
CDMTCS
Research
Report
Series

Design by Example for SQL
Table Definitions with
Functional Dependencies

Markus Kirchberg
School of Computing,
The National University of Singapore,
Singapore

Sven Hartmann
Department of Informatics,
Clausthal University of Technology,
Clausthal-Zellerfeld, Germany

Sebastian Link
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-426
October 2012

Centre for Discrete Mathematics and
Theoretical Computer Science

Design by Example for SQL Table
Definitions with Functional Dependencies

Markus Kirchberg
School of Computing

The National University of Singapore
Singapore

markus@comp.nus.edu.sg

Sven Hartmann
Department of Informatics

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

sven.hartmann@tu-clausthal.de

Sebastian Link

Department of Computer Science
The University of Auckland, Private Bag 92019

Auckland, New Zealand
s.link@auckland.ac.nz

October 10, 2012

Abstract

A database is C-Armstrong for a given set of constraints in a class C if it sat-
isfies every constraint of the set and violates every constraint in C not implied
by the set. Therefore, Armstrong databases are test data that perfectly illustrate
the current perceptions about the semantics of a schema. We extend the existing
theory of Armstrong relations to a toolbox of Armstrong tables. That is, we inves-
tigate structural and computational properties of Armstrong tables for the class of
functional dependencies (FDs) over SQL tables. Relations are special instances of
SQL tables with no duplicate rows and no null value occurrences. While FDs do
not enjoy Armstrong tables, the combined class of standard FDs and NOT NULL
constraints does enjoy Armstrong tables. The problem of finding an Armstrong
table is shown to be precisely exponential for this combined class. However, we es-
tablish an algorithm that computes Armstrong tables with a size at most quadratic
in that of a minimum-sized Armstrong table. Our resulting toolbox of Armstrong
tables can be applied by data engineers to concisely visualize constraints on SQL

1

data. Such support can lead to designs that guarantee efficient data management
in practice.

Keywords: Armstrong table, Functional dependency, Schema design, SQL, Test data,
Uniqueness

1 Introduction

A database system is a software package that manages a collection of persistent informa-
tion in a shared, reliable, effective and efficient way. The core of most database systems
is still founded on the relational model of data [1]. In this model, data is stored in a
collection of relations that may vary over time. A relation is a set of tuples over a given
time-invariant relation schema.

Relations permit the storage of inconsistent data, i.e., data that violate conditions
which every meaningful relation ought to satisfy. Consequently, data engineers must
identify the conditions, called data dependencies, that restrict the relations to those
that are meaningful for the application domain at hand. Functional dependencies (FDs)
constitute the probably most important class of data dependencies [2, 3, 4]. According to
[5] they make up around two-thirds of all uni-relational data dependencies (those defined
over a single relation schema) in practice. FDs form one of the most prolific database
concepts. They are essential for the fundamental tasks of database modeling and design
[6, 7, 8, 9, 10], normalization on the conceptual [11, 12, 13] and logical level [11, 14, 15],
and maintenance [16, 17, 18]. They have proven applications in data cleaning [19, 20],
entry [7], exchange [21], integration [22, 23, 24], sampling [25, 26], warehousing [27],
indexing [28], information retrieval [29], uncertain data management [30, 31], repairing
[32] and consistent query answering [33], query optimization [34, 35, 36], access control
[37] and privacy-preserving data publishing [38] among others. A basic prerequisite for
addressing these fundamental tasks and taking effective advantage of these applications is
that data engineers are able to identify the FDs that are meaningful for their application
domain.

Example 1 Suppose that in designing an information system for a company the team
of data engineers has identified the relationship between employees and managers in de-
partments as an important information unit. Therefore, the team has decided to utilize
the relation schema Employment with attributes Emp, Dept, and Mgr. The schema
stores the name of an employee in the Emp column, the name of the department in which
the employee works in the Dept column, and the name of the department’s manager in
the Mgr column. The team has identified additional constraints they consider important
for the schema Employment. Firstly, the information stored in the columns Emp and
Mgr must be total, i.e., no occurrences of null values are permitted in these columns.
Consequently, an SQL definition of the table may look as follows:

CREATE TABLE Employment (
Emp VARCHAR NOT NULL,
Dept VARCHAR,
Mgr VARCHAR NOT NULL);

2

Moreover, the team of data engineers believes that every employee can work for only
one department, and that every department has only one manager. These constraints
can be expressed as the FDs Emp → Dept and Dept → Mgr, respectively. The team
would like to consult the experts of the application domain to find out whether their
current design choice captures all the requirements necessary. In order to validate their
own understanding of the application domain and to facilitate the knowledge acquisition
from the domain experts the team plans to create test data that represents concisely their
current understanding of the database.

