
A Unified Approach to Ranking in Probabilistic Databases

Jian Li ∗ Barna Saha † Amol Deshpande ‡

Abstract

Ranking is a fundamental operation in data analysis and decision support, and plays an even more
crucial role if the dataset being explored exhibits uncertainty. This has led to much work in understanding
how to rank the tuples in a probabilistic dataset in recent years. In this article, we present a unified ap-
proach to ranking and top-k query processing in probabilistic databases by viewing it as a multi-criteria
optimization problem, and by deriving a set of features that capture the key properties of a probabilistic
dataset that dictate the ranked result. We contend that a single, specific ranking function may not suffice
for probabilistic databases, and we instead propose two parameterized ranking functions, called PRFω

and PRFe, that generalize or can approximate many of the previously proposed ranking functions. We
present novel generating functions-based algorithms for efficiently ranking large datasets according to
these ranking functions, even if the datasets exhibit complex correlations modeled using probabilistic
and/xor trees or Markov networks. We further propose that the parameters of the ranking function be
learned from user preferences, and we develop an approach to learn those parameters. Finally, we present
a comprehensive experimental study that illustrates the effectiveness of our parameterized ranking func-
tions, especially PRFe, at approximating other ranking functions and the scalability of our proposed
algorithms for exact or approximate ranking.

1 Introduction

Recent years have seen a dramatic increase in the number of applications domains that naturally generate
uncertain data and that demand support for executing complex decision support queries over them. These
include information retrieval [21], data integration and cleaning [2, 18], text analytics [25, 31], social net-
work analysis [1], sensor data management [12, 17], financial applications, biological and scientific data
management, etc. Uncertainty arises in these environments for a variety of reasons. Sensor data typically
contains noise and measurement errors, and is often incomplete because of sensor faults or communication
link failures. In social networks and scientific domains, the observed interaction or experimental data is of-
ten very noisy, and ubiquitous use of predictive models adds a further layer of uncertainty. Use of automated
tools in data integration and information extraction can introduce significant uncertainty in the output.

By their very nature, many of these applications require support for ranking or top-k query processing
over large volumes of data. For instance, consider a House Search application where a user is searching for a
house using a real estate sales dataset that lists the houses for sale. Such a dataset, which may be constructed
by crawling and combining data from multiple sources, is inherently uncertain and noisy. In fact, the houses
that the user prefers the most, are also the most likely to be sold by now. We may denote such uncertainty
by associating with each advertisement a probability that it is still valid. Incorporating such uncertainties
into the returned answers is, however, a challenge considering the complex interplay between the relevance
of a house by itself, and the probability that the advertisement is still valid.
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Many other application domains also exhibit resource constraints of some form, and we must somehow
rank the entities or tuples under consideration to select the most relevant objects to focus our attention on.
For example, in financial applications, we may want to choose the best stocks in which to invest, given their
expected performance in the future (which is uncertain at best). In learning or classification tasks, we often
need to choose the best “k” features to use [56]. In sensor networks or scientific databases, we may not know
the “true” values of the physical properties being measured because of measurement noises or failures [17],
but we may still need to choose a set of sensors or entities in response to a user query.

Ranking in presence of uncertainty is non-trivial even if the relevance scores can be computed easily
(the main challenge in the deterministic case), mainly because of the complex trade-offs introduced by the
score distributions and the tuple uncertainties. This has led to many ranking functions being proposed for
combining the scores and the probabilities in recent years, all of which appear quite natural at the first
glance (we review several of them in detail later). We begin with a systematic exploration of these issues by
recognizing that ranking in probabilistic databases is inherently a multi-criteria optimization problem, and
by deriving a set of features, the key properties of a probabilistic dataset that influence the ranked result. We
empirically illustrate the diverse and conflicting behavior of several natural ranking functions, and argue that
a single specific ranking function may not be appropriate to rank different uncertain databases that we may
encounter in practice. Furthermore, different users may weigh the features differently, resulting in different
rankings over the same dataset. We then define a general and powerful ranking function, called PRF,
that allows us to explore the space of possible ranking functions. We discuss its relationship to previously
proposed ranking functions, and also identify two specific parameterized ranking functions, called PRFω and
PRFe, as being interesting. The PRFω ranking function is essentially a linear, weighted ranking function
that resembles the scoring functions typically used in information retrieval, web search, data integration,
keyword query answering etc. [9, 16, 27, 34, 52]. We observe that PRFω may not be suitable for ranking
large datasets due to its high running time, and instead propose PRFe, which uses a single parameter, and
can effectively approximate previously proposed ranking functions for probabilistic databases very well.

We then develop novel algorithms based on generating functions to efficiently rank the tuples in a prob-
abilistic dataset using any PRF ranking function. Our algorithm can handle a probabilistic dataset with arbi-
trary correlations; however, it is particularly efficient when the probabilistic database contains only mutual
exclusivity and/or co-existence correlations (called probabilistic and/xor trees [42]). Our main contributions
can be summarized as follows:
• We develop a framework for learning ranking functions over probabilistic databases by identifying a set of

key features, by proposing several parameterized ranking functions over those features, and by choosing
the parameters based on user preferences or feedback.

• We present novel algorithms based on generating functions that enable us to efficiently rank very large
datasets. Our key algorithm is anO(n log(n)) algorithm for evaluating a PRFe function over datasets with
low correlations (specifically, constant height probabilistic and/xor trees). The algorithm runs in O(n)
time if the dataset is pre-sorted by score.

• We present a polynomial time algorithm for ranking a correlated dataset when the correlations are captured
using a bounded-treewidth graphical model. The algorithm we present is actually for computing the prob-
ability that a given tuple is ranked at a given position across all the possible worlds, and is of independent
interest.

• We develop a novel, DFT-based algorithm for approximating an arbitrary weighted ranking function using
a linear combination of PRFe functions.

• We show that a PRFω ranked result can be seen as a consensus answer under a suitably defined distance
function – a consensus answer is defined to be the answer that is closest in expectation to the answers over
the possible worlds.
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• We present a comprehensive experimental study over several real and synthetic datasets, comparing the
behavior of the ranking functions and the effectiveness of our proposed algorithms.

Outline: We begin with a brief discussion of the related work (Section 2). In Section 3, we review our
probabilistic database model and the prior work on ranking in probabilistic databases, and propose two
parameterized ranking functions. In Section 4, we present our generating functions-based algorithms for
ranking. We then present an approach to approximate different ranking functions using our parameterized
ranking functions, and to learn a ranking function from user preferences (Section 5). In Section 6, we
explore the connection between PRFω and consensus top-k query results. In Section 7, we observe an
interesting property of the PRFe function that helps us gain better insight into its behavior. We then present
a comprehensive experiment study in Section 8. Finally, in Section 9, we develop an algorithm for handling
correlated datasets where the correlations are captured using bounded-treewidth graphical models.

2 Related Work

There has been much work on managing probabilistic, uncertain, incomplete, and/or fuzzy data in database
systems (see, e.g., [12, 14, 21, 24, 38, 41, 53]). The work in this area has spanned a range of issues
from theoretical development of data models and data languages to practical implementation issues such as
indexing techniques; several research efforts are underway to build systems to manage uncertain data (e.g.,
MYSTIQ [14], Trio [53], ORION [12], MayBMS [38], PrDB [49]). The approaches can be differentiated
based on whether they support tuple-level uncertainty where “existence” probabilities are attached to the
tuples of the database, or attribute-level uncertainty where (possibly continuous) probability distributions
are attached to the attributes, or both. The proposed approaches differ further based on whether they consider
correlations or not. Most work in probabilistic databases has either assumed independence [14, 21] or has
restricted the correlations that can be modeled [2, 41, 48]. More recently, several approaches have been
presented that allow representation of arbitrary correlations and querying over correlated databases [24, 39,
49].

The area of ranking and top-k query processing has also seen much work in databases (see, e.g., Ilyas et
al.’s survey [29]). More recently, several researchers have considered top-k query processing in probabilistic
databases. Soliman et al. [50] defined the problem of ranking over probabilistic databases, and proposed
two ranking functions to combine tuple scores and probabilities. Yi et al. [54] present improved algorithms
for the same ranking functions. Zhang and Chomicki [55] present a desiderata for ranking functions, and
propose the notion of Global Top-k answers. Ming Hua et al. [28] propose probabilistic threshold ranking,
which is quite similar to Global Top-k. Cormode et al. [13] also present a semantics of ranking functions
and a new ranking function called expected rank. Liu et al. [45] propose the notion of k-selection queries;
unlike most of the above definitions, the result here is sensitive to the actual tuple scores. We will review
these ranking functions in detail in next section. Ge et al. [22] propose the notion of typical answers,
where they propose returning a collection of typical answers instead of just one answer. This can be seen
as complementary to our approach here; one could show the typical answers to the user to understand the
user preferences during an exploratory phase, and then learn a single ranking function to rank using the
techniques developed in this article.

There has also been work on top-k query processing in probabilistic databases where the ranking is by
the result tuple probabilities (i.e., probability and score are identical) [46]. The main challenge in that work
is efficient computation of the probabilities, whereas we assume that the probability and score are either
given or can be computed easily.

The aforementioned work has focused mainly on tuple uncertainty and discrete attribute uncertainty.
Soliman and Ilyas [51] were the first to consider the problem of handling continuous distributions. Recently,
in a followup work [43], we extended the algorithm for PRF to arbitrary continuous distributions. We
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Time Car Plate Speed . . . Prob Tuple
Loc No Id

11:40 L1 X-123 120 . . . 0.4 t1
11:55 L2 Y-245 130 . . . 0.7 t2
11:35 L3 Y-245 80 . . . 0.3 t3
12:10 L4 Z-541 95 . . . 0.4 t4
12:25 L5 Z-541 110 . . . 0.6 t5
12:15 L6 L-110 105 . . . 1.0 t6

Possible Worlds Prob
pw1 = {t2, t1, t6, t4} .112
pw2 = {t2, t1, t5, t6} .168
pw3 = {t1, t6, t4, t3} .048
pw4 = {t1, t5, t6, t3} .072
pw5 = {t2, t6, t4} .168
pw6 = {t2, t5, t6} .252
pw7 = {t6, t4, t3} .072
pw8 = {t5, t6, t3} .108

∨ ∨ ∨

∧

t1 120, t2 130, t3 80, t4 95, t5 110, t6 105,

∨
.4 .7 .3 .4 .6 1

Figure 1: Example of a probabilistic database which contains automatically captured information about
speeding cars – here the Plate No. is the possible worlds key and the speed is the score attribute that we
will use for ranking. Tuples t2 and t3 (similarly, t4 and t5) are mutually exclusive. The second table lists
all possible worlds. Note that the tuples are sorted according to their speeds in each possible world. The
corresponding and/xor tree compactly encodes these correlations.

were able to obtain exact polynomial time algorithms for some continuous probability distribution classes,
and efficient approximation schemes with provable guarantees for arbitrary probability distributions. One
important ingredient of those algorithms is an extension of the generating function used in this article.

Recently, there has also been much work on nearest neighbor-style queries over uncertain datasets [6,
10, 11, 40]. In fact, a nearest neighbor query (or a k-nearest neighbor query) can be seen as a ranking
query where the score of a point is the distance of that point to the given query point. Thus, our new
ranking semantics and algorithms can be directly used for nearest neighbor queries over uncertain points
with discrete probability distributions.

There is a tremendous body of work on ranking documents in information retrieval, and learning how to
rank documents given user preferences (see Liu [44] for a comprehensive survey). That work has considered
aspects such as different ranking models, loss functions, different scoring techniques etc. The techniques
developed there tend to be specific to document retrieval (focusing on keywords, terms, and relevance),
and usually do not deal with existence uncertainty (although they often do model document relevance as a
random variable). Furthermore, our work here primarily focuses on highly efficient algorithms for ranking
using a spectrum of different ranking functions. Exploring and understanding the connections between the
two research areas is a fruitful direction for further research.

Finally, we note that one PRF function is only able to model preferences of one user. There is an
increasing interest in finding a ranking that satisfies multiple users having diverse preferences and intents.
Several new theoretical models have been proposed recently [3–5]. However, all the inputs are assumed to
be certain in those models. Incorporating uncertainty into those models or introducing the notion of diversity
into our model is an interesting research direction.

3 Problem Formulation

We begin with defining our model of a probabilistic database, called probabilistic and/xor tree [42], that
captures several common types of correlations. We then review the prior work on top-k query processing in
probabilistic databases, and argue that a single specific ranking function may not capture the intricacies of
ranking with uncertainty. We then present our parameterized ranking functions, PRFω and PRFe.

3.1 Probabilistic Database Model

We use the prevalent possible worlds semantics for probabilistic databases [14]. We denote a probabilistic re-
lation with tuple uncertainty byDT , where T denotes the set of tuples (in Section 4.4, we present extensions
to handle attribute uncertainty). The set of all possible worlds is denoted by PW = {pw1, pw2, ...., pwn}.
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Each tuple ti ∈ T is associated with an existence probability Pr(ti) and a score score(ti), computed based
on a scoring function score : T → R. Usually score(t) is computed based on the tuple attribute values and
measures the relative user preference for different tuples. In a deterministic database, tuples with higher
scores should be ranked higher. We use rpw : T → {1, . . . , n} ∪ {∞} to denote the rank of the tuple t in
a possible world pw according to score. If t does not appear in the possible world pw, we let rpw(t) = ∞.
We say t1 ranks higher than t2 in the possible world pw if rpw(t1) < rpw(t2). For each tuple t, we define a
random variable r(t) that denotes the rank of t in DT .

Definition 1 The positional probability of a tuple t being ranked at position k, denoted Pr(r(t) = k), is the
total probability of the possible worlds where t is ranked at position k. The rank distribution of a tuple t,
denoted Pr(r(t)), is simply the probability distribution of the random variable r(t).

