University of Waterloo Technical Report CS-2010-22

Interaction-Aware Scheduling of Report Generation Workloads

Mumtaz Ahmad - Ashraf Aboulnaga - Shivnath Babu -

Abstract The typical workload in a database system con-
sists of a mix of multiple queries of different types that run
concurrently. Interactions among the different queries in a
query mix can have a significant impact on database per-
formance. Hence, optimizing database performance requires
reasoning about query mixes rather than considering queries
individually. Current database systems lack the ability to do
such reasoning. We propose a new approach based on plan-
ning experiments and statistical modeling to capture the im-
pact of query interactions. Our approach requires no prior
assumptions about the internal workings of the database sys-
tem or the nature and cause of query interactions; making it
portable across systems.

To demonstrate the potential of modeling and exploiting
query interactions, we have developed a novel interaction-
aware query scheduler for report-generation workloads. Our
scheduler, called QShuffler, uses two query scheduling algo-
rithms that leverage models of query interactions. The first
algorithm is optimized for workloads where queries are sub-
mitted in large batches. The second algorithm targets work-
loads where queries arrive continuously, and scheduling de-
cisions have to be made on-line. We report an experimental
evaluation of QShuffler using TPC-H workloads running on
IBM DB2. The evaluation shows that QShuffler, by model-
ing and exploiting query interactions, can consistently out-

M. Ahmad
D.R. Cheriton School of Computer Science, University of Waterloo
E-mail: m4ahmad @uwaterloo.ca

A. Aboulnaga
D.R. Cheriton School of Computer Science, University of Waterloo
E-mail: ashraf @cs.uwaterloo.ca

S. Babu
Department of Computer Science, Duke University
E-mail: shivnath@cs.duke.edu

K. Munagala
Department of Computer Science, Duke University
E-mail: kamesh@cs.duke.edu

Kamesh Munagala

perform (up to 4x) query schedulers in current database sys-
tems.

Keywords Business Intelligence - Report generation -
Query interactions - Scheduling - Experiment-driven
performance modeling - Workload management

1 Introduction

The typical workload in a database system at any point in
time is a mix of queries of different types running con-
currently and interacting with each other. The interactions
among concurrent queries can have a significant impact on
database performance. Hence, optimizing database perfor-
mance requires reasoning about query mixes and their in-
teractions, rather than considering queries or query types in
isolation.

A query Q; that runs concurrently with another query
0> can impact Q»’s performance in different ways, either
positively or negatively. For example, Q1 may bring data or
index blocks into the buffer cache that are useful for the con-
currently running Q5. In this scenario, the increased cache
hits will make Q, complete much faster than if it were to
run without Q; running side by side. Alternatively, Q; and
0, could interfere with each other on hardware resources
such as CPU, memory, or L2 cache, or on internal database
system resources such as latches or locks. In this scenario,
the concurrent presence of O will increase the completion
time of O, possibly by a large amount.

We illustrate the impact of query interactions in query
mixes using 60 instances of TPC-H queries running on a
10GB IBM DB2 database'. Figure 1 shows the respective
completion times of three different workloads composed of
these 60 queries. The total set of queries in all three work-
loads is the same. However, we change the arrival order of
the queries across the three workloads, causing differences

! Details of our experimental setting are provided in Section 9.

Completion time in hours
- N w £ [3,] (]

o

w1 w2 w3
Workloads

Fig. 1 Completion times of three different workloads that consist of
the same batch of 60 TPC-H queries

among the query mixes scheduled by DB2 for each work-
load. All other aspects of the system, including hardware
resources, DB2 configuration parameters, physical design,
and multi-programming level, are kept the same across all
executions of the three workloads. The multi-programming
level (MPL) is the number of queries that execute concur-
rently in the system, and it is set to 10 in these experiments.

The figure shows that the difference in scheduled mixes
among the three workloads causes a 2.1 hour (63%) differ-
ence in completion time between the best and worst per-
forming workloads. It is important to note that each work-
load runs the same batch of queries under an identical sys-
tem configuration. In workload W;, which takes 5.4 hours,
queries that compete for resources get executed concur-
rently, resulting in negative interactions and poor perfor-
mance. In workloads W, and W3, the interactions are less
negative and occasionally positive, with queries that help
each other executing concurrently. This results in best per-
forming workload, W3, running the same query batch in just
3.3 hours.

If the 60 TPC-H queries from Figure 1 were submitted
to the database system as a single batch, then we would like
the system to run the queries as per workload W5 in the fig-
ure. However, the system has to be interaction-aware to be
able to choose this schedule over, say, workload W;. A ma-
jor hurdle in making database systems interaction-aware is
in finding effective ways to capture and model query interac-
tions. As we hinted earlier, there is a large spectrum of pos-
sible causes for interactions that includes resource-related,
data-related, and configuration-related dependencies. Inter-
actions are often benign. However, depending on the system
setting, the effect of interactions can vary all the way from
severe performance degradation to huge performance gains.
Furthermore, interactions that occur when a database sys-
tem runs on one hardware/OS configuration may not happen
when the same system runs on a different configuration.

Would it be possible to capture interactions using the an-
alytical cost models used by database query optimizers to

cost query plans? Unfortunately, the answer is no. The cost
models used in almost all database systems today work on a
per query plan basis; so they cannot estimate the overall be-
havior of multiple concurrent queries. For the conventional
cost models to capture query interactions, we will need to
extend them to model the complex internal behavior of each
distinct database system, and how this behavior depends on
hardware characteristics, resource allocation, and data prop-
erties; a seemingly impossible task.

In this paper, we propose an entirely different and practi-
cal approach to capture and model query interactions. First,
we measure the impact of interactions in terms of how they
affect the average completion time of queries. Completion
time is an intuitive and universal metric that is oblivious to
the actual cause of interactions. Second, we propose a proac-
tive experiment-driven approach to tease out the significant
interactions that can appear in a query workload. This ap-
proach is based on running a small set of carefully-chosen
query mixes, and measuring how the average completion
times of various queries are affected by running them in a
mix instead of in isolation. We show that most significant
interactions can be captured in practice by sampling very
few mixes.

While the experiment-driven approach requires advance
knowledge of the different query types, and has to be re-
peated for each new database and hardware/OS setting (e.g.
when MPL or indexes are changed in the database, or new
memory is added to the system), it has two important ad-
vantages: (i) it is effective irrespective of the true cause of
interactions because the effect of any interactions will be
captured in the monitoring data, and (ii) it supports incre-
mental update as query workloads evolve over time, as well
as on-line maintenance based on monitoring data available
when query mixes run in the production setting.

QShuffler: A core contribution of this paper is an end-to-
end solution that demonstrates how our approach enables
interactions to be modeled and exploited in order to gain
huge performance improvements in database systems. The
problem we consider is that of scheduling report-generation
queries in database systems. Report-generation workloads
are a very common type of workload in modern Business
Intelligence (BI) settings. These workloads are critical for
operational and strategic planning, so it is important to run
them efficiently. Report-generation workloads continue to
rise in importance with the emergence of frontline data
warehouses that seek to monetize data collected about cus-
tomer interactions and application usage [1,2].

In particular, we have developed a query scheduler,
called QShuffler (for Query Shuffler), that focuses on
the throughput-oriented workloads encountered in report-
generation systems. There is a fixed number of report types
that a user can request in such systems, but the reports re-
quested during any given period may vary. Depending on

user activity, multiple reports may be requested over a short
period of time. The goal of the system is to minimize the fo-
tal completion time for generating all the requested reports
(i.e., to maximize throughput). The response time of indi-
vidual queries is not important as long as all the reporting
queries are completed within a desired time window. This is
a common scenario in BI systems like Cognos [3] and Busi-
ness Objects [4].

Concretely, the goal of QShuffler is to schedule appro-
priate query mixes for a given query workload W in or-
der to minimize W’s total completion time. We show that
schedulers used in commercial and research database sys-
tems today (e.g., first come first serve, shortest job first)
rely on the characteristics of individual queries, so they can
produce suboptimal schedules when significant inter-query
interactions exist. QShuffler’s interaction-aware scheduling
gives performance improvements up to 4x over the con-
ventional schedulers. Under heavy load, interaction-aware
query scheduling can turn an otherwise unresponsive sys-
tem into one that processes its workload in a timely fashion.

Apart from taking query interactions into account,
QShuffler’s performance gains come from two novel al-
gorithms for scheduling queries. The algorithms cater re-
spectively to two common scenarios found in report gen-
eration. The first scenario involves queries being submitted
to the database system in large batches. QShuffler’s batch
scheduling algorithm is designed for this scenario. This al-
gorithm uses a linear-programming-based formulation of the
scheduling problem. Given accurate performance models
for estimating query completion times in the presence of in-
teractions, this algorithm is guaranteed to produce a sched-
ule that is within a constant additive factor of the optimal
schedule. The algorithm continues to perform well even as
modeling accuracy decreases, although the optimality guar-
antee does not hold any more.

The second scenario involves client applications or
workflows submitting queries in small batches, often one at
a time. As soon as queries are processed and the results re-
turned, new queries are submitted by the clients until report
generation is complete. Since queries keep arriving contin-
uously at the database system, scheduling decisions have
to be made on-line (albeit with some limited lookahead).
QShuffler’s on-line scheduling algorithm is designed for this
scenario. While the on-line algorithm uses a conventional
priority-based scheduling approach—because of the need to
keep scheduling overhead low—the technique for comput-
ing priorities is interaction-aware and novel. This algorithm
needs a measure of the cost that a query mix incurs while
running on the system. Our results show, perhaps surpris-
ingly, that resource utilization metrics (e.g., CPU or I/O uti-
lization) are not good metrics to use for scheduling. These
metrics may be useful if the objective is to monitor and con-
trol system resource utilization. However, our results show

Set of Query Templates

Identification -
of Query o3
Types - i

Multi-progr ing level |

Training Data
Jor Model

Statistical
Modeling of
Interactions

Experiments
on Sample
Mixes

Set of Query Types

Off-line Training
(one time)

Performance Model

Next Query / Sequence
uer: of Query Mixes
.Q y Scheduler
Dispatcher
Scheduling

(with every
workload)

Next Query / Workload
Next Query Mix _|
Query E‘ 1

Execution

- Em= —
Completed Queries ﬁ —
EEe

Fig. 2 Solution framework

that these metrics are quite unrepresentative in quantifying
the completion time of queries in different mixes. We de-
velop a new metric, called normalized run-time overhead
(NRO), to address this problem. The NRO metric is a mea-
sure of the run-time overhead that queries of different types
incur when they run concurrently with other queries in a mix
as compared to running alone in the system.

QShuffler has different components, shown in Figure 2:

— Identifying query types: An off-line step is used to
cluster query instances from the report-generating ap-
plications into a set of distinct guery types. The query
mixes considered by QShuffler are composed of query
instances belonging to these types.

— Sampling: A set of carefully-chosen query mixes is run
in order to generate training data for the modeling step.

— Modeling: The training data is used to learn statistical
models that can estimate the performance of queries in
any given mix.

— Scheduling: The scheduler uses the performance mod-
els and the appropriate scheduling algorithm—batch or
on-line—to decide when to schedule each submitted
query. The query dispatcher runs the queries on the
database system as per this schedule.

These different components are discussed in the rest of the
paper, in which we make the following contributions:

— Query interactions: Section 3 considers a number of
query mixes to show the significant impact that query
interactions can have, thereby motivating why database
systems need to be interaction-aware.

— Interaction-aware batch scheduling: Section 4 de-
scribes QShuffler’s algorithm for scheduling queries in
large batches.

— Interaction-aware on-line scheduling: Section 5 de-
scribes QShuffler’s on-line scheduling algorithm. This

algorithm uses the NRO metric to cost query mixes,
which is described in Section 5.1. Section 6 presents on-
line scheduling algorithms that are based on query opti-
mizer cost estimates as an alternative to QShuffler, and
we compare against these algorithms in our experiments.

— Experiment-driven modeling: Section 7 presents
QShuffler’s novel approach to capture the impact of
query interactions, based on conducting experiments and
statistical modeling.

— Handling skew and identifying query types: Sec-
tion 8 considers challenges that skewed datasets pose to
QShuffler, and proposes a novel solution that leverages
the database query optimizer. A significant advantage of
this solution is that it gives a natural way to identify the
query types that QShuffler needs to consider.

— Empirical evaluation: We have prototyped all algo-
rithms described in the paper. Section 9 presents an end-
to-end empirical evaluation of QShuffler using TPC-H
queries running on IBM DB2. The results show up to 4x
improvements over the interaction-unaware scheduling
algorithms used in database systems today.

2 Related Work

To the best of our knowledge, our work is the first to con-
sider the spectrum of positive and negative interactions pos-
sible among concurrently-executing queries in query mixes.
This paper significantly extends an earlier paper [5] and a
poster [6]. In [5], we demonstrated the impact of query in-
teractions, and introduced the experiment-driven approach
to modeling as well as the batch algorithm for schedul-
ing. In [6] we gave a high level description of the on-line
scheduling problem. This paper builds on [S5] and [6] by pre-
senting the details of the on-line scheduling algorithm, the
NRO cost metric for query mixes, and techniques to identify
query types as well as handle skewed data. A recent paper
discussed applications of query-interaction modeling in the
field of database testing [7].

Prominent categories of prior work on optimizing con-
current execution of queries include work on multi-query
optimization (e.g., [8]) and work on sharing scans in the
buffer pool (e.g., [9]). Both these categories of work try
to induce positive interactions among concurrent queries
based on detailed knowledge of database system internals.
However, the types of interactions considered are fairly re-
stricted. In contrast, our work focuses on capturing all dif-
ferent kinds of positive as well as negative query interac-
tions regardless of the known or unknown underlying cause.
Our approach does not require information a priori about the
database internals or the hardware/OS environment. More
recently, in [10], pairwise synergies among queries—the in-
fluence of a query on another—are learnt and used to predict

the performance of queries. The authors show the effective-
ness of their approach in a database simulation framework.