Example 1 illustrates the findings of previous research [39, 40, 25, 41, 26, 42]: The
creation of good test data can help data engineers with the challenge to consolidate the
set of meaningful FDs. In fact, the findings suggest to use good test data to identify
actually meaningful FDs that are incorrectly perceived as meaningless [40, 25, 26, 42]. It
is thus an important task to create good test data effectively and efficiently. Informally,
good means here that the test data satisfies the FDs that the team of data engineers
considers meaningful, and violates the FDs the team perceives as meaningless.

More formally, given a set Σ ∪ {φ} of FDs we say that Σ implies φ if every relation
that satisfies all FDs in Σ also satisfies φ. We use Σ∗ to denote the semantic closure of
Σ, i.e., the set of all FDs implied by Σ. Armstrong relations have been identified as an
effective means to represent concisely abstract sets of FDs in the form of a single relation.
Indeed, Armstrong relations are widely regarded as good test data and a helpful tool for
data engineers to judge, justify, convey, or test their understanding of the relation schema
[39, 40, 25, 41, 26, 42]. More precisely, an Armstrong relation for a set Σ of FDs is a
single relation that satisfies every FD in Σ∗ and violates every FD not in Σ∗ [43]. Hence,
an FD is implicit in the explicit specification of an FD set Σ if and only if it is satisfied
by an Armstrong relation for Σ. For this reason, Armstrong relations represent one of
the few instances where example-based reasoning is effective. That is, if Σ constitutes
the design choice of the set of FDs currently perceived as meaningful to the underlying
application domain, then an Armstrong relation rΣ for Σ constitutes an example on
which data engineers can test the meaningfulness of an arbitrary FD φ. Namely, φ is
meaningful under the current design choice if and only if the example relation rΣ satisfies
φ. Consequently, this approach to design is called design-by-example. Empirical evidence
has been presented that Armstrong relations help data engineers to identify meaningful
FDs they perceived incorrectly as meaningless before inspecting an Armstrong relation
[44]. Industry-leading data modeling tools, such as the ERwin data modeler, emphasize
the need for good test data to validate the semantics of the models produced [45]. We
exemplify these observations by the following case, expanding on Example 1.

Example 2 Consider the relation schema Employment with attribute set Emp, Dept
and Mgr and FD set Σ that consists of Emp→ Dept and Dept→ Mgr. As in Example 1
assume that only Emp and Mgr have been declared NOT NULL. In this case, the relation

3

Emp Dept Mgr
Hilbert Math Gauss

Pythagoras Math Gauss
Einstein Physics Gauss
Turing ni von Neumann
Turing ni Gödel

is an Armstrong relation for Σ and the NOT NULL constraints. Note that, according to
the semantics under the no information interpretation of the null value ni [46, 47, 48],
the relation satisfies the FD Dept → Mgr since the FD can only be violated if there are
distinct tuples that are total and agree in the Dept column, and differ in the Mgr column.
When the domain experts inspect this Armstrong relation they are alerted to the fact that
Turing has two managers von Neumann and Gödel. More specifically, the domain experts
communicate to the team of data engineers that every employee should only occur once
in the Emp column. Consequently, the inspection of the Armstrong relation has revealed
that under the current design choice neither the meaningful FD Emp → Mgr nor the
meaningful key Emp have been successfully captured. As a consequence, the team has
now a choice of either specifying the FD Emp → Mgr additionally to the FDs in Σ, or
declaring Dept as NOT NULL.

Example 2 illustrates the assistance that Armstrong relations can provide to data
engineers in their task to capture the semantics of the underlying application domain.
Unfortunately, the current toolbox of Armstrong relations does not apply to SQL tables
where arbitrary attributes can be declared NOT NULL. That means that currently there is
no effective support in identifying the set of meaningful FDs over SQL tables. While FDs
have been studied in this context [46, 47], the concept of Armstrong relations has not
been investigated yet. To address this research gap, we adopt the formal framework of
Lien [47], Atzeni and Morfuni [46] who have studied FDs under Zaniolo’s no information
interpretation of nulls. It is intuitive and well-known that FDs interact quite differently
in the presence of NOT NULL constraints than they do over total relations [46]. Therefore,
it should come as no surprise that Armstrong relations for FD sets in the presence of
NOT NULL constraints can be quite different from Armstrong relations for FDs over total
relations. The following example illustrates that currently existing techniques for creating
total Armstrong relations do not apply to real SQL table definitions.