Probabilistic And/Xor Tree Model: Our algorithms can handle arbitrarily correlated relations where cor-
relations modeled using Markov networks (Section 9). However, in most of this article, we focus on the
probabilistic and/xor tree model, introduced in our prior work [42], that can capture only a more restricted
set of correlations, but admits highly efficient query processing algorithms. More specifically, an and/xor
tree captures two types of correlations: (1) mutual exclusivity (denoted ∨© (xor)) and (2) mutual co-existence
( ∧© (and)). Two events satisfy the mutual co-existence correlation if, in any possible world, either both
events occur or neither occurs. Similarly two events are mutually exclusive if there is no possible world
where both happen.

Now, let us formally define a probabilistic and/xor tree. In tree T , we denote the set of children of node
v by ChT (v) and the least common ancestor of two leaves l1 and l2 by LCAT (l1, l2). We omit the subscript
if the context is clear. For simplicity, we separate the attributes of the relation into two groups: (1) a possible
worlds key, denoted K, which is unique in any possible world (i.e., two tuples that agree on K are mutually
exclusive), and (2) the value attributes, denoted A. If the relation does not have any key attributes, K = φ.

Definition 2 A probabilistic and/xor tree T represents the mutual exclusion and co-existence correlations in
a probabilistic relation RP (K;A), where K is the possible worlds key, and A denotes the value attributes.
In T , each leaf denotes a tuple, and each inner node has a mark, ∨© or ∧©. For each ∨© node u and each
of its children v ∈ Ch(u), there is a nonnegative value p(u,v) associated with the edge (u, v). Moreover, we
require:

• (Probability Constraint)
∑

v:v∈Ch(u) Pr(u, v) ≤ 1.

• (Key Constraint) For any two different leaves l1, l2 holding the same key, LCA(l1, l2) is a ∨© node1.

Let Tv be the subtree rooted at v and Ch(v) = {v1, . . . , v`}. The subtree Tv inductively defines a random
subset Sv of its leaves by the following independent process:
• If v is a leaf, Sv = {v}.

• If Tv roots at a ∨© node, then

Sv =

{
Svi with prob p(v,vi)

∅ with prob 1−
∑`

i=1 p(v,vi)

• If Tv roots at a ∧© node, then Sv = ∪`i=1Svi

x-tuples (which can be used to specify mutual exclusivity correlations between tuples) correspond to
the special case where we have a tree of height 2, with a ∧© node as the root and only ∨© nodes in the
second level. Figure 2 shows an example of an and/xor tree that models the data from a traffic monitoring

1 The key constraint is imposed to avoid two leaves with the same key but different attribute values coexisting in a possible
world.
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Possible Worlds Prob
pw1 = {(t3, 6), (t2, 5), (t11)} .3
pw2 = {(t3, 9), (t1, 7)} .3
pw3 = {(t2, 8), (t4, 4), (t5, 3)} .4

t3, 6 t2, 5 t1, 1 t3, 9 t1, 7 t2, 8 t4, 4 t5, 3

∧ ∧ ∧

∨
.3 .3 .4

x3

Figure 2: Example of a highly correlated probabilistic database with 3 possible worlds and the and/xor tree
that captures the correlation.

application [50], where the tuples represent automatically captured traffic data. The inherent uncertainty in
the monitoring infrastructure is captured using an and/xor tree, that encodes the tuple existence probabilities
as well as the correlations between the tuples. For example, the leftmost ∨© node indicates t1 is present with
probability .4 and the second ∨© node dictates that exactly one of t2 and t3 should appear. The topmost ∧©
node tells us the random sets derived from these ∨© nodes coexist.

We note that and/xor trees are able to represent any finite set of possible worlds. This can be done by
listing all possible worlds, creating one ∧© node for each world, and using a ∨© node as the root to capture
that these worlds are mutual exclusive. Figure 2 shows an example of this.

Probabilistic and/xor trees significantly generalize x-tuples [48, 54], block-independent disjoint tuples
model, and p-or-sets [15], and as discussed above, can represent a finite set of arbitrary possible worlds.
The correlations captured by such a tree can be represented by probabilistic c-tables [24] and provenance
semirings [23]. However, that does not directly imply an efficient algorithm for ranking. We remark that
Markov or Bayesian network models are able to capture more general correlations in a compact way [49],
however, the structure of the model is more complex and probability computations on them (inference)
is typically exponential in the treewidth of the model. The treewidth of an and/xor tree (viewing it as a
Markov network) is not bounded, and hence the techniques developed for those models can not be used to
obtain polynomial time algorithms for and/xor trees. And/xor trees also exhibit superficial similarities to
ws-trees [39], which can also capture mutual exclusivity and coexistence between tuples. We note that no
prior work on ranking in probabilistic databases has considered more complex correlations than x-tuples.

3.2 Ranking over Probabilistic Data: Definitions and Prior Work

The interplay between probabilities and scores complicates the semantics of ranking in probabilistic databases.
This was observed by Soliman et al. [50], who first considered this problem and presented two definitions of
top-k queries in probabilistic databases. Several other definitions of ranking have been proposed since then.
We briefly review the ranking functions we consider in this work.

– Uncertain Top-k (U-Top) [50]: Here the query returns the k-tuple set that appears as the top-k answer in
most possible worlds (weighted by the probabilities of the worlds).

– Uncertain Rank-k (U-Rank) [50]: At each rank i, we return the tuple with the maximum probability of
being at the i’th rank in all possible worlds. In other words, U-Rank returns:
{t∗i , i = 1, 2, .., k}, where t∗i = argmaxt(Pr(r(t) = i)). Note that, under these semantics, the same
tuple may be ranked at multiple positions. In our experiments, we use a slightly modified version that
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enforces distinct tuples in the answer (by not choosing a tuple at a position if it is already chosen at a
higher position).

– Probabilistic Threshold Top-k (PT(h)) [28]2: The original definition of a probabilistic threshold query
asks for all tuples with probability of being in top-h answer larger than a pre-specified threshold, i.e., all
tuples t such that Pr(r(t) ≤ h) > threshold. For consistency with other ranking functions, we slightly
modify the definition and instead ask for the k tuples with the largest Pr(r(t) ≤ h) values.

– Expected Ranks (E-Rank) [13]: The tuples are ranked in the increasing order by the expected value of
their ranks across the possible worlds, i.e., by:∑

pw∈PW Pr(pw)rpw(t),
where rpw(t) is defined to be |pw| if t /∈ pw.

– Expected Score (E-Score): Another natural ranking function, also considered by [13], is simply to rank
the tuples by their expected score, Pr(t)score(t).

– k-selection Query [45]: A k-selection query returns the set of k tuples, such that the expected score of
the best available tuple across the possible worlds is maximized.

– Consensus Top-k (Con-Topk): This is a semantics for top-k queries developed under the framework of
consensus answers in probabilistic databases [42]. We defer its definition till Section 6 where we discuss
in detail its relationship with the PRF function proposed in this article.

Normalized Kendall Distance: To compare different ranking functions or criteria, we need a distance mea-
sure to evaluate the closeness of two top-k answers. We use the prevalent Kendall tau distance defined
for comparing top-k answers for this purpose [20]. It is also called Kemeny distance in the literature and
is considered to have many advantages over other distance metrics [19]. Let R1 and R2 denote two full
ranked lists, and let K1 and K2 denote the top-k ranked tuples inR1 andR2 respectively. Then Kendall tau
distance between K1 and K2 is defined to be:

dis(K1,K2) =
∑

(i,j)∈P (K1,K2) K̂(i, j) ,

where P (K1,K2) is the set of all unordered pairs of K1 ∪ K2; K̂(i, j) = 1 if it can be inferred from K1

and K2 that i and j appear in opposite order in the two full ranked lists R1 and R2, otherwise K̂(i, j) = 0.
Intuitively the Kendall distance measures the number of inversions or flips between the two rankings. For
ease of comparison, we divide the Kendall distance by k2 to obtain normalized Kendall distance, which
always lies in [0, 1].

A higher value of the Kendall distance indicates a larger disagreement between the two top-k lists. It
is easy to see that if the Kendall distance between two top-k answers is δ, then the two answers must share
at least 1 −

√
δ fraction of tuples (so if the distance is 0.09, then the top-k answers share at least 70%, and

typically 90% or more tuples). The distance is 0 if two top-k answers are identical and 1 if they are disjoint.

Comparing Ranking Functions: We compared the top-100 answers returned by five of the ranking func-
tions with each other using the normalized Kendall distance, for two datasets with 100,000 independent
tuples each (see Section 8 for a description of the datasets). Table 1 shows the results of this experiment.
As we can see, the five ranking functions return wildly different top-k answers for the two datasets, with
no obvious trends. For the first dataset, E-Rank behaves very differently from all other functions, whereas
for the second dataset, E-Rank happens to be quite close to E-Score. However both of them deviate largely
from U-Top, PT(h), and U-Rank. The behavior of E-Score is very sensitive to the dataset, especially the
score distribution: it is close to PT(h) and U-Rank for the first dataset, but far away from all of them in

2This is quite similar to the Global Top-k semantics [55].

7



E-Score PT(100) U-Rank E-Rank U-Top
E-Score – 0.1241 0.3027 0.7992 0.2760
PT(100) 0.1241 – 0.3324 0.9290 0.3674
U-Rank 0.3027 0.3324 – 0.9293 0.2046
E-Rank 0.7992 0.9290 0.9293 – 0.9456
U-Top 0.2760 0.3674 0.2046 0.9456 –

IIP-100,000 (k = 100)
E-Score PT(100) U-Rank E-Rank U-Top

E-Score – 0.8642 0.8902 0.0044 0.9258
PT(100) 0.8642 – 0.3950 0.8647 0.5791
U-Rank 0.8902 0.3950 – 0.8907 0.3160
E-Rank 0.0044 0.8647 0.8907 – 0.9263
U-Top 0.9258 0.5791 0.3160 0.9263 –

Syn-IND Dataset with 100,000 tuples (k = 100)

Table 1: Normalized Kendall distance between top-k answers according to various ranking functions for
two datasets

the second dataset (by looking into the results, it shares less than 15 tuples with the Top-100 answers of the
others). We observed similar behavior for other datasets, and for datasets with correlations.

This simple experiment illustrates the issues with ranking in probabilistic databases – although several
of these definitions seem natural, the wildly different answers they return indicate that none of them could
be the “right” definition.

We also observe that in large datasets, E-Rank tends to give very high priority to a tuple with a high
probability even if it has a low score. In our synthetic dataset Syn-IND-100,000 with expected size≈ 50000,
t2 (the tuple with 2nd highest score) has probability approximately 0.98 and t1000 (the tuple with 1000th
highest score) has probability 0.99. The expected ranks of t2 and t1000 are approximately 10000 and 6000
respectively, and hence t1000 is ranked above t2 even though t1000 is only slightly more probable.

As mentioned above, the original U-Rank function may return the same tuple at different ranks (also
observed by the authors [50]), which is usually undesirable. This problem becomes even severe when the
dataset and k are both large. For example, in RD-100,000, the same tuple is ranked at positions 67895 to
100000. In the table, we show a slightly modified version of U-Rank to enforce distinct tuples in the answer.

3.3 Parameterized Ranking Functions

Ranking in uncertain databases is inherently a multi-criteria optimization problem, and it is not always clear
how to rank two tuples that dominate each other along different axes. Consider a database with two tuples
t1 (score = 100, Pr(t1) = 0.5), and t2 (score = 50, Pr(t2) = 1.0). Even in this simple case, it is not clear
whether to rank t1 above t2 or vice versa. This is an instance of the classic risk-reward trade-off, and the
choice between these two options largely depends on the application domain and/or user preferences.

We propose to follow the traditional approach to dealing with such tradeoffs, by identifying a set of
features, by defining a parameterized ranking function over these features, and by learning the parameters
(weights) themselves using user preferences [9, 16, 27, 34]. To achieve this, we propose a family of ranking
functions, parameterized by one or more parameters, and design algorithms to efficiently find the top-k
answer according to any ranking function from these families. Our general ranking function, PRF, directly
subsumes some of the previously proposed ranking functions, and can also be used to approximate other
ranking functions. Moreover, the parameters can be learned from user preferences, which allows us to adapt
to different scenarios and different application domains.
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Pr(r(ti) = j) Positional prob. of ti being ranked at position j
Pr(r(ti)) Rank distribution of ti
PRF Parameterized ranking function

Υω(t) =
∑

i>0 ω(t, i) Pr(r(t) = i)

PRFω(h) Special case of PRF: ω(t, i) = wi, wi = 0,∀i > h

PRFe(α) Special case of PRFω: wi = αi, α ∈ C
PRF` Special case of PRFω: wi = −i
δ(p) Delta function: δ(p) = 1 if p is true, δ(p) = 0 o.w.

Table 2: Notation

Features: Although it is tempting to use the tuple probability and the tuple score as the features, a ranking
function based on just those two will be highly sensitive to the actual values of the scores; further, such a
ranking function will be insensitive to the correlations in the database, and hence cannot capture the rich
interactions between ranking and possible worlds.

Instead we propose to use the positional probabilities as the features: for each tuple t, we have n features,
Pr(r(t) = i), i = 1, · · · , n,

where n is the number of tuples in the database. This set of features succinctly captures the possible worlds.
Further, correlations among tuples, if any, are naturally accounted for when computing the features. We
note that in most cases, we do not explicitly compute all the features, and instead design algorithms that can
directly compute the value of the overall ranking function.

Ranking Functions: Next we define a general ranking function which allows exploring the trade-offs dis-
cussed above.

Definition 3 Let ω : T × N → C be a weight function, that maps a tuple-rank pair to a complex number.
The parameterized ranking function (PRF), Υω : T → C in its most general form is defined to be:

Υω(t) =
∑

pw:t∈pw
ω(t, rpw(t)) · Pr(pw)

=
∑

pw:t∈pw

∑
i>0

ω(t, i) Pr(pw ∧ rpw(t) = i)

=
∑
i>0

ω(t, i) · Pr(r(t) = i).

A top-k query returns k tuples with the highest |Υω| values.

