A Layered Framework Supporting Personal
Information Integration and Application Design
for the Semantic Desktop *

Isabel F. Cruz Huiyong Xiao

Department of Computer Science
University of Illinois at Chicago
{ifc | hxiao}@cs.uic.edu

Abstract. With the development of inexpensive storage devices, space
usage is no longer a bottleneck for computer users. However, the increas-
ingly large amount of personal information poses a critical problem to
those users: traditional file organization in hierarchical directories may
not be suited to the effective management of personal information be-
cause it ignores the semantic associations therein and bears no connection
with the applications that users will run. To address such limitations, we
present our vision of a semantic desktop, which relies on the use of on-
tologies to annotate and organize data and on the concept of personal
information application (PIA), which is associated with a user’s task.
The PIA designer is the tool that is provided for building a variety of
PIAs consisting of views (e.g., text, list, table, graph), which are spa-
tially arranged and display interrelated fragments of the overall personal
information. The semantic organization of the data follows a layered ar-
chitecture that models separately the personal information, the domain
data, and the application data. The network of concepts that ensues
from extensive annotation and explicit associations lends itself well to
rich browsing capabilities and to the formulation of expressive database-
like queries. These queries are also the basis for the interaction among
views of the PIAs in the same desktop or in networked desktops. In the
latter case, the concept of desktop service provides for a semantic plat-
form for the integration of information across different desktops and the
web. In this paper, we present in detail the semantic organization of the
information, the overall system architecture and implementation aspects,
queries and their processing, PIAs and the PIA designer, including us-
ability studies on the designer, and the concepts of semantic navigation
in a desktop and of interoperation in a network of desktops.

* This work was partially supported by NSF Awards ITR 1IS-0326284 and IIS-
0513553. A preliminary version of this paper was presented at the First Interna-
tional Workshop on the Semantic Desktop—Next Generation Personal Information
Management and Collaboration Infrastructure, Galway, Ireland, November 2005 (in
association with the International Semantic Web Conference): “A Multi-Ontology
Approach for Personal Information Management,” by Huiyong Xiao and Isabel F.
Cruz).

1 Introduction

More than six decades after Vannevar Bush put forward Memex, his vision of
a personal information management (PIM) system where semantic associations
are emphasized [9], most computer users are still constrained by a rigid hierar-
chical file organization. To make matters worse, there is no alternate way, for
example using different views, to access the personal information. In this paper,
we describe a system that places a strong emphasis on data modeling to establish
semantic associations and on interactive ways to view and manipulate the in-
formation and those associations. The supported data model enables expressive
queries, which constitute the basis for the interactivity of the views in a local or
networked environment.

Our work fits within the research on the semantic desktop (e.g., [54]), which
leverages the potential of the semantic web [5] to address the challenges of
complex personal information (PI) spaces. A PI space is composed of a wide
variety of data, which are syntactically and semantically heterogeneous. The
following simple scenario illustrates the heterogeneity of PI spaces and some of
the challenges that make their management challenging.

Pl Space (C:\)
=15 papers = [C3) photos =) talks =15 emails
Z WISEO03-1.pdf = @ WISE WISEO3.ppt Final submission of WISE.eml|
Z WISEO03-submission.pdf Ltﬂ myself.jpeg IDEASO4.ppt Meeting on Monday.em|
£ WisE03-camera.pdf [E] talkipeg AP2PCO4.ppt WISE photos.eml
) 30DS05.pdf Llﬂ with sam jpeg Super-invited.ppt Register for WISE.em|

Fig. 1. An example of files in a desktop.

Ezample 1. Figure 1 presents a fragment of the personal information space that
consists of four directories: papers, which contains a variety of papers, pho-
tos\WISE, which contains pictures taken at the WISE ‘03 conference, talks, which
contains the files of four talks, and emails, which contains saved email messages.
Even if the concrete contents of all these files are unknown, we can tell from their
names (or the names of their respective directories) that several of them appear
to be related to one another. Unfortunately, their storage in different and pos-
sibly unrelated directories may make it difficult to discover such relationships.
Keyword-based search techniques, e.g., offered by the Google Desktop Search,’
can retrieve all files that contain the word “WISE”. However, without further
inspection of the contents of each file, the user may not be able to discover cer-
tain associations between them, e.g., that file JoDS05.pdf is an extended journal
paper of WISE03-camera.pdf. Furthermore, the lack of semantic annotation will
make it difficult to distinguish among files that are associated with the WISE

! http://desktop.google.com

(Web Information Systems Engineering) conference and the WISE (Women in
Science and Engineering) initiative—a case of semantic heterogeneity.

In the semantic desktop approach, as in the semantic web, a major role is
played by ontologies that give meaning to data. Given the data associated with
an application, also called domain, a domain ontology contains a conceptual de-
scription of that data, consisting of the concepts used, their attributes, and the
relationships between those concepts. For example, the Resource Description
Framework, RDF,? is based on resources, which correspond to concepts and on
properties that correspond to attributes or to relationships between concepts.
We further use the vocabulary language for RDF, the RDF Schema (RDFS).3
By using RDFS we can assert, for example, that a resource is a subclass of an-
other resource or the range of a property. The semantic desktop vision consists
of assuming that “all digital information items stored on a PC can be seen as
web resources to which the RDF model can be applied.” [54]. This vision also
includes the concept of peer-to-peer (P2P) communication between applications
in distributed desktops or within the same desktop. The advantage of this form
of communication is that it is completely decentralized with all the applications
being able to communicate with one another using the same protocol indepen-
dently of where they reside.

Ezample 2. When modeling the Bibliography domain, an ontology will have re-
source Publication and its subclasses (also resources), which include Journal and
Conference Proceedings. Publication has properties such as Title, Written by, and
Year. The range of Written by is the resource Author, which in turn has several
properties, including Name, whose range is the resource Literal.

In our paper, the term semantic denotes the meaning that is given to data
by an ontology that annotates that data. For example, the meaning of the two
WISE terms of Example 1 could be given by concepts in two different ontologies
respectively describing conferences in Computer Science and women initiatives,
or it could be given by different concepts in an ontology describing different or-
ganizations in Engineering. The idea of annotation to provide context is similar
to the concept of superimposed information: “data ‘placed over’ existing infor-
mation sources to help organize, access, connect and reuse information elements
over those sources.” [43]

We list next the objectives of our semantic desktop system and give a ratio-
nale for them.

Semantic data organization supporting a wide variety of associations, and a
uniform representation. This organization provides several advantages. First, the
annotations and associations provide context to the information, thus making
data more easily understandable. Second, the superimposed information also
allows for a finer and more expressive manipulation (e.g., querying) of the data.
Third, an explicit formal semantics can facilitate reasoning on the data and

2 http://www.w3.org/RDF/
% http://www.w3.org/TR/rdf-schema

deriving new knowledge. Finally, the uniform representation can support the
integration of heterogeneous data.
Diversity of data manipulation methods encompassing the integration,
exchange, browsing/navigation, and query processing of the stored personal in-
formation. The semantic data organization provides for a complex network of
interrelated data on which expressive query languages can operate to retrieve the
information that is related, to a task, project, or application. Likewise, brows-
ing/navigation will be performed in such a network, instead of on hierarchies of
folders. Interoperation among different information spaces in the same desktop
or across different desktops and the web can be undertaken using, for exam-
ple, the peer-to-peer (P2P) paradigm to enable communities of users to share
information [23].
Multiple interactive visualizations for helping the user to understand data
and their interconnections. Instead of providing separate data views as most tra-
ditional applications do, a semantic desktop should support data visualization
from different perspectives, to offer a comprehensive view. Examples of visu-
alizations of interest include association-centric visualizations, which are popu-
lated by queries [52], time-centric visualizations [31,32], and views containing
hierarchical lists of tasks provided as overlays over files, email, and web infor-
mation [34, 35]. Furthermore, we want to provide a query-based mechanism that
allows for two or more visualizations to interact, building on the semantic data
organization and on the expressive (and formal) querying capabilities.

Our contributions in this paper are as follows:

1. We present a layered framework for the semantic desktop, in which mul-
tiple ontologies play a variety of roles. Specifically, the resource layer stores
all the desktop resources (using URIs), metadata, and all kinds of asso-
ciations using RDF. The domain layer contains the ontologies specific to
various domains that are used to structure the data and categorize the re-
sources. The application layer, built on top of the domain layer, is used to
construct different ontologies for different user’s applications. This layered
architecture enables: i) a semantically-rich environment for personal infor-
mation management; ii) a flexible and reusable system, by decoupling the
domain and application ontologies, so that new domain ontologies that are
becoming available in increasing numbers can be used to assemble new ap-
plication ontologies. This layered architecture has advantages over the use
of a single ontology that describes all the information in a desktop because
such an ontology would likely: (1) not cover all the concepts of interest to all
users; and (2) would not take advantage of the development of new domain
ontologies.

2. We implement the concept of superimposed information for semantic or-
ganization, focusing on resource-file and resource-resource associations. We
provide users with the capability to browse the network of annotated and in-
terrelated information in the PI space in three different ways: within a layer,
called horizontal navigation, across layers, called vertical navigation, and
following their time stamps, called temporal navigation. This idea general-

izes approaches in other personal information and semantic desktop systems
including MyLifeBits [32] and Placeless Documents [28].

3. We present the concept of personal information application (PIA).
Each PIA is an application that uses the personal information in the desk-
top for a specific purpose, such as for bibliography management, paper com-
position, or trip planning. For each of those purposes, there can be several
applications. For example, for bibliography management there can be an ap-
plication that manages and displays the references for a paper and another
one that manages the user’s Bibtex files. The PIAs can be stand-alone, with
their own application ontology, user interface, and workflows. They can also
communicate with one another by means of the connections (mappings) es-
tablished between their application ontologies. In this sense, different PIAs
interoperate at a semantic level. We describe query processing in our frame-
work in two cases: within a single PIA or between two PIAs, in a P2P query
processing mode.

4. We design the architecture of a system that supports our layered frame-
work and the concept of superimposed information. There are three main
large components in our architecture comprising: (i) the data and metadata
repositories; (ii) the semantic desktop server consisting of metadata mod-
ules that extract and enhance the metadata of files (including file wrappers,
an annotator, a classifier, and an indexer), design and matching ontology
modules, and query processing modules; (iii) the user interaction modules
for the design and browsing of the PIAs, respectively the PIA designer and
the PIA browser, and for exploring resources (the resource browser).

5. We developed, implemented and user tested the PIA designer for end users
to create PIAs. The PIA designer uses the MVC (Model-View-Controller)
methodology [40] in assembling views and in defining their interaction within
a PIA. We show how PIAs can use desktop services and how such services
can facilitate data interoperation and integration across semantic desktops.
We also developed several other components of our system.