Example 3 Consider the relation schema Employment with attributes Emp, Dept and
Mgr, and FD set Σ that consists of Emp → Dept and Dept → Mgr. Suppose we would
apply the existing techniques to create the total Armstrong relation

Emp Dept Mgr
Hilbert Math Gauss

Pythagoras Math Gauss
Einstein Physics Gauss
Turing Computer Science von Neumann

for Σ [40]. Then this is only an Armstrong relation for Σ in the special case where
all attributes are NOT NULL, but not an Armstrong relation for the SQL table definition

4

of Example 1. If we incorrectly used this total relation as a concise representation for
our SQL table definition of Example 1, then it would give us the false impression that
the current design choice successfully captures both the meaningful key Emp and the
meaningful FD Emp → Mgr. Consequently, there is a real need to study Armstrong
relations for FDs in the presence of arbitrary NOT NULL constraints.

Contributions and Organization. In this article we investigate the concept of
Armstrong tables for FDs in the presence of NOT NULL constraints. Following previous
research [46, 48, 47], we adopt Zaniolo, Lien, Atzeni and Morfuni’s no information in-
terpretation of null values. This is the most primitive interpretation which allows data
engineers to model non-existent information as well as existent information that is cur-
rently unknown. In this context, Atzeni and Morfuni have studied FDs in the presence
of a null-free subschema (NFS). Essentially, an NFS is the subset of the underlying re-
lation schema whose attributes have been declared NOT NULL. More specifically, Atzeni
and Morfuni have presented an axiomatization for the implication of FDs in the presence
of an NFS, and an algorithm that decides the corresponding implication problem in time
linear in the input size [46]. Note that the combination of FDs and an NFS subsumes
the uniqueness and (primary) key constraints over SQL relations.

The objective of this article is to extend the existing theory of Armstrong relations to
a toolbox that is applicable to SQL table definitions with functional dependencies. We
review previous work in Section 2. Subsequently, we define the underlying concepts and
present related previous results in Section 3.

As a first contribution we show in Section 4 that FDs do not enjoy Armstrong relations
when null values are permitted to occur. That is, we identify relation schemata and
sets of FDs for which no Armstrong relations exist. This is in contrast to the case of
total relations. Fortunately, the source of this negative result are so-called non-standard
FDs. These are FDs of the form ∅ → A with an empty attribute set on the LHS. One
may argue that these FDs do not occur in practice since they would enforce all entries
in the A-column to be the same. We will show that the class of standard FDs does
enjoy Armstrong relations, even in the presence of an arbitrary NFS. The situation is
reminiscent of the situation for functional and inclusion dependencies over total relations
where only standard FDs and inclusion dependencies enjoy Armstrong databases [49].
For these reasons we will focus on the class of standard FDs in the presence of an NFS.

As a second contribution we characterize Armstrong tables in Section 5. That is, we
give sufficient and necessary conditions for a given relation to be an Armstrong table for a
given set of standard FDs and a given NFS. Our characterization is based on extensions of
the notions of agree sets [40], maximal sets [42] and “closed” sets from the special case of
total relations. However, we demonstrate that in the presence of null values, the closure
operation is not idempotent. Therefore, the maximal sets are no longer the intersection
generators of closed sets, a property which was fundamental in the development of the
results for the special case of total relations [40]. This observation constitutes a significant
challenge on the development of our results.

As a third contribution we establish in Section 6 an algorithm that, given a relation
schema R, an NFS Rs and a set Σ of standard FDs over R, computes an Armstrong
table for Σ and Rs. The algorithm is a non-trivial extension of the algorithm by Mannila

5

and Räihä for FDs over total relations [42]. It is based on the computation of attribute
subsets that are maximal for a given attribute, i.e., maximal with the property that the
attribute is not functionally dependent on the subset. The computation of the families of
maximal attribute subsets is incremental in the given set of standard FDs. The families
evolve conceptually differently than they do in the special case of total relations.