There is a wealth of literature on scheduling (e.g., see
[11]). Scheduling in database systems has been studied
in the context of concurrency control, where the focus is
on minimizing lock contention [12,13], and in real-time
database systems (RTDBMS) [14—-16] with the goal of min-
imizing missed deadlines. These works study how schedul-
ing around critical resources helps meet the desired goals.
In [17] and [18], the focus is on differentiating classes of re-
quests in an RTDBMS. Translating transaction-level priori-
ties into prioritization in resource usage (e.g., CPU, locks)
has been studied in the context of general-purpose database
systems in [19-21]. The optimal buffer space requirement
for each query is estimated in [22], and used to ensure that
memory consumption of scheduled queries does not ex-
ceed available memory. That paper addresses only one re-
source (buffer space) and does not consider the potentially
significant interactions among queries in terms of buffer
cache usage. Scheduling under heavy load is studied in [23],
which proposed using shortest remaining time first (SRTF)
scheduling to avoid dropping requests when the system is
under high load. In contrast to all these works, reasoning
about query mixes is central to our approach. Ignoring query
interactions in a mix can result in suboptimal scheduling de-
cisions. For example, [24] proposes using shortest job first
as a scheduling policy. As we show in Section 9, this policy
can perform poorly in the presence of query interactions.

Some recent papers have employed the concept of trans-
action mixes in different application areas. These papers use
transaction mix models for performance prediction, capacity
planning, and detecting anomalies in performance [25-28].
However, unlike our work, none of these papers consider
interactions caused by the concurrent execution of transac-
tions. Furthermore, we address the problem of scheduling,
while these papers focus on performance prediction.

These papers define a transaction mix as all the trans-
actions of different types that run during a time interval
or monitoring window without considering which of these
transactions ran concurrently. This is fundamentally differ-
ent from our notion of a concurrent query mix. For example,
these papers would not distinguish between the following
three cases: (a) a monitoring window in which 10 transac-
tions of type 77 execute concurrently with 10 transactions
of type 7>, (b) a monitoring window in which 10 transac-
tions of type 71 execute concurrently followed by 10 con-
current transactions of type 7>, and (c) a monitoring window
in which 5 transactions of type 7 execute concurrently with
5 transactions of type 7> and when these transactions finish
another 5 transactions of type 7} execute concurrently with
another 5 transactions of type 7. These three cases will all
be considered to have the same transaction mix: 10 trans-
actions of type 77 and 10 transactions of type 7>. Like our

work, these papers use statistical techniques to learn mod-
els to estimate performance metrics for transaction mixes.
However, their performance models would not distinguish
between the three cases above even though they have very
different concurrently executing transactions (even with dif-
ferent MPLs). In this paper, we show that the concurrent
execution of different queries in different mixes has a sig-
nificant effect on performance, and our performance models
explicitly take this concurrent execution into account.

Workload management is an area of growing importance
in database systems. Work in this area includes techniques
for admission control and setting the multi-programming
level of the database system [24,29-31]. The proposed tech-
niques perform load control, reacting in different ways to de-
viations of workload performance metrics from the desired
range. Most of the focus has been on transactional work-
loads consisting of large numbers of relatively light-weight
queries. The report-generation workloads that we consider
consist of complex analytic queries and are very different
from transactional workloads. In [32], the authors propose
a batch workload manager for Business Intelligence (BI)
systems that does admission control based on the estimated
memory requirement of analytic queries. Our work takes a
significant step towards extending workload management in
BI systems with effective scheduling techniques. We also
compare our scheduling approach to an approach that relies
on query optimizer cost estimates for scheduling queries.
The optimizer-based approach is an adaptation of techniques
proposed by Niu et al. [33,34]. We describe this optimizer-
based approach in Section 6, and we demonstrate in Sec-
tion 9 that QShuffler outperform this approach.

Experiment-driven performance modeling is gaining
wide acceptance as a way to build robust performance mod-
els for complex systems. A very relevant work in this area
is [35]. Like our work, the authors use statistical learn-
ing techniques to effectively predict performance metrics
for database queries. However, their work focuses exclu-
sively on single query types and does not consider inter-
query interactions in query mixes. Experiment-driven per-
formance modeling has also been used for tuning database
configuration parameters [36,37]. An infrastructure for run-
ning experiments in a data center is proposed in [38]. Or-
acle 11g provides an infrastructure called fest-execute for
running experiments within the database system during
maintenance sessions [39]. Like these prior works, we use
experiment-driven performance modeling because its effec-
tiveness and robustness in modeling query interactions. Any
of the frameworks proposed in the prior works can be used
to run the experiments required by QShuffler.

3 Impact of Query Interactions

This section provides a number of real examples of how
queries running concurrently in a database system impact

Table 1 Notation used in the paper

Symbol Description

M Multiprogramming level

T Number of query types

Q; Query type j

q; An instance of query type j

tj Average execution time of a Q;

query when running alone
A query mix, m;, with Nj;
instances of each query type j

m; = (Nit,Nip, ..., Ni)

R; A cost metric for query mix m;

R; Estimated R;

Or Cost Threshold

Ajj Average completion time of a Q;
query when running in mix m;

NRO; Normalized run-time overhead
metric of query mix m;

N@i Estimated NRO;

OnrO NRO target

w Workload to be scheduled

I; Total number of instances of Q;
to be scheduled

n; Time for which mix m; is scheduled
in the batch scheduling algorithm

L Lookahead

each other’s performance in negative or positive ways. Con-
sider a database system whose workload comes from a set
of report-generation clients. Each query in the workload be-
longs to one of T query types denoted Q1,Q>,...,0r. (Ta-
ble 1 summarizes the notation used throughout the paper.)

As a concrete example, let us consider a report-
generation workload generated by the popular TPC-H
decision-support benchmark [40]. TPC-H defines 22 query
templates where each template can be instantiated with dif-
ferent parameter values to generate hundreds of distinct
query instances. We will consider each query template to
be a query type, so we have T = 22. In reality, the prob-
lem of identifying query types is nontrivial. We will address
this problem in Section 8 and describe a novel technique for
identifying distinct query types in a workload automatically.
Until then we will assume for simplicity that the query types
have already been identified.

Let the multi-programming level (MPL) of the database
system be set to M. Recall that the MPL represents the num-
ber of queries that execute concurrently in the system at any
time. A set of queries that execute concurrently in the sys-
tem is referred to as a query mix. Query mix m; can be repre-
sented as a vector (N1, N2, ...,Nir), where N;; is the num-
ber of instances of query type Q; in m;, and 23-":1 Nij=M.

Let ¢; denote the average completion time of queries of
type Q; when run alone in the system. The completion time
of a query instance is the time elapsed between when the
query starts and when it finishes. The average completion
time ¢; of a query type Q; is determined by taking an average
of the completion times of a number of instances of Q; (in
our case 10) that are run alone in the system at M = 1. Let

Table 2 Run time ¢; in seconds of 12 different TPC-H query types when they are run alone in the system

Database Size Q) 03 0s Os 07 Os Qo Oio O3 O1s 02 0O

1GB 10.07 341 2.60 4.77 5.76 4.15 9.66 2.65 6.12 7.12 4.48 7.30

10GB 204.61 24795 136.04 346.63 102.06 387.72 578.61 353.89 101.27 554.56 273.08 570.37
Table 3 N;; and A;; (in seconds) for different query mixes in a TPC-H database

0 07 [O3 O1s 02

Mix Database Size N,'j A,‘j }Vlj A,‘j N[j A,‘j]V,j A[j]\’, A,‘j N," A,‘j

my 1GB 11 143.9 8 1446 3 211.2 2 97.8 2 149.8 4 127.5

my 1GB 2 361.7 8 298.6 1 476.0 18 1212 0 0.0 1 231.2

m3 10GB 1 18974 2 72.7 5 29193 0 0.0 2 1904.1 0 0.0

my 10GB 0 0.0 10 5998 0 0.0 0 0.0 0 0.0 0 0.0

ms 10GB 4 538.0 0 0.0 0 0.0 0 0.0 1 541.4 0 0.0

ms, 10GB 4 538.0 0 0.0 0 0.0 0 0.0 1 539.3 0 0.0

msy, 10GB 4 542.9 0 0.0 0 0.0 0 0.0 1 538.3 0 0.0

mg 10GB 0 0.0 4 2645 0 0.0 0 0.0 1 34137 0 0.0

A;; denote the average completion time of queries of type
Q; when run in mix m;. Interactions among queries that run
concurrently in mixes can be negative or positive. We say
that a query of type Q; has negative interactions in mix m;
if A;; > t;, i.e., an instance of Q; is expected to run slower
in the mix than when run alone. On the other hand, A;; <1,
indicates positive interactions.

Next, we provide some examples of interactions in query
mixes running over TPC-H databases of scale factors 1 and
10 (denoted 1GB and 10GB respectively). Table 2 shows the
run times of the 12 longest running TPC-H queries when run
alone in the system (i.e., the values of ;). Tables 3 shows the
run times of queries in six different mixes. For each mix, the
number of queries in the mix, N;;, and the average run time
in seconds, A;;, are shown. Consider the two mixes m; and
my shown in the table for the 1GB database. The follow-
ing observations can be made about 7, and m, from the A;;
values observed:

1. In both m; and my, all A;; values are way higher than
the corresponding ¢; values shown in Table 2. Thus, all
queries are impacted negatively in these mixes.

2. Both mixes have the same number (V;; = 8) of instances
of 07 and the same total number of queries (M = 30).
However, A;; for Q7 in my is almost twice the A;; for Q7
in m;. Thus, instances of Q7 are expected to run twice as
slow in my than in m;.

Mixes m; and m; show how the behavior of queries can vary
drastically from mix to mix depending on the interactions
presentz. However, the interactions in these mixes are ex-
clusively negative. Mixes m3 and ms in Table 3 display some
positive interactions.

2 All experiments reported in this paper have been repeated multiple
times to verify consistency and statistical significance.

Mixes m3, my4, ms and mg in Table 3 run on the 10GB
database. Mixes m3 and m4 have M = 10, and mixes ms and
mg have M = 5. Mix ms displays positive interactions for
7. Recall from Table 2 that the run time of Q7 when it runs
alone in the system is 102.06 seconds. In mix m3, Q7 has
an average run time of 72.7 seconds. Thus, Q7 benefits from
being run in mix m3: Q7 runs faster when run concurrently
with 1 instance of Q1, 5 instances of Qy, and 2 instances of
Q13 than when it runs alone in the system.

The performance of query Q7 in mix mj3 raises a natu-
ral question: wouldn’t Q7’s performance be even better if it
were to run in a mix that predominantly has instances of Q7
(e.g., because of possibly increased buffer cache hits)? In
this regard, consider the average run time of Q7 in mix my
which has 10 concurrent instances of Q7. Notice that Q7’s
run time in my4 is worse than its run time in ms3, and also
worse than Q7’s run time when it runs alone in the system
(i.e., Q7’s interactions are negative in my).

Mix ms in Table 3 presents another example of positive
interaction, this time for Q;g. The average run time of Qg in
this mix is 539.3 seconds, compared to a run time of 554.6
seconds when it is run alone. Thus, Q13 benefits from being
run concurrently with 4 instances of Q. Now contrast Q1g’s
performance in mixes ms and mg. Both mixes have the same
total number of queries, and both have one instance of Q;g.
While Q13 benefits from positive interaction in ms, it suffers
drastically in myg, its run time degrading by more than 6x.

Mixes ms, and ms;, show repeated runs of mix ms with
different instances of the same query types. The results for
all variants of ms are similar, illustrating the repeatability of
our results. We observed the same pattern for other mixes.
The standard deviation of the completion times across runs
was less than 4% of the mean for all mixes reported here.

Table 4 shows more examples of interactions from the
10GB TPC-H database. Mixes m7-mq in this table focus on

Table 4 Changes in 07;’s performance as the mix is varied

mix Q9 (Nij) Q13 (Nij) Q2 (Nij) Q21 (Aij)
m7 0 4 1 4188.2
mg 1 3 1 5463.8
my 2 2 1 3476.1
my 3 1 1 3581.7
miy 4 0 1 2782.4

three-way interactions of TPC-H query (7 in the presence
of queries of type Q9 and Q3. All mixes have M = 5 and
one instance of Q1. As we go down the table from mix m;
to my1, the number of instances of Qg increases while the
number of instances of Q13 decreases correspondingly. The
completion time of Oy first increases sharply and then it de-
creases sharply. The worst run time of Q5 is almost 2x the
best run time. Table 4 shows that Q»; runs much better in
a mix with concurrent instances of Qg than with concurrent
instances of Q3. This behavior is not what we would have
expected from Table 2 because Qg is by far the more heavy-
weight query when each query is considered individually.

We make the following observations based on the suite
of examples presented:

— Interactions in query mixes impact query run times sig-
nificantly, sometimes by orders of magnitude.

— Interactions are fairly complex in nature. Rules of thumb
or simple intuition cannot always explain query behavior
in mixes.

— The performance of a query Q cannot be predicted un-
less we are able to model the effect of other queries run-
ning concurrently with Q. Thus, it is important to de-
velop mix-based reasoning of query workloads to better
manage the performance of database systems.

The rest of this paper describes an end-to-end solution for
query scheduling that takes query interactions into account.

4 Interaction-aware Batch Scheduling

In this section, we describe an interaction-aware scheduling
algorithm that enables QShuffler to schedule large batches
of queries efficiently. Since most database systems do not
preempt queries once they start, we focus on non-preemptive
scheduling throughout this paper. There is work on preemp-
tive scheduling of plan operators (e.g., [41]), but our focus
is on scheduling entire queries.