The rest of the paper is organized as follows. We discuss related work in
Section 2. In Section 3, we describe our layered framework and its main compo-
nents. The semantic organization of the information (including the concepts of
annotation, association, and representation) is discussed in Section 4. We present
the system architecture and its main components and concepts, which include
the concept of Personal Information Application (PIA) in Section 5. Query pro-
cessing is discussed both in a single PTA and across PIAs in Section 6. Section
7 presents in detail the PIA development environment, which uses the MVC
paradigm. Usability tests were performed in the PTA designer and their results
are reported in Section 8. Semantic navigation is discussed in Section 9. In Sec-
tion 10, we discuss both desktop interoperation as provided by desktop services
and desktop service execution. In Section 11 we describe briefly the implemen-
tation of other components of the system. Finally, in Section 12 we summarize
the paper and discuss future research directions.

2 Related Work

In response to the limitations currently imposed by desktops in what refers to
PIM, an important body of research has emerged in recent years. This research
addresses a wide variety of issues in areas ranging from data modeling, querying,
presentation, and human-computer interaction to collaboration and information
sharing, including privacy, security, and trust considerations [36]. The state-of-
the-art of semantic desktop research has been described by Sauermann [55],
while related research issues have been recently compiled [25, 26].

The Gnowsis semantic desktop project [54,56] aims to develop a semantic
desktop environment that supports P2P data management based on desktop
services. As in our framework, Gnowsis uses ontologies for expressing semantic
associations and RDF for data modeling. However, the emphasis of Gnowsis
is more on the flexible integration of a large number of applications than on
the organization and manipulation of data, the latter being the focus of both
SEMEX and of OntoPIM [14]. SEMEX is a personal data integration framework
that uses a fine-grained annotation based on schemas, similar to our ontology-
based framework [27]. However, a single domain model is provided as the unified
interface for all data access, while we provide a layered framework using multiple
ontologies to organize personal information. Our framework supports: (1) the
use of a growing number of available ontologies that describe a wide variety of
domains (e.g., email messages, bibliographic entries, or pictures) as standardized
by others; and (2) the decoupling of the domain and application ontologies.

MyLifeBits [32], Haystack [52], and Placeless Documents [28] are three PIM
systems that support annotations and collections. Here, the concept of collec-
tion is essentially the same as the conceptualization (using ontologies) of re-
sources in our framework. MyLifeBits supports easy annotation and multiple
visualizations (e.g., detail, thumbnail, timeline, and cluster-time views on the
data). For this purpose, the resources are enriched by a number of properties,
including the standard ones (e.g., size and creation date) and more specific ones
(e.g., time interval). Haystack aims to create, manipulate, and visualize arbitrary
RDF data, in a comprehensive platform. For visualization, it uses an ontologi-
cal/agent approach, where user interfaces and views are constructed by agents
using predefined ontologies. Placeless Documents introduces active properties,
where documents can have associated applications that provide document-based
services.

Stuff I've Seen (SIS) is based on a simple but powerful idea—people usually
want to find information that they have already seen; therefore, it provides an
indexed space that includes not only the information on a person’s laptop, but
also on visited web pages [29]. Lifestreams is based on a single metaphor for the
storage, manipulation, and visualization of documents—a time-ordered stream
of documents [31]. Project Xanadu has existed since 1960 and has its sources
in hypertext [47]. Chandler* concentrates on information and communication
tasks, such as composing and reading email, managing an appointment calendar

4 http://www.osafoundation.org/

and keeping a contact list. Other interfaces for personal data management are
based on Wikis and include SemperWiki [49] and WikSAR [1]. However, they
resemble a hypertext composer (or content manager) providing the user with a
means to put pieces of information together as a Wiki page.

Existing interfaces provide a workspace for the end user to develop appli-
cations. Such applications have their own data model, data presentation, and
control logic. Of such interfaces, Haystack’s end user interface [2] is the closest
to the PIA designer that we introduce in this paper. Both interfaces support
parameterizable channels that are collections of items retrieved by executing the
channels (essentially queries). Their channel parametrization is oriented to indi-
vidual channels, while ours can take the input from other channels so that two
channels (with their associated views) can interact. Another difference is that in
our framework, the channels and views are bound to desktop services defined in
terms of PIAs, so that reusability is naturally implemented by desktop service
composition.

The Universal Labeler (UL) presented by Jones et al. is a unified scheme
for labeling all kinds of personal information (e.g., electronic documents, paper
documents, email messages or web references) [34,35]. It follows the principle
that “Good information management follows from good project management.”
A project is a hierarchy of subprojects and tasks displayed in a window that
not only manages the UL but also gives direct access to other applications (e.g.,
email or calendar). This hierarchy is created by a “drag-and-link” operation, in
such a way that users drag only a fragment of a document to that hierarchy and
the remaining information is hyperlinked to that fragment. Each node can own
planning-oriented properties or behaviors, such as “remind me by” or due dates,
that will be displayed, for example, in the user’s calendar. A hierarchy provides
therefore a view over the user’s personal information. The UL approach does not
attempt, however, to manage the storage of information items [35] like we do. In
the UL approach, the work flow is driven by properties (e.g., time) or the order
of the tasks, whereas we allow user-defined if-then rules that act on the views to
control the work flow.

3 Framework

Our framework follows the principle of superimposed information, that is, of
data or metadata “placed over” existing information sources [43]. This concept
seems particularly useful for the organization, access, interconnection, and reuse
of the information elements. We present a layered ontology-based framework, as
shown in Figure 2, with the following components:

Personal information space. The personal information space may contain
structured data (e.g., relational), semi-structured data (e.g., XML), or unstruc-
tured data. Unstructured data can be textual or non-textual (as in video, audio,
or picture files). Furthermore, textual files can be classified as simple-content
or complex-content. More specifically, simple-content files have no references to
other files (for example, Bibtex entries). In contrast, complex-content files have

PIM 2

Application Layer

I
Ontology i Application Layer

<> Association N
~ \/\\ Application
Ontology j e
PIM 1
Application Layer
Application Application Application
Ontology 1 Ontology 2 Ontology n
>l Pl Space
Domain Ljayer, Contacts
Simple-content | Bibtex
Domain Domain Domain
Ontology 1 Ontology 2 Ontology m Textual Papers
A‘ X — Reports
1 Complex-content | Emails
Resource Hayer Slides
‘v‘ Nontextual: (Video, Audio, Pictures, ...)
Resoyrce Resource File Metadata 9
repository file ind
RDF ~file index Relational database, XML

Fig. 2. An ontology-based framework for the semantic desktop. Three networked se-
mantic desktops are represented, one of which is represented in detail.

a flexible scheme of presentation and may contain references to other files for
example by means of citations or hypertext links [15], as is the case with papers
that cite another paper (inside our outside the same desktop), which, in turn,
could cite other papers.

File description. We annotate each file using metadata consisting of a file de-
scription containing a set of properties of the file. Each item in the file description
is a property-value pair. The file description is the first-level (direct) annotation
for the individual files, and has the same scheme (structure) for the same type
of files. For example, the following fragment contains a typical description of a
JPEG file:

Dimensions: 3072 X 2048 pixels
Device make: Canon

Color space: RGB

Focal Length: 75

Domain ontologies. A number of ontologies are published on the Web. Ex-
amples of such ontology libraries include the DAML Ontology Library,” the
Semantic Web Ontologies,® and the Protégé OWL ontologies.” The ontologies

® http://www.daml.org/ontologies/
5 http://www.schemaweb.info
" http://protege.stanford.edu/plugins/owl /owl-library /

in these libraries are designed and organized for different domains such as Con-
ference, Person, Photo, and Email. In our framework, the domain ontology layer
is designed to be loosely-coupled with the other layers, to enable the insertion
and removal of ontologies as “plug-ins.”

Resource-file index and RDF repository. One of the roles of domain on-
tologies is to provide the basis for data classification. In order to establish the
connections between files and concepts in the domain ontologies, we treat each
file as a resource, which is then classified as an instance of one or more concepts.
The resource-file index is a local database storing these connections between re-
sources and files. Furthermore, the various types of associations among resources
(as instances of association of concepts in the domain ontologies) are stored in
an RDF repository. The resource-file index and the RDF repository are both in
the resource layer, providing resource instances for the domain ontologies in the
domain layer.

Application ontology. The application layer, which contains the ontologies for
different applications, is superimposed on the domain layer. The domain ontolo-
gies of the domain layer enhance the reusability and flexibility of the framework,
while the application ontologies are defined as views of the domain ontologies.
In this way, the domain ontologies can be reused for the construction of different
application ontologies. In our framework, each personal information application
(PIA), is associated with an application ontology, has access to relevant data,
and is functionally independent of other applications.

Besides the data components described above, a desktop system also needs
some functional components to perform all kinds of data and metadata pro-
cessing to make the framework work as a whole. Such components include an
indezer (for establishing and managing the indexes of the files), file wrappers
(for identifying and extracting resources from files), and an ontology designer
(for importing and editing an ontology).

4 Semantic Data Organization

In this section, we discuss in detail the mechanisms that our framework uses to
support the semantic organization of the personal information space, including
those for semantic annotation, association, and representation.

4.1 Annotation

Because the personal information space contains the base information, all the
other data components in our framework are superimposed information over
this space. The most fundamental function of the superimposed information is
to provide semantic annotations of the base information. We discuss the following
two aspects:

File description. Both textual and non-textual files will contain a description
of their contents to enable keyword searches. For example, in non-textual files,
the submitted keywords (e.g., “Canon”) or key-value pairs (e.g., “Maker:Canon”)

Subject: Reminder: Semnar - TODAY, Thursday, July 14, 2005
From: Santhi Mannapanem

Date: Thu, 14 Jul 2005 0%:25:08 -0500

To: all-grads@cs.uic.edu

Title: Deployment and Innovation of Intelligent Transportation Systems in Singapore
Presenter: Prof Der-Homg Lee, Associate Professor, Mational University of Singapore

Abstract: Since 1995, Singapore has been progressively implementing mtelligent transportation systems (IT3)
Bio: Dr Der-Homg Lee is an Associate Professor at

Contact Information:

TWebstte: httpfwww thap nus. edu. sgf

Fig. 3. Example of an email message.

will be matched to the property-value pairs of the file description, to find the
right files requested by the user.

Domain ontologies. Given that a file is identified as a resource, we are able
to annotate the file using a domain ontology by associating the resource with
a concept of an ontology. The domain ontology provides not only a context
for understanding the data, but also semantic clues for precise data retrieval.
We note that a file can be an instance of more than one concept, according to
different classification criteria.

4.2 Association

In our framework, semantic associations are used to relate all the data (base
information) and metadata (superimposed information). There are two classes
of associations: the resource-file associations, which are the resource-file indexes
and the resource-resource associations, which are instances of the domain on-
tologies and are stored in the RDF repository.

Resource-file associations. In addition to the ontological resources that are
used to identify (through data classification) the files, a (textual) file may contain
and refer to a number of resources. Therefore, the resource-file associations can
be one of the following: identification, containment, and reference.