In most cases, ω is a real positive function and we just need to find the k tuples with highest Υω values.
However we allow ω to be a complex function in order to approximate other functions efficiently (see
Section 5.1). Depending on the actual function ω, we get different ranking functions with diverse behaviors.
Before discussing the relationship to prior ranking functions, we define two special cases.

PRFω(h): One important class of ranking functions is when ω(t, i) = wi (i.e., independent of t) and wi =
0 ∀i > h for some positive integer h (typically h � n). This forms one of prevalent classes of ranking
functions used in domains such as information retrieval and machine learning, with the weights typically
learned from user preferences [9, 16, 27, 34]. Also, the weight function ω(i) = ln 2

ln(i+1) (called discount
factor) is often used in the context of ranking documents in information retrieval [30].

PRFe(α): This is a special case of PRFω(h) where wi = ω(i) = αi, where α is a constant and may be a
real or a complex number. Here h = n (no weights are 0). Typically we expect |α| ≤ 1, otherwise we have
the counterintuitive behavior that tuples with lower scores are preferred.

9



PRFω and PRFe form the two parameterized ranking functions that we propose in this work. Although
PRFω is the more natural ranking function and has been used elsewhere, PRFe is more suitable for ranking
in probabilistic databases for various reasons. First, the features as we have defined above are not completely
arbitrary, and the features Pr(r(t) = i) for small i are clearly more important than the ones for large i.
Hence in most cases we would like the weight function, ω(i), to be monotonically non-increasing. PRFe

naturally captures this behavior (as long as |α| ≤ 1). More importantly, we can compute the PRFe function
in O(n log(n)) time (O(n) time if the dataset is pre-sorted by score) even for datasets with low degrees of
correlations (i.e., modeled by and/xor trees with low heights). This makes it significantly more attractive for
ranking over large datasets.

Furthermore, ranking by PRFe(α), with suitably chosen α, can approximate rankings by many other
functions reasonably well even with only real α. Finally, a linear combination of exponential functions,
with complex bases, is known to be very expressive in representing other functions [7]. We make use of this
fact to approximate many ranking functions by linear combinations of a small number of PRFe functions,
thus significantly speeding up the running time (Section 5.1).

Relationship to other ranking functions: We illustrate some of the choices of weight function, and relate
them to prior ranking functions3. We omit the subscript ω if the context is clear. Let δ(p) denote a delta
function where p is a boolean predicate: δ(p) = 1 if p = true, and δ(p) = 0 otherwise.

– Ranking by probabilities: If ω(t, i) = 1, the result is the set of k tuples with the highest probabili-
ties [46].

– Expected Score: By setting ω(t, i) = score(t), we get the E-Score:

Υ(t) =
∑

pw:t∈pw
score(t) Pr(pw) = score(t) Pr(t) = E[score(t)]

– Probabilistic Threshold Top-k (PT(h)): If we choose ω(i) = δ(i ≤ h), i.e., ω(i) = 1 for i ≤ h, and
= 0 otherwise, then we have exactly the answer for PT(h).

– Uncertain Rank-k (U-Rank): Let ωj(i) = δ(i = j), for some 1 ≤ j ≤ k. We can see the tuple with
largest Υωj value is the rank-j answer in U-Rank query [50]. This allows us to compute the U-Rank
answer by evaluating Υωj (t) for all t ∈ T and j = 1, . . . , k.

– Expected ranks (E-Rank): Let PRF` (PRF linear) be another special case of the PRFω function, where
wi = ω(i) = −i. The PRF` function bears a close similarity to the notion of expected ranks. Recall that
the expected rank of a tuple t is defined to be:

E[rpw(t)] =
∑

pw∈PW
Pr(pw)rpw(t)

where rpw(t) = |pw| if ti /∈ pw. Let C denote the expected size of a possible world. It is easy to see that:
C =

∑n
i=1 pi due to linearity of expectation. Then the expected rank of t can be seen to consist of two

parts:

(1) the contribution of possible worlds where t exists:

er1(t) =
∑
i>0

i× Pr(r(t) = i) = −Υ(t)

3The definition of the U-Top introduced in [50] requires the retrieved k tuples belongs to a valid possible world. However, it is
not required in our definition, and hence it is not possible to simulate U-Top using PRF.
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where Υ(t) is the PRF` value of tuple t.4

(2) the contribution of worlds where t does not exist:

er2(t) =
∑

pw:t/∈pw

Pr(pw)|pw|

= (1− p(t))(
∑
ti 6=t

Pr(ti | t does not exist))

If the tuples are independent of each other, then we have:∑
ti 6=t

Pr(ti | t does not exist) = (C − p(t))

Thus, the expected ranks can be computed in the same time as PRF` in tuple-independent datasets. This
term can also be computed efficiently in many other cases, including in datasets where only mutual
exclusion correlations are permitted. If the correlations are represented using a probabilistic and/xor
tree (see Section 4.2) or a low-treewidth graphical model (see Section 9), then we can compute this term
efficiently as well, thus generalizing the prior algorithms for computing expected ranks.

– k-selection Query [45]: It is easy to see that a k-selection query is equivalent to setting: ω(t, i) = δ(i =
1)score(t).

As we can see, many different ranking functions can be seen as special cases of the general PRF ranking
function, supporting our claim that PRF can effectively unify these different approaches to ranking uncertain
datasets.

4 Ranking Algorithms

We next present an algorithm for efficiently ranking according to a PRF function. We first present the
basic idea behind our algorithm assuming mutual independence, and then consider correlated tuples with
correlations represented using an and/xor tree. We then present a very efficient algorithm for ranking using
a PRFe function, and then briefly discuss how to handle attribute uncertainty.

4.1 Assuming Tuple Independence

First we show how the PRF function can be computed in O(n2) time for a general weight function ω, and
for a given set of tuples T = {t1, . . . , tn}. In all our algorithms, we assume that ω(t, i) can be computed in
O(1) time.

Clearly it is sufficient to compute Pr(r(t) = j) for any tuple t and 1 ≤ j ≤ n inO(n2) time. Given these
values, we can directly compute the values of Υ(t) inO(n2) time. (Later, we will present several algorithms
which run in O(n) or O(n log(n)) time which combine these two steps for some special ω functions).

We first sort the tuples in a non-increasing order by their scores (which are assumed to be deterministic);
assume t1, . . . , tn indicates this sorted order. Suppose now we want to compute Pr(r(ti) = j). Let Ti =
{t1, t2, . . . , ti} and σi be an indicator variable that takes value 1 if ti is present in a possible world, and 0
otherwise. Further, let σ = 〈σ1, . . . , σn〉 denote a vector containing all the indicator variables. Then, we

4Note that, in the expected rank approach, we pick the k tuples with the lowest expected rank, but in our approach, we choose
the tuples with the highest PRF function values, hence the negation.
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Figure 3: PRF computation on and/xor trees: (i) The left figure corresponds to the database in Figure 2; the
generating function obtained by assigning the same variable x to all leaves gives us the distribution over the
sizes of the possible worlds. (ii) The right figure illustrates the construction of the generating function for
computing Pr(r(t4) = 3) in the and/xor tree in Figure 1.

can write Pr(r(ti) = j) as follows:

Pr(r(ti) = j) = Pr(ti)
∑

pw:|pw∩Ti−1|=j−1

Pr(pw)

= Pr(ti)
∑

σ:
i−1∑
l=1

σl=j−1

∏
l<i:σl=1

Pr(tl)
∏

l<i:σl=0

(1− Pr(tl))

The first equality says that tuple ti ranks at the jth position if and only if ti and exactly j−1 tuples from
Ti−1 are present in the possible world. The second equality is obtained by rewriting the sum to be over the
indicator vector (each assignment to the indicator vector corresponds to a possible world), and by exploiting
the fact that the tuples are independent of each other. The naive method to evaluate the above formula by
explicitly listing all possible worlds needs exponential time. Now, we present a polynomial time algorithm
based on generating functions.
Consider the following generating function over x:

F(x) =
∏n
i=1(ai + bix)

The coefficient of xk in F(x) is: ∑
|β|=k

∏
i:βi=0 ai

∏
i:βi=1 bi

where β = 〈β1, . . . , βn〉 is a boolean vector, and |β| denotes the number of 1’s in β. Now consider the
following generating function:

F i(x) =

( ∏
t∈Ti−1

(
1− Pr(t) + Pr(t) · x

))
Pr(ti) · x =

∑
j≥0

cjx
j .

We can see that the coefficient cj of xj in the expansion of F i is exactly the probability that ti is at rank j,
i.e., cj = Pr(r(ti) = j). We note F i contains at most i + 1 nonzero terms. We observe this both from the
form of F i above, and also from the fact that Pr(r(ti) = j) = 0 if j > i. Hence, we can expand F i to
compute the coefficients in O(i2) time. This allows us to compute Pr(r(ti) = j) for ti in O(i2) time; Υ(ti),
in turn, can be written as:

Υ(ti) =
∑
j

ω(ti, j) · Pr(r(ti) = j) =
∑
j

ω(ti, j)cj (1)

which can be computed in O(i2) time.

Example 1 Consider a relation with 3 independent tuples t1, t2, t3 (already sorted according to the score
function) with existence probabilities 0.5, 0.6, 0.4, respectively. The generating function for t3 is:
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Algorithm 1: IND-PRF-RANK(DT )
F0(x) = 11

for i = 1 to n do2

F i(x) = Pr(ti)
Pr(ti−1)F

i−1(x)
(

1− Pr(ti−1) + Pr(ti−1)x
)

3

Expand F i(x) in the form of
∑

j cjx
j4

Υ(ti) =
∑n

j=1 ω(ti, j)cj5

return k tuples with largest Υ values6

F3(x) = (.5 + .5x)(.4 + .6x)(.4x) = .12x3 + .2x2 + .08x

This gives us:

Pr(r(t3) = 1) = .08,Pr(r(t3) = 2) = .2,Pr(r(t3) = 3) = .12

If we expand each F i for 1 ≤ i ≤ n from scratch, we need O(n2) time for each F i and O(n3) time in
total. However, the expansion of F i can be obtained from the expansion of F i−1 in O(i) time by observing
that:

F i(x) =
Pr(ti)

Pr(ti−1)
F i−1(x)

(
1− Pr(ti−1) + Pr(ti−1)x

)
(2)

This trick gives us a O(n2) time complexity for computing the values of the ranking function for all tuples.
See Algorithm 1 for the pseudocode. Note that O(n2) time is asymptotically optimal in general since the
computation involves at least O(n2) probabilities, namely Pr(r(ti) = j) for all 1 ≤ i, j ≤ n.

For some specific ω functions, we may be able to achieve faster running time. For PRFω(h) functions,
we only need to expand all F i’s up to xh term since ω(i) = 0 for i > h. Then, the expansion from F i−1(x)
to F i(x) only takes O(h) time. This yields an O(n · h + n log(n)) time algorithm. We note the above
technique also gives an O(nk + n log(n)) time algorithm for answering the U-Rank top-k query (all the
needed probabilities can be computed in that time), thus matching the best known upper bound by Yi et
al. [54] (the original algorithm in [50] runs in O(n2k) time).

We remark that the generating function technique can be seen as a variant of dynamic programming in
some sense; however, using it explicitly in place of the obscure recursion formula gives us a much cleaner
view and allows us to generalize it to handle more complicated tuple correlations. This also leads to an
algorithm for extremely efficient evaluation of PRFe functions (Section 4.3).

4.2 Probabilistic And/Xor Trees

Next we generalize our algorithm to handle a correlated database where the correlations can be captured us-
ing an and/xor tree. In fact, many types of probability computations on and/xor trees can be done efficiently
and elegantly using generating functions. Here we first provide a general result and then specialize it for
PRF computation.

As before, let T = {t1, t2, . . . , tn} denote the tuples sorted in a non-increasing order of their score
function, and let Ti = {t1, t2, . . . , ti}. Let T denote the and/xor tree. Suppose X = {x1, x2, . . .} is a set of
variables. Define a mapping π which associates each leaf l ∈ T with a variable π(l) ∈ X . Let Tv denote the
subtree rooted at v and let v1, . . . , vh be v’s children. For each node v ∈ T , we define a generating function
Fv(X ) = Fv(x1, x2, . . .) recursively:

• If v is a leaf, Fv(X ) = π(v).

• If v is a ∨© node,

Fv(X ) = (1−
∑h

l=1 p(v,vl)) +
∑h

l=1 p(v,vl)Fvl(X )
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• If v is a ∧© node, F iv(X ) =
∏h
l=1Fvl(X ).

The generating functionF(X ) for tree T is the one defined above for the root. It is easy to see, if we have
a constant number of variables, the polynomial can be expanded in the form of

∑
i1,i2,...

ci1,i2...x
i1
1 x

i2
2 . . . in

polynomial time.
Now recall that each possible world pw contains a subset of the leaves of T (as dictated by the ∨©

and ∧© nodes). The following theorem characterizes the relationship between the coefficients of F and the
probabilities we are interested in.

Theorem 1 The coefficient of the term
∏
j x

ij
j in F(X ) is the total probability of the possible worlds for

which, for all j, there are exactly ij leaves associated with variable xj .

See Appendix A for the proof. We first provide two simple examples to show how to use Theorem 1 to
compute the probabilities of two events related to the size of the possible world, and then show how to use
the same idea to compute Pr(r(t) = i).

Example 2 If we associate all leaves with the same variable x, the coefficient of xi is equal to Pr(|pw| = i).
The above can be used to obtain a distribution on the possible world sizes (Figure 3(i)).

Example 3 If we associate a subset S of the leaves with variable x, and other leaves with constant 1, the
coefficient of xi is equal to Pr(|pw ∩ S| = i).