The workload to be scheduled, W, comes from a set of
clients, e.g., report-generation applications. Each client is-
sues a fixed number of queries where each query belongs
to one of the T possible types Q1,0»,...,0r. Let I; de-
note the total number of queries of type Q; in W. That is,
W| = JTZI I;. The clients place their batch of queries in
an arrival queue, and QShuffler schedules queries from this

Clients

Arrival Queue

Performance
Model

M Concurrent
Queries

209 Ve
LI [[|

]

1
A 4

QShuffler

Scheduled QueryMix

v

Completed Queries

Fig. 3 QShuffler overview

queue. It is assumed that the database system is free to ex-
ecute the queries queued at the system in any order. Prece-
dence constraints among queries have to be enforced outside
the system. Also, it is assumed that only throughput is im-
portant, not latency. Figure 3 illustrates the problem setting.

The objective of QShuffler’s batch scheduling algorithm
is to schedule the submitted queries as a sequence of query
mixes so that the total completion time of W is mini-
mized (which is equivalent to maximizing throughput for
this workload). Formally, the completion time of W can be
defined as the time elapsed between when the first query in
W starts execution and when all the queries in W have fin-
ished execution. In a report generation scenario, this objec-
tive corresponds to producing all the reports requested in a
certain period as fast as possible to stay within the available
time budget. We will show how, under certain assumptions,
this algorithm generates a schedule whose total completion
time is within an additive constant factor of the total com-
pletion time of the optimal schedule.

Intuitively, the algorithm works as follows. The algo-
rithm considers a large set of mixes X = {m,my,...,mx}
such that the schedule chosen for W will consist of: (i) a
subset of mixes selected from X, and (ii) a specification of
how the I; instances of each query type in W should be run
using the selected mixes. Next, we describe how X is picked
and how the schedule is chosen from X.

The space X of mixes considered: X is a systematic enu-
meration of a very large subset of the full space of query
mixes. For an MPL M and number of query types, T, the
space of possible mixes is a bounded T-dimensional space.
The total size of this space is the number of ways we can
select M objects from T' object types, unordered and with
repetition. This is an M-selection from a set of size T, and
the number of possible selections is given by S(T,M) =
(M+A£71> [42].

If we restrict the space of mixes by assuming that queries
of the same type can be scheduled only in batches of size b,

Mo
then we get a subspace of size S(T, %) = (* +MT 1). We use
b

values of b € [1-10], and set X to be the corresponding sub-
space of the full space. This strategy has consistently given
us very good results. Section 4.3 discusses how b is chosen.

Linear program to pick a subset of X: QShuffler uses a
linear program (LP) [43] to pick the subset of X used in the
chosen schedule. Intuitively, an LP optimizes an objective
function over a set of variables subject to some constraints.
The inputs to the LP used by the scheduler consist of the set
of query mixes m; € X and I;, 1 < j < T, the total number
of instances of each query type Q; to be scheduled. The LP
contains an unknown variable n; (n; > 0) corresponding to
each mix m; € X. n; is the total time for which queries will
be scheduled with mix m; in the chosen schedule.

The chosen schedule should perform the work required
to complete all /; input instances of each query type Q. This
requirement can be written in the form of the following T
constraints in the LP:

1X| N;;
i=1 L

These constraints are derived as follows. Let 1 denote the
(normalized) amount of work needed to complete the exe-
cution of one instance of Q;. Thus, the total work required
to complete the execution of the /; instances of Q; in the in-
put workload is /;. N;; x fj denotes the fraction of this work
that gets completed per unit time when mix m; is scheduled.
Recall that N;; denotes the number of instances of query type
Q; in m;, and A;; denotes the average completion time of a
query of type Q; in m;. When mix m; runs for one unit of
time, each of the N;; query instances of type Q; in m; will
do a ﬁ/_th fraction of the work required to complete it. (NV;;
and A; J are constants that depend only on m; and Q;. Section
7 shows how A;; values can be estimated for each mix in X.)
It follows that Zlill ni% denotes the total work done for Q;
in the chosen schedule.'/ This work must not be less than /;
in a feasible schedule for W. This reasoning explains the T'
constraints presented in Equation 1.

Working with the constraints in Equation 1, the objective
of the LP is to find the schedule with the minimum total time
to completion. Since only one mix will be scheduled at any
point in time, the LP’s optimization objective can be written
naturally as:

X|
Minimize) n;

i=1
We can solve the LP using any LP solver. In QShuffler, we
use the highly-efficient CPLEX tool [44]. We give two lem-
mas to illustrate the properties of the LP solution.

Lemma 1 The number of nonzero n; variables in the LP so-
lution is at most T, assuming T < |X|.

The above lemma follows from linear-programming theory,
where it is known that the number of variables set to nonzero
values in the LP solution will not be greater than the number
of constraints in the LP [43]. Recall from Equation 1 that
our LP has T constraints, one per query type.

Lemma 2 The LP solution produces a schedule that has the
optimal workload completion time among any schedule con-
sisting of mixes from X, provided that instantaneous preemp-
tion of queries is possible.

In the LP solution, some n; variables will be set to nonzero
values and the rest will be zero. It follows from Lemma 1
that at most 7' (assuming 7 < |X|) variables can be nonzero.
The mixes with nonzero n; will be chosen in the optimal
schedule. That is, the LP chooses at most 7" mixes out of the
|X | mixes given as input. We can pick any order in which to
schedule the chosen mixes. For each mix, the respective n;
value found by the LP gives the total time for which query
instances should be run with that mix. Thus, we can generate
a complete schedule from the LP solution. The optimality of
the schedule follows from the optimality of the LP.
However, this schedule assumes that we can preempt
queries that are running when the time (n;) assigned to a
mix expires; the LP may have chosen to finish running these
queries using one or more other mixes. Since instantaneous
query preemption is not supported by most database sys-
tems as it requires instantaneous query suspend and resume
features, we need to transform the preemptive schedule gen-
erated by the LP to an efficient preemption-free schedule.

4.1 Bound on Degradation from Optimal

We present Theorem 1 and then give a technique to produce
a preemption-free schedule S from the LP solution. Theorem
1 uses the following notation: (i) In each mix with nonzero n;
in the LP solution, let a; be the maximum average comple-
tion time among all query of types present in this mix. Let
Gmax be the maximum among all a; for all mixes. (ii) Let

OPT = Zyjl n; be the time to completion computed by the
LP for the input query workload. That is, OPT is the optimal
workload completion time with preemption (Lemma 2).

Theorem 1 We can produce a preemption-free schedule S
whose time to completion for the input workload is at most
OPT +ayq, T if the following assumption holds: reducing
the number of query instances in a mix will not increase the
average completion time of any query type in that mix.

Proof sketch: We can construct a preemption-free schedule
S with the property stated in Theorem 1 as follows:
1. Pick one of the remaining mixes with a nonzero n;. Sup-
pose we pick mix m;.
2. Schedule input query instances to run in mix m; for time
n;.

Table 5 Run time of LP in CPLEX for different values of b with T = 6, M = 60

b 10 6 5 4 3 2

1

Number of mixes 462 3,003 6,188 15,504 53,130

324,632

8,259,888

LP run time (sec) 0.01

0.06 0.13 0.33 0.95 5.56

179

3. Wait until all scheduled queries finish. Do not schedule
any more queries to run in mix m;. Set n; =0 for m;.
4. If there are more mixes with nonzero n;, go to Step 1.

Note that S does not preempt running queries. For each of
the query mixes with nonzero »; in the LP solution, S takes
at most 7; + apgy time. The optimal schedule with preemp-
tion requires m; to be scheduled for n; time then preempted.
Since schedule S does not preempt running queries, it will
need to wait beyond #n; for all the queries in m; to complete.
The maximum waiting time is the maximum time it takes
for any query to complete, which is a,,,. This will happen
if S schedules the longest running query with completion
time a,,,, just as time #; is about to expire (we assume that
as queries finish, this will not increase the completion time
of any query in the mix). This explains the bound n; + ay.
Since there are at most 7 mixes with nonzero n; (Lemma 1),
S will finish in time at most OPT a4, T . O

The assumption in Theorem 1 may not hold in all cases.
If it does not hold, we can still produce a good preemption-
free schedule using the same approach. We only lose the the-
oretical bound on the maximum degradation from the opti-
mal preemptive schedule. In practice, this assumption holds
in the vast majority of cases. For example, in the 8K mixes
that we ran in our sampling experiments (described in Sec-
tion 7), there were 2.8 million pairs of mixes for which the
assumption can be tested. The assumption was violated in
only 7% of these mix pairs. Only 0.7% of the mix pairs had a
violation that affected the maximum run time a, from which
we derive dpqy.

4.2 Robustness of the Chosen Schedule

The LP requires estimates of the A;; values for the mixes
in X. Section 7 shows how QShuffler estimates these values
through statistical modeling. Even if these models are not
very accurate, we have observed that the LP chooses a good
subset of mixes. However, the n; values output by the LP as
the time to run each mix become less reliable. In this case,
we can use a technique that is slightly different from the one
in the proof sketch to generate a preemption-free schedule
from the LP solution. While this technique is more robust
to modeling errors, the generated schedule does not have a
provable bound on total completion time.

Without loss of generality, let the mixes with nonzero n;
in the LP solution be my,m;,...,mr, with respective n; val-
ues ni,ny,...,nr. (It does not matter if less than 7 mixes
have nonzero n;.) We partition the total number of instances

I; of query type Q; among m,my,...,mr in proportion to
the fraction of work related to Q; that the LP solution as-
signed to each mix, namely:

Once the entire input workload Iy,l,...,Ir has been par-
titioned among the mixes my,my,...,mr, these mixes are
scheduled in decreasing order of n; values. For each mix m;,
we schedule queries from the set of instances assigned to m;
until they all complete, then we move to the next mix. In
our implementation of QShuffler, we use this more robust
approach to produce non-preemptive schedules.

4.3 Scalability of Linear Programming

Our LP solver can handle a very large number of mixes in
the set X in real time. Table 5 shows the run time of the
LP solver for different values of b with a number of query
types T = 6 and an MPL M = 60 (the highest MPL in our
experiments). It can be seen that 320 thousand variables are
processed in less than 6 seconds and 8.26 million variables
are processes in less than 3 minutes. Thus, X can be a very
large subset of the full space of possible query mixes, in-
creasing the chances of finding the best subset of mixes in
the chosen schedule.

QShuffler picks X as a subspace of size S(T,%) =

Mg
(? o 1) from the full space of possible mixes. Here, the
2

value of parameter b can be user-specified or determined as
follows. The user can specify an upper bound on the time
allowed to pick the batch schedule. We can then determine
the maximum number of variables the LP solver can handle
within this limit, and use that to determine the highest feasi-
ble value of b. A reasonable default is to set b such that |X|
is around 10°.

In this section we presented our interaction-aware batch
scheduling algorithm. Next we present a scheduling algo-
rithm for the scenario when clients submit queries in small
batches or one at a time.

5 Interaction-aware On-line Scheduling

For many report generation workloads, queries are sub-
mitted to the database system not in large batches, but
rather continuously or in small batches. In this section,
we present an interaction-aware on-line scheduling algo-
rithm that QShuffler uses for these workloads. The on-line

10

scheduling algorithm schedules a new query whenever a
running query finishes. While making each scheduling deci-
sion, the on-line algorithm has to work with a limited looka-
head, namely, the queries in the arrival queue (recall Fig-
ure 3). The online scheduling algorithm exploits the implicit
batching of queries made possible by the queue. No assump-
tions are made about the future workload. In particular, no
query is held up by our scheduling algorithm with the hope
that other queries arriving in future could have positive in-
teractions with this query. Thus, the challenge is to get the
best possible global performance while being limited to lo-
cal decisions under partial information.

When a query mix m runs on the database system, a
cost is incurred based on the characteristics of m. There are
a number of ways to measure the cost of running a mix.
For example, the cost can be measured in terms of the load
on resources like CPU, memory, and I/O bandwidth. (We
will show shortly that conventional cost metrics are inad-
equate, and a new metric is needed.) A simple scheduling
policy would always pick the next query to schedule as the
one that gives the minimum cost among all queries present
in the arrival queue. However, this greedy policy can be
highly suboptimal. Consider a scenario where there are light
queries and heavy queries in the queue. The greedy sched-
uler will keep scheduling the light queries until it has no
option but to run a mix of heavy queries. This is a highly
sub-optimal schedule with very poor performance: when the
light queries are scheduled together, the system is underuti-
lized, and when the heavy queries are scheduled together the
system is thrashing [45].

A better, but more conservative, policy in the above sce-
nario will try to keep a mix of light and heavy queries run-
ning in the system subject to system capacity and MPL.
QShuffler’s on-line scheduling algorithm takes such an ap-
proach. This algorithm makes decisions to achieve the ob-
jective of running the system as close as possible to a cost
threshold. This conservative policy is aimed at avoiding
overload while running query mixes that give good perfor-
mance in the near term. Intuitively, the system takes on as
much work as it can take efficiently in the near term so that
it is not stuck with too much work in the far term.

We have designed the interaction-aware on-line schedul-
ing algorithm using a template that can be instantiated with
alternative implementations of the following three things:

1. A cost metric, R;, for capturing the cost incurred by a
query mix, m; executing in the database system.

2. A performance model to compute R;, which is the es-
timated value of the cost metric R; incurred by a query
mix, m;.

3. A cost threshold, O, that specifies the desired value of
R; in the database system as query mixes are run.

Algorithm 1 On-line scheduling algorithm

GetNextQueryToSchedule(m,: Current mix, AQ: Query arrival queue)
1 if (AQ is empty)
then return null; > No queries to schedule
fori—1toT
do
Let m,, be the query mix resulting from adding a query
of type Q; to m,;

R, « Cost of m,, estimated using performance model;
Priority P < 1/|6g — R, |;

9 r[i] < P;; > Array r stores priority of each query type
10 > Schedule a query instance corresponding to the query type
11 > with highest priority in the arrival queue
12 Sort r in decreasing order of priority;

13 for i« 1to T > Traverse r in decreasing order of priority
14 do

0NN kAW

15 Let Q; be the query type corresponding to r{i];
16 if (AQ has an instance of Q)
17 then return earliest query in AQ of type Q;;

Algorithm 1 shows the algorithmic template used by
the on-line scheduling algorithm. This template provides a
generic, low-overhead framework for scheduling that can
be implemented within the database system or outside of it
(e.g., in the JDBC driver). The template can be instantiated
with any definition of the cost metric R;, a corresponding
cost threshold 6g, as well as a performance model for esti-
mating R; (i.e., computing 1’3\,-) for candidate mixes.