Ezxample 3. Suppose that the user has saved an email message, which is an an-
nouncement of a seminar, as shown in Figure 3. First, the email message can
be classified as an instance of the concept Email, provided that the concept
exists in some domain ontology. Then, the system can generate for the con-
cept SeminarAnnouncement and its properties a new instance (i.e., resource),
which is associated with the saved email message by the relationship contain-
ment. Finally, a reference association can be established between the resource
http://www.tliap.nus.edu.sg/ (e.g., of the concept WebsiteAddress) and the email
message.

The process of setting up the resource-file associations is the one of recogniz-
ing resources from the file description and/or the file content and then mapping

10

them to the ontological concepts. The user may determine the degree to which
the resources should be extracted from a file and its description. For instance,
in the previous example, the user can further create resources for the title and
abstract of the seminar, and for the biography of the presenter. It is expected that
this process (as well as the process of discovering resource-resource associations,
as discussed later) can be maximally automated, to reduce the user’s burden.
For this purpose, we may utilize the following methods:

— Keyword extraction. From the text of a file, keywords can be extracted
based on a thesaurus or be highlighted manually by the user. Each keyword
can be considered a resource contained by the file. The matching of the
resources with the concepts in the domain ontologies can be guided by a
thesaurus such as WordNet.®

— Hyperlink analysis. For the textual files that include hyperlinks to clas-
sified resources (e.g., a citation of a paper or a link to a web page), we
create for each hyperlink a reference-type resource-file association, as well
as a resource-resource association between the referring resource and the
referred one.

— Natural language processing. We can utilize known techniques (e.g., [4])
to parse each sentence of a text or its summary obtained by means of text
summarization [44]. For each resulting triple (subject, predicate, object), we
try to match it with the patterns (s,p, o) in the domain ontologies, where
p is a property of the concept s and has a value typed of o. If such pat-
tern exists, a resource-resource association of type property and of the form
(subject, predicate, object) is generated.

— History. As the framework proceeds with such classification and cognition,
more and more knowledge about this process can be accumulated and reused
by a new process.

Resource-resource associations. We borrow from object-oriented design the
following four types of relationships between objects: instantiation (i.e., mem-
bership), property, aggregation (i.e., whole/part), and generalization (i.e., inheri-
tance). These four relationships, which are used in object models, are adopted to
describe the associations among concepts as well as resources in our framework.
Note that “property” refers to a pattern as identified, for example, using natural
language processing techniques, which corresponds to a user-defined property.
For example, writes can be a property of the concept Author, connecting Author
to the concept Book. Table 1 summarizes the resource-resource associations in
our framework.

By using the previously described techniques, we can discover the resources
and their associations implied in the personal information space, and classify
them into the domain ontologies, thus populating the ontologies. In the exam-
ple of Figure 3, it is possible to extract a pattern (Singapore,implements, ITS),
which can then be classified as an instance of an ontological pattern such as

8 http://wordnet.princeton.edu

11

Table 1. Resource-resource associations.

Resource-resource| Intra- Inter- Intra- Inter- Domain-
associations domain | domain | application | application |application
aggregation
property
instantiation

=
=

generalization
ontology mapping

=

v v

(Organization, implements, System), where Organization and System are two con-
cepts, and implements is a property. Note that the user is allowed to choose
the granularity of this knowledge (resource and associations) discovery process,
ranging from taking the whole file as a single resource to analyzing the detailed
contents of the file.

In addition, ontology mappings may be established between correspondences
that connect concepts in different domain and application ontologies. Currently,
we consider equivalence as the only semantics for the mapping between two
concepts, although richer semantics of the mappings could be considered [37].

4.3 Representation

In our framework, all information (including file descriptions, the resources in
the repository, and the resource-file indexes) are represented in the Resource De-
scription Framework (RDF). For the schema of these data (i.e., the application
and domain ontologies), we use the vocabulary language for RDF, RDF Schema
(RDFS). The RDF model is a semantic network, where the nodes denote the
resources and the edges are properties that represent the relations between re-
sources. The network can also be seen as a set of statements (triples) of the form
(subject, predicate, object). RDFS is used to define the vocabulary (in terms of
classes and properties) of the RDF data, such as rdfs:Class, rdf:Property, and
rdf:type. Table 2 summarizes the RDFS vocabularies that are used to represent
different types of associations.

The use of RDF as the data model and RDFS as the ontology language
in our framework is motivated by the nature of the RDF as a web resources
description mechanism and the fact that personal information is represented as
a set of interrelated resources. In contrast, XML is not chosen because it cannot
represent semantic associations [24]. Certainly, OWL (Web Ontology Language),
as built on top of RDF'S, is more expressive for ontology representation. However,
the use of a slightly extended version of RDFS described next is adequate for
representing resource-file and resource-resource associations.

The extension to RDFS is as follows: we define in a namespace (abbreviated
using the prefix rdfx) a new RDF property, contains, which is used to represent
the aggregation relationship [20]. For the representation of the instantiation and
generalization relationships, we use rdf:type and rdfs:subClassOf, respectively.

12

Table 2. RDF properties for the associations.

Relationship | RDF property Semantic description
aggregation |rdfx:contains <#a, rdfx:contains, #b> means that a contains b.
property User-defined prop-|<#wise0O3talk, presentedBy, #xiao> means that
erties wise03talk is connected to xiao by the association
presentedBy.
instantiation |rdf:itype <#xiao, rdf:type, #Person> means that the resource
xiao is an instance of the concept Person.
generalization|rdfs:subClassOf <#Book, rdfs:subClassOf, #Publication> means that
for classes and|the concept Book is a subclass of the concept Pub-
rdfs:subPropertyOf |lication.
for property

The property relationship is represented naturally by an RDF property defined
in the user-defined namespace.

Figure 4 gives a concrete example of the RDF representation of the appli-
cation, domain, and resource layers. Two application ontologies for PIAs (pic-
ture management and publication management) are constructed from four do-
main ontologies (Email, Talk, Publication, and Photo). In the resource layer, the
resource-file and resource-resource associations are represented as triples or in a
graph.

5 System Architecture

Figure 5 presents the architecture of a system that implements our framework.
We describe the primary components of the architecture, including the compo-
nents related to semantic data organization (on the server side) and those related
to user interaction (on the client side).

5.1 Semantic Data Organization

Our framework goes beyond a traditional hierarchical file organization by means
of two types of ontologies: domain ontologies and application ontologies. The
former represent the conceptualization of different domains, thus providing a
foundation for personal data classification. The latter are designed to serve as
the data model underlying personal information applications (PIAs), which are
developed by end users. More details of how these ontologies cooperate to enable
a semantically powerful data manipulation in the semantic desktop are given in
Section 7.

File wrappers. The semantic organization is based on the analysis and pro-
cessing of text documents in the personal information space. That is, we do not
consider the non-textual features of a file, although such features may facilitate
data annotation [8]. A file wrapper is used to retrieve text from various types
of files, such as PDF, PPT, and DOC. The other functionality of file wrappers

13

Ontology for attending a conference Ontology for picture management

_ e —————
o receivedBy - ===
? writtenBy extendedVersion ~
-
=4
=]
g
2 ~—a.
= N
o
< \ \
-
\ AN e
T >, K
—7N\ \
P P N \
\
\,
\

\
-
\

-
-

Domain Layer

\
1 (CPublication
I X
i\
I\ Guticle)
[T,
AN foProceedings
e
Email Ontology Talk Ontology) Photo Ontology
Publication Ontology
Resource-file index RDF repository == = = mapping
<"c! i photos.eml”, rdfx: ion, #wisephotomsg> — rdfs:subClassOf
<"c:\emails\WISE photos.eml", rdfx:contains, #wise03photomyself> ———> User-defined property
<'c photos.eml", rdfx: , #wise03conf>
<'c! If. jpeg”, rdfx:identification, #wise0
c! 03.ppt", rdf 1, #wiseO3talk>
c 03.ppt", rdfx: , #wise03talk> ise03photomysel
<'c 0: pdf", rdfxidentifi 1, #wiseO tached
<"c! JoDS05.pdf", rdfx:i ion, #jods05> attache

<#wisephotomsg, rdf:type, #Email>
<#wise03photomyself, rdf:type, #Photo>
<#wise03conf, rdf:type, #Conference>
<#wiseO3talk, rdf:type, #ConferenceTalk>

programOf

Resource Layer

presentedBy

<#wiseO , rdf:type, #InPi i editor editor
<#jods05, rdf:type, #Article> Se03papercamea extends

<t#icruz, rdfitype, #Person>
<#xiao, rdf:type, #Person>

Fig. 4. Representation of the application, domain, and resource layers. All ontologies
are represented in RDFS. Two application ontologies for PIAs, i.e., picture manage-
ment and publication management, are constructed. Below them are four ontologies
for the domains of Email, Talk, Publication, and Photo, respectively. At the bottom, the
resource-file and resource-resource associations are represented as triples or in a graph.

is to obtain from the file system the system-defined properties of a file, e.g., its
MIME type, size, and date.

Annotator. The annotator is responsible for creating and enhancing the anno-
tation (or metadata) of a file. It is fed with the results of file wrappers, including
the retrieved text and its standard properties, based on which it associates the
file with property-value pairs. Most of current data annotators need input from
users, although sometimes part of the annotations can be obtained from the file
content. In practice, a semi-automatic annotator is often provided, such as the
“easy” annotation mechanism of MyLifeBits [32]. The annotations are stored in
a database, called file description.

Classifier. The classifier is one of the most important components for the se-
mantic organization in the framework. Given a file and its file description, the

14

Semantic Desktop Server User Interfaces
PIA Designer PIA Browser Resource Browser
File system Application APIs |4 - ‘3
files l files = ==

| Wrapper library (for PDF, PPT, and DOC. etc)

l text l text ” >
Annotator | —>| Classifier :“‘"'""

resources v v
ey Ontology matcher ‘ Jena API ‘
<property,value>

A A

Ontology designer

‘ Query processor

<property,value> R-F @ssociations |resources triples triples
Y

Ontology and
resource repositof

A 4
=—— | &—=
N—
) o]

Data and Metadata Repositories =s======P Control flow

——>» Data flow

Fig. 5. Semantic desktop architecture.

classifier provides the following operations: (1) Identification of the file as a re-
source with a unique URI (Universal Resource Identifier); (2) Examination of
the file content to explore the resources that are contained or referred to by the
file; (3) Population of domain ontologies with all discovered resources; (4) Deter-
mination of the associations between resources, called resource-resource (R-R)
associations. These resources and their associations are maintained in a resource
repository.

Indexer. After being classified, a file is indexed in terms of the resources discov-
ered in itself (e.g., the names of the authors in a publication). Such resource-file
indices are stored in a repository, called R-F index, to be used in query an-
swering. There are three types of R-F indices (also called R-F associations):
identification, containment, and reference, which are obtained by the first and
second operations of the classifier. Given a query of keywords posed by the user,
the query processor can first locate the corresponding resources and then find the
files that are identified as, containing, or referring to such resources, by means
of the R-F index.