As a fourth contribution we investigate the complexity of certain problems associ-
ated with Armstrong tables in Section 7. While the problem of finding an Armstrong
table remains precisely exponential in general, the size of the Armstrong tables that our
algorithm produces is shown to be at most quadratic in the size of a minimum-sized
Armstrong table. We show that the size of Armstrong tables for a given set of FDs can
be exponentially smaller than an optimal cover of Σ. Therefore, just for the reason of
the size of a representation, data engineers should always consider both representations
of business rules: as abstract FD sets and as Armstrong tables for these. Finally, we also
show that the problem of deciding whether a given attribute set is a Codd key (i.e. it
enforces totality and uniqueness) with respect to a given set of FDs and an NFS is NP-
complete. Therefore, our results extend the existing toolbox of Armstrong relations to
SQL table definitions with no loss in time efficiency and almost no loss in space efficiency
over total relations.

As a fifth contribution we demonstrate in Section 8 how our results carry over to
i) schemata on which no Codd key has been specified, and ii) Armstrong tables for
standard FDs and an NFS in the world of all FDs. Concerning i) we need to study the
combined class of uniqueness constraints and FDs in the presence of an NFS. Concerning
ii) Armstrong tables for the world of all FDs must additionally violate all non-trivial
non-standard FDs, in contrast to the world of standard FDs.

As a final contribution we illustrate the impact of our results on database practice
in Section 9. We show how Armstrong tables can assist data engineers in recognizing
meaningful constraints that were previously incorrectly perceived as meaningless. The
recognition of these constraints can result in advanced designs that guarantee the absence
of data redundancy and update anomalies, ensure new opportunities for the efficient
processing of queries, and allow security officers to gain an advanced understanding about
possible inference attacks.

In summary, our contributions extend well-known results from total relations to SQL
tables. Hence, the resulting toolbox can be applied to instances that occur in real
database systems. Moreover, almost all of the nice properties previously established
for the special case of total relations [50, 46, 40, 51, 47, 42] are retained in the more
general case. We conclude in Section 10 where we also discuss multiple directions of
future work.

2 Related Work

Data dependencies have been studied thoroughly in various data models, and we refer
the reader to more detailed surveys [2, 52, 53, 54].

6

2.1 Total relations

We begin with a summary of the work over total relations. Keys and FDs are concepts
almost as old as the relational model of data itself [1, 55]. A total relation over a re-
lation schema R satisfies a key X if and only if it satisfies the functional dependency
X → R. Therefore, keys are subsumed by FDs. Armstrong established the first ax-
iomatization of FDs over total relations [50], now known as the Armstrong axioms. In
fact, Armstrong showed that the Armstrong axioms are even strongly complete for the
implication of FDs, i.e., for an arbitrary relation schema and an arbitrary set of FDs
on that schema, he constructed a single finite set of tuples which satisfies precisely all
implied FDs. That is the reason why such specific relations became known as Armstrong
relations. In general, axiomatizations can be applied by data engineers to enumerate all
implied data dependencies. In practice, such an enumeration is often desirable, e.g., to
validate the correct specification of explicit knowledge, to design and fine-tune databases
or to optimize queries. In particular, the completeness of the inference rules ensures that
all opportunities of utilizing implicit knowledge for these purposes have been exploited.
Furthermore, an analysis of the completeness argument can provide invaluable hints for
finding algorithms that efficiently decide the associated implication problem, i.e., to de-
cide for an arbitrarily given FD set Σ ∪ {φ} whether Σ implies φ. For FDs over total
relations, implication can be decided in time linear in the total number of attributes that
occur in the input [56, 57]. Such decision algorithms complement the enumeration algo-
rithm by a further reasoning capability that can make efficient, but only partial decisions
about implicit knowledge. These decisions are only partial in the sense that the input to
this algorithm must also contain a candidate for an implied functional dependency. In
contrast, the enumeration algorithm simply lists all implied dependencies. The reason
for the prominence of the implication problem is manifold. An algorithm for testing the
implication of dependencies enables us to test whether two given sets of dependencies
are equivalent or whether a given set of dependencies is redundant. A solution to these
problems is a big step towards automated database schema design [58, 59] which some re-
searchers see as the ultimate goal in dependency theory [60]. Moreover, such an algorithm
can be used in relational normalization theory and practice involving many normal form
proposals [56, 60, 59, 61, 55], requirements engineering and schema validation [42], data
mining [62], in database security [63, 37], view maintenance [17] and in query optimization
[34, 35, 64]. More recently, the implication problem has received a lot of attention in other
data models as well [65, 66, 46, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 15].
New application areas involve data cleaning [82], data transformations [83], consistent
query answering [84] and data exchange [85, 86, 87] and data integration [22, 23].