When a query finishes, the GetNextQueryToSchedule
function in Algorithm 1 picks the query to schedule next.
The algorithm uses the performance model to answer the
following what-if question: “For each query type, what
would be the cost that results from adding a query of this
type to the currently running query mix?” Each query type
is assigned a priority based on how close it would keep the
system to the desired cost threshold. A query instance be-
longing to the query type with the highest priority in the
arrival queue is scheduled.

The overhead of the scheduling algorithm is a function
of the number of query types, 7', and not the size of the ar-
rival queue. Thus, the arrival queue can be arbitrarily large
without increasing the scheduling overhead. Having more
queries in the queue is better for the scheduler since it pro-
vides more possible mixes to schedule. Practically, the ar-
rival queue will have a bounded size that gives the scheduler
its window into the future. We call the size of the queue the
lookahead, L. QShuffler’s focus is on total completion time
of report-generation workloads, so delaying a query in the
queue has no penalty (i.e., fairness is not required). Since
report-generation workloads are bounded in size, all queries
will eventually be scheduled; starvation is not an issue.

The on-line scheduling algorithm of QShuffler instanti-
ates the algorithmic template in Algorithm 1 as follows. For
cost metric, R;, QShuffler uses the NRO metric described in
Section 5.1. The cost threshold is Oyro, and Section 5.2 ex-

11

plains how to set this threshold. Finally, QShuffler employs
regression models to compute NRO;, the estimated value of
NRO for a given mix m;, and this is discussed in Section 7.

5.1 NRO: A Novel Cost Metric for Query Mixes

The main purpose of defining a cost metric for query mixes
is to be able to separate “good” (low cost) query mixes from
“bad” (high cost) query mixes while making scheduling de-
cisions. It is tempting to consider cost metrics that are based
on the demand placed on important resources while a query
mix is running. Example metrics that fall into this category
include CPU utilization and I/O bandwidth requirements.

One of our contributions is to show that resource-based
cost metrics are inadequate to differentiate between good
and bad mixes during scheduling. The intuitive reason is that
different query mixes place very different demands on vari-
ous resources. As a result, there often is no strong correlation
between the average running times of queries in mixes and
the observed resource consumption. In effect, we are stating
that it is not possible to quantify the impact of query in-
teractions by looking at one or more resource-consumption
metrics alone.

Instead, our insight is that all different kinds of signif-
icant interactions happening in the database system should
manifest themselves in the average run time that queries ex-
hibit in a given mix. Thus, we develop a cost metric that
relies on overall query execution time, and thereby accounts
for all kinds of query interactions.

Our new cost metric for a query mix is called Normal-
ized Run-time Overhead (NRO). NRO is a measure of the
run-time overhead that queries of different types incur when
they run concurrently with other queries in a mix as com-
pared to running alone in the system. Recall the following
notation introduced in Section 3: ¢; denotes the average run
time of a query of type Q; when it runs alone in the system,
and A;; denotes its average run time when run in the query
mix m;. We define the run-time overhead for the query type
Q; in mix m; as %’ Note that this definition captures all
kinds of interactions for this query type, including negative
(where A;; > t;) and positive (where A;; < t;) interactions.

The next step is to generalize the definition of run-time
overhead from a single query type to an entire query mix.
Consider a query mix m; with T query types and an MPL of
M, with N;; denoting the number of query instances of type
Q; in m;. We define the overall run-time overhead for the T
query types in the mix as the weighted average of their in-
dividual overheads. Here, the weight associated with query
type Q; is the fraction of queries of this type in the mix.
Thus, the run-time overhead for mix m; is:

RO: — Mlx%—&-l\’izx%—i—m—i-NiTX%T
= Nit + N+ -+ Nir

T

Mo lj
The value of RO; represents the total run-time overhead for
the query mix m; with MPL M. To be able to use the same
metric to measure overhead for mixes of different sizes (i.e.,
different MPLs), we define our cost metric NRO; as the nor-
malized overhead computed per query processed. That is,
we divide RO; by the MPL M to get NRO;. This normal-
ization captures the fact that incurring an overhead of, say,
5 while processing 20 concurrent queries is better than in-
curring an overhead of 5 while processing 10 concurrent
queries. Thus:

RO; 1 & (Aij
NROl'Zizf Nijx—
M szzzl tj

We developed the NRO metric after considering several
other cost metrics, none of which have the following desir-
able properties of NRO:

— NRO is not overly sensitive to the effect of a small num-

ber of long running queries in the mix. On the other

mix_run_time
LNijxt;
on the total run time of the mix are less robust: the ef-

fect of a single query that suffers a large increase in run
time in the mix will dominate even if none of the other
queries in the mix suffer any degradation.

— At the same time, NRO does not average out overheads
per query type so much that it cannot distinguish be-
tween good and bad mixes. Without careful averaging
as done in NRO, significant overheads incurred by mul-
tiple individual query types can get lost in the overall
average run time.

— Finally, NRO values correlate well with our intuitive sep-
aration of good mixes from the bad ones.

hand, metrics like that are based directly

Next, we use example mixes of TPC-H queries to illustrate
the usefulness of NRO. We show that while NRO is able
to distinguish between good and bad mixes, resource-based
metrics can fail to make this distinction.

Table 6 shows several mixes of the 6 longest-running
query types on a TPC-H 1GB database on IBM DB2. The
individual run times, ¢;, for each of these 6 query types are
shown in Table 2. For each mix, Table 6 shows the query
frequencies, N;;, and the average run time in seconds, A;j,
for each query type. The table also shows the values of three
candidate cost metrics for each mix: (i) NRO, (ii) average
number of disk transfers per second (a measure of disk con-
sumption), and (iii) average CPU utilization. All mixes in
the table have an MPL of 30.

The first two mixes in Table 6, mi> and m;3, are sim-
ple mixes consisting of multiple instances of one query type
running concurrently. We see that NRO is small for m»,
which suggests that Q1 queries do not interfere with each

12

Table 6 Values of different cost metrics for selected query mixes running on a TPC-H 1GB database

0 07 [O3 013 01 Cost Metrics
Mix N[' A,‘j N,'j A,‘j N,'j A,‘j]V,'j A[j Mj A,‘j Mj A,‘j NRO,‘ Disk(lps) CPU(%)
myp 30 163.7 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.542 4.6 99.9
myz 0 0.0 30 3318 O 0.0 0 0.0 0 0.0 0 0.0 1.920 269.8 69.6
mi4 11 1439 8 1446 3 2112 2 97.8 2 1498 4 127.5 0.630 195.1 95.8
mys 2 361.7 8 298.6 1 476.0 18 1212 0 0.0 1 2312 1.026 270.8 80.9
myg 0 0 0 0 2 463.5 25 1350 2 3043 1 385.4 0.873 306.9 75.7
my7 0 0 1 2066 20 1849 9 1134 0 0 0 0 0.651 307.6 76.9

other. (Recall that lower values of NRO are better.) The 30
01 queries finish in 163.7 seconds in mj>, while it would
take 30 x 10.07 = 302.1 seconds if we were to run these 30
instances sequentially. Here, 10.07 seconds is the ¢; value of
0, for the TPC-H 1GB database from Table 2. Thus, m,’s
low NRO value matches the fact that m; is a good mix.

On the other hand, 73 has a much higher NRO than m,
which suggests that m 3 is a worse mix. Indeed, the 30 Q5
queries take 331.8 seconds to finish in m;3, compared to just
30 x 5.76 = 172.8 seconds for running these 30 instances
sequentially (5.76 obtained from Table 2). Also, notice that
the Q7 queries in mj3 take much longer to run than the Q;
queries in mj3 despite the fact that Q; is almost 2x slower
than Q7 when run alone in the system (see Table 2). The
NRO cost metric captures this effect appropriately because
NRO is not biased towards long-running queries.

Table 6 shows that the disk and CPU consumption of n2;3
is lower than that of some other mixes; which means that m3
is not placing an overly high load on system resources as
compared to other mixes in the table. On the other hand, the
CPU consumption of m; is significantly higher than that of
any other mix; so it may seem that m, is overloading CPU.
Thus, using CPU consumption as the cost metric would lead
us to believe that m, is worse than m;3, which is an incor-
rect conclusion as we can see from the query run times.

Mixes mjs and m;s further illustrate how, unlike
resource-based cost metrics, NRO can differentiate good
mixes from bad ones. NRO tells us that m5 is costlier than
my4, which we can indeed see by comparing A;; values be-
tween the two mixes. An algorithm that uses the NRO metric
will schedule query mixes like m4 and avoid mixes like m;s.
As before, the resource consumption metrics are not use-
ful for distinguishing between the performance of these two
mixes. Mix ms places a higher load on disk than m4, but
myq4 places a higher load on CPU than m 5. Furthermore, the
resource consumption levels of these two mixes are lower
than the individual highs in Table 6.

The final two mixes, mig and mj7, clearly demon-
strate the inadequacy of resource-based cost metrics. These
two mixes are virtually indistinguishable if we consider
resource-based metrics alone. On the other hand, NRO tells
us that mi¢ is costlier than m 7. We can validate this obser-

vation qualitatively by considering the average completion
times of Oy and Q13, which are the two query types com-
mon between the mixes. For both query types, performance
in my¢ is much worse than in m;7.

We have observed effects similar to those described here
for a variety of different workloads and while using various
resource consumption metrics such as CPU queue length,
disk queue length, and bytes transferred per second: the level
of consumption of a single resource or of a combination
of multiple resources cannot consistently distinguish good
mixes from the bad ones, while NRO can distinguish good
mixes from bad ones.

5.2 Setting the Cost Threshold

The cost threshold Oygrp is an important tuning parameter
in the on-line scheduling algorithm. The setting of Oyrp ex-
poses a tradeoff that we will illustrate using our earlier ex-
ample of a workload that consists of light and heavy queries.
If Bnro is set low, the low-cost mixes composed almost ex-
clusively of light queries will have priority over all other
mixes during scheduling. This situation can have two un-
desirable consequences: (i) resources will be underutilized,
and (ii) the heavy queries will queue up and ultimately force
a situation where high-cost query mixes have to be run for
long-periods.

The above problem cannot be solved by increasing Oyro
arbitrarily because a high Oygp will tend to favor high-cost,
and hence poorly-performing, query mixes over better ones.
There is some optimal value for Oygp that depends on the
(unknown) future query workload. We have developed a so-
lution to pick a robust setting of Oygro that leverages the de-
sirable properties of QShuffler’s batch scheduling algorithm.
Our solution uses the following three steps:

1. Choose a representative workload Wg

2. Run the batch scheduling algorithm on Wy to generate
the corresponding batch schedule Sk

3. Compute Oygo as a weighted average of the NRO values
of the mixes chosen in Sg

We will describe each of these steps in turn.

Choosing a Representative Workload Wg: The representa-
tive workload Wy can be specified by the database adminis-

13

trator similar to what is required by popular tools like phys-
ical design advisors [46,47]. QShuffler can automate this
process partially because report-generation workloads tend
to repeat themselves with a high degree of regularity. For ex-
ample, the same set of reports may be generated every night
or every weekend. In these situations, simple hints from ad-
ministrators that give the time period of the workload cycle
are enough to capture a representative workload.

If the variability in the workload is too high to be cap-
tured in a single representative workload, then we can col-
lect different workloads for different time periods (e.g., ev-
ery hour). QShuffler then relies on the practical heuristic that
the recent past is a good predictor of the near future, and uses
the workload from the last time period as the representative
workload for the next time period.

Running the Batch Scheduling Algorithm: Next, the
batch schedule Sg for the representative workload Wy, is de-
termined by running the batch algorithm from Section 4 on
Wg. Only the schedule is computed; the workload is not ac-
tually run. Recall that the batch algorithm chooses a good set
of mixes to schedule based on statistical models to estimate
query completion time.

Picking 6Oygo: After the batch scheduling algorithm we
have:

- my,my, ..., mr, which represent the 7' query mixes com-
prising the batch schedule Sk for Wg (recall Lemma 1).
Sk is a good approximation of the optimal schedule for
Wkg.

- ny, ny, ..., ny, which represent the run time of the re-
spective mixes mj, my, ..., mr in Sg. Recall from Sec-
tion 4 that the LP which computes Sk also gives the time
that each mix will run for in Sg.

— NRO1, NRO,, ..., NROT, which represent the NRO val-
ues of the respective mixes mp, my, ..., mr in Sg. NRO
values are computed using the performance model.

We set Oyro to the weighted average of the NRO values of
the mixes in the batch schedule Sz. Here, the weight of each
NRO value is the fraction of time for which its correspond-
ing mix will run in Sg. That is:

ny X NRO| +n, x NRO» +...+np X NROt
ny+ny+...+nr

Intuitively, this approach aims to set Oygo such that the
schedule generated by the on-line algorithm will be close
to the best batch schedule for the representative workload.
Steps 1-3 will be run once to set Oygo if a single represen-
tative workload can be identified. The value of Oygo will be
periodically recomputed if the predicted workload is differ-
ent for different time periods. The process of recomputing
Onro for a new workload is very efficient because the bot-
tleneck is in computing the new batch schedule, which can
be finished within seconds (recall Section 4.3).