Algorithm 2: ANDXOR-PRF-RANK(T )
π(ti)← 1∀i {π(ti) is the variable associated to leaf ti}
for i = 1 to n do

if i 6= 1 then s(ti−1)← x
π(ti)← y
F i(x, y) = GENE(Ti, π)
Expand F i(x, y) in the form

∑
j c
′
jx
j + (

∑
j cjx

j−1)y
Υ(ti) =

∑n
j=1 ω(ti, j)cj

return k tuples with largest Υ values
Subroutine: GENE(T , π)
r is the root of tree T
if T is a singleton node then

return π(r)
else
Ti is the subtree rooted at ri for ri ∈ Ch(r)
p =

∑
ri∈Ch(r) p(r,ri)

if r is a ∨©© node then
return 1− p+

∑
ri∈Ch(r) p(r,ri) · GENE(Ti, t)

if r is a ∧© node then
return

∏
ri∈Ch(r) GENE(Ti, t)

Next we show how to compute Pr(r(ti) = j) (i.e., the probability ti is ranked at position j). Let s
denote the score of the tuple. In the and/xor tree T , we associate all leaves with score value larger than
s with variable x, the leaf (ti, s) with variable y, and the rest of leaves with constant 1. Let the resulting
generating function be F i. By Theorem 1, the coefficient of xj−1y in the generating function F i is exactly
Pr(r(ti) = j). See Algorithm 2 for the pseudocode of the algorithm.
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Example 4 We consider the database in Figure 1. Suppose we want to compute Pr(r(t4) = 3). We asso-
ciate variable x to t1, t2, t5 and t6 since their scores are larger than t4’s score. We also associate y to t4
itself and 1 to t3 whose score is less t4’s. The generating function for the right hand side tree in Figure 3
is (.6 + .4x)(.3 + .7)(.4x + .6y)x = .168x4 + 0.112x3y + 0.324x3 + 0.216x2y + 0.108x2 + 0.072xy.
So we get that Pr(r(t5) = 3) is the coefficient of x2y which is 0.216. From Figure 1, we can also see
Pr(r(t5) = 3) = Pr(pw3) + Pr(pw5) = .048 + .168 = .216.

If we expand F iv for each internal node v in a naive way (i.e., we do polynomial multiplication one by
one), we can show the running time is O(n2) at each internal node, O(n3) for each tree F i and thus O(n4)
overall. If we do divide-and-conquer at each internal node and use the FFT-based (Fast Fourier Transfor-
mation) algorithm for the multiplication of polynomials, the running time for each F i can be improved to
O(n2 log2(n)). See Appendix B.1 for the details. In fact, we can further improve the running time to O(n2)
for each F i and O(n3) overall. We outline two algorithms in Appendix B.2.

4.3 Computing a PRFe Function

Next we present an O(n log(n)) algorithm to evaluate a PRFe function (the algorithm runs in linear time if
the dataset is pre-sorted by score). If ω(i) = αi, then we observe that:

Υ(ti) =

n∑
j=1

Pr(r(ti) = j)αj = F i(α) (3)

This surprisingly simple relationship suggests we don’t have to expand the polynomials F i(x) at all; instead
we can evaluate the numerical value ofF i(α) directly. Again, we note that the valueF i(α) can be computed
from the value of F i−1(α) inO(1) time using Equation (2). Thus, we haveO(n) time algorithm to compute
Υ(ti) for all 1 ≤ i ≤ n if the tuples are pre-sorted.

Example 5 Consider Example 1 and the PRF e function for t3. We choose ω(i) = .6i. Then, we can see
thatF3(x) = (.5+.5x)(.4+.6x)(.4x). So, Υ(t3) = F3(.6) = (.5+.5×.6)(.4+.6×.6)(.4×.6) = .14592.

We can use a similar idea to speed up the computation if the tuples are correlated and the correlations are
represented using an and/xor tree. Let Ti be the and/xor tree where π(tj) = x for 1 ≤ j < i, π(ti) = y
and π(tj) = 1 for j > i. Suppose the generating function for Ti is F i(x, y) =

∑
j c
′
jx
j + (

∑
j cjx

j−1)y

and Υ(ti) =
∑n

j=1 α
jcj . We observe an intriguing relationship between the PRFe value and the generating

function:

Υ(ti) =
∑
j

cjα
j =

(∑
j

c′jα
j + (

∑
j

cjα
j−1)α

)
−
∑
j

c′jα
j

= F i(α, α)−F i(α, 0).

Given this, Υ(ti) can be computed in linear time by bottom up evaluation of F i(α, α) and F i(α, 0) in T i.
If we simply repeat it n times, once for each ti, this gives us a O(n2) total running time.

By carefully sharing the intermediate results among computations of Υ(ti), we can improve the running
time to O(n log(n) + nd) where d is the height of the and/xor tree. This improved algorithm runs in
iterations. Suppose the tuples are already pre-sorted by their scores. Initially, the label of all leaves, i.e.,
π(ti), is 1. In iteration i, we change the label of leaf ti−1 from y to x and the label of ti from 1 to y. The
algorithm maintains the following information in each inner node v: the numerical values of F iv(α, α) and
F iv(α, 0). The values on node v need to be updated when the value of one of its children changes. Therefore,
in each iteration, the computation only happens on the two paths, one from ti−1 to the root and one from ti
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to the root. Since we update at most O(d) nodes for each iteration, the running time is O(nd). Suppose we
want to update the information on the path from ti−1 to the root. We first update the F iv(., .) values for the
leaf ti−1. Since F iti−1

= π(ti−1) = x, we have F iti−1
(α, α) = α and F iti−1

(α, 0) = α. We assume v’s child,
say u, just had its values changed. The updating rule for F iv(., .)(both F iv(α, α) and F iv(α, 0)) in node v is
as follows.

1. v is a ∧© node, F iv(., .)← F i−1
v (., .)F iu(., .)/F i−1

u (., .)

2. v is a ∨© node, then:

F iv(., .)← F i−1
v (., .) + p(v,u)F iu(., .)− p(v,u)F i−1

u (., .)

The values on other nodes are not affected. The updating rule for the path from ti to the root is the same
except that for the leaf ti, we have F iti(α, α) = α and F iti(α, 0) = 0 since F iti(x, y) = π(ti) = y. See
Algorithm 3 for the psuedo-code.
We note that, for the case of x-tuples, which can be represented using a two-level tree, this gives us an
O(n log(n)) algorithm for ranking according to PRFe.

Algorithm 3: ANDXOR-PRFe-RANK(T )
Fti(α, α) = 1,Fti(α, 0) = 1, ∀i
for i = 1 to n do

if i 6= 1 then
Fti−1(α, α) = α,Fti−1(α, 0) = α
UPDATE(T , ti−1)

Fti(α, α) = α,Fti(α, 0) = 0
UPDATE(T , ti)
Υ(ti) = Fr(α, α)−Fr(α, 0)

return k tuples with largest Υ values
Subroutine: UPDATE(T , v)
while v is not the root do

u← v
v ← parent(v)
if v is a ∧© node then
Fv(., .)← Fv(., .)F iu(., .)/Fu(., .)

if v is a ∨© node then
Fv(., .)← Fv(., .) + p(v,u)Fu(., .)− p(v,u)Fu(., .)

4.4 Attribute Uncertainty or Uncertain Scores

We briefly describe how we can do ranking over tuples with discrete attribute uncertainty where the uncertain
attributes are part of the tuple scoring function (if the uncertain attributes do not affect the tuple score, then
they can be ignored for the ranking purposes). More generally, this approach can handle the case when there
is a discrete probability distribution over the score of the tuple.

Assume
∑

j pi,j ≤ 1 for all i. The score scorei of tuple ti takes value vi,j with probability pi,j and ti
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PRF PRFω(h) PRFe

Independent tuples O(n2) O(nh+ n log(n)) O(n log(n))

And/Xor tree (height=d) O(n3) or O(n2 log2(n)d) O(n3) or O(n2 log2(n)d) O(nd+ n log(n)

And/Xor tree O(n3) O(n3) O(
∑

i di + n log(n))

Table 3: Summary of the running times. n is the number of tuples. di is the depth of tuple ti in the and/xor
tree.

does not appear in the database with probability 1−
∑

j pi,j . It is easy to see the PRF value of ti is

Υ(ti) =
∑
k>0

ω(ti, k) Pr(r(ti) = k)

=
∑
k>0

ω(ti, k)
∑
j

Pr(r(ti) = k ∧ scorei = vi,j)

=
∑
j

(∑
k>0

ω(ti, k) Pr(r(ti) = k ∧ scorei = vi,j)
)

The algorithm works by treating the alternatives of the tuples (with a separate alternative for each different
possible score for the tuple) as different tuples. In other words, we create a new tuple ti,j for each vi,j value.
ti,j has existence probability pi,j . Then, we add an xor constraint over the alternatives {ti,j}j of each tuple ti.
We can then use the algorithm for the probabilistic and/xor tree model to find the values of the PRF function
for each ti,j separately. Note that Pr(r(ti) = k ∧ scorei = vi,j) is exactly the probability that r(ti,j) = k in
the and/xor tree. Thus, by the above equation, we have that Υ(ti,j) =

∑
k>0 ω(ti, k) Pr(r(ti) = k∧scorei =

vi,j) and Υ(ti) =
∑

j Υ(ti,j). Therefore, in a final step, we calculate the Υ score for each original tuple ti
by adding the Υ scores of its alternatives {ti,j}j . If the original tuples were independent, the complexity of
this algorithm is O(n2) for computing the PRF function, and O(n log(n)) for computing the PRFe function
where n is the size of the input, i.e., the total number of different possible scores.

4.5 Summary

We summarize the complexities of the algorithms for different models in Table 3. Now, we explain some
entries in the table which has not been discussed. The first is the PRF computation over an and/xor tree
with height d. We have two choices here. One is just to use the algorithm for arbitrary and/xor trees,
i.e., to use the algorithm in Appendix B.2 to expand F i(x, y) for each i, which runs in O(n2) time. The
overall running time is O(n3). The other one is to use the divide-and-conquer algorithm in Appendix B.1
to expand the polynomial for each ∧© node in F i(x, y). We can easily see that expanding nodes for each
level of the tree requires at most O(n log2(n)) time. Therefore, the running time for expanding F i(x, y) is
at most O(n log2(n)d) and the overall running time is O(n2 log2(n)d) which is much better than O(n3) if
d � n. For PRFω(h) computation over and/xor trees, we do not know how to achieve a better bound as in
the tuple-independent datasets. We leave it as an interesting open problem.

For PRFe computation on and/xor trees, we use ANDXOR-PRFe-RANK. Now, the procedure UPDATE(T , ti)
runs in O(di) time where di is the depth of tuple ti in the and/xor tree, i.e., the length of path from the root
to ti. Therefore, the total running time is O(

∑
i di + n log(n)). If the height of the and/xor tree is bounded

by d, the running time is simply O(nd+ n log(n)).
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5 Approximating and Learning Ranking Functions

In this section, we discuss how to choose the PRF functions and their parameters. Depending on the appli-
cation domain and the scenarios, there are two approaches to this:
• If we know the ranking function we would like to use (say PT(h)), then we can either simulate or

approximate it using appropriate PRF functions.

• If we are instead provided user preferences data, we can learn the parameters from them.
Clearly, we would prefer to use a PRFe function, if possible, since it admits highly efficient ranking

algorithms. For this purpose, we begin with presenting an algorithm to find an approximation to an arbitrary
PRFω function using a linear combination of PRFe functions. We then discuss how to learn a PRFω function
from user preferences, and finally present an algorithm for learning a single PRFe function.

5.1 Approximating PRFω using PRFe Functions

A linear combination of complex exponential functions is known to be very expressive, and can approximate
many other functions very well [7]. Specifically, given a PRFω function, if we can write ω(i) as: ω(i) ≈∑L

l=1 ulα
i
l , then we have that:

Υ(t) =
∑
i

ω(i) Pr(r(t) = i) ≈
L∑
l=1

ul

(∑
i

αil Pr(r(t) = i)

)

This reduces the computation of Υ(t) to L individual PRFe function computations, each of which only
takes linear time. This gives us an O(n log(n) +nL) time algorithm for approximately ranking using PRFω

function for independent tuples (as opposed to O(n2) for exact ranking).
Several techniques have been proposed for finding such approximations using complex exponentials [7,

26]. Those techniques are however computationally inefficient, involving computation of the inverses of
large matrices and the roots of polynomials of high orders.

In this section, we present a clean and efficient algorithm, based on Discrete Fourier Transforms (DFT),
for approximating a function ω(i), that approaches zero for large values of i (in other words, ω(i) ≥ ω(i+
1)∀i, ω(i) = 0, i > h). As we noted earlier, this captures the typical behavior of the ω(i) function. An
example of such a function is the step function (ω(i) = 1∀i ≤ h,= 0∀i > h) which corresponds to the
ranking function PT(h). At a high level, our algorithm starts with a DFT approximation of ω(i) and then
adapts it by adding several damping, scaling and shifting factors.

Discrete Fourier transformation (DFT) is a well known technique for representing a function as a linear
combination of complex exponentials (also called frequency domain representation). More specifically, a
discrete function ω(i) defined on a finite domain [0, N − 1] can be decomposed into exactly N exponentials
as:

ω(i) =
1

N

N−1∑
k=0

ψ(k)e
2π
N
ki i = 0, . . . , N − 1. (4)

where  is the imaginary unit and ψ(0), · · · , ψ(N − 1) denotes the DFT transform of ω(0), · · · , ω(N − 1).
If we want to approximate ω by fewer, say L, exponentials, we can instead use the L DFT coefficients with
maximum absolute value. Assume that ψ(0), . . . , ψ(L− 1) are those coefficients. Then our approximation
ω̃DFTL of ω by L exponentials is given by:

ω̃DFTL (i) =
1

N

L−1∑
k=0

ψ(k)e
2π
N
ki i = 0, . . . , N − 1. (5)
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Figure 4: Illustrating the effect of the approximation steps: w(i) = step function with N = 1000, L = 20
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Figure 5: Approximating functions using linear combinations of complex exponentials: effect of increasing
the number of coefficients

However, DFT utilizes only complex exponentials of unit norm, i.e., er (where r is a real), which makes
this approximation periodic (with a period of N ). This is not suitable for approximating an ω function used
in PRF, which is typically a monotonically non-increasing function. If we make N sufficiently large, say
larger than the total number of tuples, then we usually need a large number of exponentials (L) to get
a reasonable approximation. Moreover, computing DFT for very large N is computationally non-trivial.
Furthermore, the number of tuples n may not be known in advance.