Ontology designer and matcher. At the center of the architecture are the
multiple application and domain ontologies stored in the ontology repository. We
provide an ontology designer for the management of concepts and roles of indi-
vidual ontologies, and an ontology matcher for the maintenance of inter-ontology
relationships (i.e., ontology mappings). Considering that most semantic desktop
end users may lack the knowledge of particular ontology languages (e.g., RDFS
or OWL), the ontology designer should hide the details of such languages but

15

enable users to work with the conceptualization of their domains of interest. In
addition, to improve the precision of an automatic ontology mapping process, the
ontology matcher may be able to combine different ontology matching strategies
[18,37]. Using recent advances in ontology matching, high precision and recall
can be obtained even for large ontologies (a few thousand concepts) [30, 58]

5.2 Semantic Data Manipulation

To retrieve relevant data from the PI space, the user’s request may be posed as
a sequence of keywords or as a query language expression.

The keyword-based search matches the input keywords and the vector of
words in the candidate documents, calculates the similarity for each of the
matches, and returns to the user the ranked results [53]. The results of a search
are usually evaluated using statistical criteria such as precision, recall, or a com-
bination of them. The shortcoming of keyword-based search is that the semantic
associations between relevant data are not considered. In contrast, query lan-
guages can provide a semantically richer access interface, thus facilitating the
data retrieval and improving the accuracy of the answers. However, a query is
usually performed based on the exact match between the query and the data,
so that recall is influenced because some relevant, yet unmatched data, is not
retrieved. The two approaches complement each other, therefore it is desirable
to provide both of them. In Section 6 we focus on query processing.

5.3 User Interaction

Based on the semantic data organization using multiple ontologies, the architec-
ture comprises the following user interfaces to manipulate personal information:
a desktop-wide browser called resource browser, and two other user interfaces,
the PIA designer and PIA browser, for PIA development and execution, re-
spectively. The functionalities of the PIA designer and browser are described in
Section 7. The resource browser is described in Section 9.

6 Semantic Query Processing

In this section we discuss query processing in two cases: within a PTA and across
different PIAs.

6.1 Query Processing in a PTA

We express our queries in RDQL (RDF Data Query Language) [33]. RDQL has
an SQL-like syntax. The most important component of an RDQL query is the
Triple Pattern Clause that matches the triples in the RDF database. Because of
the implementation, we committed early on to RDQL, but a similar framework
can be used for query languages such as RQL [38] or SPARQL.?

9 http://www.w3.org/ TR /rdf-sparql-query/.

16

In our framework, an application ontology is constructed over one or more
domain ontologies, and the files in the PI space are formalized as instances of
the concepts in the domain ontologies. If we consider the application ontology
to play the same role as the global ontology (since the user query is posed on
it), the whole system can be seen as a Global as View (GaV) data integration
system [41]. In a GaV based integration system, query processing is performed
using a “unfolding” strategy [41]. In particular, when the user poses a query
over the application ontology, it gets rewritten into a new RDQL query in terms
of the domain ontologies, using the mappings between the global ontology and
the domain ontologies. These mappings are expressed as RDF class or property
correspondences. The rewritten query is executed on the corresponding domain
ontologies and resources that match the query are returned as answers.

We show in Figure 6 the query rewriting algorithm on a single PIA, which we
call ADREWRITING (for Application to Domain ontology Rewriting). For sim-
plicity, we assume that the user queries are formulated in a subset of RDQL that
we call conjunctive RDQL (c-RDQL), which can be expressed as a conjunctive
formula: ans(X) :- p1(X1),...,pn(Xn), where X; = (z;,2}) and p; is an RDF
property of x; with value 2. To rewrite a conjunctive query that is posed on the
global schema or ontology, we simply substitute the predicates in the body of
the query with the corresponding view definitions We assume that there are no
integrity constraints over the application ontologies and do not show namespaces
for simplicity.

Ezxample 4. Suppose that the user wants to list all conference papers with their
respective authors and journal version, using the query

q1 : ans(x,y, z) - writtenBy(x,y), extendedVersion(x, z).

which is posed on the application ontology of publication management. For the
variables (z,y, z), we get the classes that they refer to as (Paper, Person, Jour-
nal), as indicated by Line 3. By looking into M, we find the corresponding class
sequence as (Publication:InProceedings, Publication:Person, Publication:Article),
where the names before the colons are domain ontology names. From Lines
5 to 10, we compute the predicates in the body of ¢ as follows.

q2: ans(x,y, z) - editor(x,y), extends(z, x).

By executing g2 over the RDF repository shown in Figure 4, we get the answer
{(#wise03papercamera, #xiao, #jods05), (#wise03papercamera, #cruz, #jods05)}.

6.2 A2A Query Processing

Application to application (A2A) query processing occurs when an application
needs to retrieve relevant data from another semantically related application in
order to answer a query. If the PIAs are seen a connected peers (i.e., service
providers for a particular data access), A2A query processing is similar to that
that occurs in peer-to-peer (P2P) systems [10, 61, 62]. The PTAs may exist in a
single desktop or may be physically distributed across different desktops.

17

Algorithm ADREWRITING

Input:1. ¢1 over the application ontology G: ans(X) - p1(X1), ..., pm(Xm);
2. M: the mapping table between G and domain ontologies S1, ..., Sy.

Output: g2: A c-RDQL query over Sy, ..., Sy.

1. headq, = ans(X); bodyg, = null;

2. Fori=1tomdo

3. (c1,c2) = name of the classes referred to by (x1,x2), for X; = (21, 22);

4 Search M to find (di, d2) such that {(c1,d1), (c2,d2)} are two class
correspondences in M;

5. Traverse S, ..., and S,, by following all kinds of associations, to find the
vertices, v1, ..., Ui, connecting from dy to da;

6. If k =0 then add p(z1,z2) (or p(x2,x1)) to bodyg,, if there exists p
connecting di to dz (or dz to di);

7. Else for j =1to k—1do

8. Add p(2;,2541) (or p(&; + 1,2;)) to bodyg,, if p is not a mapping and
connects vj to vj41 (or vjt1 to v;);

9. Add p(z1,%1) (or p(Z1,21)) to bodyg,, if p is not a mapping and
connects di to v1 (or vi to di);

10. Add p(&,x2) (or p(z2,Zk)) to bodyy,, if p is not a mapping and

connects vy to da (or d2 to vk);
11. g2 = heady, - bodyg,;

Fig. 6. The ADREWRITING algorithm for application to domain ontology rewriting.

The A2A query processing consists of two steps. First, we rewrite the original
query g, which is posed on the application ontology Gi, to a query ¢’ on the
other application ontology Go, using the mappings between G; and Gy. Then, ¢’ is
rewritten to a query ¢’ on the domain ontologies to which Gy is mapped. Answers
are obtained by executing ¢” on the RDF repository. The latter step is described
by the algorithm of Figure 6, whereas the former step differs slightly from that
algorithm in that instead of a total mapping from an application ontology to
the domain ontologies, some of the concepts in G; may not be mapped to those
in Go. Therefore, the answers returned by ¢’ may contain null values or Skolem
functions for the unmapped concepts or properties.

The A2A mappings can be derived by composing the mappings between G
and the domain ontologies, inter-domain mappings, and those between Gs and
the domain ontologies. To evaluate both query rewriting processes, we need to
check the equivalence (or containment) between a query and its rewriting. A
correct query rewriting is the one that is equivalent to (or maximally contained
in) the query. These two issues (reasoning on mappings [6,48] and reasoning on
queries [11,45]) have been extensively studied and are beyond the scope of this
paper.

18

7 Personal Information Applications

In this section we describe in detail the PIA designer, a visual environment that
supports the development of a PIA.

7.1 MVC-based PIA Development

The resource explorer allows for the “global” exploration of the resources and
ontologies in a desktop. However, views need to be tailorable to the users’ diverse
tasks.

Each PIA can work in a stand-alone mode, with its own application ontol-
ogy, user interface, and workflows, aiming at a specific task (e.g., bibliography
management, paper composing, or trip planning). Meanwhile, different PTAs can
communicate with each other as in a P2P network, by means of the connections
(mappings) established between their application ontologies. A PTA can present
two modes: development mode and execution mode. The interfaces correspond-
ing to these two modes are respectively the PIA designer (for the development
mode) and the PIA browser (for the execution mode), which can be switched
from one to the other anytime.

The development of a PTA uses the MVC (Model-View-Controller) method-
ology. In particular, in the development of a PIA, the “Model” can be an appli-
cation ontology that has been composed as a view over domain ontologies; the
“View” consists of one or more components that present data in different forms
such as graph, text, and list; the “Controller”, which is the business logic of the
PIA, is a set of “if-then” rules, which enable the interaction and synchronization
between different data components. The data associated with components to
be displayed are retrieved from the repositories of ontologies and instances by
queries named parameterized channels.

The specifications of a PIA, as defined by the user by means of the PTA de-
signer, including the model, view, and business logic, can be serialized in XML.
It is called the PIA definition. A user can run a PIA in the PIA browser, which
interprets and executes the PIA in either an “online” mode (by directly switch-
ing from the designer to the browser) or an offline mode (by loading from the
PIA’s permanent serialization). The separation of the declarative specifications
from the interpretative execution greatly benefits the communication between
semantic desktops in terms of PTA interoperation, as we will see in the following
sections.

7.2 Implementation

We have implemented a prototype of the PIA designer, whose user interface is
shown in Figure 7. We describe next the three stages needed for the desing of a
PIA.

19

=lol=|

£ PIA Designer - Bibliography_Management

Application Pl Browser Workspace —_—
PaperGraph :_gi |ﬂ|
= f——
g o cite; | Open |
Cisosmshionielogy W@ ol
= crsfidontology [new |
| Wiew |
0 PaperDetail i
CITEDAS
#hib_xdao05multiontalogy
RITTENEY:
#erz
#ian
EE TITLE
EE! AMulti-Ontology Approach for Personal Information Management
EAR:
Chanrels 2005
[SELECT 92, 7h FROM =dataimose.o...
SELECT ?a, 2, 7, 7d FROM =data/.
SELECT ?h FROM =datamose.owl= . O Adhorlist &4 | [AuthorDetail kd
SELECT 7a, *h FROM =dataimose.o Huiyang Hian EMAIL:
o lisabelF.Cruz hyian@es.uicedu
‘ e H Remove | ‘ Edit | INSTITUIE

University of lllinois at Chicago

|Ruﬂ|

Controls Companents
PaberGraph Udatezn_10) mE wel = ™) B E] = %
if PaperGraph. isSelected) then Pap —3 SmE (=]

if PaperGraph.isSelected(x) then Auth...
if AuthorListisSelected (s then Author...