Onro =

6 Scheduling Based on Query Optimizer Cost Estimates

In this paper we argue that the analytical cost models used
by database query optimizers may not be the best choice to
reason about query interactions. Instead, we propose cap-
turing the impact of query interactions by measuring how
they affect the average completion time of different query
types. We would like to compare our proposed approach for
scheduling to an approach that is based on query optimizer
cost estimates. In this section, we describe a query scheduler
that uses query optimizer cost estimates, and we experimen-
tally compare against this scheduler in Section 9.

The scheduler that uses query optimizer cost estimates
is based on the work of Niu et al. [33,34,48,49] (in particu-
lar, the query scheduler described in detail in [33,48]). The
query scheduler in these works uses the query optimizer cost
estimates (termed as timerons in IBM DB2) to measure the
cost of the queries executing in the system. The scheduler
uses a timeron threshold to define the capacity of the sys-
tem. The scheduler admits a query if admitting it will not
increase the total optimizer cost (in timerons) of all queries
executing in the system beyond the timeron threshold. The
timeron threshold is defined using an experiment that is con-
ducted off-line before scheduling starts. In this experiment, a
varying number of queries is executed concurrently, and the
throughput of the system is plotted against the total timerons
to determine the timeron value that results in peak through-
put. This timeron value is used as the timeron threshold. The
scheduler can also handle different service classes for dif-
ferent query types, and can perform admission control sepa-
rately for the different service classes by defining a separate
timeron threshold for each service class.

The work in [33,34,48,49] also includes a general
framework for workload adaptation that can handle schedul-
ing for time-varying workloads. In addition, the different
service classes can have different service level objectives,
and the scheduler dynamically adjusts the timeron threshold
for each service class based on a utility function that quan-
tifies how well the different service level classes presently
meet their service level objectives. In this paper, we do not
use the framework for workload adaptation since our work-
loads are not time varying so we should be able to statically
determine the timeron threshold. Our performance objective
is maximizing overall throughput without distinguishing be-
tween different query types, so we do not define different
service classes with explicit service level objectives. More-
over, we do not rely on a utility function since the “utility”
we are maximizing is simply throughput.

Despite these differences, we still find that the work of
Niu et al. represents a useful comparison point because it
enables us to answer the following two questions: (1) Can
we use query optimizer cost estimates as our cost metric for
scheduling? and (2) Can we effectively use different service
classes to distinguish between “lightweight” query types and

14

—+-Timerons vs Throughput

1000

800

600

Throughput

400

200

0 1000 2000 3000 4000
Timerons (x 1000)

Fig. 4 Throughput vs. timerons for Q3 in the 1GB database

“heavyweight” query types as measured by their query opti-
mizer costs? A scheduler with these two service classes may
be able to indirectly capture query interactions. In particular,
such a scheduler may be able to avoid scheduling too many
heavyweight queries concurrently.

To answer these questions, we adapt the scheduler of Niu
et al. to our setting. The adapted scheduler works as follows:
(1) before the workload runs, define a timeron threshold
for the system, (2) (optionally) divide the query types into
lightweight and heavyweight based on their optimizer cost
estimates and divide the timeron threshold between these
two service classes, (3) when the workload runs, admit the
next query only if this will not increase the total timeron cost
of all queries in the system (or in this query’s service class)
beyond the timeron threshold. We refer to this scheduler as
the optimizer-based scheduler.

A fundamental difference between the optimizer-based
scheduler and our batch and on-line schedulers is that the
optimizer-based scheduler allows the MPL to vary within
the execution of one workload, while our schedulers oper-
ate at a fixed MPL for a given workload execution. Using a
fixed MPL is the most common approach used for BI work-
loads [32], and our schedulers can handle any MPL chosen
by the DBA. We show experimentally in Section 9 that our
schedulers work well across a wide range of MPL values,
but we always use one MPL for each workload execution
and this MPL does not change while the workload is run-
ning. On the other hand, the optimizer-based scheduler al-
lows MPL to vary subject to the timeron threshold(s).

The first step of the optimizer-based scheduler is to de-
fine the timeron threshold that represents system capacity.
In our setting, we know the query types a priori but we
need to handle different workloads that consist of queries
of these types. The query types have widely varying esti-
mated and actual execution costs, which makes finding the
timeron threshold difficult. Finding the timeron threshold re-
quires finding the system saturation point at which through-
put peaks, but the system saturation point depends on the
workload. We illustrate this with a concrete example.

1000

—+Timerons vs Throughput

800

600

Throughput

400

200

0 10000 20000

Timerons (x 1000)

30000 40000

Fig. 5 Throughput vs. timerons for Q»; in the 1GB database

Consider Q13 and Q»; in Table 2. In our 1GB database,
the estimated cost of Qi3 is 81,507 timerons and that of
07 is 819,324 timerons. Thus, the estimated cost of Q»
is more than 10 times that of Q3, while the actual com-
pletion time of Qj; is only 1.2 seconds more than that of
Q13. Figures 4 and 5 show throughput vs. timerons for Q13
and (1, respectively, as the number of concurrently ex-
ecuting queries increases. The system saturation point for
Q13 is 244,521 timerons, while the saturation point for Oy
is 2,457,973 timerons. Using these two query types results
in timeron thresholds that differ by an order of magnitude.
Furthermore, if there exists a global timeron threshold for
all query types, then for every instance of Q>; we should
be able to admit 10 instances of Q3. However, the figures
clearly show that the throughput of Q13 drops quickly as we
add more queries beyond its saturation point, while for Q>
we can keep adding instances without a significant drop in
throughput. This example clearly illustrates that optimizer
cost estimates can be misleading indicators of the actual
performance and resource consumption of different queries.
The example also shows that there is no straightforward way
to find a system saturation point that works for different
workloads even if we know the query types. We cannot plot
a throughput vs. timerons graph without having a specific
workload, and in our setting we do not have a specific work-
load that is known a priori.

To find the system saturation point and the correspond-
ing timeron threshold in our setting, we propose the fol-
lowing methodology. We create a workload consisting of an
equal number of queries of each query type (say, 10 queries
of each type) and we randomly shuffle these queries. We run
this workload at different MPLs and find the workload run
with the best throughput (i.e., the lowest total completion
time). This workload run corresponds to the system satura-
tion point, and we use it to define the timeron threshold.

Defining the timeron threshold requires averaging the
timeron values throughout the workload run, which itself
is not straightforward. We propose two approaches for av-
eraging the timeron values to obtain the timeron threshold.

15

Both approaches rely on tracking the query mixes that ex-
ecuted in the workload run and the total timeron cost for
each query mix. The first approach is to simply average the
timeron costs of these query mixes, which gives a timeron
threshold T'hr,,ix—averagea defined as follows:

k
Y opti
Thrmixfaveraged: ! &

where k is the total number of mixes that executed in the
workload run and opt; is the total timeron cost of mix
i. The second approach is to use a time-weighted aver-
age of the timeron costs, which gives a timeron threshold
T htime—weightea defined as follows:

Zi":] (Ii x opt;)
Z{'(:l li

where [; is the time in seconds for which mix i ran. We found
that these two threshold values were close to each other and
gave similar scheduling results, with Thrpe_eighted PET-
forming slightly better, so we use Th#iime—weighted-

To use service classes in the optimizer-based scheduler,
we define two service classes, one for lightweight query
types and one for heavyweight query types. We manually
place each query type in one of the two service classes
based on its optimizer cost. In our experiments we found
that there is a large difference between the optimizer costs
of lightweight and heavyweight query types, so there was
no ambiguity in assigning query types to service classes (de-
tails in Section 9). Instead of evaluating a specific algorithm
to find the best way of dividing the timeron threshold be-
tween these two service classes, we conducted experiments
in which we varied the fraction of the timeron threshold
given to each service class across a wide range of values.
In all these experiments, using one service class was supe-
rior to using two service classes that distinguish between
lightweight and heavyweight queries. Thus, we conclude
that using two service classes does not improve the perfor-
mance of the optimizer-based scheduler, so we did not try to
find a “best” way for dividing the timeron threshold between
the two service classes.

Thrlimefweighted =

7 Experiment-driven Modeling

The on-line and batch scheduling algorithms pick a query
mix m for scheduling based on the estimated properties of
m. The on-line algorithm has to estimate mix m’s NRO, and
the batch algorithm has to estimate the average completion
time (A;;) of each query type in m.

One approach is to develop analytical formulas to es-
timate NRO and A;; for mixes. Historically, analytical for-
mulas have been used successfully by database query opti-
mizers to estimate the execution cost of query plans. How-
ever, developing accurate analytical formulas to estimate the

properties of query mixes will require a detailed understand-
ing of all possible causes of inter-query interactions. Inter-
actions can arise from a variety of causes: resource lim-
itations, locking, configuration parameter settings (includ-
ing misconfigurations), properties of the hardware or the
software implementation, correlation or skew in the data,
and others. This space of potential causes is large, not fully
known ahead of time, and can vary from one database sys-
tem to another.

While general-purpose analytical formulas are hard to
develop, a robust and effective alternative exists: using sta-
tistical modeling based on actual observations of query in-
teractions. Our approach for statistical modeling is based on
running a small set of carefully-chosen query mixes from
the possible input workloads; to collect samples of the form
shown in Table 6. Each sample gives a measure of how the
average completion time of different query types is affected
by running them in a specific mix. The set of collected sam-
ples can be used to identify various interactions, and statis-
tical models can be trained from the collected samples to
estimate NRO and A;;.

This approach is not sensitive to the causes of interac-
tions because the effect of all interactions will show up in
the samples. The rest of this section gives the full details
of our experiment-driven modeling approach. The effective-
ness of this approach is shown empirically in Section 9.
Sampling: There are two parts to our experiment-driven
modeling approach: (1) sampling, and (2) statistical mod-
eling. For the statistical model to accurately reflect query
interactions, it is important to identify a representative set
of samples. Each sample is collected by identifying a query
mix m; and scheduling an experiment where the selected
query mix is run to observe the average query completion
times (A;; values) of the queries it contains. The value NRO;
is computed for mix m;.

A straightforward approach to select samples (and hence
experiments) is to sample randomly from the space of possi-
ble query mixes. A disadvantage of pure random sampling is
that some query types may not appear at all in the samples,
especially if there are few samples. Furthermore, important
parts of the space (e.g., the corners) may not be covered. To
selectively cover different parts of the space of mixes with a
small number of samples and ensure that query interactions
are adequately represented, we developed a new sampling
approach called corner, diagonal, and random (CDR) sam-
pling. CDR sampling collects samples at MPL M as follows:

1. We start by running 7 experiments where we sample the
“corner” points of the space, i.e., the mixes (M, 0,...,0),
(0,M,...,0),...,(0,0,....M).

2. Next, we sample “diagonally”. We first run the mix with
equal number of occurrences of each query type, i.e.,

(MM ..., %), Then, we take a fixed number of ran-

16

dom samples from the space of possible mixes, with
a constraint that there has to be at least k instances of
each query type. k is varied across the range of values in
L. %—1

3. Finally, we take some samples completely at random
(like random sampling) from the full space of mixes.

Once we have a set of samples, we can fit statistical models
to these samples to predict A;; and NRO. The models com-
pute an estimate for A;; or NRO (Z,-\j or @) for mix m; as
a function of N, Np,...,N;r, the number of queries of each
type in the mix.

In our empirical evaluation, we measure how many sam-
ples are needed to produce fairly-accurate models for esti-
mating A;; and NRO; values. We will show that these val-
ues can be estimated with reasonable accuracy from a small
number of samples (50-60). In particular, the accuracy ob-
tained from these samples is good enough for our query
scheduler to produce efficient schedules that outperform the
schedules produced by conventional schedulers.

While these results may seem surprising at first, it should

be understood that our scheduling algorithms performs well
as long as they can distinguish the bad mixes (where the per-
formance of one or more queries is degraded severely) from
the good ones. Statistical models need far fewer samples to
separate the bad mixes from the good ones than what they
need to predict all A;; and NRO; values with high absolute
accuracy. An analogy from query optimization is relevant
here. Cost models used by query optimizers can be notori-
ously bad at estimating absolute plan completion times, but
they have been successful because of their ability to distin-
guish the bad plans from the good ones.
Statistical Models: We consider two types of models: linear
models and regression trees. A linear model uses the follow-
ing structure to compute X,'\j, the estimate of A;; for mix i
and query type j, and N7€\0i, the estimate of NRO; for mix i
respectively :

T
Ajj = Po+ Z BNik
=1

T

NRO; = Py + Y BiNix
k=1

The f parameters in these models are regression coefficients
that are estimated while learning the model from data, e.g.,
using the popular method of least squares estimation.

Note that linear regression is among the simplest types
of statistical models and hence it is very easy to construct
with many popular software tools (e.g., Excel). However,
its simplicity means that it may not be the most accurate
model, which sometimes leads research works that focus on
the prediction accuracy of different models (independent of
a specific application) to eschew it in favor of more complex

models (e.g., [35]). In our paper, the performance model has
to be accurate enough to distinguish good mixes from bad
mixes. One of our contributions is to show that this can be
done effectively with linear regression without the need to
resort to more complex statistical models.

Regression trees are piecewise regression models [50,
51]. Each piece in such a model corresponds to a partition
of the space of mixes of the form N;; < const. Partition-
ing is carried out recursively, beginning with the full set of
samples, and the set of partitions is presented as a binary
decision tree. The nonleaf nodes in the tree define the par-
titioning conditions. Each leaf node L is associated with a
constant or a function which is used to predict Z; and NRO;
for all mixes that match the criteria along the path from the
root node to L. Efficient software packages are available to
learn piecewise constant, piecewise linear, and other types
of regression trees from given samples (we use CART [51]).
Incremental Model Maintenance: One important question
is whether the sample collection and model learning has to
be done from scratch each time a query type is added or
deleted. The answer is no. For example, when a new query
type Q is added, all we need are a few new samples with
nonzero number of instances of Q. These samples can be
used to update the models incrementally.