We next present a set of nontrivial tricks to adapt the base DFT approximation to overcome these short-
comings. We assume ω(i) takes non-zero values within interval [0, N − 1] and the absolute values of both
ω(i) and ωDFTL (i) are bounded by B. To illustrate our method, we use the step function:

ω(i) =

{
1, i < N
0, i ≥ N

with N = 1000 as our running example to show our method and the specific shortcomings it addresses.
Figure 4 illustrates the effect of each of these adaptations.

1. (DFT) We perform pure DFT on the domain [1, aN ], where a is a small integer constant (typically <
10). As we can see in Figure 4 (where N = 1000 and a = 2), this results in a periodic approximation
with a period of 2000. Although the approximation is reasonable for x < 2000, the periodicity is
unacceptable if the number of tuples is larger than 2000 (since the positions between 2000 and 3000
(similarly, between 4000 and 5000) would be given high weights).
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2. (Damping Factor (DF)) To address this issue, we introduce a damping factor η ≤ 1 such that
BηaN ≤ ε where ε is a small positive real (for example, 10−5). Our new approximation becomes:

ω̃DFT+DF
L (i) = ηi · ω̃DFTL (i) =

1

N

L−1∑
k=0

ψ(k)(ηe
2π
N
k)i. (6)

By incorporating this damping factor, the periodicity is mitigated, since we have: limi→+∞ ω̃
DFT+DF
L (i) =

0. Especially, ω̃DFT+DF
L (i) ≤ ε for i > αN .

3. (Initial Scaling (IS)) However the use of damping factor introduces another problem: it gives a biased
approximation when i is small (see Figure 4). Taking the step function as an example, ω̃DFT+DF

L (i)
is approximately ηi for 0 ≤ i < N instead of 1. To rectify this, we initially perform DFT on a
different sequence ω̂(i) = η−iω(i) (rather than ω(i)) on domain ∈ [0, aN ]. Therefore, ω̃DFT+IS is
a reasonable approximation of ω̂. Then, if we apply the damping factor, it will give us an unbiased
approximation of ω, which we denote by ω̃DFT+DF+IS .

4. (Extending and Shifting (ES)) This step is in particular tailored for optimizing the approximation
performance for ranking functions. DFT does not perform well at discontinuous points, specifically
at i = 0 (the left boundary), which can significantly affect the ranking approximation. To handle
this, we extrapolate ω to make it continuous around 0. Let the resulting function be ω̄ which is de-
fined on [−bN,+∞] for small b > 0. Again, taking the step function for example, we let ω̄(i) ={

1, −bN ≤ i < N ;
0, i ≥ N .

Then, we shift ω̄(i) rightwards by bN to make its domain lie entirely in pos-

itive axis, do initial scaling and perform DFT on the resulting sequence. We denote the approximation
of the resulting sequence by ω̃′(i)(by performing (6)). For the approximation of original ω(i) values,
we only need to do corresponding leftward shifting , namely ω̃DFT+DF+IS+ES(i) = ω̃′(i + bN).
Figure 4 shows that DFT+DF+IS+ES gives a much better approximation than others around i = 0.

Figures 4 and 5(i) illustrate the efficacy of our approximation technique for the step function. As we can
see, we are able to approximate that function very well with just 20 or 30 coefficients. Figure 5(ii) and (iii)
show the approximations for a piecewise linear function and an arbitrarily generated continuous function
respectively, both of which are much easier to approximate than the step function.

5.2 Learning a PRFω or PRFe Function

Next we address the question of how to learn the weights of a PRFω function or the α for a single PRFe

function from user preferences. To learn a linear combination of PRFe functions, we first learn a PRFω

function and then approximate it as above.
Prior work on learning ranking functions (e.g., [9, 16, 27, 34]) assumes that the user preferences are

provided in the form of a set of pairs of tuples, and for each pair, we are told which tuple is ranked higher.
Our problem differs slightly from this prior work in that, the features that we use to rank the tuples (i.e.,
Pr(r(t) = i), i = 1, . . . , n) cannot be computed for each tuple individually, but must be computed for the
entire dataset (since the values of the features for a tuple depend on the other tuples in the dataset). Hence,
we assume that we are instead given a small sample of the tuples, and the user ranking for all those tuples.
We compute the features assuming this sample constitutes the entire relation, and learn a ranking function
accordingly, with the goal to find the parameters (the weights wi for PRFω or the parameter α for PRFe)
that minimize the number of disagreements with the provided ranking over the samples.
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Given this, the problem of learning PRFω is identical to the problem addressed in the prior work, and
we utilize the algorithm based on support vector machines (SVM) [34] in our experiments.

On the other hand, we are not aware of any work that has addressed learning a ranking function like
PRFe. We use a simple binary search-like heuristic to find the optimal real value of α that minimizes the
Kendall distance between the user-specified ranking and the ranking according to PRFe(α). In other words,
we try to find arg minα∈[0,1](dis(σ, σ(α))) where dis() is the Kendall distance between two rankings, σ
is the ranking for the given sample and σ(α) is the one obtained by using PRFe(α) function. Suppose
we want to find the optimal a within the interval [L,U ] now. We first compute dis(σ, σ(L + i · U−L10 )
for i = 1, . . . , 9 and find i for which the distance is the smallest. Then we reduce our search range to
[max(L,L + (i − 1) · U−L10 ,min(U,L + (i + 1) · U−L10 )] and repeat the above recursively. Although this
algorithm can only converge to a local minimum, in our experimental study, we observed that all of the prior
ranking functions exhibit a uni-valley behavior (Section 8), and in such cases, this algorithm finds the global
optimal.

6 PRF as a Consensus Top-k Answer

In this section, we show there is a close connection between PRFω and the notion of consensus top-k answer
(Con-Topk) proposed in [42]. We first review the definition of a consensus top-k ranking.

Definition 4 Let dis() denote a distance function between two top-k rankings. Then the most consensus
answer τ is defined to be the top-k ranking such that the expected distance between τ and the answer τpw of
the (random) world pw is minimized, i.e.,

τ = arg min
τ ′∈Ω
{E[dis(τ ′, τpw)]}.

dis() may be any distance function defined on pairs of top-k answers. In [42], we discussed how to compute
or approximate Con-Topk under a number of distance functions, such as Spearman’s rho, Kendall’s tau and
intersection metric [20].

Example 6 Consider the example in Figure 1. Assume k = 2 and the distance function is the symmetric
difference metric dis∆ = |(τ1\τ2)∪ (τ2\τ1)|. The most consensus top-2 answer is {t2, t5} and the expected
distance is E[dis(τ ′, τpw)] = .112×2+.168×2+.048×4+.072×4+.168×2+.252×0+.072×4+.108×2.

We first show that a Con-Topk answer under symmetric difference is equivalent to PT(h)(k), a special
case of PRFω. Then, we generalize the result and show that any PRFω function is in fact equivalent to some
Con-Topk answer under some suitably defined distance function that generalizes symmetric difference. This
new connection further justifies the semantics of PRFω from an optimization point of view in that the top-k
answer obtained by PRFω minimizes the expected value of some distance function, and it may shed some
light on designing the weight function for PRFω in particular applications.

6.1 Symmetric Difference and PT-k Ranking Function

Recall PT(h)(k) query returns k tuples with the largest Pr(r(t) ≤ k) values. We show that the an-
swer returned is the Con-Topk under symmetric difference metric dis∆ where dis∆(τ1, τ2) = |τ1∆τ2| =
|(τ1\τ2) ∪ (τ2\τ1)| 5.

For ease of notation, we let Pr(r(t) > i) includes the probability that t’s rank is larger than i and that t
doesn’t exist. We use the symbol τ to denote a top-k ranked list. We use τ(i) to denote the ith item in the
list τ for positive integer i, and τ(t) to denote the position of t ∈ T in τ .

5The result of this subsection has appeared in [42].
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Theorem 2 If τ = {τ(1), τ(2), . . . , τ(k)} is the set of k tuples with the largest Pr(r(t) ≤ k), then τ is the
Con-Topk answer under metric dis∆, i.e., the answer minimizes E[dis∆(τ, τpw)].

Proof: Suppose τ is fixed. We write E[dis∆(τ, τpw)] as follows:

E [dis∆(τ, τpw)] = E
[∑
t∈T

δ(t ∈ τ ∧ t /∈ τpw) + δ(t ∈ τpw ∧ t /∈ τ)
]

=
∑
t∈T\τ

E[δ(t ∈ τpw)] +
∑
t∈τ

E[δ(t /∈ τpw)]

=
∑
t∈T\τ

Pr(r(t) ≤ k) +
∑
t∈τ

Pr(r(t) > k)

= k +
∑
t∈T

Pr(r(t) ≤ k)− 2
∑
t∈τ

Pr(r(t) ≤ k)

The first two terms are invariant with respect to τ . Therefore, it is clear that the set of k tuples with the
largest Pr(r(t) ≤ k) minimizes the expectation. �

6.2 Weighted Symmetric Difference and PRFω

We present a generalization of Theorem 2 that shows the equivalence between any PRFω function and Con-
Topk under weighted symmetric difference distance functions which generalize the symmetric difference.
Suppose ω is a positive function defined on Z+ and ω(i) = 0∀i > k.

Definition 5 The weighted symmetric difference with weight ω of two top-k answers τ1 and τ2 is defined to
be

disω(τ1, τ2) =
k∑
i=1

ω(i)δ(τ2(i) /∈ τ1).

Intuitively, if the ith item of τ2 can not be found in τ1, we pay a penalty of ω(i) and the distance is just the total
penalty. If ω is a decreasing function, the distance function captures the intuition that top ranked items should
carry more weight. If ω is a constant function, it reduces to the ordinary symmetric difference distance.
Note that disω is not necessarily symmetric 6. Now, we present the theorem which is a generalization of
Theorem 2.

Theorem 3 Suppose ω is a positive function defined on Z+ and ω(i) = 0∀i > k. If τ = {τ(1), τ(2), . . . , τ(k)}
is the set of k tuples with the largest Υω(t) values, then τ is the Con-Topk answer under the weighted sym-
metric difference disω, i.e., the answer minimizes E[disω(τ, τpw)].

Proof: The proof mimics the one for Theorem 2. Suppose τ is fixed. We can write E[disω(τ, τpw)] as
follows:

E [disω(τ, τpw)] = E
[∑
t∈T

ω(τpw(t))δ(t ∈ τpw ∧ t /∈ τ)
]

=
∑
t∈T\τ

E[ω(τpw(t))δ(t ∈ τpw)]

=
∑
t∈T\τ

k∑
i=1

ω(i) Pr(r(t) = i) =
∑
t∈T\τ

Υω(t)

6Rigorously, a distance function (or metric) should satisfy positive definiteness, symmetry and triangle inequality. Here we
abuse this term a bit.
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Therefore, it is clear that the set of k tuples with the largest Υω(t) values minimizes the above quantity. �

Although the weighted symmetric difference appears to be a very rich class of distance functions, its
relationship with other well studied distance functions, such at Spearman’s rho and Kendall’s tau, is still not
well understood. We leave it as an interesting open problem.

7 An Interesting Property of PRFe

We have seen that PRFe(α) admits very efficient evaluation algorithms. We also suggest that the parameter
α should be learned from samples or user feedback. In fact, we do so since since we hold the promise that
by changing the parameter α, PRFe can span a spectrum of rankings, and the true ranking should be part of
this spectrum or close to some point in it. We provide empirical support for this claim shortly in the next
section (Section 8). In this section, we make some interesting theoretical observations about PRFe, which
help us further understand the behavior of PRFe itself.

First, we observe that for α = 1, the PRFe ranking is equivalent to the ranking of tuples by their
existence probabilities (PRFe value in that case is simply the total probability). On the other hand, when α
approaches 0, PRFe tends to rank the tuples by their probabilities to be the top-1 answer, i.e., Pr(r(t) = 1).
Thus, it is a natural question to ask how the ranking changes when we vary α from 0 to 1. Now, we prove the
following theorem which gives an important characterization of the behavior of PRFe on tuple independent
databases.

Let τα denote the ranking obtained by PRFe(α). For simplicity, we ignore the possibility of ties and
assume this ranking is unique. As two special cases, let τ0 and τ1 denote the rankings obtained by sorting
the tuples in a decreasing Pr(r(t) = 1) and Pr(t) order, respectively.

Theorem 4 1. If ti >τ0 tj (ti is ranked higher than tj in τ0) and ti >τ1 tj , then ti >τα tj any 0 ≤ α ≤ 1.

2. If ti >τ0 tj and ti <τ1 tj , then there is exactly one point β such that ti >τα tj for α < β and ti <τα tj
for α > β.

Proof: Let Υα(ti) be the PRFe(α) value of tuple ti. Then:

Υα(ti) = F i(α) =

( ∏
t∈Ti−1

(
1− Pr(t) + Pr(t)α

))
Pr(ti)α.

Assume that i < j. Dividing Υα(tj) by Υα(ti), we get

ρj,i(α) =
Υα(tj)

Υα(ti)
=

∏
t∈Tj−1

(
1− Pr(t) + Pr(t)α

)∏
t∈Ti−1

(
1− Pr(t) + Pr(t)α

) · Pr(tj)

Pr(ti)

=
Pr(tj)

Pr(ti)
·
j−1∏
l=i

(
1− Pr(tl) + Pr(tl)α

)
Notice that 1 − Pr(t) + Pr(t)α is always non-negative and an increasing function of α. Therefore, ρj,i(α)
is increasing in α. If i > j, the same argument show ρj,i(α) is decreasing in α. In either case, the ratio is
monotone in α.

