computers and Communications
(ISCC), 2002.

[42] H. Sacks, E. Schegloff, and G. Jefferson. A simplest
systematics for the organization of turn-taking in con-
versation. InLanguage, 50, pages 696–735, 1974.

[43] Y. Sakurai, S. Papadimitriou, and C. Faloutsos.
BRAID: Stream Mining through Group Lag Correla-
tions. InProc. of SIGMOD, pages 599–610, 2005.

[44] T. S. Saponas, J. Lester, C. Hartung, and S. Agar-
wal. Devices That Tell On You: Privacy Trends in
Consumer Ubiquitous Computing. InUSENIX Security
Symposium, 2007.

[45] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An Adaptive Partitioning Opera-
tor for Continuous Query Systems. InProc. of ICDE,
2003.

[46] R. Sion, M. J. Atallah, and S. Prabhakar. Rights Pro-
tection for Discrete Numeric Streams. InIEEE Trans.
Knowl. Data Eng. 18(5), pages 699–714, 2006.

[47] J. Sun, S. Papadimitriou, and C. Faloutsos. Distrib-
uted Pattern Discovery in Multiple Streams. InProc.
of PAKDD, pages 713–718, 2006.

[48] A. Takahashi. Opinion model for estimating conver-
sational quality of VoIP. InIEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), 2004.

[49] H. Toral-Cruz and D. Torres-Roman. Traffic analysis
for IP telephony. InInternational Conference on Elec-
trical and Electronics Engineering, pages 136–139,
2005.

[50] C. Un and H. Lee. Voiced/Unvoiced/Silence discrimi-
nation of speech by delta modulation. InIEEE Trans-
actions on Acoustics, Speech, and Signal Processing,
Vol. 28(4): 398–407, 1980.

[51] O. Verscheure, M. Vlachos, A. Anagnostopoulos,
P. Frossard, E. Bouillet, and P. S. Yu. Finding ’Who
is talking to whom’ in VoIP Networks.Proc. of ICDM,
2006.

[52] X. Wang, S. Chen, and S. Jajodia. Tracking anony-
mous peer-to-peer VoIP calls on the internet. InACM
Conference on Computer and Communications Secu-
rity (CCS), 2005.

[53] Y. Xing, J.-H. Hwang, U. Cetintemel, and S. Zdonik.
Providing Resiliency to Load Variations in Distributed
Stream Processing. InProc. of VLDB, 2006.

[54] P. K. Yasheng Qian, Wei-Shou Hsu. Classified Comfort
Noise Generation for Efficient Voice Transmission. In
Proc. of InterSpeech, 2006.

[55] S. Zdonik, J.-H. Hwang, and Y. Xing. Dynamic Load
Distribution in the Borealis Stream Processor. InProc.
of ICDE, 2005.

[56] S. Zhou. Performance Studies of Dynamic Load Bal-
ancing in Distributed Systems. InPhD Thesis, UC
Berkeley, 1987.

[57] Y. Zhu and D. Shasha. Statstream: Statistical monitor-
ing of thousands of data streams in real time. InProc.
of VLDB, 2002.

[58] P. Zimmermann. Zfone:http://zfoneproject.
com/.

[59] Findnot –http://www.findnot.com.

