
The VLDB Journal (2009) 18:611–630
DOI 10.1007/s00778-008-0111-4

REGULAR PAPER

Supporting exact indexing of arbitrarily rotated shapes and
periodic time series under Euclidean and warping distance
measures

Eamonn Keogh · Li Wei · Xiaopeng Xi ·
Michail Vlachos · Sang-Hee Lee · Pavlos Protopapas

Received: 21 March 2007 / Revised: 5 July 2008 / Accepted: 10 July 2008 / Published online: 10 October 2008
© Springer-Verlag 2008

Abstract Shape matching and indexing is important topic
in its own right, and is a fundamental subroutine in most
shape data mining algorithms. Given the ubiquity of shape,
shape matching is an important problem with applications in
domains as diverse as biometrics, industry, medicine, zoo-
logy and anthropology. The distance/similarity measure for
used for shape matching must be invariant to many dis-
tortions, including scale, offset, noise, articulation, partial
occlusion, etc. Most of these distortions are relatively easy to
handle, either in the representation of the data or in the simi-
larity measure used. However, rotation invariance is noted in
the literature as being an especially difficult challenge. Cur-
rent approaches typically try to achieve rotation invariance
in the representation of the data, at the expense of discrimi-
nation ability, or in the distance measure, at the expense of
efficiency. In this work, we show that we can take the slow but
accurate approaches and dramatically speed them up. On real
world problems our technique can take current approaches
and make them four orders of magnitude faster, without false

Reproducible Research Statement: All datasets and images used in
this work are freely available at www.cs.ucr.edu/~eamonn/shape/
shape.htm.

E. Keogh (B) · L. Wei · X. Xi
Department of Computer Science and Engineering,
UCR, Riverside, CA, USA
e-mail: eamonn@cs.ucr.edu

M. Vlachos
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

S.-H. Lee
Department of Anthropology, UCR, Riverside, CA, USA

P. Protopapas
Harvard-Smithsonian Center for Astrophysics,
Cambridge, MA, USA

dismissals. Moreover, our technique can be used with any
of the dozens of existing shape representations and with all
the most popular distance measures including Euclidean dis-
tance, dynamic time warping and Longest Common Subse-
quence. We further show that our indexing technique can be
used to index star light curves, an important type of astrono-
mical data, without modification.

Keywords Shape · Indexing · Dynamic time warping

1 Introduction

Shape matching and indexing is important topic in its own
right, and is a fundamental subroutine in most shape data
mining algorithms. Given the ubiquity of shape, shape mat-
ching is an important problem with applications in domains
as diverse as biometrics, industry, medicine, zoology and
anthropology. The distance/similarity measure for used for
shape matching must be invariant to many distortions, inclu-
ding scale, offset, noise, articulation, partial occlusion, etc.
Figure 1 gives a visual intuition of these problems in a fami-
liar domain, butterflies and moths. Most of these distortions
are relatively easy to handle, particularly if we use the well-
known technique of converting the shapes into time series as
in Fig. 2. However, no matter what representation is used,
rotation invariance seems to be uniquely difficult to handle.
For example [20] notes “rotation is always something hard
to handle compared with translation and scaling”.

Many current approaches try to achieve rotation invariance
in the representation of the data, at the expense of discrimi-
nation ability [28], or in the distance measure, at the expense
of efficiency [1–3,9].

As an example of the former, the very efficient rotation
invariant technique of [28] cannot differentiate between the

123

www.cs.ucr.edu/~eamonn/shape/shape.htm
www.cs.ucr.edu/~eamonn/shape/shape.htm

612 E. Keogh et al.

Fig. 1 Examples of the distortions we may be interested in being
invariant to when matching shapes. The left column shows drawings of
insects dating back to 1734 [32]. The right column shows real insects.
The flexible wingtips of Actias maenas require articulation invariance.
One of the Papilio antimachus must be resized before matching. The
Agrias sardanapalus need their offsets corrected in order to match. The
real Papilio rutulus has a broken wing which appears as an occlusion to
shape matching algorithms. The real Sphinx Ligustri needs to be rotated
to match the drawing, achieving this invariance is the focus of this work

0 200 400 600 800 1000 1200 1400

A B C

Fig. 2 Shapes can be converted to time series. a A bitmap of a human
skull. b The distance from every point on the profile to the center is
measured and treated as the Y -axis of a time series of length n (c)

shapes of the lowercase letters “d” and “b”. As an example
of the latter, the work of Adamek and Connor [1], which is
state of the art in terms of accuracy or precision/recall takes
an untenable O(n3) for each shape comparison.

In this work, we show that we can take the slow but
accurate approaches and dramatically speed them up. For
example we can take the O(n3) approach of [1] and on
real world problems bring the average complexity down to
O(n1.06). This dramatic improvement in efficiency does not
come at the expense of accuracy; we prove that we will always
return the same answer set as the slower methods.

We achieve speedup over the existing methods in two
ways, dramatically decreasing the CPU requirements, and
allowing indexing. Our technique works by grouping toge-
ther similar rotations, and defining an admissible lower bound
to that group. Given such a lower bound, we can utilize the
many search and indexing techniques known in the database
community.

Our technique has the following advantages:

• There are dozens of techniques in the literature for conver-
ting shapes to time series [1,3,7,38,39,44], including
some that are domain specific [5,31]. Our approach
works for any of these representations.

• While there are many distance measures for shapes in
the literature, Euclidean distance, dynamic time warping
(DTW) [2,5,30,31] and Longest Common Subsequence
[37] accounts for the majority of the literature. Our
approach works for any of these distance measures.

• Our approach uses the idea of LB_Keogh lower boun-
ding as its cornerstone. Since the introduction of this idea
a few years ago [16], dozens of researchers world wide
have adopted and extended this framework for applica-
tions as diverse as motion capture indexing [18], P2P sear-
ching [13], handwriting retrieval [31], dance indexing,
and query by humming and monitoring streams [40]. This
widespread adoption of LB_Keogh lower bounding has
insured that it has become a mature and widely suppor-
ted technology, and suggests that any contributions made
here can be rapidly adopted and expanded.

• In some domains it may be useful to express rotation-
limited queries. For example, in order to robustly retrieve
examples of the number “8”, without retrieving infinity
symbols “∞”, we can issue a query such as: “Find the
best match to this shape allowing a maximum rotation
of ±15◦”. Our framework supports such rotation-limited
queries.

The rest of this paper is organized as follows. In Sect. 2 we
discuss background material and related work. In Sect. 3 we
formally introduce the problem and in Sect. 4 we offer our
solution. Section 5 offers a comprehensive empirical evalua-
tion of both the effectiveness and efficiency of our technique.
Finally, Sect. 6 offers some conclusions and directions for
future work.

123

Shape matching and indexing 613

2 Background and related work

The literature on shape matching is vast; we refer the
interested reader to [7,36] and [44] for excellent surveys.
While not all work on shape matching uses a 1D representa-
tion of the 2D shapes, an increasingly large majority of the
literature does. We therefore only consider such approaches
here. Note that we lose little by this omission. The two most
popular measures that operate directly in the image space, the
Chamfer [6] and Hausdorff [27] distance measures, require
O(n2 log n) time1 and recent experiments (including some
in this work) suggest that 1D representations can achieve
comparable or superior accuracy.

In essence there are three major techniques for dealing
with rotation invariance, landmarking, rotation invariant fea-
tures and brute force rotation alignment. We consider each
below.

2.1 Landmarking

The idea of “landmarking” is to find the one “true” rotation
and only use that particular alignment as the input to the
distance measure. The idea comes in two flavors, domain
dependent and domain independent.

In domain dependent landmarking, we attempt to find a
single (or very few) fixed feature to use as a starting point
for conversion of the shape to a time series. For example, in
face profile recognition the most commonly used landmarks
(fiducial points) are the chin or nose [5]. In limited domains
this may be useful, but it requires building special purpose
feature extractors. For example, even in a domain as intuiti-
vely well understood as human profiles, accurately locating
the nose is a non-trivial problem, even if we discount the pos-
sibility of mustaches and glasses. Probably the only reason
any progress has been made in this area is that most work rea-
sonably assumes that faces presented in an image are likely
to be upright. For shape matching in skulls, the canonical
landmark is called the Frankfurt Horizontal [41], which is
defined by the right and left porion (the highest point on the
margin of the external auditory meatus) and the left orbitale
(the lowest point on the orbital margin). However, a skull can
be missing the relevant bones to determine this orientation
and still have enough global information to match its shape
to similar examples. Indeed the famous Skhul V skull shown
in Fig. 14 is such an example. Other examples of domain
dependent landmarking include [39] who use the “sharpest
corner” of leafs as landmarks. This idea appears meaningful

1 More precisely the time complexity is O(Rp log p), where p is the
number of pixels in the perimeter and R is the number of rotations
that need to be executed. Here p = n, and while R is a user defined
parameter, it should be approximately equal n to guarantee all rotations
(up to the limit of rasterization) are considered.

Orangutan Owl Monkey
Northern Gray-Necked

Owl Monkey
(species unknown)

Landmark

A

A B C

B

A

B

Best Rotation

Landmark

Best Rotation Alignment

Fig. 3 Top Three primate skulls, two of them from the same genus,
are clustered using both the landmark rotation beginning at the major
axis, and the best rotation. Bottom The landmark-based alignment of
a and b explains why the landmark-based clustering is incorrect: a small
amount of rotation error results in a large difference in the distance
measure

in the subset of leaf shapes they considered, but in orbicular
(circular) leafs the “sharpest corner” is not well defined.

In domain independent landmarking, we align all the
shapes to some cardinal orientation, typically the major axis.
This approach may be useful for the limited domains in which
there is a well-defined major axis, perhaps the indexing of
hand tools. However, there is increasing recognition that the
“…major axis is sensitive to noise and unreliable” [44]. For
example a recent paper shows that under some circumstances,
a single extra pixel can change the rotation by ±90◦ [45].