If ρj,i(0) < 1 and ρj,i(1) < 1, then ρj,i(α) < 1 for all 0 < α ≤ 1. Therefore, the first half of the theorem
holds. If ρj,i(0) < 1 and ρj,i(1) > 1, then there is exactly one point 0 < β < 1 such that ρj,i(β) = 1,
ρj,i(α) < 1 for all 0 < α < β, and ρj,i(α) > 1 for all β < α ≤ 1. This proves the second half. �
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Figure 6: Illustration of Example 7. fi(α) = Υα(ti) for i = 1, 2, 3, 4.

Some nontrivial questions can be immediately answered by the theorem. For example, one may ask the
question “Is it possible that we get some ranking τ1, increase α a bit and get another ranking τ2, and increase
α further and get τ1 back?”, and we can quickly see that the answer is no; if two tuples change positions,
they never change back. Another observation we can make is that: if t1 dominates t2 (i.e., t1 has a higher
score and probability), then t1 always ranks above t2 for any α (this is because t1 ranks above t2 in both τ0

and τ1).
Interestingly, the way the ranking changes as α is increased from 0 to 1 is reminiscent of the execution

of the bubble sort algorithm. We assume the true order of the tuples is τ1 and the initial order is τ0. We
increase α from 0 to 1 gradually. Each change in the ranking is just a swap of a pair of adjacent tuples that
are not in the right relative order initially. The number of swaps is exactly the number of reversed pairs.
This is just like bubble sort! The only difference is that the order of those swaps may not be the same.

Example 7 Suppose we have four independent tuples:
(t1 : 100, .4), (t2 : 80, .6), (t3 : 50, .5), (t4 : 30, .9)

Using (3), it is easy to see that Υα(t1) = .4α,Υα(t2) = (.6+.4α).6α,Υα(t3) = (.6+.4α)(.4+.6α).5α and
Υα(t4) = (.6 + .4α)(.4 + .6α)(.5 + .5α).9α. In Figure 6, each curve corresponds to one tuple. In interval
(0, 1], any two curves intersect at most once. Changes in the ranking happen right at the intersection points
and one adjacent pair of tuples swap their positions. For instance, the + sign in the figure is the intersection
point of f1 and f4. The rank list is {t2, t1, t4, t3} right before the point and {t2, t4, t1, t3} right after the
point.

In fact, if we think of h as a parameter of PT(h) and we vary h from 1 to n, the process that the rank
list changes is quite similar to the one for PRFe: On one extreme where h = 1, the rank list is τ0, i.e., the
tuples are sorted by Pr(r(t) = 1) and on the other extreme where h = n, the rank list is τ1, i.e., the tuples
are sorted by Pr(r(t) ≤ n) = Pr(t). However, PT(h) is only able to explore at most n different rankings
(one for each h) “between” τ0 and τ1, while PRFe may explore O(n2) of them.

8 Experimental Study

We conducted an extensive empirical study over several real and synthetic datasets to illustrate: (a) the
diverse and conflicting behavior of different ranking functions proposed in the prior literature, (b) the effec-
tiveness of our parameterized ranking functions, especially PRFe, at approximating other ranking functions,
and (c) the scalability of our new generating functions-based algorithms for exact and approximate ranking.
We discussed the results supporting (a) in Section 3.2. In this section, we focus on (b) and (c).
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Datasets: We mainly use the International Ice Patrol (IIP) Iceberg Sighting Dataset7 for our experiments.
This dataset was also used in prior work on ranking in probabilistic databases [28? ]. The database contains
a set of iceberg sighting records, each of which contains the location (latitude, longitude) of the iceberg, and
the number of days the iceberg has drifted, among other attributes. Detecting the icebergs that have been
drifting for long periods is crucial, and hence we use the number of days drifted as the ranking score. The
sighting record is also associated with a confidence-level attribute according to the source of sighting: R/V
(radar and visual), VIS (visual only), RAD (radar only), SAT-LOW (low earth orbit satellite), SAT-MED
(medium earth orbit satellite), SAT-HIGH (high earth orbit satellite), and EST (estimated). We converted
these six confidence levels into probabilities 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.4 respectively. We added a
very small Gaussian noise to each probability so that ties could be broken. There are nearly a million records
available from 1960 to 2007; we created 10 different datasets for our experimental study containing 100, 000
(IIP-100,000) to 1, 000, 000 (IIP-1,000,000) records, by uniformly sampling from the original dataset.

Along with the real datasets, we also use several synthetic datasets with varying degrees of correlations,
where the correlations are captured using probabilistic and/xor trees. The tuple scores (for ranking) were
chosen uniformly at random from [0, 10000]. The corresponding and/xor trees were also generated randomly
starting with the root, by controlling the height (L), the maximum degree of the non-root nodes (d), and the
proportion of ∨© and ∧© nodes (X/A) in the tree. Specifically, we use five such datasets:

1. Syn-IND (independent tuples): the tuple existence probabilities were chosen uniformly at random
from [0, 1].

2. Syn-XOR (L=2,X/A=∞,d=5): Note that the Syn-XOR dataset, with height set to 2 and no ∧© nodes,
exhibits only mutual exclusivity correlations (mimicking the x-tuples model [48, 54])

3. Syn-LOW (L=3,X/A=10,d=2)

4. Syn-MED (L=5,X/A=3,d=5)

5. Syn-HIGH (L=5,X/A=1,d=10).

Setup: We use the normalized Kendall distance (Section ??) for comparing two top-k rankings. All the
algorithms were implemented in C++, and the experiments were run on a 2.4GHz Linux PC with 2GB
memory.

8.1 Approximability of Ranking Functions

We begin with a set of experiments illustrating the effectiveness of our parameterized ranking functions
at approximating other ranking functions. Due to space constraints, we focus on PRFe here because it is
significantly faster to rank according to a PRFe function (or a linear combination of several PRFe functions)
than it is to rank according a PRFω function.

Figures 7 (i) and (ii) show the Kendall distance between the Top-100 answers computed using a specific
ranking function and PRFe for varying values of α, for the IIP-100,000 and Syn-IND-1000 datasets. For
better visualization, we plot i on the x-axis, where α = 1− 0.9i. The reason behind this is that the behavior
of the PRFe function changes rather drastically, and spans a spectrum of rankings, when α approaches 1.
First, as we can see, the PRFe ranking is close to ranking by Score alone for small values of α, whereas it is
close to the ranking by Probability when α is close to 1 (in fact, for α = 1, the PRFe ranking is equivalent to
the ranking of tuples by their existence probabilities)8. Second, we see that, for all other functions (E-Score,
PT(h), U-Rank, E-Rank), there exists a value of α for which the distance of that function to PRFe is very

7 http://nsidc.org/data/g00807.html
8On the other hand, for α = 0, PRFe ranks the tuples by their probabilities to be the Top-1 answer.

25

http://nsidc.org/data/g00807.html


0 50 100 150 200

i

0.0

0.2

0.4

0.6

0.8

1.0

K
e
n

d
a

ll
 D

is
ta

n
c
e

Score 

Prob

Exp-score

PT(100)

U-rank

Exp-rank

UTop-k

Approximating with PRF-e (a=1-0.9^i):  (i) IIP-100000, k=100;  (ii) Syn-IND-1000, k=100

0 50 100 150 200

ii

0.0

0.2

0.4

0.6

0.8

1.0

K
e
n

d
a

ll
 D

is
ta

n
c
e

Score 

Prob

Exp-score

PT(100)

U-rank

Exp-rank

UTop-k

Figure 7: Comparing PRFe with other ranking functions for varying values of α; (i))IIP-100,000, (ii)Syn-
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Figure 8: (i) Approximating PT(1000) using a linear combination of PRFe functions; (ii) Approximation
quality for three ranking functions for varying number of exponentials.

small, indicating that PRFe can indeed approximate those functions quite well. Moreover we observe that
this “uni-valley” behavior of the curves justifies the binary search algorithm we advocate for learning the
value of α in Section 5.2. Our experiments with other synthetic and real datasets indicated a very similar
behavior by the ranking functions.

Next we evaluate the effectiveness of our approximation technique presented in Section 5. In Figure 8 (i),
we show the Kendall distance between the top-k answers obtained using PT(h) (for h = 1000, k = 1000)
and using a linear combination of PRFe functions found by our algorithms. As expected, the approximation
using the vanilla DFT technique is very bad, with the Kendall distance close to 0.8 indicating little similarity
between the top-k answers. However, the approximation obtained using our proposed algorithm (indicated
by DFT+DF+IS+ES curve) achieves a Kendall distance of less than 0.1 with just L = 20 exponentials.

In Figure 8 (ii), we compare the approximation quality (found by our algorithm DFT+DF+IS+ES) for
three ranking functions for two datasets: IIP-100,000 with k = 1000, and IIP-1,000,000 dataset with k =
10000. The ranking functions we compared were: (1) PT(h) (h = 1000), (2) an arbitrary smooth function,
sfunc, and (3) a linear function (Figure 8(ii)). We see that L = 40 suffices to bring the Kendall distance to
< 0.1 in all cases. We also observe that smooth functions (for which the absolute value of the first derivative

26



1000 10000 100000

# Samples

0.0

0.5

1.0

K
en

d
a
ll

 D
is

ta
n

ce

(i) Learning PRF-e (n=100000,k=100)

PT(100)

PRF-e (alpha=0.95)

Exp-score

U-rank

Exp-rank

0 50 100 150 200

# Samples

0.0

0.2

0.4

0.6

0.8

1.0

K
en

d
a
ll

 D
is

ta
n

ce

(ii) Learning PRF-w (n=100000,k=100)  

PT(100)

PRF-e (alpha=0.95)

EXP-score

U-rank

EXP-rank

Figure 9: (i) Learning PRFe from user preferences; (ii) Learning PRFω from user preferences.

of the underlying continuous function is bounded by a small value) are usually easier to approximate. We
only need L = 20 exponentials to achieve a Kendall distance less than 0.05 for sfunc. The Linear function
is even easier to approximate.

8.2 Learning Ranking Functions

Next we consider the issue of learning ranking functions from user preferences. Lacking real user preference
data, we instead assume that the user ranking function, denoted user-func, is identical to one of: E-Score,
PT(h), U-Rank, E-Rank, or PRFe(α = 0.95). We generate a set of user preferences by ranking a random
sample of the dataset using user-func (thus generating five sets of user preferences). These are then fed to
the learning algorithm, and finally we compare the Kendall distance between the learned ranking and the
true ranking for the entire dataset.

In Figure 9(i), we plot the results for learning a single PRFe function (i.e., for learning the value of
α) using the binary search-like algorithm presented in Section 5.2. The experiment reveals that when the
underlying ranking is done by PRFe, the value of α can be learned perfectly. When one of PT(h) or U-Rank
is the underlying ranking function, the correct value a can be learned with a fairly small sample size, and
increasing the number of samples does not help in finding a better α. On the other hand, E-Rank cannot be
learned well by PRFe unless the sample size approaches the total size of whole dataset. This phenomenon
can be partly explained using Figure 7(i) and (ii) in which the curves for PT(h) and U-Top have a fairly
smooth valley, while the one for E-Rank is very sharp and the region of α values where the distance is low is
extremely small ([1− 0.990, 1− 0.9110]). Hence, the minimum point for E-Rank is harder to reach. Another
reason is that E-Rank is quite sensitive to the size of the dataset, which makes it hard to learn it using a
smaller-sized sample dataset. We also observe that while extremely large samples are able to learn E-Score
well, the behavior of E-Score is quite unstable when the sample size is smaller.

Note that if we already know the form of the ranking function, we don’t need to learn it in this fashion;
we can instead directly find an approximation for it using our DFT-based algorithm.

In Figure 9 (ii), we show the results of an experiment where we tried to learn a PRFω function (using
the SVM-lite package [34]). We keep our sample size ≤ 200 since SVM-lite becomes drastically slow with
larger sample sizes. First we observe that PT(h) and PRFe can be learned very well from a small size
sample (distance < 0.2 in most cases) and increasing the sample size does not benefit significantly. U-Rank
can also be learned, but the approximation isn’t nearly as good. This is because U-Rank can not be written as
a single PRFω function. We observed similar behavior in our experiments with other datasets. Due to space
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Figure 10: (i) Effect of correlations on PRFe ranking as a varies; (ii) Effect of correlations on PRFe, U-Rank
and PT(h).

constraints, we omit a further discussion on learning a PRFω function; the issues in learning such weighted
functions have been investigated in prior literature, and if the true ranking function can be written as a PRFω

function, then the above algorithm is expected to learn it well given a reasonable number of samples.

8.3 Effect of Correlations

Next we evaluate the behavior of ranking functions over probabilistic datasets modeled using probabilistic
and/xor trees. We use the four synthetic correlated datasets, Syn-XOR, Syn-LOW, Syn-MED, and Syn-
HIGH, for these experiments. For each dataset and each ranking function considered, we compute the
rankings by considering the correlations, and by ignoring the correlations, and then compute the Kendall
distance between these two (e.g., for PRFe, we compute the rankings using PROB-ANDOR-PRF-RANK
and IND-PRF-RANK algorithms). Figure 10(i) shows the results for the PRFe ranking function for varying
α, whereas in Figure 10(ii), we plot the results for PRFe(α = 0.9), PT(100), and U-Rank.

As we can see, on highly correlated datasets, ignoring the correlations can result in significantly inac-
curate top-k answers. This is not as pronounced for the Syn-XOR dataset. This is because, in any group
of tuples that are mutually exclusive, there are typically only a few tuples that may have sufficiently high
probabilities to be part of the top-k answer; the rest of the tuples may be ignored for ranking purposes.
Because of this, assuming tuples to be independent of each other does not result in significant errors. As α
approaches 1, PRFe tends to sort the tuples by probabilities, so all four curves in Figure 10(i) become close
to 0. We note that ranking by E-Score is invariant to the correlations, which is a significant drawback of that
function.