‘ T ‘ Remove | ‘ Edit |

Fig. 7. The PIA designer. The PIA browser being designed contains the PaperGraph,
PaperDetail, AuthorList and AuthorDetail panes

Modeling. In the first stage, the user loads the application ontology from the
ontology repository, which represents the model underlying the PTA to be de-
signed; it will be graphically shown in the Data Model pane. The application
ontology is mapped to the domain ontologies, under which the resources rep-
resenting personal information are classified. Actually, the application ontology
is constructed as a view over the domain ontologies in a GaV approach. This
mapping process should not require the users’ programming expertise, but only
their awareness of the task and their knowledge of the domain.

Visualization. The second stage involves the design of the layout of the PIA,
with one or more visual components, each of which can be associated with a
stream of data for its presentation. The user drags the desired visual compo-
nents from the Visual Component pane to the PIA Browser Workspace pane.
Examples of such components include TextPane, List, Table, Graph, and File. The
associated data can be resources, strings, files, and whatever as instances of the
ontologies; they are retrieved by queries, called channels (introduced in [52]),
on the application ontology. Some components, such as Button, Label, TextInput,
and MessageBox, are used to facilitate the interaction between the user and the

20

PIA browser. A special component called Services is used for desktop service
composition, as discussed in Section 10.

Controller and parameterized channels. In the final stage, the controller
(or business logic) of a PIA is specified so as to realize rich interactions between
the data and their views, and to synchronize several visualizations. These con-
trollers manage all possible updates of the model and handle the events from
the user interface, using “if-then” rules (more sophisticated controls will be con-
sidered in future work) of the following form:

if Component;.event; (1) and ... and Component,,.event,, (x,)

then Component;.action; (y;); ...; Component,,.action,, (y,,);

endif
where x;, i € [1..n], are parameters passed from the events, and y;, i € [1..m], are
the channels that result in the actions. It often happens that the response of a
component to some event needs to take z; as a parameter to execute y;, especially
when updating the data that is sensitive to x; in a visual component. For this
purpose, we introduce the concept of parameterized channel, which are channels
that have their contents determined by the parameters at runtime. Channels
are queries over ontologies and the parameter of a channel can be bound to a
variable or a constant in the query. By means of parameterized channels, an
event started from a component can pass any values to another component, thus
enabling interactions between different components.

Ezxample 5. As shown in Figure 7, at the top left corner, the user loads the
application ontology (for publications), to develop a PIA for bibliography man-
agement. The application’s user interface uses a Graph for displaying the citation
network of papers, a TextPane for the paper’s details, a List for the paper’s au-
thors, and a TextPane for the author’s details.

To associate data with their proper visualization, the user defines the follow-
ing channels using the syntax of RDQL. Each channel is in the form of string,
which can then be fed into an RDQL interpreter (e.g., provided by the Jena
API) for execution.

1. ch_1(): “SELECT ?a, ?b WHERE (%a, cites, 7b)”

2. ch 2(z): “SELECT %a, %, ?c, ?d WHERE (" +a + * title, a), (7 + «
+ “ writtenBy, ?b), (7 +x + % year, ?c), (7 + x + % citedAs, ?d)”

3. ch_3(z): “SELECT %a WHERE (7 + x + “ writtenBy, ?b), (?b, name,
Za)”

4. ch_ 4(x): “SELECT %a, ?b WHERE (” + x + , institute, ?a), (7 +x +
email, ?b)”

As an example of parameterized channel, the second query, ch_2(x), returns
the title, author, year, and citation entry of a publication, which is bound to
parameter x.

The data computed by executing a channel will present different forms de-
pending on what visual component is used to visualize this data. For example,

21

a Graph shows the data represented as a graph, where nodes are resources and
edges are their associations. To construct such a graph, the nodes representing
the same resource will be merged into a single one.

The following rules specify the controller. The first rule has no preconditions,
thus being triggered at the very beginning of the PIA’s run.

PaperGraph.update(ch_1())

if PaperGraph.isSelected(x) then PaperDetail.update (ch_2(z))
if PaperGraph.isSelected(x) then AuthorList.update (ch_3(x))
if AuthorList.isSelected(x) then AuthorDetail.update (ch_4(x))

Ll e

8 Evaluation of the PIA Designer

We undertook usability studies on our prototype of the PTA designer. Given the
current implementation of the prototype where users must compose queries and
controls, the kind of knowledge needed corresponds to that of CS majors. There-
fore, all the 33 participants were Computer Science Majors at UIC, including 19
undergraduate and 14 graduate students.

The evaluations took place in two desktop computers in our research lab.
Prior to executing their tasks, all participants were given a lecture (one hour
and 15 minutes) covering the following topics: conceptual models, including the
RDF model, and its query language, RDQL. Of this lecture, a slide described the
organization of personal information in current desktops (Figure 1) and the fact
that the Semantic Desktop is “a conceptual approach to represent, manipulate,
and access Personal Information in a desktop”. Another slide showed the main
screen of the PIA designer. The syntax of the controls was presented in a single
slide. Finally, a two minute demo was given of the PIA designer prototype. Al-
though this was not intentional, the demo was given by a graduate student who
is not part of the prototype implementation team. Likewise, the lab evaluations
were administered and then compiled and summarized by three students (two
graduates and one undergraduate) who were also not part of the PTA implemen-
tation team. This fact was mentioned to the participants who knew from the
beginning that their evaluations and answers would not be judged by students
directly connected with this particular project. Except for two participants in the
study, none of the participants of the study had prior knowledge of conceptual
models or of query languages (such as SQL).

The participants in our study were given a list of tasks to execute. To verify
that all the tasks were executed, questions were asked in which the participants
had to write the outcome of each task. As a consequence, there was not a fixed
time for their participation but most of the participants finished the tasks in less
than 25 minutes. There were a couple of outliers: a participant who finished the
tasks in 10 minutes and another one that took almost 35 minutes.

The participants had three tasks to perform. In the first one, they browsed
through the domain ontology and identified concepts in the graph. In the second
task, they had to create two views and their associated queries and controls.
They were not asked to create the queries from scratch because it was felt that

22

testing the users on that particular subtask would address the usability of RDQL
itself not that of the prototype. Also, the prototype does not currently support
debugging of the RDQL syntax. Therefore, their understanding of syntax of the
query language was tested in a separate written question. Finally, the partici-
pants were presented with a complex screen with 4 views and had to execute a
sequence of tasks to test their understanding of the interactions among views.

After completing their tasks, the participants filled out a questionnaire con-
taining 41 questions divided into 6 parts: I. Past experience (with desktop search
and browsing, email management, and their predictions on manual vs. automatic
annotation of documents), II. Overall reactions to the prototype, I11. Screen orga-
nization and manipulation, IV. Learning, V. Queries and controls, and VI. Final
comments. Of the 41 questions, 7 questions asked for textual answers in free for-
mat and the remaining questions were multiple choice, with the choices ranging
from 1 (low) to 5 (high). Part VI contained a single question to be answered tex-
tually. It was meant to allow for overall comments that the participants might
not have expressed before. The participants completed the questionnaire in 15-20
minutes. Again, an outlier took just over 5 minutes to complete the question-
naire, whereas some of the participants took as much as 25 to 30 minutes to
complete the questionnaire.

In their past experience (Part I of the questionnaire), most participants were
Windows users. As for ways to find information in their desktops, the par-
ticipants prefer browsing the contents of their hard drive (3.8/5) rather than
conducting a search (2.6/5). Their comments regarding search as provided by
windows state “too slow, too many results,” “output not organized.” They were
also generally happy with searching for email messages and their attachments
using their email program (3.5/5). This answer is highly correlated with how
often they keep their messages and attachments in their mailbox instead of sav-
ing them (3.5/5). When asked if they would annotate each of their documents
manually if annotating one document would take about 30 seconds they seemed
in general to be willing to do so (3.2/5). They were, however, more enthusias-
tic about letting the computer classify their information automatically (4.1/5)
even if they would not trust that classification completely (2.8/5). Their trust
increased substantially if they were allowed to see the classification schema used
by the computer (3.9/5). A table that shows the averages and standard deviation
for the answers to the questions for Part I is shown in Figure 8.

We subdivided the overall reactions to the prototype (Part IT of the question-
naire) in five categories: overall experience, overall concept, ease of use, power,
and implementation effort needed for broader deployment. Ease of use was given a
positive assessment (3.5/5), while the overall experience was rated slightly lower
(3.2/5). The score given to the amount of implementation still needed was 3.5/5.
We found that the overall experience is correlated with the score attributed to
the graph layout and its manipulation in Part IIT of the questionnaire (respec-
tively 3.3/5 and 3.4/5). Incidentally, the task associated with the graph layout
was also the one where the participants spent most time. The graph layout ca-

23

Question |Measure Category Average | Std Dev
Q1.1 frequency |desktop search 2.8 1.3
Q1.2 satisfaction |desktop search 2.7 1.3
Q1.5 frequency |desktop search if satysfying 3.6 1.3
Q1.7 frequency |email with info to search later 3.8 1.1
Q1.8 satisfaction |email search 3.5 1.2
Q1.9 frequency |keep messages in inbox 35 1.5
Q1.10 satisfaction |folder organization 3.6 1.2
Q1.1 ease desktop browsing 3.8 1.2
Qt.12 frequency |manual classification if available 3.2 1.1
Q1.13 frequency |automatic classification if available 41 0.9
Q1.14 trust automatic classification if available 2.8 0.9
Q1.15 trust browsable automatic classification if available 3.9 1.0

Fig. 8. Summary of the questions and answers (average and standard deviation) of
Part 1.

pability is provided by a third party.!? For large graphs, we do not anticipate a
simple solution to the difficulties encountered by the study participants except
that we believe that with some training users would be able to better read the
graph.

The highest scores went to overall concept and to power (both with 3.8/5).
Free form comments from the participants point mainly to the difficulty of the
tasks associated with the graph layout and its manipulation: “I didn’t figure out
which text label went with certain edges. Zooming in didn’t help.” “Highlighting
the nodes and edges was difficult.”

Free form comments from the participants regarding the overall interface
were in general very encouraging, especially considering that the participants
received no training on the prototype:

“It was simple to understand and very intuitive.” “I could trial and error
it with a little bit of effort.” “Basically it’s easy to use and also it’s such a
powerful application to show the concept.” “Good to use but not sure about
overall capability. Since it is a prototype, hard to learn or use. Immediate updates
on multiple views are very good.” “New prototype; never used before. Took some
getting used to.”

A table that shows the averages and standard deviation for the answers to
the questions for Part II is shown in Figure 9.

The participants’ feedback on the screen layout and interaction (Part IIT
of the questionnaire) was requested on the overall screen layout (3.5/5), but-
ton placement (3.5/5), switching between screens and going to the next screen
(3.8/5), and progression of work related tasks (3.8/5). Feedback on the graph
layout was also collected, which covered two aspects: readability of the graph
(3.3/5) and interaction with the display (3.4/5). Higher satisfaction was reported
by the participants in what concerns building the view layout (4/5) and enter-
ing/editing the queries and controls (4.2/5).