8 Identifying Query Types Automatically

So far we have assumed that the query types Qy,...,Qr are
given. In a production BI setting, the query types could be
identified by the DBA or they could be tagged by the appli-
cation. This section presents some novel techniques that we
developed to simplify the task of choosing query types.

One straightforward technique is to have one-to-one cor-
respondence between query templates and query types, i.e.,
each distinct template forms a query type. A query template
consists of SQL text along with possible parameter markers.
The TPC-H decision support benchmark defines 7=22 dis-
tinct query templates. The following template, derived from
TPC-H, is an example query template with one parameter
marker which is represented by the symbol “?”. Different
value settings of the parameter marker give rise to different
instances of this query template.

Select * From lineitem as 1, orders as o,
supplier as s, nation as n

Where 1.1_orderkey = o.o_orderkey and
1.1_suppkey = s.s_suppkey and
s.s_nationkey = n.n_nationkey and
n.n_name = 7

However, equating query types to query templates can be a
suboptimal choice in the presence of data skew. Both the on-
line and batch scheduling algorithms represent the perfor-
mance of all instances of a query type Q; in a mix m; based

17

Templat
Buery'Template Sample instances of

the given template

Get average value of
plan costs / one query
type corresponding to
template/ one cluster

Single Cluster

sample of query

instances Get optimizer plan

Record the information
representing clusters

» "
'l costs for all instances

Data set of plan
costs

Potentially clustered
distribution

Run clustering
algorithm for different
number of clusters

Clusters
corresponding to
different runs

Find the best number
of clusters, say k

k Clusters

One time process only and is
done offline

A 4

Query instance of the
given template

L

Fig. 6 Identifying query types from a given query template

on a single number A;;. A;; denotes the average completion
time of instances of Q; in m;, so this representation works
as long as all instances of Q; have similar performance in
m;. The presence of data skew can cause two Q; instances
g1 and g, with different values of the parameter marker(s)
to perform differently. For example, an instance of the above
TPC-H template for n_.name=“USA” could take much longer
to run than say for n_name="Mexico”. To deal with such be-
havior, we have to further partition the query template into
two or more query types.

Our methodology to determine the best set of query
types automatically consists of two modules: (i) a query tem-
plate extractor, which extracts distinct query templates and
the distributions of parameter marker values from database
query logs; and (ii) a query template partitioner, which par-
titions a template into multiple query types if different in-
stances of that template can differ significantly in perfor-
mance. We describe each of these in turn.

Query Template Extractor: The extractor parses database
query logs to extract all distinct templates corresponding to
queries that executed in the system over a given period of
time. This process involves log parsing, identifying parame-

Clusters information

Query Type

| Get the optimizer cost I
»] value for this instance >

and match it to
appropriate cluster

|

Process can be repeated as
needed. Itis offline for
modeling phase and is run
time for scheduling

ter values in the query text and replacing them with param-
eter markers, and using a canonical representation of query
templates to facilitate string-based comparisons between ex-
tracted templates. Along with the distinct query templates,
the extractor also returns the distribution of values seen for
each parameter marker.

Counterparts of the query template extractor exist for al-
most all database systems (e.g., [52]). Query templates are
used routinely for purposes like: (i) avoiding the overhead
of query optimization for templates seen frequently, and
(ii) enforcing the use of manually-tuned plans for important
queries that repeat. There has also been work on extracting
query templates directly from the source code of database
applications rather than parsing logs postmortem [53,54].

Query Template Partitioner: The partitioner takes a query
template Q (possibly output by the template extractor) with
parameter markers as input. The output returned is a parti-
tioning of Q into one or more query types such that query
instances of the same type have similar performance. Mod-
ern query optimizers already account for skew in data values
while choosing query plans and estimating plan cost (see,
for example, [55] and the references therein). Thus, we need

18

not reinvent the wheel on that front. The partitioner’s work-
flow, summarized below and in Figure 6, leverages the opti-
mizer to generate the query types for a given template Q.

1. Generate a large number, say n=1000, of query instances
from Q by instantiating each of Q’s parameter markers
with values sampled from the corresponding distribu-
tions. Let the instances be ¢1,. . .,gn.

2. For each instance g;, run the query optimizer in what-if
mode to find ¢;’s execution plan p;, and p;’s estimated
cost ¢;. Thus, we get n tuples of the form (g;, p;, ¢;).

3. Consider the one-dimensional distribution of ¢; values,
and decide whether these values naturally form a single
cluster or multiple clusters. If there are multiple clusters,
then find the best clustering of the values. The centroids
of the clusters define the partitioning of Q into one or
more query types.

4. To determine the type of a given instance g of Q, we use
the query optimizer to find ¢’s plan p and associated cost
c. The centroid closest to ¢ defines ¢’s type.

Step 3 is the most nontrivial step in the partitioner’s work-
flow. The first decision in Step 3 involves determining
whether the plan cost values ¢;, 1 < i < n, naturally form
one cluster or more. To make this decision, we compute the
Coefficient of Dispersion (CoD)—also known as the Fano
factor—of the c¢; values [56,57]. Coefficient of dispersion is
defined as the ratio of variance to mean:

CoD — variance _ Yo (e - ¢)?
mean nx¢

¢ denotes the mean of the ¢; values. CoD > 1 (over disper-
sion) is a common rule of thumb used by statisticians to de-
termine that the data is best represented by more than one
cluster. We follow this guideline to determine whether to run
the clustering algorithm or not on the dataset of ¢; values.

There is an abundance of literature on clustering. In our
study of plan cost datasets, we have found that the sim-
ple K-means clustering algorithm works very well. K-means
can be described as a partitioning algorithm that partitions
the given dataset into a user-specified K number of clus-
ters. Each cluster is represented by its centroid. K-means
starts by choosing K initial centroids. Then, it proceeds in
an iterative manner assigning data points to clusters so as to
minimize the sum of distances from each data point to the
centroid of the cluster to which the point is assigned. The
data points may switch clusters during the iterations, and
the centroids are recomputed until the sum cannot be mini-
mized anymore. The clustering result may be dependent on
the initial values chosen for the K centroids. This problem is
addressed in practice by repeating the clustering algorithm
a few times; and then choosing the cluster partitioning that
gives the minimum total sum of distances of points to their
cluster centroids.

A critical component of the clustering process is to pick
the best value of K automatically. Luckily, this problem has

been well studied in the K-means literature. To determine
the best value of K, we adopt the silhouette coefficient [58]
as a metric of the quality of a given clustering of the ¢; val-
ues. Let Cy,...,Ck denote the K clusters produced by run-
ning K-means on the ¢; values. For a data point ¢ € C}, let a.
represent the average distance of c to all the points in cluster
C;. Let b, represent the minimum over the average distances
of ¢ to the points in cluster C;, 1 <i < K, i # j. That is, b,
is the average distance of ¢ to the closest cluster other than
the cluster that ¢ belongs to. The silhouette coefficient of ¢
is defined as:
b.—a,

S =———

max(ac,b)
Intuitively, —1 <. < 1 measures how close c is to the points
placed in the same cluster as ¢, compared to points placed
in other clusters. That is, s, compares the intra-cluster dis-
tance with the smallest inter-cluster distance from c’s per-
spective. Values of s, close to the maximum value of 1—
which indicates that the inter-cluster distance dominates the
intra-cluster distance—denote a good clustering of c.

The notion of silhouette coefficient can be extended to
the overall clustering by averaging s. across all the clusters
Ci,...,Cx. We define Sk, the silhouette coefficient of the
clustering produced by running K-means to produce K clus-
ters, as follows:

1 & Zcecj Sec

Kj:] ICil

Sk =

Our goal is to identify the value of K that maximizes Sk for
the given set of ¢; values. We run K-means with larger and
larger values of K > 2 until we see a consistent drop in Sk
as K is increased further. For the TPC-H queries, the largest
value of Sg was produced in the 2 < K < 5 range.

The output of Step 3 for a given query template Q is ei-
ther: (i) a validation that Q can be treated as a single distinct
query type, or (ii) a partitioning of Q into K query types
identified by the cluster centroids produced by running the
K-means algorithm with the K value with maximum Sk.
Note that Steps 1-3 are done off-line. These steps are not
on the critical path of query scheduling.

Suppose we want to find the type of a query instance g
of a given template Q in Case (ii). We first use the query
optimizer to find ¢’s plan p and associated cost c. This step
does not usually involve additional overhead since it can be
piggybacked with the regular query optimization process of
finding the plan to execute g. We then find the cluster to
which the plan cost ¢ belongs by finding the nearest neigh-
bor to ¢ among Q’s cluster centroids. The type correspond-
ing to the nearest centroid is returned as ¢’s query type. With
this mechanism in place to identify query types, no change
is required to our modeling or scheduling techniques.

19

200%
—+—Batch

—+—On-line
180% =& FCFs
—SJF

ing

160% -
140%

120% *__—__—____*__‘—_____*”,,,—,,,,»—____.___ﬁ

100% $——=====c e i

Slowdown Over Batch Schedul

80%
20 30 40 50 60

Fig. 7 Scheduling for p =5

9 Experiments

9.1 Experimental Setup

Machine and database: Our experiment were run on a ma-
chine with dual 3.4GHz Intel Xeon CPUs and 4GB of RAM
running Windows Server 2003. The database server we use
is DB2 version 8.1. We use the TPC-H database with scale
factors of 1GB and 10GB. Unless otherwise noted, we al-
ways use the 1GB database with the standard TPC-H data
generator that generates uniform data. The exceptions to this
are Sections 9.3 and 9.5, in which we use a 10GB database,
and Section 9.4 in which we use a data set with a skewed
data distribution. The buffer pool size was set to 400MB for
the 1GB database, and 2.4GB for the 10GB database. We
used the DB2 Design Advisor to recommend indexes for the
TPC-H workload. We ran the DB2 Configuration Advisor
to ensure that the configuration parameters are well tuned.
In our experiments, we vary MPL, M, from 20 to 60. The
default MPL for DB2 (the number of agents) is 200.

Query workload: We use the 12 longest running TPC-H
query types shown in Table 2, with different parameter val-
ues for each instantiation chosen according to the TPC-H
rules. These queries are also identified as long running in
the disclosure reports of commercial benchmark runs.
Arrival order: As we demonstrate in our motivating exam-
ple in Section 1, the arrival order of workload queries is im-
portant since it determines the query mixes that the system
encounters and hence the total completion time of the work-
load. Thus, to stress test QShuffler, we systematically vary
the arrival order of workload queries according to the fol-
lowing strategy. We arrange the query types in our work-
load in the order in which they are specified in the TPC-H
benchmark (i.e.Q first, then Q3,...,0>1). As an initializa-
tion step, we go through the list of queries and place /Q in-
stances of each query type in the arrival queue. This ensures
that the system has a balanced initial workload. We then go
through the list of query types in a round robin manner, plac-
ing p randomly generated instances of each query type in the
arrival queue until all queries are in the queue. The param-

200%

——Batch
—e—On-line
180% =& FCFS

—SJF

160%

140%

120%

100% 4

Slowdown Over Batch Scheduling

80%
20 30 40 50 60

Fig. 8 Scheduling for p =25

eter p specifies the degree of skew in the workload. As p
increases, more queries of the same type arrive together. For
the 1GB database, we use IQ = 10 and p = 5, 25, and 50.
We use a pool of 60 instances of each query type to construct
our workloads. For the 10GB database, we use /Q = 0 and
p=2,5, and 10. We use 10 instances of each query type.
We limit the workload sizes for the 10GB database due to
the long run times of queries on this database, e.g., a work-
load consisting of 60 queries can take more than 5 hours.
Scheduling algorithms: We experimented with five differ-
ent scheduling algorithms. The first is our batch scheduling
algorithm, which requires the entire workload to be known
in advance. The four other algorithms do not require the
workload to be known in advance, and we assume that the
scheduler can see the next L queries in the arrival queue.
The algorithms are: First Come First Served (FCFS), which
is insensitive to L; Shortest Job First (SJF), which schedules
the shortest query available in the next L queries using the
run times in Table 2; our on-line scheduling algorithm; and
the optimizer-based scheduler (Section 9.5).

Performance metric: Our performance metric is fotal com-
pletion time for the workload. Since the workload queries
are fixed in each experiment, minimizing total completion
time is equivalent to maximizing throughput. The batch
scheduling algorithm chooses a schedule by taking the entire
workload into consideration, so we use it to judge the quality
of the on-line, SJF, FCFS algorithms. We measure the per-
formance of each of these algorithm in terms of slowdown
compared to batch schedule, defined as:

completion time of on-line/FCFS/SJF schedule

100%
completion time of batch schedule % 0

9.2 Scheduler Effectiveness

Figures 7, 8, and 9 show the performance for different MPLs
of our on-line scheduling algorithm, FCFS, and SJF for p
=5, 25, and 50, respectively. The workload consists of 60
instances of each of the 12 longest running TPC-H query
types on a 1GB database, for a total of 720 queries. The

20

200%

ing

180%

160%

140%

120%

100%

Slowdown Over Batch Schedul

80%
20 30 40 50 60
MPL

Fig. 9 Scheduling for p = 50

lookahead is L = 60. The methodology in Section 5.2 re-
sults in a value of Bygo between 0.63 and 0.7 in all these
cases. Therefore, we use Oyro = 0.7 for all our experiments
unless otherwise stated. The figures show that the batch and
on-line scheduling algorithms of QShuffler are significantly
better than FCFS and SJF. The on-line algorithm performs
worse than the batch algorithm, as expected, but the differ-
ence between them is low.