To show how brittle landmarking can be, we performed a
simple clustering experiment where we clustered three pri-
mate skulls using Euclidean distance with both the major axis
technique, and the minimum distance of all possible rota-
tions (as found by brute force). Figure 3 shows the result. It
is clear that the major axes do not have any biological mea-
ning: the points connecting each axis for each specimen are
not homologous (of shared evolutionary origin). Therefore,
the resulting cluster is meaningless in terms of biology and
morphology [41].

Note that testing all rotations does not guarantee homo-
logy. However, by considering all possible alignments, we
would expect (under the principle of parsimony) to achieve
an approximately homologous alignment. However, we note
that what we are making claims here about subjective simi-
larity, not morphogenesis [41].

The most important lesson we learned from this expe-
riment (and dozens of other similar experiments on diverse
domains [14]) is that rotation (mis)alignment is the most

123

614 E. Keogh et al.

important invariance for shape matching, unless we have the
best rotation then nothing else matters.

2.2 Rotation invariant features

A large number of papers achieve fast rotation invariant mat-
ching by extracting only rotation invariant features and
indexing them with a feature vector [7,22]. This feature vec-
tor is often called the shapes “signature”. There are literally
dozens of rotation invariant features including ratio of per-
imeter to area, fractal measures, elongatedness, circularity,
min/max/mean curvature, entropy, perimeter of convex hull,
etc. In addition many researchers have attempted to frame
the shape-matching problem as a more familiar histogram-
matching problem. For example in [28] the authors build
a histogram containing the distances between two randomly
chosen points on the perimeter of the shapes in question. The
approach seems to be attractive, for example it can trivially
also handle 3D shapes, however it suffers from extremely
poor precision. For example, it cannot differentiate between
the shapes of the lowercase letters “d” and “b”, or “p” and
“q”, since these pairs of shapes have identical histograms.
In general, all these methods suffer from very poor discri-
mination ability [7]. In retrospect this is hardly surprising.
In order to achieve rotation invariance, all information that
contains rotation information must be discarded; inevitably,
some useful information may also be discarded in this pro-
cess. Our experience with these methods suggests that they
can be useful for making quick coarse discriminations, for
example differentiating between skulls and vertebrae. Howe-
ver, we could not get these methods to distinguish between
the skulls of humans and orangutan, a trivial problem for
human or the brute force algorithm discussed in the next
section.

2.3 Brute force rotation alignment

There are a handful of papers that recognize that the above
attempts at approximating rotation invariance are unsatis-
factory for most domains, and they achieve true rotation
invariance by exhaustive brute force search over all pos-
sible rotations, but only at the expense of computational effi-
ciency and indexability [1–3,9,23,39]. For example, paper
[1] uses DTW to handle non-rigid shapes in the time series
domain, while they note that most invariances are trivial to
handle in this representation, they state “rotation invariance
can (only) be obtained by checking all possible circular shifts
for the optimal diagonal path.” This step makes the compari-
son of two shapes O(n3) and forces them to abandon hope of
indexing. Similarly paper [39] notes “In order to find the best
matching result, we have to shift one curve n times, where n
is the number of possible start points.”

In [23] the authors discretize the shapes into chain codes,
and introduce a fast dynamic programming method to test
all rotations. They note “The algorithm runs in O(nnlgn)
time, where n is the length of the compared strings.”. Of
course this is an exact bound, but we achieve an empirical
O(n1.06) on large datasets (cf. Sect. 5). Given that most boun-
daries have about 1,000 datapoints long, this suggests that
we are thousands of times faster while also able to avoid
discretization errors and avoiding the need to set several
parameters.

Dozens of papers have suggested that shape matching can
be made faster by sampling the contours. For example, in
[19] the authors note: “it is first necessary to reduce the num-
ber of data points on the contour to a reasonable number that
can be evaluated using shape similarity measurement.” These
authors are interested in classifying fish. The fish shapes are
reduced down to mere 40 data points because they “… found
that a reduced data set of 40 points was sufficient to retain
the important shape features for comparison” [19]. This dra-
matic data reduction did make the similarity measure more
tractable, but we wondered if the assumption that it “retain(s)
the important shape features” was true. We compared their
results, which after considerable parameter tuning claimed
“the highest recognition accuracy of 64%”, with rotation
invariant Euclidean distance (RED) on the raw data. Surpri-
singly this simple, parameter-free method achieves 88.57%
accuracy (cf Sect. 5), which is much greater than the sam-
pling approach.

Other techniques introduced mitigate the untenable com-
putational complexity of testing “all” rotations do so at the
expense of introducing false dismissals. Typically they offer
some implicit or explicit trick to find a one (or a small num-
ber of) of starting point(s) [2,3,9]. For example paper [2]
suggests “In order to avoid evaluation of the dissimilarity
measure for every possible pair of starting contour points
… we propose to extract a small set of the most likely star-
ting points for each shape.” Furthermore, both the heuristic
used and the number of starting points must “be adjusted to a
given application”, and it is not obvious how to best achieve
this.

In forceful experiments on publicly available datasets it
has been demonstrated that brute force rotation alignment
produces the best precision/recall and accuracy in diverse
domains [1,2]. In retrospect this is not too surprising. The
rival techniques with rotation invariant features are all using
some lossy transformation of the data. In contrast the brute
force rotation alignment techniques are using a (potentially)
lossless transformation of the data. With more high quality
information to use, any distance measures will have an easier
time reflecting the true similarity of the original images.

The contribution of this work is to speed up these accu-
rate but slow methods by many orders of magnitude while
producing identical results.

123

Shape matching and indexing 615

2.4 Indexing star light curves

While this paper is focused on the indexing of shapes, it has
come to our attention that our techniques are ideally suited
to the indexing of an important type of astronomical data
known as star light curves. We would be remiss not to make
this connection clear, so we briefly discuss the application
and provide some experimental results below.

Globally there are myriads of telescopes covering the
entire sky and constantly recording massive amounts of
valuable astronomical data. Having humans to supervise all
observations is practically impossible; hence the increasing
interest in computer aided astronomy. A star light curve, as
shown in Fig. 4, is a time series of brightness of a celes-
tial object as a function of time. The study of light curves
in astronomy is associated with the study of variability of
sources. That led to the discoveries of pulsars, extra solar pla-
nets, supernovae, the rate of expansion of the universe just to
name few. At the Time Series Center at Harvard University
Initiative in Innovative Computing there are more than a 100
million such curves (with billions more expected by 2009)
however none of this data is currently searchable (other than
by brute force search).

There is a need to compare the similarity of light curves for
basic astronomical research, for example in [29] researchers
discover unusual light curves worthy of further examination
by finding the examples with the least similarity to other
objects. There are two things which make this difficult. First
is the enormous volume of data, the second is the fact that
while is it possible to extract a single period of a light curve,
there is no natural starting point. In order the find the simila-
rity of two light curves it is therefore necessary to compare
every possible circular shift of the data [29], which as we
show below corresponds exactly to the rotation invariance
matching problem for shapes in the one-dimensional repre-
sentation. The astronomical community [29] has mitigated
some of the CPU effort for circular-shift matching by redis-
covering the convolution “trick” long known to the shape
matching community [38]. However, this technique does not
help reduce disk accesses for data which does not fit in
main memory, and only allows matching under the Eucli-
dean metric.

3 Rotation invariant matching

We begin by formally defining the rotation invariant
matching problem. We begin by assuming the Euclidean dis-
tance, and generalize to other distance measures later. For
clarity of presentation we will generally refer to “time series”,
which the reader will note can be mapped back to the original
shapes.

Suppose we have two time series, Q and C of length n,
which were extracted from shapes by an arbitrary method.

Q = q1, q2, . . ., qi , . . ., qn

C = c1, c2, . . ., c j , . . ., cn

As we are interested in large data collections we denote a
database of m such time series as Q̄.

Q̄ = {Q1, Q2, . . . , Qm}
If we wish to compare two time series, and therefore shapes,
we can use the ubiquitous Euclidean distance:

ED (Q, C) ≡
√
√
√
√

n
∑

i=1

(qi − ci)
2

When using Euclidean distance as a subroutine in a classi-
fication or indexing algorithm, we may be interested in kno-
wing the exact distance only when it is eventually going to be
less than some threshold r . For example, this threshold can
be the “range” in range search or the “best-so-far” in nearest
neighbor search. If this is the case, we can potentially speed
up the calculation by doing early abandoning [17].

Definition 1 Early Abandon: During the computation of the
Euclidean distance, if we note that the current sum of the
squared differences between each pair of corresponding data
points exceeds r2, then we can stop the calculation, secure
in the knowledge that the exact Euclidean distance had we
calculated it, would exceed r .

While the idea of early abandoning is fairly obvious and
intuitive, it is so important to our work we illustrate it in Fig. 5
and provide pseudocode in Table 1.

Note that the “num_steps” value returned by the optimized
Euclidean distance in Table 1 is used only to tell us how useful
the optimization was. If its value is significantly less than n
this suggests dramatic speedup.

0 20 40 60 80 100

OGLE052401.70-

OGLE052357.02-

Fig. 4 An examples of two similar star light curves

C

0 10 20 30 40 50 60 70 80 90 100

calculation
abandoned
at this point

Q

Fig. 5 A visual intuition of early abandoning. Once the squared sum
of the accumulated gray hatch lines exceeds r2, we can be sure the full
Euclidean distance exceeds r

123

616 E. Keogh et al.

Table 1 Euclidean distance optimized with early abandonment

algorithm [dist, num_steps] = EA_Euclidean_Dist(Q, C, r)

accumulator = 0

for i = 1 to length(Q) // Loop over time series

 accumulator += (qi - ci)
2

// Accumulate error contribution

 If accumulator > r 2
// Can we abandon?

 disp(‘doing an early abandon’)

 num_steps = i

 return [infinity, num_steps] // Terminate and return an

end // infinite error to signal the

end // early abandonment.

return [sqrt(accumulator), length(Q)] // Terminate with true dist

While the Euclidean distance is a simple distance measure
it produces surprisingly good results for clustering, classifi-
cation and query by content of shapes, if the time series in
question happen to be rotation aligned. For example, in an
experiment in [30] we manually performed rotation align-
ment of the time series extracted from face profiles by expli-
citly showing the algorithm the beginning and endpoint of a
face (the nape and Adams apple, respectively).