Armstrong relations constitute an invaluable tool for the validation of semantic knowl-
edge, and a user-friendly representation of integrity constraints. Armstrong relations have
been deeply studied for keys [51, 88] and FDs [50, 40, 89, 42]. In particular, the exis-
tence of Armstrong relations for FDs was shown by Armstrong [50], and Fagin [90] has
shown the existence of Armstrong relations for a large class of data dependencies; how-
ever, classes of data dependencies do not necessarily enjoy Armstrong relations by any
means. The structure of Armstrong relations for the class of FDs over total relations
has mainly been investigated by Beeri, Fagin, Statman and Howard [40] and Mannila

7

and Räihä [42]. In the current article, we will extend several of their results from the
special case of total to partial relations. The properties of Armstrong relations have also
been analyzed for various other classes of data dependencies [26, 91, 43, 49, 92, 42]. An
excellent survey on Armstrong databases is [43]. Over the last decades, the concept of
Armstrong relations has been found useful in many database applications. For example,
informative Armstrong databases are used for the semantic sampling of existing databases
[25, 26]. They constitute small subsets of an existing database that satisfy the same data
dependencies. In particular, De Marchi and Petit [26] applied the concept of informa-
tive Armstrong relations to generate a sample that only used 0.6% of the tuples in an
existing real-world database and satisfied the exact same set of data dependencies. The
small size of this sample enabled data engineers to identify the FDs meaningful for the
application domain. Design aids [41, 42, 93] have been developed that utilize Armstrong
databases to help judge, justify, convey, or test the data engineers’ understanding of a
given relation schema. Recently, empirical evidence has been established that Armstrong
relations help data engineers to recognize meaningful FDs that they were not able to rec-
ognize without the help of Armstrong relations [44]. Failure to identify some meaningful
functional dependency also means that the output of a requirements analysis is afflicted
with errors. Empirical studies show that more than half the errors which occur during
systems development are requirements errors [94, 95]. Requirements errors are also the
most common cause of failure in systems development projects [94, 96]. The cost of errors
increases exponentially over the development life cycle: it is more than 100 times more
costly to correct a defect post-implementation than it is to correct it during requirements
analysis [97]. This suggests that it would be more effective to concentrate quality as-
surance efforts in the requirements analysis stage, in order to catch requirements errors
as soon as they occur, or to prevent them from occurring altogether [98]. Hence, there
are also strong economic incentives to utilize Armstrong relations for the acquisition of
meaningful FDs. Finally, Kolaitis et al. have established first correspondences between
unique characterizations of schema mappings and the existence of Armstrong bases [39].
An Armstrong basis refers to a finite set of pairs consisting of a source instance and a
target instance that is a universal solution for the source instance. Our results may open
the way to establish further correspondences.

2.2 Partial relations

We will now comment on some of the work concerning data dependencies in the presence
of nulls. One of the most important extensions of Codd’s basic relational model [1] is
incomplete information. This is mainly due to the high demand for the correct handling
of such information in real-world applications. Approaches to deal with incomplete infor-
mation comprise incomplete relations [99, 100, 101], or-relations [102, 103, 104] or fuzzy
relations [77]. Here we focus on incomplete relations.

In the literature, many kinds of null values have been proposed; for example, “miss-
ing” or “value unknown at present” [105, 106, 107], “non-existence” [108], “inapplicable”
[107], “no information” [109] and “open” [110]. The most primitive is the “no infor-
mation” interpretation that can be used to model every kind of missing or incomplete
information, and its semantics is certainly simple and well understood [46]. Lien [47]