10 www.graphviz.org

24

Question |Measure Category Average |Std Dev
Q2.1 satisfaction |overall experience 3.2 0.8
Q2.2 satisfaction |overall concept 3.8 0.9
Q2.3 ease use 3.5 0.9
Q2.4 adequacy power 3.8 0.8
Q2.5 amount development work left 3.5 1.0

Fig. 9. Summary of the questions and answers (average and standard deviation) of
Part II.

In their free form comments, participants mentioned some problems with
the screen layout: “Components are not aligned well together. Tool buttons on
bottom seem not usual (better on top). Enter/edit window is too small to see
the whole text.” “Everything seemed to flow well, except I had to stop and think
when adding components as they only had images” “The screen was pretty easy
to navigate. Would like the option to click on buttons, instead of drag and drop.”
“Drag and drop is always good. The channels and controls text field should be
bigger with a better explanation of what to enter.” “Window size of the PTA
browser workspace could be bigger or more optimal as side menus could be made
smaller.” “Could use some colour, otherwise very good.” “To the point and I like
that you don’t have to use multiple screens for one thing.”

A table that shows the averages and standard deviation for the answers to
the questions for Part III is shown in Figure 10.

Question |Measure Category Average |Std Dev
Q3.1 helpfulness |screen layout 3.5 0.8
Q3.2 helpfulness |button placement 3.5 1.1
Q3.3 clarity switching screens 3.8 0.9
Q3.4 clarity task progression 3.5 0.8
Q3.5 clarity graph layout 3.3 1.1
Q3.6 clarity interaction with graph 3.4 1.0
Q3.7 ease build view layout 4.0 0.8
Q3.8 ease edit channels and controls 4.2 1.0

Fig. 10. Summary of the questions and answers (average and standard deviation) of
Part TII.

The answers of the participants on their experience with learning the pro-
totype (Part IV of the questionnaire), was subdivided into 4 questions: get-
ting started (3.6/5), learning advanced features (3.1/5), exploration of features
(3.5/5), and their appreciation on whether the steps to achieve a task follow a
logical sequence (3.5/5). The comments were positive: “Was simple to under-
stand and very intuitive.” “It was easy to learn the application and exciting as
well.” “It was easy once you got the hang of it. The window should provide some
definition of the terms.” “Most things fairly easy to navigate, self-explanatory.”

25

“It was easy enough but I could see someone who isn’t computer savvy get
confused.” “Learning the system was a good experience.”

A table that shows the averages and standard deviation for the answers to
the questions for Part IV is shown in Figure 11.

Question |Measure Category Average |Std Dev
Q4.1 ease getting started 3.6 0.9
Q4.2 ease learning advanced features 3.1 0.7
Q4.3 ease exploration of features 3.5 0.9
Q4.4 clarity sequence of task steps 3.5 0.8

Fig. 11. Summary of the questions and answers (average and standard deviation) of
Part TV.

Finally, the participants were asked about the functionality of the prototype
in what concerns queries and controls (Part V of the questionnaire). The par-
ticipants were asked to rate the ease of understanding the interaction between
queries and controls (3.7/5) and of expressing RDQL queries (3.6/5). The par-
ticipants were asked about their appreciation of the necessary skills to express
RDQL queries and controls. In a range from 1 to 5, where 1 refers to casual
user and 5 to expert user, the scores leaned to the latter (respectively 3.6/5
and 3.4/5). The appreciation of the statement “With some training, a computer
science major would define new RDQL queries or new controls” with 1 corre-
sponding to with difficulty and 5 to easily leaned toward the latter (4.3/5).

The following answers are illustrative of the comments obtained: “It was nice
to see how a query would bring up a graph and use the controls to define how
content appears.” “Seems difficult if you do not have complete understanding
of RDF. Also the query making should be automated because of syntax issues.”
“The queries were a little guess work but easy, the control implementation was
slightly confusing.” “It was easy at first and then harder.” “It was practical
but could be more user friendly.” “For a CS graduate it will be easy to use
within a few minutes to the full extent of the application. For a novice, queries
and understanding controls is difficult.” “Still I need to understand how queries
interact with controls.” “The queries are a little confusing, but not terribly hard.”

The two participants with SQL experience, wrote: “Much easier than the
SQL control features used at work. Query statements just need to get used to.”
“Some specifics to RDQL need to be re-learned when coming from a history of
using MySQL queries—yet they are similar enough that the learning curve is not
particularly steep.”

A table that shows the averages and standard deviation for the answers to
the questions for Part V is shown in Figure 12.

Most participants offered additional comments in Section I'V:

“I don’t see it being widely used for home users. Company users would love
it. Lots of time people work together but don’t classify data in the same way,
even though they are talking about the same thing.”

26

Question |Measure Category Average |Std Dev
Q5.1 expert level |writing RDQL queries 3.6 1.0
Q5.2 expert level |control writing 3.4 0.8
Q5.3 ease writing queries and controls for CS majors 4.3 0.7
Q5.4 clarity interaction between queries and controls 3.7 0.8

Fig. 12. Summary of the questions and answers (average and standard deviation) of
Part V.

This insightful observation came from an undergraduate. We note that in
introducing the project, the topic of semantic heterogeneity was not mentioned.

Other participants summarized their overall experience or emphasized their
previous suggestions for improvement:

“I like how I can view all information about documents by a series of clicks.
I like the layout as well. I would love to see a demo of how the software can be
used to organize all the documents on a PC.” “Very cool prototype. I like it.”
“As mentioned before, the idea is amazing. Make it user friendly with menus,
query making (get info from user and generate a statement).” “Requires some
learning time.” “Overall the PTA designer has a good concept that needs a few
minor touches to make before becoming a product for the casual user.” “Just
like common software applications, good to have menu bar on top and tool set
right below. In graph view, in addition to scroll bar, it would be very nice to
have a panning/zooming function function with mouse move.” “There should
be a default view with the controls that would help any novice users. A tool tip
mouse over would help give the user feedback on what the buttons did.” “Great
concept, add highlighting of the arrow labels on the ontology view.”

9 Semantic Navigation

It is critical for a semantic desktop to provide the user with the capability to
access the stored data in a variety of ways. The user may want to browse the
information by means of the flexible and intelligent navigation in the informa-
tion space, including the base and superimposed information. The user may
also desire that certain query facilities (e.g., keyword-based searching or certain
query languages) be provided by the framework. In this section, we discuss the
navigation in the data space of a semantic desktop.

The semantic data organization in our framework enables the navigation in
the PI space, making use of useful hints (e.g., the context of a concept being
browsed) so as to facilitate the user’s understanding of the data. Compared to
the traditional navigation approach that is based on hierarchical directories, this
semantic navigation is based on semantic associations, similarly to those that
humans establish between concepts. More specifically, by taking into account
the layered architecture, the semantic navigation in our framework can be per-
formed in three directions: (1) Using vertical navigation, the user follows a path
across layers. Two cases are possible for this kind of navigation: top-down from

27

@ SmartBrowser
File Edit “iew Tools Windows Help

=

—
Application Ontology |) Subject: WLSE photos = Properties sl
| From: Tsabel Cruz "fs @es i edu” i

| Date: Sat, 30 Dec 2003 045614 0500
| To: Buiyong Xiao "haiao@ss vic edu”
receivedBy
ittenB o
sentBy aitends 2| Atached please find the photos tacen at WISE 03 confoxence. | || | ""sw S

4 il | 2. attached
i Isabel . -

3. sentOn
12/30/2003
4. sentBy
cruz
5. receivedBy

Fig. 13. The resource browser.

the application ontologies to the stored files and bottom-up from the stored files
to the application ontologies. (2) Using horizontal navigation, the user follows
links of concepts (or resources) within one layer. Typically, there are three cases
of horizontal navigation, corresponding to each layer: application-to-application
navigation, domain-to-domain navigation, and file-to-file navigation. (3) Using
temporal navigation, the user can navigate by following references in chronologi-
cal order, each being a resource for the same real world object with a time stamp
associated with it.

Ezample 6. Consider the scenario shown in Figure 4 for an example of semantic
navigation. Suppose the user selects the Email node in the application ontology
for conference attendance. Following the vertical associations (i.e., mappings)
from the application ontology and the Email domain ontology, we can show to
the user the context of the Email concept, including its title, sender and receiver,
and date sent. Further in this direction, all Email instances (e.g., wisephotomsg
representing an email message with some photos taken at the WISE ‘03 con-
ference attached), as well as the actual email messages represented by these
instances, can be located and shown to the user.

If the users want to know more about the sender A of the email message, such
as the talks given by A they can switch the context from the Email domain ontol-
ogy to the Talk domain ontology by horizontally following the mapping between
the Person concepts in both ontologies). Further navigation from the Talk ontol-

ogy to the Publication ontology would enable users to browse the publications
authored by A.

28

Given that the sentOn property of the Email concept is of type Date, the email
resources, as instances of the Email concept, can then be sorted by the date sent,
so that the user can go over the email messages in chronological order.

The resource browser that is shown in Figure 13 implements the semantic
navigation described above. The domain ontology shows the context of whatever
concept selected in the application ontology. The bottom-right pane shows a
timeline of different resources belonging to the current concept. Those resources
can be sorted chronologically based on the time stamps of the objects that those
resources represent (e.g., the email files). The central pane shows the object
represented by the current resource, to the right of which there is a tabbed pane
containing the resources associated with the current resource. These associated
resources are categorized to guide the user in the semantic navigation process.
In particular, the Properties tab pane shows the values of all the properties
present in the context (domain ontology) of the current resource. The other three
tab panes show different types of ontology mappings connected to the current
resource: Contained Resources that aggregates the resources under the current
resource; Generalized /Specialized that contains those superconcept/subconcept
resources of the current resource; Mapped Resources contains the resources that
are mapped to the current one.

10 Interoperation and P2P architecture

A networked semantic desktop framework such as the one in Figure 2 would al-
low for the interoperation among collaborating semantic desktops. For example,
in a book writing project, authors would be able to share their different bibli-
ographies even if they are in a variety of formats. As mentioned before, two PIAs
can communicate in a P2P fashion based on the application ontology mappings
established between them. There have been plenty of previous work on central
and P2P ontology and data integration [21, 22, 60, 63]. However, it is required in
this case that the two PIAs are designed for a similar task, for which they have
their application ontologies overlapping partially or fully. This case was covered
in detail in Section 6.

In this section, we discuss another type of PIA interoperation, which is re-
alized by means of desktop services instead of by the engineering of ontology
mapping, thus called service-oriented interoperation. The notion of desktop ser-
vice was first introduced by the Gnowsis system [54]. In our case, we want to
integrate the notion of desktop service with that of building visualizations in a
PIA and consequently with channels.

In general, a service must have its interface (i.e., input and output) defined,
while keeping the implementation of its operation hidden from the service con-
sumer. A PIA consists of a set of visual components bound to parameterized
channels. We can, therefore, view a channel as the minimal unit of service tak-
ing parameters as input and having data (e.g., sets of tuples) as output. We
support both a flexible composition of desktop services and a flexible construc-
tion of visualizations that uses a controller consisting of if-then rules to specify

29

the composition (control and data flows) among channels and desktop services
in a PTA. Types of service composition include sequential and parallel flows [50].