8.4 Execution Times

Figure 11(i) shows the execution times for four ranking functions: PRFe, PT(h), U-Rank and E-Rank, for
the IIP-datasets, for different dataset sizes and k. We note that the running time for PRFω is similar to that
of PT(h). As expected, ranking by PRFe or E-Rank is very efficient (1000000 tuples can be ranked within
1 or 2 seconds). Indeed, after sorting the dataset in an non-decreasing score order, PRFe needs only a single
scan of the dataset, and E-Rank needs to scan the dataset twice. Execution times for PT (h) and U-Rank-k
increase linearly with h and k respectively and the algorithms become very slow for high h and k. The
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Figure 11: Experiments comparing the execution times of the ranking algorithms (note that the y-axis is
log-scale for (ii) and (iii))

running times of both PRFe and E-Rank are not significantly affected by k.
Figure 11(ii) compares the execution time for PT(h) and its approximation using a linear combination

of PRFe functions (see Figure 8(i)), for two different values of k. w50 indicates that 50 exponentials were
used in the approximation (note that the approximate ranking, based on PRFe, is insensitive to the value of
k). As we can see, for large datasets and for higher values of k, exact computation takes several orders of
magnitude more time to compute than the approximation. For example, the exact algorithm takes nearly
1 hour for n = 500, 000 and h = 10, 000 while the approximate answer obtained using L = 50 PRFe

functions takes only 24 seconds and achieves a Kendall distance 0.09.
For correlated datasets, the effect is even more pronounced. In Figure 11(iii), we plot the results of

a similar experiment, but using two correlated datasets: Syn-XOR and Syn-HIGH. Note that the number
of tuples in these datasets is smaller by a factor of 10. As we can see, our generating functions-based
algorithms for computing PRFe are highly efficient, even for datasets with high degrees of correlation.
As above, approximation of the PT(h) ranking function using a linear combination of PRFe functions is
significantly cheaper to compute than using the exact algorithm.

Combined with the previous results illustrating that a linear combination of PRFe functions can approx-
imate other ranking functions very well, this validates the unified ranking approach that we propose in this
paper.
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9 PRF Computation for Arbitrary Correlations

Among many models for capturing the correlations in a probabilistic database, graphical models (Markov or
Bayesian networks) perhaps represent the most systematic approach [49]. The appeal of graphical models
stems both from the pictorial representation of the dependencies, and a rich literature on doing inference
over them. In this section, we present an algorithm for computing the PRF function values for all tuples of
a correlated dataset when the correlations are represented using a graphical model. The resulting algorithm
is a non-trivial dynamic program over the junction tree of the graphical model. Our main result is that we
can compute the PRF function in polynomial time if the junction tree of the graphical model has bounded
treewidth. It is worth noting that this result can not subsume our algorithm for and/xor trees (Section 4.2)
since the treewidth of the moralized graph of a probabilistic and/xor tree may not be bounded. In some
sense, this is close to instance-optimal since the complexity of the underlying inference problem is itself
exponential in the treewidth of the graphical model (this however does not preclude the possibility that the
ranking itself could be done more efficiently without computing the PRF function explicitly – however, such
an algorithm is unlikely to exist).

9.1 Definitions

We start with briefly reviewing some notations and definitions related to graphical models and junction
trees. Let T = {t1, t2, . . . , tn} be the set of tuples in DT , sorted in an non-increasing order of their score
values. For each tuple t in T , we associate an indicator random variable Xt, which is 1 if t is present, and
0 otherwise. Let X = {Xt1 , . . . , Xtn} and Xi = {Xt1 , . . . , Xti}. For a set of variables S, we use Pr(S)
to denote the joint probability distribution over those variables. So Pr(X ) denotes the joint probability
distribution that we are trying to reason about. This joint distribution captures all the correlations in the
dataset. However, directly trying to represent it would take O(2n) space, and hence is clearly infeasible.

Probabilistic graphical models allow us to represent this joint distribution compactly by exploiting the
conditional independences present among the variables. Given three disjoint sets of random variables
A,B,C, we say that A is conditionally independent of B given C if and only if:

Pr(A,B|C) = Pr(A|C) Pr(B|C)

We assume that we are provided with a junction tree over the variables X that captures the correlations
among them. A junction tree can be constructed from a graphical model using standard algorithms [32].
Recently junction trees have also been used as a internal representation for probabilistic databases, and have
been shown to be quite effective at handling lightly correlated probabilistic databases [36]. We describe the
key properties of junction trees next.
Junction tree: Let T be a tree with each node v associated with a subset Cv ⊆ X . We say T is a junction
tree if any intersection Cu ∩ Cv for any u, v ∈ T is contained in Cw for every node w on the unique path
between u and v in T (this is called the running intersection property). The treewidth tw of a junction tree
is defined to be maxv∈T |Cv| − 1.

Denote Su,v = Cv ∩ Cu for each edge (u, v) ∈ T . We call Su,v a separator since removal of Su,v
disconnects the graphical model. The set of conditional independences embodied by a junction tree can be
found using the Markov property:
(Markov Property) Given variable sets A,B,C, if C separates A and B (i.e., removal of variables in C
disconnects the variables in A from variables in B in the junction tree), then A is conditionally independent
of B given C.

Example 8 Let T = {t1, t2, t3, t4, t5}. Figure 12 (i) and (ii) show the (undirected) graphical model and the
corresponding junction tree T . T has four nodes: C1 = {Xt4 , Xt5}, C2 = {Xt4 , Xt3}, C3 = {Xt3 , Xt1}

30



X5 X4 X3

X2

X1

(i)

X5X4 X4X3

X3X2

X3X1

X4

X3

X3

1 1 0.3
0.201
0.210
0.300

Pr(X5, X4)X4X5

1 1 0.2
0.301
0.410
0.100

Pr(X4, X3)X3X4

1 1 0.1
0.501
0.310
0.100

Pr(X3, X2)X2X3

1 1 0.2
0.401
0.310
0.100

Pr(X3, X1)X1X3

(ii)

Figure 12: (i) A graphical model; (ii) A junction tree for the model along with the (calibrated) potentials.

and C4 = {Xt3 , Xt2}. The treewidth of T is 1. We have, S1,2 = {X4}, S2,3 = {X3} and S2,4 = {X3}.
Using the Markov property, we observe that X5 is independent of X1, X2, X3 given X4.

Clique and Separator Potentials: With each cliqueCv in the junction tree, we associate a potential πv(Cv),
which is a function over all variables Xti ∈ Cv and captures the correlations among those variables. Simi-
larly, with each separator Su,v, we associate a potential µu,v(Su,v). Without loss of generality, we assume
that the potentials are calibrated, i.e., the potential corresponding to a clique (or a separator) is exactly the
joint probability distribution over the variables in that clique (separator). Given a junction tree with arbitrary
potentials, calibrated potentials can be computed using a standard message passing algorithm [32]. The
complexity of this algorithm is O(n2tw). Then the joint probability distribution of X , whose correlations
can be captured using a calibrated junction tree T , can be written as:

Pr(X ) =

∏
v∈T πv(Cv)∏

(u,v)∈T µu,v(Su,v)
=

∏
v∈T Pr(Cv)∏

(u,v)∈T Pr(Su,v)

9.2 Problem Simplification

We begin with describing the first step of our algorithm, and defining a reduced and simpler to state problem.
Recall that our goal is to rank the tuples according to Υ(ti) =

∑
j>0 ω(j) Pr(r(ti) = j). For this

purpose, we first compute the positional probabilities, Pr(r(ti) = j) ∀j ∀ti, using the algorithms presented
in the next two subsections. Given those, the values of Υ(ti) can be computed in O(n2) time for all tuples,
and the ranking itself can be done inO(n log(n)) time (by sorting). The positional probabilities (Pr(r(ti) =
j)) may also be of interest by themselves.

For each tuple ti, we compute Pr(r(ti) = j) ∀j at once. Recall that Pr(r(ti) = j) is the probability that
ti exists (i.e., Xi = 1) and exactly j−1 tuples with scores higher than ti are present (i.e.,

∑i−1
l=1 Xl = j−1).

In other words:

Pr(r(ti) = j) = Pr(Xi = 1 ∧
i−1∑
l=1

Xl = j − 1)

= Pr((

i−1∑
l=1

Xl = j − 1)|Xi = 1) Pr(Xi = 1)
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Hence, we begin with first conditioning the junction tree by setting Xi = 1, and re-calibrating. This
is done by identifying all cliques and separators which contain Xi, and by updating the corresponding
probability distributions by removing the values corresponding to Xi = 0. More precisely, we replace a
probability distribution Pr(Xi1 , . . . , Xik , Xi), by a potential π(Xi1 , . . . , Xik) computed as:

π(Xi1 = v1, . . . , Xik = vk)

= Pr(Xi1 = v1, . . . , Xik = vk, Xi = 1)

π is not a probability distribution since the entries in it may not sum up to 1. Further, the potentials
may not be consistent with each other. Hence, we need to recalibrate this junction tree using message
passing [32]. As mentioned earlier, this takes O(n2tw) time. Figure 13 shows the resulting (uncalibrated)
junction tree after conditioning on X5 = 1.

X5X4 X4X3

X3X2

X3X1

X4

X3

X3

1 1 0.3
0.201
0.210
0.300
π(X4)X4X5

1 1 0.2
0.301
0.410
0.100

π(X4, X3)X3X4

1 1 0.1
0.501
0.310
0.100

π(X3, X2)X2X3

1 1 0.2
0.401
0.310
0.100

π(X3, X1)X1X3

Figure 13: Conditioning on X5 = 1 results in a smaller junction tree, with uncalibrated potentials, that
captures the distribution over X1, X2, X3, X4 given X5 = 1.

If Xi is a separator in the junction tree, then we get more than one junction tree after conditioning on
Xi = 1. Figure 14 shows the two junction trees we would get after conditioning onX4 = 1. The variables in
these junction trees are independent of each other (this follows from the Markov property), and the junction
trees can be processed separately from each other.

Since the resulting junction tree or junction trees capture the probability distribution conditioned on the
event Xi = 1, our problem now reduces to finding the probability distribution of

∑i−1
l=1 Xl in those junction

trees. For cleaner description of the algorithm, we associate an indicator variable δXl with each variable Xl

in the junction tree. δXl is set to 1 if l ≤ i − 1, and is 0 otherwise. This allows us to state the key problem
to be solved as follows:

Redefined Problem9: Given a junction tree over m binary variables Y1, . . . , Ym, where each variable Yj is
associated with an indicator variable δYj ∈ {0, 1}, find the probability distribution of the random variable
P =

∑m
l=1 Ylδl.

If the result of the conditioning was a single junction tree (over m = n − 1 variables), we multiply the
resulting probabilities by Pr(Xi = 1) to get the rank distribution of ti.

However, if we get k > 1 junction trees, then we need one additional step. Let P1, . . . , Pk be the
random variables denoting the partial sums for each of junction trees. We need to combine the probability
distributions over these partial sums, Pr(P1), . . . ,Pr(Pk), into a single probability distribution over Pr(P1+
· · ·+ Pk). This can be done by repeatedly applying the following general formula:

Pr(P1 + P2 = a) =
a∑
j=0

Pr(P1 = j) Pr(P2 = a− j)

9We rename the variables to avoid confusion.
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Figure 14: Conditioning on X4 = 1 results in two junction trees.

A naive implementation of the above takes time O(n2). Although this can be improved using the ideas
presented in Appendix B, the complexity of computing Pr(Pi) is much higher and dominates the overall
complexity.

Next we present algorithms for solving the redefined problem.

9.3 Algorithm for Markov Sequences

We first describe an algorithm for Markov chains, a special, yet important, case of the graphical models.
Markov chains appear naturally in many settings, and have been studied in probabilistic database literature
as well [35, 37, 47]. Any finite-length Markov chain is a Markov network whose underlying graph is simply
a path: each variable is directly dependent on only its predecessor and successor. The junction tree for a
Markov chain is also a path in which each node corresponds to an edge of the Markov chain. The treewidth
of such a junction tree is one. Without loss of generality, we assume that the Markov chain is Y1, . . . , Ym
(Figure 15(i)). The corresponding junction tree T is a path with cliques Cj = {Yj , Yj+1} as shown in the
figure.

We compute the distribution Pr(
∑m

l=1 Ylδl) recursively. Let Pj =
∑j

l=1 Ylδl denote the partial sum
over the first j variables Y1, . . . , Yj .

At the clique {Yj−1, Yj}, j ≥ 1, we recursively compute the joint probability distribution: Pr(Yj , Pj−1).
The initial distribution Pr(Y2, P1), P1 = δ1Y1, is computed directly:

Pr(Y2, P1 = 0) = Pr(Y2, Y1 = 0) + (1− δi) Pr(Y2, Y1 = 1)

Pr(Y2, P1 = 1) = δi Pr(Y2, Y1 = 1).

Given Pr(Yj , Pj−1), we compute Pr(Yj+1, Pj) as follows. Observe that Pj−1 and Yj+1 are conditionally
independent given the value of Yj (by Markov property). Thus we have:

Pr(Yj+1, Yj , Pj−1) =
Pr(Yj+1, Yj) Pr(Yj , Pj−1)

Pr(Yj)

Using Pr(Yj+1, Yj , Pj−1), we can compute:

Pr(Yj+1, Pj = a) = Pr(Yj+1, Yj = 0, Pj−1 = a)

+ Pr(Yj+1, Yj = 1, Pj−1 = a− δj)

At the end, we have the joint distribution: Pr(Ym, Pm−1). We can compute a distribution over Pm as:

Pr(Pm = a) = Pr(Ym = 0, Pm−1 = a)

+ Pr(Ym = 1, Pm−1 = a− δm)

Complexity: The complexity of the above algorithm to compute Pr(Pm) is O(m2) – although we only
perform m steps, Pr(Yj+1, Pj) contains 2(j + 1) terms, each of which takes O(1) time to compute. Since
we have to repeat this for every tuple, the overall complexity of ranking the dataset can be seen to be O(n3).
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Figure 15: (i) A Markov chain, and the corresponding junction tree; (ii) Illustrating the recursion for general
junction trees.