However, if the shapes are not rotation aligned, this method
can produce extremely poor results. Recall the results in
Fig. 1, where a few degrees of misalignment give objecti-
vely and subjectively incorrect clusterings. To overcome this
problem we need to hold one shape fixed, rotate the other,
and record the minimum distance of all possible rotations.

For reasons that will become apparent later, we achieve
this by expanding one time series into a matrix C of size
n-by-n.

C =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

c1, c2, . . . , cn−1, cn

c2, . . . , cn−1, cn, c1
...

cn, c1, c2, . . . , cn−1

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

Note that each row of the matrix is simply a time series,
shifted (rotated) by one from its neighbors. It will be useful
below to address the time series in each row individually,
so we will denote the i th row as Ci , which allows us to
denote the matrix above in the more compact form of C =
{C1, C2, . . ., Cn}.

We can now define the RED as:

RED(Q, C) = min
1≤ j≤n

⎧

⎨

⎩
ED

(

Q, C j
) ≡

√
√
√
√

n
∑

i=1

(qi − ci)
2

Table 2 shows the pseudocode to calculate this.
Note that the algorithm tries to take advantage of early

abandoning by passing EA_Euclidean_Dist the value of r ,
the best rotation alignment discovered thus far.

If we are simply measuring the distance between two time
series then the algorithm is invoked with r set to infinity,

Table 2 An algorithm to find the rotated match between two time series

algorithm: [bestSoFar] = Test_All_Rotations(Q,C,r)
bestSoFar = r
for j = 1 to n
 distance = EA_Euclidean_Dist(Q, Cj, bestSoFar) // As in Table 1

if distance < bestSoFar
 bestSoFar = distance;
 end;
end;
return[bestSoFar]

Table 3 An algorithm to find the best rotated match to query from a
database of possible matches

algorithm : [best_match_loc, bestSoFar]=Search_Database_for_Rotated_Match(,Q)

 best_match_loc = null
 bestSoFar = inf
 for i = 1 to number_of_time_series_in_database(Q)

 distance = Test_All_Rotations(
iQ ,C

C

, bestSoFar); // As in Table 2

if distance < bestSoFar
 best_match_loc = i
 bestSoFar = distance
 end;
 end;
return[best_match_loc, bestSoFar]

Table 4 Notation table

C A time series c1, c2, . . ., c j , . . ., cn

C A n-by-n matrix containing every rotation of C

Ci The i th row of the above

Q Another time series q1, q2, . . ., qi , . . ., qn

Q̄ A database containing many time series Q̄ = {Q1, . . . , Qm}

however, as we shall see below, if the algorithm is being
used as a subroutine in a linear scan of a large dataset Q̄,
the calling routine can set the value of r to achieve speedup.
In particular the calling function sets r to the value of the
best match (under any rotation) discovered thus far. Table 3
shows the pseudocode. Note that the time complexity for
this algorithm is O(mn2). This is simply untenable for large
datasets.

We will review the notation introduced thus far in Table 4.
Note that our notation seems somewhat space inefficient

in that it expands time series C , of length n, to a matrix of size
n-by-n. However, the rest of the database uses the original
(arbitrary rotation) time series, and since the size of the data-
base is assumed to be large, this overhead is asymptotically
irrelevant.

There are two simple and useful generalizations of defi-
nitions thus far.

Mirror image invariance: Depending on the application we
may wish to retrieve shapes that are enantiomorphic (mirror
images) to the query. For example, in matching skulls, the
best match may simply be facing the opposite direction. In
contrast when matching letters we don’t want to match a “d”

123

Shape matching and indexing 617

to a “b”. If enantiomorphic invariance is required we can
trivially achieve this by augmenting matrix C to contain Ci

and reverse (Ci) for 1 ≤ i ≤ n.

Rotation-limited invariance: In some domains it may be
useful to express rotation-limited queries. For example, in
order to robustly retrieve examples of the number “6”, without
retrieving examples of the number “9”, we can issue a query
such as: “Find the best match to this shape allowing a maxi-
mum rotation of ±15◦”. Our framework trivially supports
such rotation-limited queries, by removing from the matrix
C all time series that correspond to the unwanted rotations.

Thus far we have shown a brute force search algorithm
that can support rotation invariance, rotation-limited inva-
riance and/or mirror image invariance. We simply put the
appropriate time series into matrix C and invoke the algo-
rithm in Table 3. This algorithm, even though speeded up
by the early abandoning optimization, is too slow for large
datasets. In the next section, we introduce our novel search
mechanism.

4 Wedge based rotation matching

We will begin by showing how we can efficiently search for
the best match in main memory. Since large datasets may not
fit on disk we will further show how we can index the data.

4.1 Fast and exact main memory search

We begin by defining time series wedges. Imagine that we
take several time series, C1, . . . , Ck , from our matrix C. We
can use these sequences to form two new sequences U and L:

Ui = max(C1i , . . . , Cki)

Li = min(C1i , . . . , Cki)

U and L stand for Upper and Lower, respectively. We can
see why in Fig. 6. They form the smallest possible bounding
envelope that encloses all members of the set C1, . . . , Ck

from above and below. More formally:

∀iUi ≥ C1i , . . . , Cki ≥ Li

For notational convenience, we will call the combination
of U and L a wedge, and denote a wedge as W :

W = {U, L}
We can now define a lower bounding measure between

an arbitrary time series Q and the entire set of candidate
sequences contained in a wedge W :

LB_Keogh(Q, W) =

√
√
√
√
√

n
∑

i=1

⎧

⎨

⎩

(qi − Ui)
2 if qi > Ui

(qi − Li)
2 if qi < Li

0 otherwise

0 10 20 30 40 50 60 70 80 90 100

C2

C1

U

L

U

LL

Q

W

W

Fig. 6 Top Two time series C1 and C2. Middle A time series wedge
W , created from C1 and C2. Bottom An illustration of LB_Keogh

Below we show a proof of this lower bounding property.
A similar proof appears in [14] and also in [21], where the
authors use this representation for different problem.

Proposition 1 For any sequence Q of length n and a wedge
W containing a set of time series C1, . . . , Ck of the same
length n, the following inequality holds:

LB_Keogh(Q, W) ≤ ED(Q, Cs), where s = 1, 2, . . . , k.

Proof Suppose we know that among the k time series
C1, . . . , Ck , Cs has the minimal Euclidean distance to query
Q. And we wish to prove
√
√
√
√
√

n
∑

i=1

⎧

⎨

⎩

(qi − Ui)
2 if qi > Ui

(qi − Li)
2 if qi < Li

0 otherwise
≤

√
√
√
√

n
∑

i=1

(qi − Csi)2

Since the terms under radicals are positive, we can square
both sides:

n
∑

i=1

⎧

⎨

⎩

(qi − Ui)
2 if qi > Ui

(qi − Li)
2 if qi < Li

0 otherwise
≤

n
∑

i=1

(qi − Csi)
2

Below we will show that every term in the left summation
can be matched with some greater or equal term in the right
summation.

There are three cases to consider, for the moment we will
just consider the case when qi > Ui . We want to show:

(qi − Ui)
2 ≤ (qi − Csi)

2

(qi − Ui) ≤ (qi − Csi) Since qi > Ui , we can take square
roots on both sides

−Ui ≤ −Csi Subtract qi from both sides
Csi ≤ Ui Add Ui + Csi to both sides
Csi ≤ max(C1i , . . . , Cki) By definition Ui = max(C1i , . . . , Cki)

123

618 E. Keogh et al.

This is obviously true.
The case qi < Li yields to a similar argument. The final

case is simple to show, since clearly 0 ≤ (qi −Csi)
2 because

(qi − Csi)
2 must be non-negative.

Thus we have shown that each term on the left side is
matched with an equal or larger term on the right side. Our
inequality holds. ��

Note that the LB_Keogh function has been used before
to support DTW [16,30,31,37], uniform scaling [18], and
query filtering [40]. For these tasks the lower bounding dis-
tance function is the same, but the definition of U and L are
different.

There are two important observations about LB_Keogh.
First, in the special case where W is created from a single
candidate sequence, it degenerates to the Euclidean distance.
Second, not only does LB_ Keogh lower bound all the candi-
date sequences C1, . . . , Ck , but we can also do early abandon
with LB_Keogh. While the latter fact might be obvious, for
clarity we make it explicit in Table 5.

Note once again that the value returned in “num_steps” is
merely a bookkeeping device to allow a post mortem evalua-
tion of efficiency.

Suppose we have just two time series C1 and C2 of length
n, and we know that in future we will be given a time series
query Q and asked if one (or both) of C1 and C2 are within r of
the query. We naturally wish to minimize the number of steps
we must perform (“steps” are measured by “num_steps”). We
are now in a position to outline two possible approaches to
this problem.

• We can simply compare the two sequences, C1 and C2 (in
either order) to the query using the early abandon algo-
rithm introduce in Table 1. We will call this algorithm,
classic.

• We can combine the two candidate sequences into a
wedge, and compare Q to the wedge using LB_Keogh.
If the LB_Keogh function early abandons, we are done.
We can say with absolute certainty that neither of the

Table 5 LB_Keogh optimized with early abandonment

algorithm [dist, num_steps] = EA_LB_Keogh(Q, W, r)
accumulator = 0
for i = 1 to length(Q) // Loop over time series

if qi > W.Ui // Accumulate error contribution

 accumulator += (ci - W.Ui)
2

elseif qi < W.Li

 accumulator += (ci - W.Li)
2

end
if accumulator > r 2

// Can we abandon?

 return [infinity, i] // Terminate and return an infinite error

end // to signal the early abandonment.

end
return [sqrt(accumulator), length(Q)] // Terminate with true dist

two candidate sequences is within r of the query. If we
cannot early abandon on the wedge, we need to indivi-
dually compare the two candidate sequences, C1 and C2

(in either order) to the query. We will call this algorithm,
Merge.