For example, consider the PTA of Example 5 (see also Figure 7) as a desktop
service provider. The service architect can specify each of its four channels as
a service, for example, ch_1() returns all pairs of publication citations, ch_2()
outputs the details of a publication given as input, ch_3() outputs the authors
of a publication supplied as input, and finally ch_4() outputs the details of a
given author. Besides, the scheduler can choose to parallelize ch_2() and ch_3()
(since they accept the same kind of input) to provide a single service. Or, it
can serialize ch_2() and ch_4() as a service outputing detailed information about
the authors of a publication, given that ch_4() can take as input one of ch_3()’s
output (i.e., the author’s resource id).

A practical issue relates to the execution of desktop services for which we
identify two cases. The first case is about the remote execution of desktop ser-
vices. In the example, there are four services (PIA-1 to PIA-4), with their respec-
tive application ontologies (AO-1 to AO-4). Suppose that PIA-4 is the starting
point of the service execution, where the user interacts with the PIA browser.
All requests for the data and for the execution of other services (defined and
implemented in other desktops, but composed by the current service) are driven
by events from such interactions. Whenever a nested remote service (e.g., PIA-2
or PIA-3) is triggered by the current service, a request for execution will be sent
to the respective remote desktop (e.g., SemDesk 2 or SemDesk 3), where the
remote service will be executed. As a response to the request, the remote service
returns its execution results to the current service.

While the first case is similar to what happens with web services, the second
case of desktop service execution, which we call local execution, is quite different.
In particular, whenever a service nested in the current service is activated, it will
be locally interpreted and executed by the PIA browser in the current desktop.
However, the local execution of a remote service (e.g., PIA-2) needs permission
to access relevant data (e.g., described by AO-2) from a remote desktop. If so,
the data is then duplicated in the local desktop via a secure data transfer.

The essential difference between these two cases illustrates the tradeoff be-
tween control permission and data access. This flexibility is important in a se-
mantic desktop setting. Depending on their available resources, some desktops
may be reluctant to take a heavy workload while some others may be concerned
with the privacy of their data. Therefore, a desktop (when acting as a server)
can choose whether to contribute its computing power or share its data.

11 Implementation

In addition to the PIA designer that was described in Section 7, we have imple-
mented several of the components of our semantic desktop, which we describe
next.

The semantic annotator implements the file wrapper and semantic annotation
described in Section 5. Annotation is a semi-automatic process, which combines

30

a template-based metadata extractor with the user’s manual input. Currently,
the system has included several commonly used templates, which are designed
based on domain ontologies, such as email, photo, movie, paper, and talk. Using
this annotator over a corpus of 150 files showed that as many as 70% of the fields
in the various templates are automatically extracted by the annotator.

The current version of the data classifier is directed to text classification.
Considering only hierarchical ontologies under which files will be categorized, our
classifier applies a hierarchical Bayesian classification method based on the work
of Koller and Sahami [39], which is shown to be better than flat classification,
in terms of both precision and recall.

The visual query generator provides a visual interface for the user to view
RDF ontologies as graphs and to easily construct (RDQL) queries, also visualized
as graphs, over the ontologies. The interface uses a drag-and-drop feature for
forming conjunctive ontology queries, simply by dragging graph objects (nodes
or edges) from the ontology panel to the query panel. Zooming is also provided
in case the user wants to observe the graph details. The interface treats queries
as first-class objects amenable to different kinds of manipulations, including
renaming, deletion and reuse.

Figure 14 shows the user interface of the visual query generator. A list of
ontologies is displayed on the top left-hand side of the user interface. The RDF
graph representing the selected ontology is displayed on the top right-hand side.
On the bottom half of the user interface, from left to right, the following displays
can be seen: a list of saved queries, the visual and textual representation of
the query being edited, and a pane showing the results of the current query
displayed as a graph. The user can examine this graph as a way to determine
the correctness of the query. This interface, which is currently stand-alone, will
be integrated with the PTA designer to facilitate the formulation of the RDQL
queries.

The semantic data visualizer uses a layered approach that adds presenta-
tion specifications to desktop data using two concepts called Semantic Lens and
Presentation Lens by extending our previous work and the work by others [3,
17,51]. The visualizer can filter and aggregate data stored in RDF format. The
presentation specifications provide different users with the ability to visualize
data using different paradigms (e.g., timelines, bar charts, graphs) according to
their own preferences and the characteristics of the data. In particular, there is
a layer that extracts essential metadata to produce an appropriate display. For
example, an ordered domain can be represented with certain visual attributes
(e.g., length) whereas a non-ordered domain can be represented with other vi-
sual attributes (e.g, color) [7]. Instances that have a property with values in the
temporal domain can be displayed using a time line as shown in Figure 15. This
visualizer will be integrated with both the Resource Explorer (see Section 9) and
with the PIA designer to allow for views that aggregate information.

31

& Visual Interface for querying ROF data =<

File Zoom

o] [& [&f 8]

association.owl
conference.owl
contact.owl
mose.ovl
person.owl
iphoto.owl
iproject.owl
hublication.owl
research.ow!
ools-ont.owl
travelontology.owl

imose title
imose cites

itle query
e Siee an0Smultiontology Y—Cit w 7% b
e e aolSmultiontology 9 qa0
femo mose
coniunctive mose cruzMontology

conjunctive mose2
[SELECT 7 FROM mose.owl WHERE (
bt fhawna 5. Uic.
mose:cites 70

Fig. 14. Visual query interface to express RDQL queries.

12 Conclusions and Future Work

As new paradigms for data organization and manipulation become available,
such as those provided by the semantic web, it is natural to explore ways in which
those paradigms can be used to address shortcomings in the management of
highly-heterogeneous personal information. In this paper, we have considered the
use of ontologies and associated query languages to manage personal information
in a desktop.

In particular, we have devised an ontology-based framework consisting of
three loosely-coupled layers: the application layer, the domain layer, and the re-
source layer. The first layer supports directly the specific user’s activities, such as
travel planning to attend a conference. The ontology that models the application
provides a view over the ontologies at the domain level. Those ontologies are not
specialized to meet the requirements of a particular user, but are standardized
and engineered to meet wide use requirements in applications such as air travel,
hotel booking, or event registration. At the resource layer, we have addressed the
organization of data including the use of file descriptions and domain ontologies
as annotations and the extensive use of data associations.

The extensive annotation and the associations among data create a network
of data and metadata that: (1) can be traversed using the concept of semantic
navigation; and (2) lends itself well to the formulation of expressive database-
like queries. To replace hierarchical browsing and keyword querying in today’s
desktop, we have proposed respectively the concepts of semantic navigation,
which enables users to follow the associations among data at each layer and
across layers and database-like querying. Database-like querying is also closely
associated with the concept of personal information application, PIA, which

32

| [Timeine Yeor Grananty =i B- B @ - e G-

O Carrcira © Albinoni @Lebrun dfl
0 Coclho O Vivaldi ©Mozart
©Hacndel OBeethoven
©Bach () OBomtempo |
O Scarlatti ©Bojeldien
@ Scixas O Weber |
O Gluck. ORos
G Haydn |
©Bach (JC) @
1600 1700
o
E =
e T3] @ et EYT

Fig. 15. Visual display of an RDF file using a timeline lens.

is used to provide users with interactive views of the information of interest
and to emphasize the associations therein. Queries are used to select both the
information to display and as channels to express the interaction among views.

We have devised a query rewriting algorithm for conjunctive queries in a
single PTA. This technique can be extended to application-to-application (A2A)
query processing in the same desktop or across different desktops, using map-
pings between the corresponding ontologies. Interoperation across applications
can also be achieved by using the concept of desktop services that extends the
notion of channels to bridge across different PIAs.

The specification of a PIA is performed using a tool called the PIA designer,
with which the users define the displays, the queries, and the channels. We
have conducted user studies to evaluate our prototype of the PIA designer by
computer science majors (albeit with limited knowledge of data modeling or
query languages) and received positive feedback. It was, however, recognized by
the participants that queries and channels are more suitable for expert users
than for casual users. We have also undertaken the implementation of several of
the architectural components of our system.

In the future, we will pay special attention to the usability of the PIA designer
and of the other components of our system so as to enable casual users to access
more of its functionality. An area to address is that of query languages [12].
In particular, visual query [13, 16] and keyword-based languages will be investi-
gated as well as context-aware information search [59], which could significantly
help users in formulating simpler, yet precise queries. Likewise, we will be con-
sidering natural language specifications to automatically formulate channels; in
this context, previous work on the conversion of natural language questions to

33

formal queries is of interest [42]. Another issue relates to the personalization of
the domain of interest using the user’s profile as in OntoPIM [14].

We will also continue our work and the work of others [54,56] on mecha-
nisms for defining, publishing, discovering, and composing desktop services so
as to extend their current capabilities. We will also address research issues re-
lated to the minimization of the manual intervention that is required to build
the semantically-rich network of information, including the automation of the
classification, annotation, and discovery of data associations.

Finally, we will investigate security and privacy issues that arise when shar-
ing data across multiple semantic desktops, including, for example, the issue of
privacy-preserving ontology matching [19, 46, 57].

Acknowledgements

We would like to thank Ryan Aviles for his help with the implementation of
the PIA designer. We are thankful to Wenyuan Fei, Rigel Gjomemo, and Brian
Rhoades for their help with the design and administration of the usability stud-
ies. We also owe thanks to Abhishek Gurunathan, Seshank Kalvala, and Fang
Alice Wang for the design and implementation of the visualizer, to Akshay Nad-
karni for his work on text classification, to Ramprasad Chandrasekaran for the
implementation of the visual query interface, and to Swati Tata and Srikant
Vemuri for their work on the annotator.

References

1. D. Aumueller and S. Auer. Towards a Semantic Wiki Experience — Desktop Inte-
gration and Interactivity in WikSAR. In ISWC Workshop on the Semantic Desktop
- Next Generation Information Management € Collaboration Infrastructure, 2005.

2. K. Bakshi and D. R. Karger. End-User Application Development for the Semantic
Web. In ISWC Workshop on the Semantic Desktop - Next Generation Information
Management € Collaboration Infrastructure, pages 123-137, 2005.

3. B. B. Bederson and J. Meyer. Implementing a Zooming User Interface: Experience
Building Pad++. Software: Practice and Ezperience, 28(10):1101-1135, 1998.

4. M. Berland and E. Charniak. Finding Parts in Very Large Corpora. In Annual
Meeting of the Association for Computational Linguistics (ACL), 1999.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, pages 29-37, May 2001.

6. P. A. Bernstein. Applying Model Management to Classical Meta Data Problems.
In Biennial Conference on Innovative Data Systems Research (CIDR), pages 209—
220, 2003.