9.4 General Junction Trees

We follow the same general idea for general junction trees. Let T denote the junction tree over the variables
Y = {Y1, . . . , Ym}. We begin by rooting T at an arbitrary clique, and recurse down the tree. For a separator
S, let TS denote the subtree rooted at S. Denote by PS the partial sum over the variables in the subtree TS
that are not present in S, i.e.,:

PS =
∑

j∈TS ,j /∈S

δjXj

Consider a clique node C, and let S denote the separator between C and its parent node (S = φ for the
root clique node). We will recursively compute the joint probability distribution Pr(S, PS) for each such
separator S. Since the root clique node has no parent, at the end we are left with precisely the probability
distribution that we need, i.e., Pr(

∑m
j=1 Yiδi).

C is an interior or root node: Let the separators to the children of C be S1, . . . , Sk (see Figure 15(ii)). We
recursively compute Pr(Si, PSi), i = 1, . . . , k.

Let Z = C \ S. We observe that Z is precisely the set of variables that contribute to the partial sum PS ,
but do not contribute to any of the partial sums PS1 , . . . , PSk , i.e.:

PS = PS1 + · · ·+ PSk +
∑
Zi∈Z

δZiZi

We begin with computing Pr(C,PS1 + · · · + PSk). Observe that the variable set C \ S1 is independent of
PS1 given the values of the variables in S1 (by Markov property). Note that it was critical that the variables
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in S1 not contribute to the partial sum PS1 , otherwise this independence would not hold. Given that, we
have:

Pr(C,PS1) = Pr(C \ S1, S1, PS1)

=
Pr(C \ S1, S1) Pr(S1, PS1)

Pr(S1)

Using PS2 is independent of C ∪ {PS1} given S2, we get:

Pr(C,PS1 , PS2) =
Pr(C,PS1) Pr(S2, PS2)

Pr(S2)

Now we can compute the probability distribution over Pr(C,PS1 + PS2) as follows:

Pr(C,PS1
+ PS2

= a) =

a∑
j=0

Pr(C,PS1
= j, PS2

= a− j)

=

a∑
j=0

Pr(C,PS1
= j) Pr(S2, PS2

= a− j)
Pr(S2)

By repeating this process for S3 to Sk, we get the probability distribution: Pr(C,PS1 + · · ·+ PSk).
Next, we need to add in the contributions of the variables in Z to the partial sum PS1 + · · · + PSk . Let

Z contain l variables, Z1, . . . Zl, and let δZ1 , . . . , δZl denote the corresponding indicator variables. It is easy
to see that:

Pr(C \ Z,Z1 = v1, . . . , Zk = vk,

k∑
j=1

PSj
+

l∑
j=1

δzjZj = a)

= Pr(C \ Z,Z1 = v1, . . . , Zk = vk,

k∑
j=1

PSj
= a−

l∑
l=1

δzjZj)

where vi ∈ {0, 1}. Although it looks complex, we only need to touch every entry of the probability
distribution Pr(C,P1 + · · ·+ Pk) once to compute Pr(C,PS).

All that remains is marginalizing that distribution to sum out the variables in C \S, giving us Pr(S, PS).

C is a leaf node (i.e., k = 0): This is similar to the final step above. Let Z = C \ S denote the variables
that contribute to the partial sum PS . We can apply the same procedure as above to compute Pr(C,PS =∑

Zi∈Z δZiZi), which we marginalize to obtain Pr(S, PS).

Overall Complexity: The complexity of the above algorithm for a specific clique C is dominated by the
cost of computing the different probability distributions of the form Pr(C,P ), where P is a partial sum.
We have to compute O(n) such probability distributions, and each of those computations takes O(n22|C|)
time. Since there are at most n cliques, and since we have to repeat this process for every tuple, the overall
complexity of ranking the dataset can be seen to be: O(n42tw), where tw denotes the treewidth of the
junction tree, i.e., the size of the maximum clique minus 1.

10 Conclusions

In this article we presented a unified framework for ranking over probabilistic databases, and presented sev-
eral novel and highly efficient algorithms for answering top-k queries. Considering the complex interplay
between probabilities and scores, instead of proposing a specific ranking function, we propose using two
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parameterized ranking functions, called PRFω and PRFe, which allow the user to control the tuples that
appear in the top-k answers. We developed novel algorithms for evaluating these ranking functions over
large, possibly correlated, probabilistic datasets. We also developed an approach for approximating a rank-
ing function using a linear combination of PRFe functions thus enabling highly efficient, albeit approximate
computation, and also for learning a ranking function from user preferences.

Our work opens up many avenues for further research. There may be other non-trivial subclasses of PRF
functions, aside from PRFe, that can be computed efficiently. Understanding the behavior of various ranking
functions and their relationships across probabilistic databases with diverse uncertainties and correlation
structures also remains an important open problem in this area. Finally, the issues of ranking have been
studied for many years in disciplines ranging from economics to information retrieval; better understanding
the connections between that work and ranking in probabilistic databases remains a fruitful direction for
further research.
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A Proofs

Theorem 1 The coefficient of the term
∏
j x

ij
j in F(X ) is the total probability of the possible worlds for

which, for all j, there are exactly ij leaves associated with variable xj .
Proof: Suppose T is rooted at r, r1, . . . , rh are r’s children, and Tl is the subtree rooted at rl. We denote
by S (or Sl) the random set of leaves generated according to model T (or Tl). We let F (or Fl) be the
generating function corresponding to T (or Tl). For ease of notation, we use i to denote index vector
〈i1, i2, . . .〉, I to denote the set of all such is and X i to denote

∏
j x

ij
j . Therefore, we can write F(X ) =∑

i1,i2,...
ci1,i2...x

i1
1 x

i2
2 . . . =

∑
i∈I ciX i. We use the notation S ∼= i for some i = 〈i1, i2, . . .〉 ∈ I to denote

the event that S contains ij leaves associated with variable xj for all j. Given the notations, we need to
show ci = Pr(S ∼= i).

We shall prove by induction on the height of the and/xor tree. We consider two cases. If r is a ∧© node,
we know from Definition 2 that S = ∪hl=1Sl. First, it is not hard to see that given Sl ∼= il for 1 ≤ l ≤ h, the
event S ∼= i happens if and only if

∑
l il = i. Therefore,

Pr(S ∼= i) =
∑

∑
l il=i

h∏
l=1

Pr(Sl ∼= il). (7)

Assume Fl can be written as
∑

il
cl,ilX il . From the construction of the generating function, we know that

F(X ) =

h∏
l=1

Fl =

h∏
l=1

∑
il∈I

cl,ilX
il =

∑
i∈I

( ∑
∑
l il=i

h∏
l=1

cl,ilX
il
)

=
∑
i∈I

( ∑
∑
l il=i

h∏
l=1

cl,il

)
X i (8)

By induction hypothesis, we have Pr(Sl ∼= il) = cl,il for any l and il. Therefore, we can conclude from (7)
and (8) that F(X ) =

∑
i Pr(S ∼= i)X i.

Now let us consider the other case where r is a ∨© node. From Definition 2, it is not hard to see that

Pr(S ∼= i) =

h∑
l=1

Pr(Sl = i)p(r,rl) (9)

Moreover, we have

F(X ) =
h∑
l=1

p(r,rl)Fl(X ) =
h∑
l=1

p(r,rl)

∑
il

cl,ilX
il

=
∑
i

( h∑
l=1

p(r,rl)cl,i

)
X i =

∑
i

Pr(S ∼= i)X i

where the last equality follows from (9) and induction hypothesis. This completes the proof. �

B Expanding Polynomials

This section is devoted to several algorithms for expanding polynomials into standard forms.
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B.1 Multiplication of a Set of Polynomials

Given a set of polynomials in the form of Pi =
∑

j≥0 cijx
j for 1 ≤ i ≤ k, we want to compute the

multiplication P =
∏k
i=1 Pi written in the standard form P =

∑
j≥0 cjx

j , i.e., we need to compute the
coefficients cj . Let d(Pi) be the degree of the polynomial Pi. Let n =

∑k
i d(Pi) be the degree of P .

Naive Method: First we note that the naive method (multiply Pis one by one) gives us an O(n2) time
algorithm by simple counting argument. Let P̄i =

∏i
j=1 Pj . It is easy to see d(P̄i) =

∑i
j=1 d(Pi). So the

time to multiply P̄i and Pi+1 is O(d(P̄i) · d(Pi+1)). Then, we can see the total time complexity is:

k−1∑
i=1

O(d(P̄i) · d(Pi+1)) = O(n) ·
k−1∑
i=1

d(Pi+1) = O(n2).

Divide-and-Conquer: Now, we show how to use divide-and-conquer and FFT (Fast Fourier Transforma-
tion) to achieve an O(n log2 n) time algorithm. It is well known that the multiplication of two polynomials
of degree O(n) can be done in O(n log n) time using FFT. The divide-and-conquer algorithm is as follows:
If there exists any Pi such that d(Pi) ≥ 1

3d(P ), we evaluate
∏
j:j 6=i Pi recursively and then multiply it with

Pi using FFT. If not, we partition all Pis into two sets S1 and S2 such that 1
3d(P ) ≤ d(

∏
i∈Si Pi) ≤

2
3d(P ).

Then we evaluate S1 and S2 separately and multiply them together using FFT. It is easy to see the time
complexity of the algorithm running on input size n satisfies

T (n) ≤ max{T (
2

3
n) +O(n log n), T (n1) + T (n2) +O(n log n)}

where n1 + n2 = n and 1
3n ≤ n1 ≤ n2 ≤ 2

3n. By solving the above recursive formula, we know
T (n) = O(n log2 n).

B.2 Expanding a Nested Formula

We consider a more general problem of expanding a nested expression of uni-variable polynomial (with
variable x) into its standard form

∑
cix

i. Here a nested expression refers to a formula that only involves
constants, the variable x, addition +, multiplication ×, and parenthesis ( and ), for example, f(x) = ((1 +
x+ x2)(x2 + 2x3) + x3(2 + 3x4))(1 + 2x). Formally, we define recursively an expression to be either

1. A constant or the variable x, or

2. The sum of two expressions, or

3. The product of two expressions.

We assume the degree of the polynomial and the length of the expression are of sizes O(n).
The naive method runs in time O(n3) (each inner node needs O(n2) time as shown in the last subsec-

tion). If we use the previous divide-and-conquer method for expanding each inner node, you can easily get
O(n2 log2 n). Now we sketch two improved algorithms with running time O(n2). The first is conceptual
simpler while the second is much easier to implement.

Algorithms 1:

1. Choose n+ 1 different numbers x0, ...., xn .

2. Evaluate the polynomial at these points, i.e., compute f(xi). It is easy to see that each evaluation
takes linear time (bottom-up over the tree). So this step takes O(n2) time in total.
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3. Use any O(n2) polynomial interpolation algorithm to find the coefficient. In fact, the interpolation
reduces to finding a solution for the following linear system:

xn0 xn−1
0 xn−2

0 . . . x0 1

xn1 xn−1
1 xn−2

1 . . . x1 1
...

...
...

...
...

xnn xn−1
n xn−2

n . . . xn 1



cn
cn−1

...
c0

 =


f(x0)
f(x1)

...
f(xn)

 .
The commonly used Gaussian elimination for inverting a matrix requires O(n3) operations. The
matrix we used is a special type of matrix and is commonly referred to as a Vandermonde matrix.
There exists numerical algorithms that can invert a Vandermonde matrix in O(n2) time, for example
[8].

A small drawback of the above algorithm is that the algorithms used to invert a Vandermonde matrix is
nontrivial to implement. The next algorithm does not need to invert a matrix, is much simpler to implement
and has the same running time of O(n2).
Algoirthm 2: We need some notation first. Suppose the polynomial is f(x) =

∑n
j=0 cjx

j (cjs are unknown
yet). Let ei be the (n+1)-dimensional zero vector except that the ith entry is 1, i.e., ei = 〈0, 0, .., 1, ..., 0, 0〉.
Let di = 〈1, e

2π
n+1

i, e
2π
n+1

2i, . . .〉 be the n + 1-dimensional vector which is the DFT (Discrete Fourier
Transformation) of ei. Let u = e−

2π
n+1 be the n + 1th root of unit. Let u = 〈1, u, u2, ...., un〉 and

uk = 〈1, uk, u2k, u3k, .....〉.
By definition, ei = 1

n+1

∑
k diku

k where dik is the kth entry of di. Let c = 〈c0, . . . , cn〉 be the
coefficient vector of f . It is trivial to see ci = c · ei (the inner product). Therefore, we have that

ci = c · ei =
1

n+ 1

∑
k

dik(c · uk) =
1

n+ 1

∑
k

dikf(uk). (10)

The last equality holds by the definition of f(x). If we use f to denote the vector 〈f(u0), . . . , f(un)〉 and D
to denote the matrix {dij}0≤,i,j≤n, the above equation can be simply written as

c =
1

n+ 1
Df .

Now, we are ready describe our algorithm:

1. Compute f(uk) for all k. This consists of evaluating f(x) over complex x n times, which takesO(n2)
time.

2. Use (10) to compute the coefficients. This again takes O(n2) time.

In fact, the above algorithm can be seen as a specialization of the first algorithm. Instead of picking arbi-
trary n+ 1 real points x0, . . . xn to evaluate the polynomial, we pick n+ 1 complex points 1, u, u2, . . . , un.
The Vandermonde matrix formed by these points, i.e.,

F =


u0·0 u0·1 . . . u0·n

u1·0 u1·1 . . . u1·n

...
...

. . .
...

un·0 un·1 . . . un·n


has a very nice property that

F−1 =
1

n+ 1
F∗

where F∗ is the conjugate of F (This can be verified easily). Therefore, we can obtain F−1 for free. Actually,
it is easy to see that F∗ is exactly D.
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