The figures clearly demonstrate the benefit of
interaction-aware scheduling. The performance gap
between the QShuffler algorithms and the other two algo-
rithms increases as p increases. FCFS is the scheduling
algorithm used by all database systems that we are aware of,
and these experiments show that its sensitivity to the arrival
order can significantly degrade its performance. When
we examine the NRO and A;; values from our sampling
data for this 1GB database, we find that the heterogenous
mixes (i.e., containing many different query types) are
among the best mixes. Thus at p = 5, the arrival order is
almost approaching round robin, and not too many queries
of the same type can arrive together, so FCFS is able to
keep up with QShuffler. But as p increases, and the arrival
order starts sending “bad” mixes, the performance of FCFS
starts degrading significantly. Further, for this experiment,
SJF consistently turns out to be the worst policy overall.
Interestingly, SJF is the optimal scheduling policy if query
interactions are ignored, and the fact that it is the worst
policy in this experiment demonstrates the importance of
modeling query interactions when scheduling. To illustrate
the potential benefit of QShuffler (or, conversely, the
opportunity lost by using FCFS and SJF), we note that for
p = 50 the performance gain of the on-line scheduler over
FCEFS is up to 40%. This gain comes “for free” simply by
scheduling the queries in the correct way.

The figures also show that as MPL increases, FCFS and
SJF are not able to keep up with the increased load on the
system and their performance degrades compared to QShuf-
fler. As MPL increases, there are more interactions that
come into play, and QShuffler is able to take these inter-
actions into account when choosing the schedule.

200%

——Batch

—A-FCFS

180% -*-SJF
-e-8_NRO = 0.70

-=-8_NRO = 0.40

160% 6_NRO = 1.00

140%

120%

100%

Slowdown Over Batch Scheduling

80%

5 15 25 35 45
workload p value

Fig. 10 Scheduling for different values of Oygo (M = 30)

Our methodology for setting Oygo requires using the
batch scheduling algorithm on a representative workload.
If the DBA wrongly assumes that the workload is going to
consists of only those query types that have severe negative
interaction, then most of the mixes that are proposed by the
batch scheduling algorithm would have a higher value of
NRO and Oygo is going to be higher than required. On the
other hand, if the DBA uses a workload that consists of only
good mixes, then Oygp is going to be lower than required.
Choosing the representative workload for setting Oygo is im-
portant, but the DBA does not need to run or know the exact
ordering of queries for this workload; a rough estimate of
the number of queries of each type in the workload is suffi-
cient. Moreover, we observed that the on-line scheduling al-
gorithm is quite robust to small variations in Oygrp. To study
the effect of large variations in Oygp, Figure 10 shows the
performance of different workloads for M = 30 when we
set Oyro unexpectedly low or high corresponding to cases
where the DBA did not choose an accurate representative
workload. We can see that the on-line algorithm is still ei-
ther better or at least comparable to FCFS and SJF.

9.3 Scalability and Robustness of QShuffler

We study the scalability of QShuffler in two dimensions:
query types T and database size. As T increases, the space
of possible query mixes increases, which affects both model
building and scheduling. To test QShuffler for higher 7', we
use a workload comprised of 21 of the 22 queries in the
TPC-H benchmark. We do not use Q;s since it creates and
drops a view, which is not supported in our current imple-
mentation. The workload consists of 60 queries of each type,
for a total of 1220 queries. For comparison, we show the
performance of an algorithm called on-line incremental that
applies our on-line scheduling using a coarse-grained model
that captures only the 12 longest of the 21 TPC-H query
types. The remaining 9 query types are lumped together into
a “catch-all” query type, i.e., these short query types are in-
distinguishable from one another for scheduling.

21

200%

—+—Batch

2> —e—On-line
5 180% == FCFS
B —SJF
§ 160% —*-0On-line Incremental
=
£
@ 140%
]
>
¢} IV
c 120% S B —
g ~—"\‘__;;—;,//”‘
°
3 100%
@

80%

10 20 30 40 50

Workload p value

Fig. 11 Scheduling for T =21 (M = 30)

Figure 11 shows the performance of the different
scheduling algorithms for this workload for MPL 30 and
varying p. The figure shows that, as in previous experiments,
the on-line scheduling algorithm performs better than FCFS
and SJF. The figure also shows that the on-line incremental
algorithm performs very close to the on-line algorithm that
uses a fine-grained model with all 21 query types. Thus, the
quality of the schedule chosen by QShuffler remains good
even with the coarse-grained model, which motivates an in-
cremental approach to model building that focuses on the
higher-impact query types first.

To test QShuffler for larger database sizes, we use the
10GB TPC-H database. Since the hardware is unchanged
from the 1GB case, the queries place a much higher load
on the system and have much higher run times in the 10GB
case. Therefore, we experiment with only the 6 longest run-
ning query types from Table 2. The workload consists of 10
queries of each type for a total of 60 queries, the lookahead
L =10, and MPL is set to 10. Oygp was computed based on
this workload to be 0.33. The arrival order of the queries is
determined based on the parameter p, and we use p = 2,5,
and 10, since we have only 10 queries of each type.

Figure 12 shows the performance of the different
scheduling algorithms for this workload. The completion
time for the batch scheduling algorithm in this case is 1.78
hours and it is significantly better than any other algorithm,
e.g., beating FCFS (7.43 hours) by a factor of 4.2. This
shows the potential of interaction-aware scheduling. The fig-
ure also shows that the on-line scheduling algorithm consis-
tently performs better than FCFS, and better than SJF ex-
cept when p = 10. On examining the different mixes we
found that, unlike the 1GB case, the homogeneous mixes
(i.e., containing one query type only) are among the best
mixes. This results in SJF and FCFS both improving as the
arrival patterns become more skewed, since both algorithms
would schedule queries of the same type in this case.

The experiments in this section show that our scheduling
algorithms are able to exploit different scheduling opportu-
nities in different scenarios. In case of the 1GB database,

450%

——Batch
2 400% —e—On-line
= S~ -+ FCFS
3 350% S~ =<SJF
= N
& 300%
< S
£ 250% A
@ Tl
§200% s
E \
c 150%
'§ 100%
o
8
» 50%
0%
2 4 6 8 10

Workload p value

Fig. 12 Scheduling for 10GB database (M = 10)

the mixes containing one query type are bad mixes. The
workloads with higher values of p tend to present these kind
of mixes, so there is more opportunity for performance im-
provement over FCFS at higher values of p. On the other
hand, for the 10GB database, the mixes containing many dif-
ferent query types are bad mixes, so there is much more op-
portunity for performance improvement over FCFS at lower
values of p. Our scheduler is able to take advantage of the
scheduling opportunities in both these cases.

9.4 Scheduling for Skewed Databases

In this section we present the results for robustness of our
scheduler in case of skewed data sets. Our approach for
dealing with skewed data distributions, presented in Sec-
tion 8, is to divide each query template into more than one
query types. To test the robustness of our approach, we use
the skewed TPC-D/H database generator available at [59].
This database generator populates a TPC-D/H database us-
ing skewed random values that are distributed according to
a Zipf distribution. This distribution has a parameter z that
controls the degree of skew, where that z = 0 generates a uni-
form distribution and as z increases, the data becomes more
and more skewed. We test our scheduling algorithms on a
1GB database that was generated using z = 1.

We consider the same 6 long-running TPC-H query tem-
plates from Table 2 as before. These are the templates with
the longest run times on a uniformly distributed database.
Our first step is to see how many of these given query tem-
plates will be divided into more than one query types. For
this we generate 200 instances of each query template by
randomly varying the parameter markers and get their plan
cost values by running the DB2 optimizer in its “show plan”
mode (called the EXPLAIN mode in DB2). Then we run
our coefficient of dispersion test on these plan cost values.
All the queries show some variance in their plan cost values
for different instantiation of the parameters, as expected. In-
terestingly, however, only the plan cost of instances of Qg
show enough clustered distribution to merit further analy-
sis. The value of the coefficient of dispersion for this query

22

170%

160%
150%
140%
130%

120%

110%

100%

Slowdown Over Batch Scheduling

90%

80%

5 15 25 35 45
Workload p value

Fig. 13 Scheduling for skewed data with K = 4 (M = 30)

template is > 2, and the maximum value of the coefficient
of dispersion for the other 5 query templates is < 0.5. We
further verify this by examining the actual run times of the
different query instances. We find that, indeed, Qg has a high
variability in run time. The actual run times of different in-
stances of each of remaining 5 query templates show much
lower variation in their run times as parameters vary, and are
well represented by an average value.

Having decided that Q¢ needs to be divided into further
query types, we run the K-means algorithm on the plan costs
of the 200 instances of Qog, varying K from 2 to 10. Next,
we need to find the best value of K, and that will be the
number of query types corresponding to the template under
consideration. For this we use silhouette metric as discussed
in Section 8, which leads to a choice of K = 4.

Figure 13 shows our scheduling results for workloads
consisting of 60 instances (with different parameter values)
of the 6 longest running query templates we used before for
a total of 360 queries. The Qg queries are split into 4 query
types as described above. The figure shows three workloads
with p =5, 25, and 50, and MPL 30. The figure shows
that QShuffler is consistently better than FCFS and SJF for
the different workloads for all values of p. For the sake of
comparison, in Figure 14 we also show the case when we
continue to group all instances of Qg query template to-
gether into one query type, i.e., K = 1. The results shows
that our approach for handing skew improves the perfor-
mance of both batch and on-line scheduling algorithms in
Figure 13. FCFS behaves the same whether K =1 or K =4.
In Figure 13 we can see that the gap between FCFS and the
QShuffler algorithms increases for all workloads. For ex-
ample, for the workload with p = 25, the slowdown over
batch scheduling for FCFS is 140% in Figure 14, and it is
145% in Figure 13. The improvement of on-line scheduling
is much more pronounced. We can also observe that even
when no process for automatically identifying query types
in the presence of skew is employed (K = 1), our basic ap-
proach is still robust enough to improve the performance
over FCFS and SJF in Figure 14.

170%

160%
150%
140%
130%
120% -

110%
100%

Slowdown Over Batch Scheduling

90%

80%
5 15 25 35 45
Workload p value

Fig. 14 Scheduling for skewed data with K =1 (M = 30)

14
—MPL vs Throughput

12

10

Throughput
©

] 2 4 6 8 10 12
MPL

Fig. 15 Throughput vs. MPL for Wg

9.5 Comparison to Optimizer-based Scheduler

In this section, we compare the performance of QShuf-
fler against the optimizer-based scheduler presented in Sec-
tion 6. For this comparison, we use the 10GB database and
the three workloads used in Figure 12 (60 queries with
different p values). The first step in using the optimizer-
based scheduler is to define the timeron threshold. For this,
we construct a workload consisting of the same 60 queries
used in Figure 12, with the arrival order randomly shuffled.
We call this workload Wg. Figure 15 shows the through-
put vs. MPL graph for Wg. The best throughput is obtained
at MPL M = 6, and corresponds to a timeron threshold
T hrime—weightea = 17,3353,73.87.

Figure 16 shows the performance of the optimizer-
based scheduler using this timeron threshold for Wi and
the three workloads in Figure 12. In this figure, we use
one service class for all query types (i.e., we do not distin-
guish between lightweight and heavyweight queries). The
MPL varies throughout the workload run when using the
optimizer-based scheduler. For example, when we run the
optimizer-based scheduler for Wg, the MPL varies from 3
to 12. Figure 16 also shows the performance of the QShuf-
fler on-line scheduling algorithm for MPLs M = 6 (the
MPL corresponding to the best throughput for W) and

23

o 300%

250%

200% -
150% -|
100% |
50%]
0% -
W_R p=2 p=5 p=10

Workloads

Slowdown Over Batch Schedulin

= Batch Optimizer-based = Online M=6 = Online M=10

Fig. 16 Optimizer-based scheduling

M = 10 (the MPL used in previous experiments). The fig-
ure clearly shows that QShuffler outperforms the optimizer-
based scheduler. This demonstrates the importance of con-
sidering query interactions in scheduling and modeling ac-
tual query completion times rather than relying on query op-
timizer cost estimates.

Next, we turn our attention to using different service
classes for lightweight and heavyweight queries. First, we
divide the 6 query types used in this experiment into
lightweight and heavyweight according to their query op-
timizer cost estimates. This classification was easy for these
query types since there is a clear separation in cost between
the query types with low estimated cost and those with high
estimated cost. Denote the highest estimated cost of any
query type by Optpa. Of the 6 query types, 3 have estimated
costs in the range [0.82 — 1]Opty,qx, and we place these in the
“heavyweight” service class. The remaining 3 query types
all have estimated costs in the range [0.12 — 0.38]Opfyax,
and we place them in the “lightweight” service class. This
classification is unambiguous since there is a small range of
costs within a class and a large distance between the classes.

After defining the two service classes, the next task is
to divide the timeron threshold between these two classes.
Recall that the optimizer-based algorithm schedules queries
from different service classes using different timeron thresh-
olds. Before embarking on a search for the best algorithm
to perform this division, we wanted to experimentally study
how well such an algorithm can be expected to perform.
We varied the fraction of the timeron threshold given to the
heavyweight class from 30% to 80%, with the rest of the
timeron budget going to the lightweight class. We ran work-
load Wy at each of these settings using the optimizer-based
scheduler with two service classes. We use Wy as the work-
load in this experiment since it is the workload used to de-
termine the timeron threshold. Using the same workload to
determine the timeron threshold and for scheduling gives the
scheduler the best chance of finding a good schedule.

Figure 17 shows the slowdown compared to the QShuf-
fler batch scheduler of the optimizer-based scheduler using

450%

—~Two service classes
—+Single service class

400%

350%

300%

250%

200%

150%

Slowdown Over Batch Scheduling

100%

50% -
30% 40% 50% 60% 70% 80%
% of Timeron Threshold given to Heavyweight Class

Fig. 17 Scheduling workload Wy using two service classes

two service classes on Wy at each division of the timeron
threshold. For comparison, the figure also shows the slow-
down of the optimizer-based scheduler with one service
class from Figure 16. The figure shows that using one ser-
vice class always outperforms using two service classes (ex-
cept for the 50% point in which two service classes is better
by a small margin that is well within the range of measure-
ment noise). Thus, no matter what algorithm is used to di-
vide the timeron threshold between the two service classes,
using one service class is going to be better.