7. J. Bertin. Semiology of Graphics. The University of Wisconsin Press, Madison,
Wisconsin, 1983.

8. S. Bloehdorn, K. Petridis, C. Saathoff, N. Simou, V. Tzouvaras, Y. S. Avrithis,
S. Handschuh, I. Kompatsiaris, S. Staab, and M. G. Strintzis. Semantic Annota-
tion of Images and Videos for Multimedia Analysis. In Furopean Semantic Web
Conference (ESWC), pages 592607, 2005.

9. V. Bush. As We May Think. The Atlantic Monthly, 176(1):101-108, 1945.

34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. What to
Ask to a Peer: Ontology-based Query Reformulation. In International Conference
on Principles of Knowledge Representation and Reasoning (KR), pages 469-478,
2004.

D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. View-based Query
Containment. In ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pages 56-67, 2003.

T. Catarci. What Happened When Database Researchers Met Usability. Informa-
tion Systems, 25(3):177-212, 2000.

T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual Query Systems
for Databases: A Survey. Journal of Visual Languages and Computing, 8:215-260,
1997.

T. Catarci, L. Dong, A. Halevy, and A. Poggi. Structure Everything. In W. Jones
and J. Teevan, editors, Personal Information Management. University of Washing-
ton Press, 2007.

J. Conklin. Hypertext: An Introduction and Survey. IEEE Computer, 20(9):17-41,
1987.

I. F. Cruz. DOODLE: A Visual Language for Object-Oriented Databases. In ACM
SIGMOD International Conference on Management of Data, pages 71-80, 1992.
I. F. Cruz and Y. F. Huang. A Layered Architecture for the Exploration of Het-
erogeneous Information Using Coordinated Views. In IEEE Symp. on Visual Lan-
guages and Human-Centric Computing, pages 11-18, 2004.

I. F. Cruz, W. Sunna, and A. Chaudhry. Semi-Automatic Ontology Alignment
for Geospatial Data Integration. In International Conference on Geographic Infor-
mation Science (GIScience), volume 3234 of Lecture Notes in Computer Science,
pages 51-66. Springer, 2004.

I. F. Cruz, R. Tamassia, and D. Yao. Privacy-Preserving Schema Matching Using
Mutual Information. In Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, volume 4602 of Lecture Notes in Computer Science, pages
93-94. Springer, 2007.

I. F. Cruz, H. Xiao, and F. Hsu. An Ontology-based Framework for Semantic
Interoperability between XML Sources. In International Database Applications
and Engineering Symposium (IDEAS), pages 217226, July 2004.

I. F. Cruz, H. Xiao, and F. Hsu. An Ontology-based Framework for Semantic
Interoperability between XML Sources. In 8th Int. Database Engineering and Ap-
plications Symposium (IDEAS), pages 217-226, 2004.

I. F. Cruz, H. Xiao, and F. Hsu. Peer-to-Peer Semantic Integration of XML and
RDF Data Sources. In Third Int. Workshop on Agents and Peer-to-Peer Computing
(AP2PC 2004), volume 3601 of Lecture Notes in Computer Science, pages 108-119.
Springer, 2005.

S. Decker and M. R. Frank. The Networked Semantic Desktop. In C. Bussler,
S. Decker, D. Schwabe, and O. Pastor, editors, WWW Workshop on Application
Design, Development and Implementation Issues in the Semantic Web, volume 105
of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. C. A. Klein, J. Broekstra,
M. Erdmann, and I. Horrocks. The Semantic Web: The Roles of XML and RDF.
IEEE Internet Computing, 4(5):63-74, 2000.

S. Decker, J. Park, D. Quan, and L. Sauermann, editors. ISWC Workshop on
the Semantic Desktop - Next Generation Information Management & Collabora-
tion Infrastructure, volume 175 of CEUR Workshop Proceedings. ISWC Workshop,
CEUR-~-WS.org, November 2005.

35

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

S. Decker, J. Park, L. Sauermann, S. Auer, and S. Handschuch, editors. Semantic
Desktop and Social Semantic Collaboration Workshop (SemDesk) located at the
International Semantic Web Conference (ISWC), volume 202 of CEUR Workshop
Proceedings. ISWC Workshop, CEUR-WS.org, November 2005.

X. Dong and A. Y. Halevy. A Platform for Personal Information Management and
Integration. In Biennial Conference on Innovative Data Systems Research (CIDR),
pages 119-130, 2005.

P. Dourish, W. K. Edwards, A. LaMarca, J. Lamping, K. Petersen, M. Salis-
bury, D. B. Terry, and J. Thornton. Extending Document Management Systems
with User-specific Active Properties. ACM Transaction of Information System,
18(2):140-170, 2000.

S. T. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. Stuff
I’ve Seen: A System for Personal Information Retrieval and Re-use. In International
Conference on Research and Development in Information Retrieval (SIGIR), pages
72-79, 2003.

J. Euzenat, A. Isaac, C. Meilicke, P. Shvaiko, H. Stuckenschmidt, O. Svéb,
V. Svatek, W. R. van Hage, and M. Yatskevich. First Results of the Ontology
Evaluation Initiative 2007. In Second ISWC International Workshop on Ontology
Matching. CEUR-WS, 2007.

E. Freeman and D. Gelernter. Lifestreams: A Storage Model for Personal Data.
SIGMOD Record, 25(1):80-86, 1996.

J. Gemmell, G. Bell, R. Lueder, S. M. Drucker, and C. Wong. MyLifeBits: Fulfilling
the Memex Vision. In ACM International Conference on Multimedia, pages 235~
238, 2002.

HP Labs. RDQL - RDF Data Query Language. http://www.hpl.hp.com/semweb/
rdql.htm, 2005.

W. Jones, H. Bruce, A. Foxley, and C. F. Munat. Planning Personal Projects and
Organizing Personal Information. In Annual Meeting of the American Association
for Information Science and Technology (ASISET), 2006.

W. Jones, C. F. Munat, H. Bruce, and A. Foxley. The Universal Labeler: Plan
the Project and Let Your Information Follow. In Annual Meeting of the American
Association for Information Science and Technology (ASISET), 2005.

W. Jones and J. Teevan, editors. Personal Information Management. University
of Washington Press, 2007.

Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: the State of the Art. The
Knowledge Engineering Review, 18(1):1-31, 2003.

G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A declarative query language for RDF. In International World Wide Web
Conference (WWW), pages 592-603, 2002.

D. Koller and M. Sahami. Hierarchically Classifying Documents Using Very Few
Words. In International Conference on Machine Learning (ICML).

G. E. Kramer and S. T. Pope. A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26-49, August/September 1988.

M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages
233-246, 2002.

Y. Li, H. Yang, and H. V. Jagadish. NaLIX: an Interactive Natural Language In-
terface for Querying XML. In ACM SIGMOD International Conference on Man-
agement of Data, pages 900-902, 2005.

36

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

D. Maier and L. M. L. Delcambre. Superimposed Information for the Internet. In
ACM SIGMOD Workshop on The Web and Databases (WebDB), pages 1-9, 1999.
I. Mani. Recent Developments in Text Summarization. In International Conference
on Information and Knowledge Management (CIKM), pages 529-531, 2001.

T. D. Millstein, A. Y. Halevy, and M. Friedman. Query Containment for Data
Integration Systems. Journal of Computer and System Sciences, 66(1):20-39, 2003.
P. Mitra, C.-C. Pan, P. Liu, and V. Atluri. Privacy-preserving Semantic Interop-
eration and Access Control of Heterogeneous Databases. In ACM Conference on
Computer and Communications Security, pages 66—77, 2006.

T. H. Nelson. Xanalogical Structure, Needed Now More than Ever: Parallel Docu-
ments, Deep Links to Content, Deep Versioning, and Deep Re-use. ACM Computer
Surveys, 31(4es):33, 1999.

N. F. Noy. Semantic Integration: A Survey Of Ontology-Based Approaches. SIG-
MOD Record, 33(4):65-70, 2004.

E. Oren. SemperWiki: a Semantic Personal Wiki. In ISWC Workshop on the
Semantic Desktop - Next Generation Information Management € Collaboration
Infrastructure, 2005.

C. Peltz. Web Services Orchestration and Choreography. Computer, 36(10):46-52,
2003.

E. Pietriga, C. Bizer, D. Karger, and R. Lee. Fresnel: A browser-independent
presentation vocabulary for rdf. In I. F. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, editors, International Semantic
Web Conference, volume 4273 of Lecture Notes in Computer Science, pages 158—
171. Springer, 2006.

D. Quan, D. Huynh, and D. R. Karger. Haystack: A Platform for Authoring
End User Semantic Web Applications. In International Semantic Web Conference
(ISWC), pages 738-753, 2003.

G. Salton. Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley, 1989.

L. Sauermann. The Gnowsis Semantic Desktop for Information Integration. In 3rd
Conference on Professional Knowledge Management, pages 3942, 2005.

L. Sauermann, A. Bernardi, and A. Dengel. Overview and Outlook on the Se-
mantic Desktop. In ISWC Workshop on the Semantic Desktop - Next Generation
Information Management & Collaboration Infrastructure, 2005.

L. Sauermann, G. A. Grimnes, M. Kiesel, C. Fluit, H. Maus, D. Heim, D. Nadeem,
B. Horak, and A. Dengel. Semantic Desktop 2.0: The Gnowsis Experience. In
International Semantic Web Conference (ISWC), volume Volume 4273, pages 887—
900. Springer, 2006.

M. Scannapieco, 1. Figotin, E. Bertino, and A. K. Elmagarmid. Privacy Preserv-
ing Schema and Data Matching. In ACM SIGMOD International Conference on
Management of Data, pages 653-664, 2007.

W. Sunna and I. F. Cruz. Using the AgreementMaker to Align Ontologies for
the OAEI Campaign 2007. In Second ISWC' International Workshop on Ontology
Matching. CEUR-WS, 2007.

J. Teevan, R. Capra, and M. Peérez-Quiiones. How People Find Information. In
W. Jones and J. Teevan, editors, Personal Information Management. University
of Washington Press, 2007.

H. Xijao and I. F. Cruz. RDF-based Metadata Management in Peer-to-Peer Sys-
tems. In The 2nd IST Workshop on Metadata Management in Grid and P2P
System (MMGPS), 2004.

37

61.

62.

63.

H. Xiao and I. F. Cruz. Integrating and Exchanging XML Data Using Ontologies.
In Journal on Data Semantics VI, volume 4090 of Lecture Notes in Computer
Science, pages 67-89. Springer, 2006.

H. Xjao and I. F. Cruz. Ontology-based Query Rewriting in Peer-to-Peer Networks.
In 2nd International Conference on Knowledge Engineering and Decision Support
(ICKEDS), pages 11-18, 2006.

H. Xiao, I. F. Cruz, and F. Hsu. Semantic Mappings for the Integration of XML and
RDF Sources. In VLDB Workshop on Information Integration on the Web (IIWeb),
pages 40-45, 2004. http://cips.eas.asu.edu/iiwebfinalproceedings/22.pdf.

38