Let us consider the best and worst cases for each approach.
For classic the worst case is if both candidate sequences are
within r of the query, which will require 2n steps. In the
best case, the first point in the query may be radically dif-
ferent to the first point in either of the candidates, allowing
immediate early abandonment and giving a total cost of two
steps.

For Merge, the worst case is also if both candidate
sequences are within r of the query, because we will waste
n steps in the lower bounding test between the query and the
wedge, and then n steps for each individual candidate, for a
total of 3n. However, the best case, also if the first point in
the query is radically different, would allow us to abandon
with a total cost of one step.

Which of the two approaches is better depends on:

• The shapes of C1 and C2. If they are similar, this greatly
favors Merge.

• The shape of Q. If Q is truly similar to one (or both) of
the candidate sequences, this would greatly favor classic.

• The matching distance r . Here the effect is non-monotonic
and dependent on the two factors above.

We can generalize the notion of wedges by hierarchically
nesting them. Let us begin by augmenting the notation of a
wedge to include information about the sequences used to
form it. For example, if a wedge is built from C1 and C2,
we will denote it as W(1,2). Note that a single sequence is
a special case of a wedge, for example the sequence C1

can also be denoted as W1. We can combine W(1,2) and
W3 into a single wedge by finding maximum and minimum
values for each i th location, from either wedge. More
concretely:

Ui = max(W(1,2)i , W3i)

Li = min(W(1,2)i , W3i)

W((1,2),3) = {U, L}
In Fig. 7 we illustrate this notation. We call W(1,2) and W3

children of wedge W((1,2),3). Since individual sequences are
special cases of wedges, we can also call C1 and C2 children
of W(1,2).

Given the generalization to hierarchal wedges, we can now
also generalize the Merge approach. Suppose we have a time
series Q and a wedge W((1,2),3). We can compare the query
to the wedge using LB_Keogh. If the LB_Keogh function
early abandons, we are done. We know with certainty that

123

Shape matching and indexing 619

C1 (or W1) C2 (or W2) C3 (or W3)

W(1, 2)

W((1, 2), 3)

Fig. 7 An illustration of hierarchically nested wedges

W(1,2)

Q

W((1,2),3)

Q

W(1,2)

W((1,2),3)

Fig. 8 Top An illustration of LB_Keogh(Q, W(1,2)). Bottom An
illustration of LB_Keogh (Q, W((1,2),3)). Note that the tightness of the
lower bound is proportion to the number and length of vertical lines

none of the three candidate sequences is within r of Q. If
we cannot early abandon on the wedge, we need to compare
the two child wedges, W(1,2) and W3 to the query. Again,
if we cannot early abandon on the wedge W(1,2), we need
to individually compare the two candidate sequences, C1

and C2 (in either order) to the query. We call this algorithm
H-Merge (Hierarchal Merge).

The utility of a wedge is strongly correlated to its area.
We can get some intuition as to why by visually compa-
ring LB_Keogh (Q, W(1,2)) with LB_Keogh (Q, W((1,2),3))

as shown in Fig. 8. Note that the area of W((1,2),3) is much
greater than that of W(1,2), and that this reduces the value
returned by the lower bound function and thus the possibility
to early abandon.

For some problems, the H-Merge algorithm can give
exceptionally poor performance. If the wedge W(1,2), created
from C1 and C2 has an exceptional large area (i.e. C1 and C2

are very dissimilar), it is very unlikely to be able to prune off
any steps.

At this point we can see that the efficiency of H-Merge
is dependent on the candidate sequences and Q itself. In
general, merging similar sequences into a hierarchal wedge
is a good idea, but merging dissimilar sequences is a bad idea.

Table 6 Algorithm H-Merge

algorithm [dist] = H-Merge(Q, W,K, r)

S = {empty } // Initialize a stack.

for i = 1 to K // Place all the wedges into the stack.

 enqueue(Wset(i) ,S)

end

while not empty(S)

T = dequeue(S)

 dist = EA_LB_Keogh(Q,T,r) // Note that is early abandon version.

if isfinite(dist) // We did not early abandon.

if cardinality(T) = 1 // T was an individual sequence.

 disp(‘The sequence ’,T, ‘is ’, dist, ‘ units from the query’)

 return[dist]

else // T was a wedge, find its children

 enqueue(children(T) ,S) // and push them onto the stack.

end

end

end

The observations above motivate a final generalization
of H-Merge. Recall that to achieve rotation invariance we
expanded our time series C into a matrix with n time series.
Given these n sequences, we can merge them into K hie-
rarchal wedges, where 1 ≤ K ≤ n. This merging forms
a partitioning of the data, with each sequence belonging to
exactly one wedge. We will use W to denote a set of hierar-
chal wedges:

W = {Wset(1), Wset(2), . . . , Wset(K)}, 1 ≤ K ≤ n

where Wset(i) is a (hierarchically nested) subset of the n can-
didate sequences. Note that we have

Wset(i) ∩ Wset(j) = ∅ if i
= j, and

|Wset(1) ∪ Wset(2) ∪ · · · ∪ Wset(K)| = n

We will attempt to merge together only similar sequences.
We can then compare this set of wedges against our query.
Table 6 formalizes the algorithm.

Note that this algorithm is designed to replace the
Test_All_Rotations algorithm that is invoked as a subroutine
in the Search_Database_for_Rotated_Match algorithm
shown in Table 3.

As we shall see in our empirical evaluations, H-Merge
can produce very impressive speedup if we make judicious
choices in the set of hierarchal wedges that make up W .
However, the number of possible ways to arrange the hie-
rarchal wedges is greater than K K , and the vast majority of
these arrangements will be very poor, so specifying a good
arrangement of W is critical.

A simple observation alleviates the need to invent a new
algorithm to find a good arrangement of W . Note that hierar-
chal clustering algorithms have very similar goals to an ideal
wedge-producing algorithm. In particular, hierarchal clus-
tering algorithms can be seen as attempting to minimize the

123

620 E. Keogh et al.

C1 (or W1)

C4 (or W4)

C2 (or W2)

C5 (or W5)

C3 (or W3)

Fig. 9 A dendrogram of five sequences C1, C2, . . . , C5, clustered
using group average linkage

distances between objects in each subtree. A wedge-producing
algorithm should attempt to minimize the area of each wedge.
However, the area of a wedge is simply the maximum Eucli-
dean distance between any sequences contained therein (i.e.
Newton–Cotes rule from elementary calculus). This moti-
vates us to derive wedge sets based on the result of a hierar-
chal clustering algorithm. Figure 10 shows wedge sets W , of
every size from 1 to 5, derived from the dendrogram shown
in Fig. 9.

Given that the clustering algorithm produces the tentative
wedge sets, all we need to do is to choose the best one. We
could attempt to do this by eye, for example in Fig. 10 it
is clear that any sequence that early abandons on W3, will
almost certainly also early abandon on both W2 and W5;
similar remarks apply to W1 and W4. At the other extreme,
the wedge at K = 1 is so “fat” that it is likely have poor
pruning power. The set W = {W((2,5),3), W(1,4)} is probably
the best compromise. However, because the set of time series
might be very large, such visual inspection is not scalable.

The problem is actually even more complex, in that the
best value for K also depends on the current value of r (Recall
r is the “best-so-far” in nearest neighbor search.). If r is large
then very little early abandoning is possible and this favors
a large value for K . In contrast, if r is small we can do a
lot of early abandoning, and we are better off having many
sequences in a single wedge so we can early abandon all of
them with a single calculation. Note however that for nearest
neighbor search the value of r will get smaller as we search
through the database.

With this in mind, we dynamically choose the wedge set
based on a fast empirical test. We start with the wedge set
where K = 2. Each time the bestSoFar value changes, we

W3

W2

W5

W1

W4

W3

W(2,5)

W1

W4

W3

W(2,5)

W(1,4)

W((2,5),3)

W(1,4)

W(((2,5),3), (1,4))

K = 5 K = 4 K = 3 K = 2 K = 1

Fig. 10 Wedge sets W, of size 1–5, derived from the dendrogram
shown in Fig. 9

test a subset of the possible values of K and choose the most
efficient one (as measured by num_steps) as the next K to
use. Which subset to test is decided on-the-fly based on the
current K value. They are the values which evenly divide
the ranges [1, current_K] and [current_K, max_K] into five
intervals. Note that on average the bestSoFar value only
changes log (m) during a linear search, so this slight overhead
in adjusting the parameter is not too burdensome, however,
we do include this cost in all experiments in Sect. 5.

4.2 Lower bounding in index space

True rotation invariance has traditionally been so demanding
in terms of CPU time that little or no effort was made to index
it (or it was indexed with the possibility of false dismissals
with regard to the raw shapes 0). As we shall see in the
experiments in Sect. 5.2, the ideas presented in the last section
produce such dramatic reductions in CPU time that it is worth
considering indexing the data.

There are several possible techniques we could consider
for indexing. Recent years have seen dozens of papers on
indexing time series envelopes that we could attempt to leve-
rage off [16,21,30,31,37]. The only non-trivial adaptation
to be made is that instead of the query being a single enve-
lope, it would be necessary to search for the best match to K
envelopes in the wedge set W.

Note however that we do not necessarily have to use the
enveloping idea in the indexing phase. So long as we can
lower bound in the index space we can use an arbitrary tech-
nique to get (hopefully a small subset of) the data from disk
to main memory [8], where our H-Merge can very efficiently
find the distance to the best rotation.