The experiments in this section provide answers to the
two questions posed in Section 6: (1) QShuffler outperforms
scheduling based on query optimizer estimates, and (2) this
does not change if different service classes are used to dis-
tinguish between lightweight and heavyweight queries.

9.6 Cost and Accuracy of Modeling

Since performance modeling is an essential part of our tech-
niques, we focus in our final experiment on: (1) How accu-
rate are our performance models? and (2) How expensive is
it to build these models? To answer these questions, we sam-
ple the space of possible query mixes, and we use our sam-
ples as described in Section 7 to build performance models
for NRO and query completion times, A;;.

Mean Relative Error (MRE): We compute the accuracy
of a performance model as follows. We pick S test sam-
ples at random from the full space of samples, and com-
pute the model-predicted value of performance p, for each
test sample. MRE is defined as %Zf: 1 %, where pops
is the actual performance observed for the sample. MRE is
commonly used for computing model accuracy.

Figure 18 shows, for different types of models for es-
timating NRO, the MRE on the test samples vs. the num-
ber of samples used for model learning. The figures show
data for linear models and regression trees (CART [51]). The
“Best on Full Data” plot shows the best modeling accuracy
achieved using all the samples we collected (more than 400
for our default setting).

24

0.6 T T . T | .
Linear Regression =
Regression Tree
oo 05 Best on Full Data Moo
o
=3
§ 0.4 r]
i
2 03| i
k]
& 02| |
s B e e e anseN
= 0.1 r)]
0 L I 1 1

20 30 40 50 60 70 80 90 100
Number of Experiments

Fig. 18 Accuracy in modeling NRO

0.6 &~ r T T .
< Linear Regression —H—
Regression Tree i
o 05| Best on Full Data 3¢
o
2
g % Ji%ﬂ;ﬂ% |
w S
o 03 | ,BUEIB | D .
=
kS o
€& 02
o
©
@
= 01 ¢
0 I L 1 1

20 30 40 50 60 70 80 90 100
Number of Experiments

Fig. 19 Accuracy in modeling the completion time of Q;

From the figure, we can see that: (1) MRE quickly con-
verges to a value of around 10-20% with a small number
of training samples (20-40), (2) simple linear models, which
we use in QShuffler, are not drastically off the accuracy of
the more complex regression tree models. This ease of mod-
eling is one of the desirable features of NRO.

Next, we turn our attention to modeling query comple-
tion times, which is required for our batch scheduler. Fig-
ures 19 and 20 show the accuracy of the models in predicting
the completion times of two long-running TPC-H queries.
The figures show that modeling query completion times is
more difficult than modeling NRO since the MRE values are
higher. However, MRE still converges quickly so we still
need only (40-60) samples for a good model.

The time needed for modeling, which includes both sam-
ple collection time and model building time, is as follows for
our experimental settings: (i) 3 hours for 7 = 12, 1 GB, 60
samples; and (ii) around 24 hours for 7' = 6, 10 GB, and 30
samples. We saw that on just one run in the 10 GB case we
saved more than 5 hours. With repeated runs in a report gen-
eration setting, the cost of modeling is well justified by the
savings in query completion time.

Thus, we see that modeling A;; and NRO; can be done
quite effectively: we can get good accuracy by using simple
linear models and training these models with a small number
of query mixes sampled from the space of possible mixes.

0.6 — . : : ! ! } :
\ Linear Regression —H—
| Regression Tree
o 05r @ Best on Full Data ¢
& Wy
~— \\ =
S 04t EFIL
o = D :
= i . {Em\
i = [SE i==s==s==se=sos
@ 03¢ o 1 B ——
5 < > : oo ¢
€ 02 i
o
©
(]
= 01}]
0

20 30 40 50 60 70 80 90 100
Number of Experiments

Fig. 20 Accuracy in modeling the completion time of Q5

Statistical models need far fewer samples to separate the
good mixes from the bad ones than what they need to predict
NRO and A;; with high accuracy. In particular, the accuracy
obtained from these samples is good enough for our query
scheduler to produce efficient schedules that outperform the
schedules produced by conventional schedulers.

10 Conclusion

In this paper, we demonstrate that interactions among con-
currently running queries in a query mix can have a signif-
icant effect on performance. Hence, we argue that it is im-
portant to take these interactions into account when making
performance related decisions. We propose an experiment-
driven modeling approach for capturing interactions in
query mixes, since analytical modeling of these interactions
is not feasible. We present QShuffler, a throughput oriented
scheduler for BI report generation workloads. QShuffler’s
batch scheduling algorithm determines the best schedule
in cases where all the workload queries (or large batches
of queries) are known in advance. QShuffler also employs
an on-line scheduling algorithm for cases when the work-
load queries are not known in advance and arrive in bursts.
The on-line algorithm uses a robust cost metric to guide
its choices. We experimentally validate the effectiveness of
our modeling approach and of QShuffler using a BI bench-
mark on a real database system. We show that modeling is
accurate enough and converges quickly, and we show that
QShuffler can provide up to a four-fold improvement in per-
formance over the default FCFS scheduler used by database
systems. We also show that QShuffler can effectively han-
dle data skew and that it outperforms a scheduler based on
query-optimizer cost estimates.

References

1. Aster data systems. Http://www.asterdata.com/

2. Greenplum. Http://www.greenplum.com/

3. Cognos. Http://www.cognos.com/

4. Business objects. Http://www.businessobjects.com/

25

11.

12.

13.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Ahmad, M., Aboulnaga, A., Babu, S., Munagala, K.: Modeling
and exploiting query interactions in database systems. In: CIKM
(2008)

Ahmad, M., Aboulnaga, A., Babu, S., Munagala, K.: QShuffler:
Getting the query mix right. In: ICDE (2008). (poster)

Ahmad, M., Aboulnaga, A., Babu, S.: Query interactions in
database workloads. In: DBTest Workshop (2009)

Roy, P, Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and ex-
tensible algorithms for multi query optimization. SIGMOD Rec.
29(2), 249-260 (2000)

O’Gorman, K., El Abbadi, A., Agrawal, D.: Multiple query opti-
mization in middleware using query teamwork. Software - Prac-
tice and Experience 35(4) (2005)

Albuitiu, M.C., Kemper, A.: Synergy-based workload manage-
ment. In: PhD Workshop, VLDB (2009)

Conway, R.H., Maxwell, W.L., Miller, L.W.: Theory of schedul-
ing. Addison-Wesley (1967)

Ibaraki, T., Kameda, T., Katoh, N.: Cautious transaction sched-
ulers for database concurrency control. IEEE Trans. Software En-
gineering 14(7), 997-1009 (1988)

Katoh, N., Ibaraki, T., Kameda, T.: Cautious transaction sched-
ulers with admission control. TODS 10(2), 205-229 (1985)
Abbott, R., Garcia-Molina, H.: Scheduling real-time transactions.
SIGMOD Rec. 17(1), 71-81 (1988)

Abbott, R., Garcia-Molina, H.: Scheduling real-time transactions
with disk resident data. In: VLDB (1989)

Abbott, R.K., Garcia-Molina, H.: Scheduling real-time transac-
tions: a performance evaluation. TODS 17(3), 513-560 (1992)

. Kang, K.D., Son, S.H., Stankovic, J.A.: Service differentiation in

real-time main memory databases. Proc. IEEE Int. Symposium on
Object-Oriented Real-Time Distributed Computing (2002)

Pang, H., Carey, M.J., Livny, M.: Multiclass query scheduling in
real-time database systems. TKDE 7(4), 533-551 (1995)

Carey, M.J., Jauhari, R., Livny, M.: Priority in DBMS resource
scheduling. In: VLDB (1989)

McWherter, D.T., Schroeder, B., Ailamaki, A., Harchol-Balter,
M.: Priority mechanisms for OLTP and transactional web appli-
cations. In: ICDE (2004)

McWherter, D.T., Schroeder, B., Ailamaki, A., Harchol-Balter,
M.: Improving preemptive prioritization via statistical character-
ization of OLTP locking. In: ICDE (2005)

Sacco, G.M., Schkolnick, M.: Buffer management in relational
database systems. TODS 11(4), 473-498 (1986)

Schroeder, B., Harchol-Balter, M.: Web servers under overload:
How scheduling can help. ACM Trans. Internet Technology 6(1),
20-52 (2006)

Elnikety, S., Nahum, E., Tracey, J., Zwaenepoel, W.: A method
for transparent admission control and request scheduling in e-
commerce web sites. In: WWW (2004)

Kelly, T.: Detecting performance anomalies in global applications.
In: Proc. Workshop on Real, Large Distributed Systems (2005)
Stewart, C., Kelly, T., Zhang, A.: Exploiting nonstationarity for
performance prediction. In: EuroSys (2007)

Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based ana-
lytic model for dynamic resource provisioning of multi-tier appli-
cations. In: ICAC (2007)

Zhang, Q., Cherkasova, L., Mathews, G., Greene, W., Smirni, E.:
R-capriccio: A capacity planning and anomaly detection tool for
enterprise services with live workloads. In: Middleware (2007)
Heiss, H.U., Wagner, R.: Adaptive load control in transaction pro-
cessing systems. In: VLDB (1991)

Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E., Wier-
man, A.: How to determine a good multi-programming level for
external scheduling. In: ICDE (2006)

Monkeberg, A., Weikum, G.: Performance evaluation of an adap-
tive and robust load control method for the avoidance of data-
contention thrashing. In: VLDB (1992)

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Mehta, A., Gupta, C., Dayal, U.: BI Batch Manager: A system
for managing batch workloads on enterprise data warehouses. In:
EDBT (2008)

Niu, B., Martin, P., Powley, W., Bird, P., Horman, R.: Adapting
mixed workloads to meet SLOs in autonomic DBMSs. In: SMDB
Workshop, ICDE (2007)

Niu, B., Martin, P., Powley, W.: Towards autonomic workload
management in DBMSs. J. Database Manag. 20(3), 1-17 (2009)
Ganapathi, A., Kuno, H., Dayal, U., Wiener, J., Fox, A., Jordan,
M., Patterson, D.: Predicting multiple metrics for queries: Better
decisions enabled by machine learning. In: ICDE (2009)

Babu, S., Borisov, N., Duan, S., Herodotou, H., Thummala, V.:
Automated experiment-driven management of (database) systems.
In: HotOS Workshop (2009)

Duan, S., Thummala, V., Babu, S.: Tuning database configuration
parameters with iTuned. In: VLDB (2009)

Zheng, W., Bianchini, R., Janakiraman, G.J., Santos, J.R., Turner,
Y.: JustRunlt: Experiment-based management of virtualized data
centers. In: Proc. USENIX Annual Technical Conference (2009)
Belknap, P., Dageville, B., Dias, K., Yagoub, K.: Self-tuning for
SQL performance in Oracle database 11g. In: SMDB Workshop,

ICDE (2009)
Transaction processing perfromance council (TPC).
Http://www.tpc.org/

Babcock, B., Babu, S., Datar, M., Motwani, R., Thomas, D.: Op-
erator scheduling in data stream systems. VLDB Journal 13(4)
(2004)

Ryser, H.J.: Combinatorial Mathematics. The Mathematical As-
sociation of America (1963)

Schrijver, A.: Theory of Linear and Integer Programming. Wiley
(1998)

CPLEX. Http://www.ilog.com/products/cplex/

Coady, Y., Cox, R., Detreville, J., Druschel, P., Hellerstein, J.,
Hume, A., Keeton, K., Nguyen, T., Small, C., Stein, L., Warfield,
A.: Falling off the cliff: When systems go nonlinear. In: HotOS
‘Workshop (2005)

Zilio, D.C., Rao, J., Lightstone, S., Lohman, G., Storm, A.,
Garcia-Arellano, C., Fadden, S.: DB2 design advisor: integrated
automatic physical database design. In: VLDB (2004)

Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection
of materialized views and indexes in SQL databases. In: VLDB
(2000)

Niu, B., Martin, P., Powley, W., Horman, R., Bird, P.: Workload
adaptation in autonomic DBMSs. In: CASCON (2006)

Niu, B., Shi, J.: Scalable workload adaptation for mixed workload.
In: Infoscale Conf. (2009)

Loh, W.Y.: Regression trees with unbiased variable selection and
interaction detection. Statistica Sinica 12, 361-386 (2002)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning
Tools and Techniques, second edn. Morgan Kaufmann (2005)
MySQL slow query log parser. Http://code.google.com/p/mysql-
slow-query-log-parser/

Garrod, C., Manjhi, A., Ailamaki, A., Maggs, B.M., Mowry, T.C.,
Olston, C., Tomasic, A.: Scalable query result caching for web
applications. PVLDB 1(1), 550-561 (2008)

Manjhi, A., Gibbons, P.B., Ailamaki, A., Garrod, C., Maggs,
B.M., Mowry, T.C., Olston, C., Tomasic, A., Yu, H.: Invalidation
clues for database scalability services. In: ICDE (2007)
Ioannidis, Y.: The history of histograms (abridged). In: VLDB
(2003)

Fano, U.: On the theory of ionization yield of radiations in differ-
ent substances. Physical Review 70, 44-52 (1946)

Cox, D.R., Lewis, P.A.: Statistical Analysis of Series of Events.
Chapman & Hall (1966)

Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Intro-
duction to Cluster Analysis. John Wiley and Sons, Inc (1990)
Skewed TPC-D data generator.
Ftp://ftp.research.microsoft.com/users/viveknar/ TPCDSkew/