One possible method to achieve this indexable lower
bound is to use Fourier methods. Many authors have

123

Shape matching and indexing 621

Table 7 A vantage point tree for indexing shapes

Algorithm [BSF] = NNSearch(C)
 BSF.ID = null; // BSF is the Best-So-Far variable
 BSF.distance = infinity;
 W = convert_time_series_to_wedge_set(C);
 Search(

rootQ ,W, BSF); // Invoke subroutine on the root of index tree
Subroutine Search(NODE, W, BSF)
if NODE.isLeaf // we are at a leaf node.

for each compressed time-series cT in node
 LB = computeLowerBound(cT, W);
 queue.push(cT,LB); // sorted by lower bound.

end
while (not (queue.empty()) and (queue.top().LB < BSF.distance))

if (BSF.distance > queue.top().LB)
 retrieve full time series Q of queue.top() from disk;
 distance = H-Merge(Q, W, BSF.distance) // calculate full distance.

if distance < BSF.distance // update the best-so-far
 BSF.distance = distance; // distance and location.
 BSF.ID = Q;

end
end

end
else // we are at a vantage point.
 LB = computeLowerBound(VP, W);
 queue.push(VP,LB);

if LB < (node.median + BSF.distance)
 search(NODE.left, W, BSF); // recursive search left.

else
search(NODE.right, W, BSF); // recursive search right.

end
end

independently noted that transforming the signal to the Fou-
rier space and calculating the Euclidean distance between the
magnitude of the coefficients produces a lower bounds to any
rotation [4,38]. We can leverage of this lower bound to use
a VP-tree to index our time series as shown in Table 7.

This technique is adapted from [38], and we refer the rea-
der to this work for a more complete treatment.

4.3 Generalizing to other distance measures

As we shall see in Sect. 5, the Euclidean distance is typically
very effective and intuitive as a distance measure for shapes.
However, in some domains it may not produce the best pos-
sible precision/recall or classification accuracy [2,30]. The
problem is that even after best rotation alignment, subjecti-
vely similar shapes may produce time series that are globally
similar but contain local “distortions”. These distortions may
correspond to local features in that are present in both shapes
but in different proportions. For example in Fig. 11 we can
see that the larger brain case of the Lowland Gorilla changes
the locations in which the brow ridge and jaw map to in a
time series relative to the Mountain Gorilla.

Even if we assume that the database contains the actual
object used as a query, it is possible that the two time series
are distorted versions of each. Here the distortions may be
caused by camera perspective effect, differences in lighting
causing shadows which appear to be features, parallax, etc.

Fortunately, there is a well-known technique for compen-
sating such local misalignments, DTW [16,30]. While DTW
was invented in the context of 1D speech signals others have

Mountain Gorilla

Gorilla gorilla
beringei

Lowland Gorilla

Gorilla gorilla
graueri

Fig. 11 The Lowland Gorilla and Mountain Gorilla are morpholo-
gically similar, but have slightly different proportions. dynamic time
warping can be used to align homologous features in the time series
representation space

noted its utility for matching shapes, including face profiles
[5], hand gestures [25], leafs [30] and handwriting [31].

To align two sequences using DTW, an n-by-n matrix
is constructed, where the (i th, j th) element of the matrix
is the distance d(qi , c j) between the two points qi and c j

(i.e. d(qi , c j) = (qi − c j)
2). Each matrix element (i, j)

corresponds to the alignment between the points qi and c j ,
as illustrated in Fig. 12.

A warping path P is a contiguous set of matrix elements
that defines a mapping between Q and C . The t th element of
P is defined as pt = (i, j)t so we have:

P = p1, p2, . . ., pt , . . ., pT n ≤ T < 2n − 1

The warping path that defines the alignment between the
two time series is subject to several constraints. For example,
the warping path must start and finish in diagonally oppo-
site corner cells of the matrix; the steps in the warping path
are restricted to adjacent cells (including diagonally adjacent
cells); the points in the warping path must be monotonically
spaced in time. In addition to these constraints, virtually all
practitioners using DTW also constrain the warping path in
a global sense by limiting how far it may stray from the
diagonal [16,30,31]. A typical constraint is the Sakoe–Chiba
Band which states that the warping path cannot deviate more
than R cells from diagonal [34].

123

622 E. Keogh et al.

Q
C

Q

C

Q

C

R

Fig. 12 Left Two time series sequences with local differences. Right
To align the sequences we construct a warping matrix, and search for the
optimal warping path, shown with solid squares. Note that Sakoe–Chiba
Band with width R is used to constrain the warping path

C2

C1

U

L

W
U

L

W

W

DTW_U

DTW_L

W

DTW_U

DTW_L

W

Q

W

A

B

C

D

Fig. 13 The idea of bounding envelopes introduced in Fig. 6 is
generalized to allow DTW. a Two time series C1 and C2. b A time
series wedge W, created from C1 and C2. c In order to allow lower
bounding of DTW, an additional envelope is created above and below
the wedge. d An illustration of LB_KeoghDTW

The optimal warping path can be found in O(nR) time by
dynamic programming [16].

Based on an arbitrary wedge W and the allowed war-
ping range R, we define two new sequences, DTW_U and
DTW_L:

DTW_Ui = max(Ui−R : Ui+R)

DTW_Li = min(Li−R : Li+R)

They form an additional envelope above and below the
wedge, as illustrated in Fig. 13.

We can now define a lower bounding measure for DTW
distance between an arbitrary query Q and the entire set of
candidate sequences contained in a wedge W :

LB_KeoghDTW(Q, W) =
√
√
√
√
√

n
∑

i=1

⎧

⎨

⎩

(qi − DTW_Ui)
2 if qi > DTW_Ui

(qi − DTW_Li)
2 if qi < DTW_Li

0 otherwise

We will now prove the claim of the lower bounding.

Proposition 2 For any sequence Q of length n and a wedge
W containing a set of time series C1, . . ., Ck of the same
length n, for any global constraint on the warping path of
the form j − R ≤ i ≤ j + R, the following inequality holds:

LB_KeoghDTW(Q, W) ≤ DTW(Q, Cs),

where s = 1, 2, . . . , k.

Proof Suppose we know that among the k time series C1, . . .,
Ck, Cs has the minimal DTW distance to query Q. And we
wish to prove
√
√
√
√
√

n
∑

i=1

⎧

⎨

⎩

(qi − DTW_Ui)
2 if qi > DTW_Ui

(qi − DTW_Li)
2 if qi < DTW_Li

0 otherwise

≤
√
√
√
√

T
∑

t=1

pst

Since the terms under radicals are positive, we can square
both sides:

n
∑

i=1

⎧

⎨

⎩

(qi − DTW_Ui)
2 if qi > DTW_Ui

(qi − DTW_Li)
2 if qi < DTW_Li

0 otherwise
≤

T
∑

t=1

pst

Recall that that when we stated the definition of the warping
path above we had, P = p1, p2, . . ., pt , . . ., pT n ≤ T <

2n − 1. We therefore have n ≤ T , so our strategy will be to
show that every term in the left summation can be matched
with some greater or equal term in the right summation.

There are three cases to consider, for the moment we will
just consider the case when qi > DTW_Ui . We want to
show:

(qi − DTW_Ui)
2 ≤ pst

(qi − DTW_Ui)
2 ≤ (qi − Csj)

2 By Definition 3
(qi − DTW_Ui) ≤ (qi − Csj) Since qi > DTW_Ui , we can

take square roots on both sides
−DTW_Ui ≤ −Csj Subtract qi from both sides
Csj ≤ DTW_Ui Add DTW_Ui + Csj to both

sides
Csj ≤ max(Ui−R : Ui+R) By definition DTW_Ui =

max(Ui−R : Ui+R)

Since the query sequence Q and all the candidate
sequences C1, . . ., Ck are of the same length and j − R ≤
i ≤ j + R, we know i − R ≤ j ≤ i + R. So we can rewrite
the right side and the inequality becomes

Csj ≤ max(Ui−R, U(i+1)−R, . . . , U j , . . . , Ui+R)

If we remove all terms except U j from the RHS we are
left with Csj ≤ max(U j) which is obviously true since U j =
max(C1 j , . . . , Ckj).

The case qi < DTW_Ui yields to a similar argument. The
final case is simple to show, since clearly 0 ≤ (qi − Csj)

2

because (qi − Csj)
2 must be non-negative.

123

Shape matching and indexing 623

Thus we have shown that each term on the left side is
matched with an equal or larger term on the right side. Our
inequality holds. ��

For brevity we omit the very minor modifications required
to index LB_KeoghDTW (Q,W), however [37] contains the
necessary modifications for both DTW and for LCSS which
is discussed below.

To facilitate later efficiency comparisons to Euclidean
distance and other methods, it will be useful to define the
time complexity of DTW in terms of “num_steps” as retur-
ned by Tables 1 and 5. The variable “num_steps” is the num-
ber of real-value subtractions that must be performed, and
completely dominates the CPU time, since the square root
function is only performed once (and can be removed, see
[17]). If we construct a full n by n warping matrix, then DTW
clearly requires at least n2 steps. However, as we noted above
and illustrated in Fig. 12, we can truncate the corners of the
matrix to reduce this number to approximately nR, where R
is the width of the Sakoe–Chiba Band. While nR is the num-
ber of steps for a single DTW, we expect the average number
of steps to be less, because some full DTW calculations will
not be needed if the lower bound test fails. Since the lower
bound test requires n steps, the average number of steps when
doing m comparisons should be:

m∗a(n R) + m(n)

m

Where a is the fraction of the database that requires the full
DTW calculated. Note that even this is pessimistic, since
both DTW2 and LB_KeoghDTW are implemented as early
abandoning (recall Table 5). We therefore simply count the
“num_steps” required by each approach and divide it by m to
get the average number of steps required for one comparison.

In addition to DTW, several researchers have suggested
using Longest Common SubSequence (LCSS) as a distance
measure for shapes. The LCSS is very similar to DTW except
that while DTW insists that every point in C maps onto one
(or more) point(s) in Q, LCSS allows some points to go
unmatched. The intuition behind this idea in a time series
domain is that subsequences may contain additions or dele-
tions, for example an extra (or forgotten) dance move in a
motion capture performance, or a missed beat in ECG data.
Rather than forcing DTW to produce an unnatural alignment
between two such sequences, we can use LCSS, which sim-
ply ignores parts of the time series that are too difficult to
match. In the image space the missing section of the time
series may correspond to a partial occlusion of an object, or
to a physically missing part of the object, as shown in Fig. 14.

2 Note that a recursive implementation of DTW would always require
nR steps, however iterative implementation (as used here) can poten-
tially early abandon with as few as R steps.

A B

B

C

This region will
not be matched

DTW

LCSS
Alignment

Fig. 14 a The famous Skhul V is generally reproduced with the mis-
sing bones extrapolated in epoxy, however the original Skhul V (b) is
missing the nose region, which means it will match to a modern human
(c) poorly, even after DTW alignment (inset). In contrast, LCSS align-
ment will not attempt to match features that are outside a “matching
envelope” (heavy gray line) created from the other sequence

Fig. 15 Project points are frequently found with broken tips or tangs.
Such objects require LCSS to find meaningful matches to complete spe-
cimens. From left to right, Edwards, Langtry, and Golondrina projectile
points

Real world examples of domains that require LCSS
abound. For example anthropologists are interested in explo-
ring large dataset of projectile points (“arrowheads”). At the
UCR Lithic Technology Lab at UCR there are over a million
specimens, so indexing is required for efficient access. While
anthropologists have long been interested in shape, interest
in matching such objects is further fueled by the availability
of computing power and by a recent movement that notes,
“an increasing number of archaeologists are showing inter-
est in employing Darwinian evolutionary theory to explain
variation in the material record” [26]. Anthropologists have
recently used tools from biological morphology to attempt to
explain spatial and temporal distribution of projectile points

123

624 E. Keogh et al.

Table 8 The error of Euclidean
distance and DTW on publicly
available datasets

Name Number of classes Number of instances Euclidean error (%) DTW error (%) {R}
Face 16 2,240 3.839 3.170 {3}

Swedish leaves 15 1,125 13.33 10.84 {2}

Chicken 5 446 19.96 19.96 {1}

MixedBag 9 160 4.375 4.375 {1}

OSU leaves 6 442 33.71 15.61 {2}

Diatoms 37 781 27.53 27.53 {1}

Aircraft 7 210 0.95 0.0 {3}

Fish 7 350 11.43 9.71 {1}

Light-curve 3 954 14.15 11.43 {3}

Yoga 2 3,300 4.70 4.85 {1}

in North America. As we illustrate in Fig. 15 many examples
are incomplete, missing tip or tangs. LCSS can ignore such
missing feature to provide more robust matching.

While we considered LCSS for generality, we will not
further explain how to incorporate it into our framework. It
has been shown in [37] that it is trivial to lower bound LCSS
using the envelope-based techniques described above. The
minor changes include reversing some inequality signs since
LCSS is a similarity measure, not a distance measure. Unlike
Euclidean distance which has no parameters, or DTW, which
has one intuitive and easy to set parameter, LCSS requires
two parameters, and tuning them is non-trivial. In objective
classification experiments we found that we could sometimes
tune LCSS to slightly beat DTW on some problems, however,
we did not have large enough datasets to allow training/test
splits that guarded against overfitting to a statistically signifi-
cant standard. Automatically choosing the correct parameters
for LCSS is a matter for future research.

5 Experimental results

In this section, we empirically evaluate our approach. We
begin by stating our experimental philosophy. In a recent
paper Veltkamp and Latecki attempted to reproduce the accu-
racy claims of several shape matching papers but discove-
red to their dismay that they could not match the claimed
accuracy for any approach [36]. One suggested reason is the
observation that many approaches have highly tuned parame-
ters, a fact which we believe makes Euclidean distance (zero
parameters) and DTW (one parameter) particularly attrac-
tive. Veltkamp and Latecki conclude “It would be good for
the scientific community if the reported test results are made
reproducible and verifiable by publishing data sets and soft-
ware along with the articles”. We completely concur and have
placed all datasets at the following URL [14].

5.1 Effectiveness of shape matching

In general this paper is not making any claims about the
effectiveness of shape matching. Because we are simply
speeding up arbitrary distance calculations on arbitrary one-
dimensional representations of shapes, we automatically
inherit the well-documented effectiveness of other resear-
chers published work [1–3,9,12,30,38].

Nevertheless, for completeness and in order to justify the
extra computational expense of DTW, we will show the effec-
tiveness of shape matching on several publicly available data-
sets.

Table 8 shows the error rate of one-nearest neighbor classi-
fication as measured using leaving-one-out evaluation. Recall
that Euclidean distance has no parameters, DTW has a single
parameter (the warping window width R) which was learned
by looking only at the training data.

For the Face and Leaf datasets the (approximate) correct
rotation was known [30]. We removed this information by
randomly rotating the images.

The MixedBag dataset is small enough to run the more
computationally expensive Chamfer [6] and Hausdorff [27]
distance measures. They achieved an error rate of 6.0 and
7.0%, respectively [38], slightly worse than Euclidean dis-
tance. Likewise the Chicken dataset allows us to compare
directly to [24], which used identical experiments to test
six different algorithms based on discrete sequences extrac-
ted from the shapes. The best of these algorithms had an
error rate of 20.5% and took over a minute for each dis-
tance calculation, whereas our approach takes an average
time of 0.0039 seconds for each distance calculation.3 For
the Diatom dataset, the results are competitive with human
experts, whose error rates ranged from 57 to 13.5% [12], and

3 We are aware that one should normally not compare CPU times from
different computers, however, here the four orders of magnitude offers
a comfortable margin that dwarfs implementation details.

123

Shape matching and indexing 625

only slightly worse than the Morphological Curvature Scale
Spaces (MCSS) approach of [12], which got 26.0%. Note
however that the Euclidean distance requires zero parame-
ters once the time series have been extracted, whereas the
MCSS has several parameters to set. On the aircraft dataset
the data donors tried four different Hidden Markov Model
based approaches and achieve a best error-rate of 0.95% [35].
However, we can achieve this accuracy with zero-parameter
Euclidean distance and get zero error with DTW. The data
donors of the fish dataset tested many shape descriptors, such
as Fourier descriptors, polygon approximation and line seg-
ments to achieve the best error rate of 36.0% [19], however,
we get dramatically lower error rates for both Euclidean dis-
tance and DTW.

The yoga dataset is of particular interest. It has previously
been classified without rotation invariance [15]. In that case
human volunteers painstakingly located a landmark point in
each of 3,300 images. The accuracy for the human annota-
ted dataset was 17.0 and 15.5% for Euclidean distance and
DTW, respectively. However, the rotation invariant classifi-
cation here has reduced the error rate by a factor of three.
Since the only thing to differ between the two experiments
is rotation invariance, this strongly supports the contention
made in Sect. 2.1, that “ rotation (mis)alignment is the most
important invariance for shape matching, unless we have the
best rotation then nothing else matters”. Note that here DTW
is very slightly worse on the dataset, but the difference is not
statistically significant at the 0.01 level.

5.2 Shape matching sanity checks

In general the experiments in the previous section show two
things (which had been noted before), the extra effort of DTW
is useful in some domains, and very simple time series repre-
sentations of shapes are completive to other more complex
representations.

We also performed extensive “sanity check” experiments
in domains where we could meaningful visualize the results.

Our first example uses a large database of skulls. For all
primate species where we have at least two examples we
perform a hierarchical clustering and check to see if both
samples of the same species clustered together. Figure 16
shows a typical example.

It is important to recall that Fig. 16 shows a phenogram,
not a phylogenetic tree. However, on larger scale experiments
in this domain (shown in [14]) we found that large subtrees
of the dendrograms did conform to the current consensus on
primate evolution.

While the Euclidean distance works very well on the
relatively simple primate skulls, we found that considering a
more (morphologically) diverse groups of animals, such as
all reptiles, requires DTW as a distance measure. Consider
Fig. 17 which shows a hierarchical clustering of a very diverse

• De Brazza monkey

• De Brazza monkey
(juvenile)

• Human (modern)

• Human Ancestor
(Skhul V)

• Red Howler
Monkey

• Mantled Howler
Monkey

• Orangutan
(juvenile)

• Orangutan

Fig. 16 A group average hierarchal clustering of eight primate skulls
based on the lateral view, using Euclidean distance

set of reptiles. As with the primates, this is not the correct
phylogenetic tree for these animals, once again however, the
(uniquely colored) subtrees do correspond to current consen-
sus on reptiles evolution based on DNA analysis and/or more
complete morphological studies [10,11].

Note that we are not claiming that our shape matching
techniques replace or even complement classic morphome-
trics in zoology. The point of these experiments is that if
the shape matching techniques can produce intuitive results
in a domain in which we know the correct relationships by
other means, this suggests that algorithms may also produce
meaningful results in shape problems for which there is more
uncertainty, including projectile points (see [26] and Fig. 15),
petroglyphs, insect bite patterns in leaves [42], mammogra-
phic calcifications [43], etc.

It has recently been claimed that shape matching methods
that only look at the contours of shapes (boundary based
methods) are brittle to articulation distortion [33], however,
we believe that while this may be true for certain boundary
based methods (i.e. Hausdorff, Champer, etc.) the centroid
based method we use is very robust to articulation distor-
tions. To demonstrate this, we conducted a simple expe-
riment/demonstration. We took three Lepidoptera, including
the very similar and closely related Actias maenaes and Actias
philippinica, and produced a copy of each. We then took these
copies and “bent” the right hindwing. The clustering of the
three originals and three copies under Euclidean distance,
group average linkage is shown in Fig. 18.

As we can see, the one dimensional representation has
hardly changed, and the clustering correctly groups the three
pairs. We found that using DTW we can even more radically
distort the shapes and achieve similar results.

Given the above, why do boundary based methods have
such a poor reputation for domains where articulation is a

123

626 E. Keogh et al.

0 200 400 600 800 1000 1200

Iguania

Chelonia

Amphisbaenia

Alligatorinae

Crocodylidae

Cricosaura
typica

Xantusia
vigilis

Elseya
dentata

Glyptemys
muhlenbergii

Phrynosoma
mcallii

Phrynosoma
ditmarsi

Phrynosoma
taurus

Phrynosoma
douglassii

Phrynosoma
hernandesi

Alligator
mississippiensis

Caiman
crocodilus

Crocodylus
cataphractus

Tomistoma
schlegelii

Crocodylus
johnstoni

Fig. 17 A group average hierarchal clustering of 14 reptile skulls based
on the superior view, using DTW distance

problem [33]? We believe the answer is not intrinsic to boun-
dary based methods, but lies in the measures typically used on
them, especially the Hausdorff distance and its many variants.
Consider the following thought experiment. Imagine we have
two identical shapes; solid automobiles. Assume that they
have identical antenna protruding from their roofs. As such,
the Hausdorff distance between them is zero, but if we bend
the antenna in the spirit of Fig. 18, we can trivially increase
the Hausdorff distance to one meter.

In addition to the above, the results in Table 8 already
hinted at the articulation invariance of our chosen repre-

Actias maenaes

Chorinea amazon

Actias philippinica

Fig. 18 An experiment to demonstrate that the centroid method is
reasonably articulation invariant. The gray highlighted areas have been
randomly “tweaked” in a photo editing program

sentation. Many of the datasets considered have significant
articulation. For example the face dataset considers classes
with both closed-lip and laughing/yawning people, the two
leaf dataset have significant amounts of articulation at the
stem, and the Yoga dataset features very flexible people in
version poses.

Finally, we note that paper [25] uses the ideas in the
conference version of this work to index hand geometries
for biometrics. It is clear that the human hand has a high
degree of articulation.

5.3 Main memory experiments

There is increasing awareness that comparing two competing
approaches using only CPU time opens the possibility of
implementation bias [17]. As a simple example, while the
Haar wavelet transform is O(n) and DFT is O(n log n), the
DFT is much faster in the popular language Matlab, sim-
ply because it is a highly optimized subroutine. For this
reason many recent papers compare approaches with some
implementation-free metric [16,30,37,38]. As we noted ear-
lier, the variable “num_steps” returned by Tables 1 and 5
allows an implementation free measure to compare perfor-
mance.

For Euclidean distance queries we compare to brute force
and Fourier (FFT) methods, which are the only competitors

123

Shape matching and indexing 627

0

0.2

0.4

0.6

0.8

1.0

Brute forceFFTEarly abandonWedge1600080004000200010005002501256432

Projectile Points
Euclidean

Number of objects in database (m)

Fig. 19 The relative performance of four algorithms on the Projectile
Points dataset using the Euclidean distance measure

to also guarantee no false dismissals. The cost model for the
FFT lower bound is n log n steps. If the FFT lower bound
fails we allow the approach to avail of our early abandoning
techniques discussed in Sect. 3.

We tested on two shape datasets, a homogeneous database
of 16,000 projectile point images, all of length 251 and a hete-
rogeneous dataset consisting of all the data used in the clas-
sification experiments, plus 1,000 projectile points. In total
the heterogeneous dataset contains 5,844 objects of length
1,024. To measure the performance we averaged over 50
runs, with the query object randomly chosen and removed
from the dataset.

We measure the average number of steps required by each
approach for a single comparison of two shapes, divided by
the number of steps require by brute force. For our method,
we include a startup cost of O(n2), which is the time require
to build the wedges. Because the utility of early abandoning
depends on the value of the best-so-far, we expect our method
to do better as we see larger and larger datasets.

Figure 19 shows the results on the projectile points dataset
using Euclidean distance.

We can see that for small datasets our approach is slightly
worse than FFT and simple Early abandon because we had
to spend some time building the wedges. However, by the
time we have seen 64 objects we have already broken even,
and thereafter rapidly race towards beating FFT and Early
abandon by one order of magnitude and Brute force by two
orders of magnitude.

The results on the projectile points dataset using DTW are
shown in Fig. 20, and are even more dramatic.

Here the cost of building the wedges is dwarfed by a
single brute force DTW-rotation-invariant comparison, so

0

0.2

0.4

0.6

0.8

1.0

Brute forceBrute Force, R =5
Early abandonWedge1600080004000200010005002501256432

Projectile Points
DTW

0

0.02

0.04

0.06

0.08

0.1

0.12
m = 16000

Number of objects in database (m)

Inset

B
ru

te
 F

or
ce

, R
=5

E
ar

ly
 a

ba
nd

on
W

ed
ge

Fig. 20 The relative performance of four algorithms on the Projectile
Points dataset using the DTW distance measure. The inset shows a
zoom-in of the three best algorithms when m = 16, 000

our approach is faster even for a database of size 3. By the
time we have examined the entire database, our approach is
more than 5,000 times faster than the brute force approach.
It is interesting to note that the early abandoning strategy is
by itself quite competitive, yet to our knowledge no one uses
it. We suspect this is because most people are more familiar
with the elegant and terse recursive version of DTW, which
does not allow early abandoning, than the iterative imple-
mentation, which does. Note however that even though our
highly optimized early abandoning strategy is competitive,
our wedge approach is still an order of magnitude faster once
the dataset is larger than 500 objects.

Sometimes indexing methods that work well for highly
homogeneous datasets do not work well for heterogenous
datasets, and vice versa. We consider this possibility by tes-
ting on the heterogenous dataset in Fig. 21.

In this dataset it takes our wedge approach slightly longer
to beat Early abandon (and FFT for Euclidean search), howe-
ver, by the time we have seen 8,000 objects our approach is
two orders of magnitude faster than its Euclidean competi-
tors, and for DTW it is an order of magnitude faster than
Early abandon and 3,976 times faster than brute force.

Recall that our algorithm requires the setting of a single
parameter, the number of intervals to search for a new value
for K every time the bestSoFar variable is updated. In all
the experiments above this value was set to 5. We found
that we can change this value to any number in the range
3–20 without affecting the performance of our algorithm by
more than 4%, we therefore omit further discussion of this
parameter setting.

The Time Series Center at Harvard University Initiative
in Innovative Computing has collected light curves from
various completed surveys (total 100 million examples) and

123

628 E. Keogh et al.

Fig. 21 The relative
performance of four algorithms
on the Heterogeneous dataset
using Euclidean distance (left)
and DTW (right)

B
ru t e

for c e

FFTEarly abandonWedge
80004000200010005002501256432

Heterogeneous Dataset

Number of objects in database (m)

Number of objects in database (m)

0

0.2

0.8

1.0

0.4

0.6

Brute forceBrute Force, R =5
Early abandonWedge

80004000200010005002501256432

WTDnaedilcuE

Number of objects in database (m)

0

0.2

0.4

0.6

0.8

1.0

Brute forceFFTEarly abandonWedge9535002501256432

Light Curves- Euclidean

Fig. 22 The relative performance of four algorithms on the light curve
dataset using Euclidean distance

is collecting data from an on-going survey (TAOS) which
is producing few billion additional examples. While light
curves have been collected for decades it is only recent years
in which we have begun to see serious efforts to index and
data mine them. For consistency we only consider the
indexing of the small hand labelled set of examples use in
the classification experiments in Table 8. Figure 22 shows
the performance of the four rival methods on the light curves
under the Euclidean distance.

As before, our approach is slightly slower on small
datasets due to the setup overhead. However, once the data-
set has more than 125 objects the wedge-based approach is
slightly faster, and by the time we see the full dataset it is and
order of magnitude better than the FFT approach.

Recall that in the classification experiments shown in
Table 8, the classification of light curves is significantly fas-
ter with the DTW distance. Figure 23 shows the performance
of four rival methods on the light curves under the Euclidean
distance.

As in the shape dataset, our method is several orders of
magnitude faster.

Light Curves- DTW

Number of objects in database (m)

1.0

0

0.2

0.4

0.6

0.8

Brute forceBrute force, R =5
Early abandonWedge9535002501256432

Fig. 23 The relative performance of four algorithms on the light curve
dataset using DTW distance

As a final sanity check we also measured the wall clock
time of our best implementation of all method. The results
are essentially identical to those shown above and are omitted
for clarity.

5.4 Disk access experiments

The results in the previous section show that we can do true
rotation invariant matching so fast that CPU time is no lon-
ger the bottleneck, and we should therefore also attempt to
minimize disk accesses. We will compare to Linear Scan,
which is the only other competitor that we are aware of
that allows exact rotation invariant indexing under Euclidean
distance and DTW with a guarantee of no false dismissals.
Recall that the lower bound used by the VP-tree requires
transforming the signal to the Fourier space and calculating
the Euclidean distance between the coefficient magnitudes
[38]. It is well understood that most of the energy of the
signal will be concentrated in a relatively small number of
these coefficients [37] and that using just a few large valued

123

Shape matching and indexing 629

Projectile Points

32
16

8
4

0

0.02

0.04

0.06

0.08

0.1

0.12
Fr

ac
ti

on
of

ob
je

ct
s

re
tr

ie
ve

d

Dimensionality
Wedge: Euclidean

Wedge: DTW 32
16

8
4

0

Wedge: Euclidean

Wedge: DTW

Heterogeneous

Fig. 24 The fraction of items retrieved from disk to answer a 1-nearest
neighbor query, using dimensionalities D = {4, 8, 16, 32}

coefficients is better than using all of them. We therefore will
perform experiments keeping just the first D coefficients,
were D = {4, 8, 16, 32}.

We count the fraction of items that must be retrieved from
disk. Figure 24 illustrates the results for the full projectile
points and heterogeneous datasets over a range of dimensio-
nalities.

6 Conclusions and future work

We have introduced a method to support fast rotationinvariant
search of large shape datasets with arbitrary representations
and distance functions. Our method supports rotation limited
queries and mirror image invariance if desired.

Future work includes both extensions and applications of
the current work. We will attempt to extend this approach
to the indexing of 3D shapes, and we have begun to use our
algorithm as a subroutine in several data mining algorithms
which attempt to cluster, classify and discover motifs in a
variety of anthropological datasets, including petroglyph and
projectile point databases.

Acknowledgments We would like to acknowledge Chotirat Ann
Ratanamahatana and Longin Jan Latecki for useful suggestions. We
thank Jason Dorff for help with the primate skull images, and Dr. Wendy
Hodges for assistance with the reptile skulls. In addition we thank the
many donors of datasets.

References

1. Adamek, T., O’Connor, N.E.: A multiscale representation method
for nonrigid shapes with a single closed contour. IEEE Circuits
Syst. Video Technol. 14(5), 742–753 (2004)

2. Adamek, T., O’Connor, N.E.: Efficient contour-based shape
representation and matching. Multimedia Information Retrieval,
pp. 138–143 (2003)

3. Attalla, E., Siy, P.: Robust shape similarity retrieval based on
contour segmentation polygonal multiresolution and elastic mat-
ching. Pattern Recognit. 38(12), 2229–2241 (2005)

4. Bartolini, B., Ciaccia, P., Patella, P.: WARP: accurate retrie-
val of shapes using phase of fourier descriptors and time war-

ping distance. IEEE Trans. Pattern Anal. Mach. Intell. 27(1),
142–147 (2005)

5. Bhanu, B., Zhou, X.: Face recognition from face profile using
dynamic time warping. In: Proceedings of International Confe-
rence on Pattern Recognition (ICPN’04), pp. 499–502, (2004)

6. Borgefors, G.: Hierarchical chamfer matching: a parametric
edge matching algorithm. IEEE Trans. Pattern Anal. Mach.
Intell. 10(6), 849–865 (1988)

7. Cardone, A., Gupta, S.K., Karnik, M.: A survey of shape simila-
rity assessment algorithms for product design and manufacturing
applications. ASME J. Comput. Inform. Sci. Eng. 3(2), 109–118
(2003)

8. Ciaccia, P., Patella, M.: Searching in metric spaces with user-
defined and approximate distances. ACM Trans. Database Syst.
27(4), 398–437 (2002)

9. Gdalyahu, Y., Weinshall, D.: Flexible syntactic matching of
curves and its application to automatic hierarchical classification
of silhouettes. IEEE Trans. Pattern Anal. Mach. Intell. 21(12),
1312–1328 (1999)

10. Hodges, W., Zamudio, K.: Horned lizard (phrynosoma) phylogeny
inferred from mitochondrial genes and morphological characters:
understanding conflicts using multiple approaches. Mol. Phyloge-
net. Evol. 31, 961–971 (2004)

11. Iwabe, N.: Sister group relationship of turtles to the bird-
crocodilian clade revealed by nuclear DNA-coded proteins. Mol.
Biol. Evol. 22, 810–813 (2004)

12. Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M., Bayer, M.M.,
Juggins, S.: Automatic diatom identification using contour ana-
lysis by morphological curvature scale spaces. Mach. Vis.
Appl. 16(4), 217–228 (2005)

13. Karydis, Y., Nanopoulos, A., Papadopoulos, A.N., Manolopou-
los, Y.: Evaluation of similarity searching methods for music data
in peer-to-peer networks. Int. J. Bus. Intell. Data Mining 1(2),
210–228 (2005)

14. Keogh, E.: www.cs.ucr.edu/~eamonn/shape/shape.htm (2006)
15. Keogh, E.: http://www.cs.ucr.edu/~eamonn/time_series_data/
16. Keogh, E.: Exact indexing of dynamic time warping. In:

Proceedings of the 28th International Conference on Very Large
Data Bases, Hong Kong, pp. 406–417 (2002)

17. Keogh, E., Kasetty, S.: On the need for time series data mining
benchmarks: a survey and empirical demonstration. In: Procee-
dings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton, Canada,
pp. 102–111 (2002)

18. Keogh, E., Palpanas, T., Zordan, V., Gunopulos, D., Cardle, M.:
Indexing large human-motion databases. In: Proceedings of the
30th International Conference on Very Large Data Bases, Toronto,
Canada, pp. 780–791 (2004)

19. Lee, D.J., Schoenberger, R.B., Shiozawa, D.K., Xu, X., Zhan, P.:
Contour matching for a fish recognition and migration monitoring
system. In: SPIE Optics East, Two and Three-Dimensional Vision
Systems for Inspection, Control, and Metrology II, vol. 5606–05,
pp. 37–48, Philadelphia, PA, USA, October 25–28 (2004)

20. Li, D., Simske, S.: Shape retrieval based on distance ratio
distribution. HP Tech Report. HPL-2002–251 (2002)

21. Li, Q., Lopez, I., Moon, B.: Skyline index for time series data. IEEE
Trans. Knowl. Data Eng. 16(6), 669–684 (2004)

22. Ling, H., Jacobs, D.W.: Using the inner-distance for classification
of articulated shapes. In: Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), vol. II, pp. 719–726
(2005)

23. Marzal, A., Palazón, V.: Dynamic time warping of cyclic strings
for shape matching. ICAPR 2, 644–652 (2005)

24. Mollineda, R.A., Vidal, E., Casacuberta, F.: Cyclic sequence
alignments: approximate versus optimal techniques. Int. J. Pattern
Recognit. Artif. Intell. (IJPRAI) 16(3), 291–299 (2002)

123

www.cs.ucr.edu/~eamonn/shape/shape.htm
http://www.cs.ucr.edu/~eamonn/time_series_data/

630 E. Keogh et al.

25. Niennattrakul, V., Wanichsan, D., Ratanamahatana, C.: Hand
geometry verification using time series representation. KES 2,
824–831 (2007)

26. O’Brien, M.J., Lyman, R.L.: Resolving phylogeny: evolutionary
archaeology’s fundamental issue. In: VanPool, T.L., VanPool, C.S.
(eds.) Essential Tensions in Archaeological Method and Theory,
pp. 115–135. University of Utah Press, Salt Lake City (2003)

27. Olson, C.F., Huttenlocher, D.P.: Automatic target recognition
by matching oriented edge pixels. IEEE Trans. Image Pro-
cess. 6(1), 103–113 (1997)

28. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape
distributions. ACM Trans. Graphics 21(4), 807–832 (2002)

29. Protopapas, P., Giammarco, J.M., Faccioli, L., Struble, M.F.,
Dave, R., Alcock, C.: Finding outlier light curves in catalogues
of periodic variable stars. Mon. Not. R. Astron. Soc. 369(2),
677–696 (2006)

30. Ratanamahatana, C.A., Keogh, E.: Three myths about dynamic
time warping. In: Proceedings of SIAM International Conference
on Data Mining (SDM ’05), Newport Beach, CA, April 21–23,
pp. 506–510 (2005)

31. Rath, T., Manmatha, R.: Lower-bounding of dynamic time
warping distances for multivariate time series. Tech Report MM-
40, University of Massachusetts Amherst (2002)

32. Seba, A.: Locupletissimi rerum naturalium thesauri accurata des-
criptio Naaukeurige beschryving van het schatryke kabinet der
voornaamste seldzaamheden der natuur. Amsterdam, 1734–1765,
4 vols. 2o, 394 B 26–29, vol. 3, plate XXXV (1734)

33. Sebastian, T., Kimia, B.: Curves vs. skeletons in object recogni-
tion. Signal Process. 85(2), 247–263 (2005)

34. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimi-
zation for spoken word recognition. IEEE Trans. Acoust. Speech
Signal Proc. 26, 43–49 (1978)

35. Thakoor, N., Gao, J.: Shape classifier based on generalized
probabilistic descent method with hidden Markov descriptor. In:
Computer Vision, 2005, ICCV 2005, Tenth IEEE International
Conference, vol. 1, pp. 495–502 (2005)

36. Veltkamp, R.C., Latecki, L.J.: Properties and performance of shape
similarity measures. In: Proceedings of IFCS 2006 Conference:
Data Science and Classification, July (2006)

37. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.:
Indexing multi-dimensional time-series with support for multiple
distance measures. In: Proceedings of the 9th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
Washington, pp. 216–225, August 24–27 (2003)

38. Vlachos, M., Vagena, Z., Yu, P.S., Athitsos, V.: Rotation invariant
indexing of shapes and line drawings. In: Proceedings of ACM
Conference on Information and Knowledge Management (CIKM),
pp. 131–138 (2005)

39. Wang, Z., Chi, Z., Feng, D., Wang, Q.: Leaf image retrieval with
shape features. In: Proceedings of the 4th International Conference
on Advances in Visual Information Systems, pp. 477–487 (2000)

40. Wei, L., Keogh, E., Van Herle, H., Mafra-Neto, A.: Atomic wedgie:
efficient query filtering for streaming time series. In: Proceedings
of the 5th IEEE International Conference on Data Mining (ICDM
2005), pp. 490–497 (2005)

41. White, T.D.: Human Osteology, 2nd edn. Academic Press,
San Diego (2000)

42. Woodford, B.J., Kasabov, N.K., Wearing, C.H.: Fruit image analy-
sis using wavelets. In: Ko, K., Kasabov, N. (eds.) Proceedings of the
ICONIP/ANZIIS/ANNES’99 International Workshop, University
of Otago Press, pp. 88–91 (1999)

43. Yu, S., Guan, L.: A CAD system for the automatic detection of clus-
tered microcalcifications in digitized mammogram. IEEE Trans.
Med. Imag. 19(2), 115–126 (2000)

44. Zhang, D., Lu, G.: Review of shape representation and description
techniques. Pattern Recognit. 37(1), 1–19 (2004)

45. Zunic, J., Rosin, P., Kopanja, L.: Shape orientability. ACCV 2,
11–20 (2006)

123

	Supporting exact indexing of arbitrarily rotated shapes and periodic time series under Euclidean and warping distance measures
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Landmarking
	2.2 Rotation invariant features
	2.3 Brute force rotation alignment
	2.4 Indexing star light curves

	3 Rotation invariant matching
	4 Wedge based rotation matching
	4.1 Fast and exact main memory search
	4.2 Lower bounding in index space
	4.3 Generalizing to other distance measures

	5 Experimental results
	5.1 Effectiveness of shape matching
	5.2 Shape matching sanity checks
	5.3 Main memory experiments
	5.4 Disk access experiments

	6 Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