8

investigated FDs in partial relations under this interpretation and established an axiom-
atization for this class. Interestingly, the transitivity rule, which is part of the Armstrong
axioms, is no longer sound in this more general context. Atzeni and Morfuni established
axiomatizations and linear-time algorithms for deciding the implication of the combined
class of FDs and various existence constraints, including NFSs [46]. It is precisely this
line of work we continue in this paper. Recently, Hartmann and Link [48] established an
axiomatization and an almost linear-time algorithm for deciding the combined class of
functional and multivalued dependencies and NFSs, and showed the equivalence of the
implication problem to that of a propositional fragment of Cadoli and Schaerf’s S-3 logics
[111]. Levene and Loizou introduced and axiomatized the classes of weak and strong FDs
with respect to a possible world semantics [76]. The axiomatization of strong FDs is given
by the Armstrong axioms, while weak FDs have the same axiomatization as the FDs of
Lien [47], Atzeni and Morfuni [46]. However, weak FDs are different from FDs under
the no information interpretation. Consider for example the schema Employment with
attributes Emp, Dept and Mgr, and the relation r with the two tuples (Turing, Comp,
von Neumann) and (Turing, ni, Gödel). The relation satisfies the weak functional de-
pendency Emp → Dept since the null value ni can be replaced by Comp (there is a
possible world in which Emp → Dept is satisfied). However, under the no information
interpretation the functional dependency Emp→ Dept is violated by r. That is, the two
tuples have some information on the attribute Emp and the information is the same, but
the first tuple has some information for Dept while the second tuple has no information
for Dept. Levene and Loizou also showed that the combined class of weak and strong FDs
enjoys Armstrong relations [76]. Paulley axiomatized the implication of a class of strong
and lax FDs which advance the query processing in SQL [36]. In particular, Paulley’s
lax FDs are different from “no information” FDs, e.g. the relation r above satisfies the
lax, but not the “no information” FD Emp → Dept. Another difference is that Paulley
accounts for the possible existence of duplicate rows in an SQL table by including tuple
identifiers.

Over the last decade, FDs have also received a lot of attention from the XML commu-
nity [66, 73, 75, 79, 15]. However, the study of Armstrong data trees for XML FDs has
only been preliminary so far. In fact, Hartmann et al. [73] characterize the existence of
such Armstrong data trees for a particular class of XML FDs under certain assumptions
on the underlying XML schema. The results of our present article may provide valuable
information for the study of Armstrong data trees for many classes of XML FDs.

3 Preliminaries

In this section we summarize the basic notions required for our treatment of FDs over
SQL tables. Our development will follow the extension of Codd’s relational model of data
[1] to encompass incomplete information by the no information null value introduced by
Zaniolo [109], applied to FDs by Lien [47], to FDs and null existence constraints by
Atzeni and Morfuni [46], and to functional and multivalued dependencies and a null-free
subschema by Hartmann and Link [48].

9

3.1 Total and partial relations

Let A = {A1, A2, . . .} be a (countably) infinite set of distinct symbols, called attributes.
A relation schema is a non-empty, finite subset R of A whose attributes represent column
names of a relation. Each attribute A of a relation schema R is associated with an infinite
domain dom(A) which represents the set of possible values that can occur in the column
named A. In order to encompass incomplete information it is assumed that the domain
of every attribute has a null value distinct from all the other domain values, denoted
by ni ∈ dom(A). In the literature, many kinds of null values have been proposed;
for example, “missing” or “value unknown at present” [105, 107, 106], “non-existence”
[108], “inapplicable” [107], “no information” [109] and “open” [110]. The intention of
the null value ni is to mean “no information”. That is, the null value ni associated with
an attribute in a tuple means that no information is available about that attribute for
that tuple. This is the most primitive interpretation but can be used to model every
kind of missing or incomplete information, and its semantics is certainly simple and well
understood [46].

If X and Y are sets of attributes, then we may write XY for X ∪ Y . If X =
{A1, . . . , Am}, then we may write A1 · · ·Am for X. In particular, we may write simply A
to represent the singleton {A}. A tuple over R (R-tuple or simply tuple, if R is under-
stood) is a function t : R→

∪
A∈R

dom(A) with t(A) ∈ dom(A) for all A ∈ R. For X ⊆ R

let t[X] denote the restriction of the tuple t over R toX, and let dom(X) =
∏

A∈X dom(A)
denote the Cartesian product of the domains of attributes in X. A (partial) relation r
over R is a finite set of tuples over R. Let t1 and t2 be two tuples over R. It is said that
t1 subsumes t2 if for every attribute A ∈ R, t1[A] = t2[A] or t2[A] = ni holds. Intuitively,
the information content of t1 subsumes that one of t2. In keeping consistency with pre-
vious work [46, 47, 112, 109], the following restriction will be imposed: No relation in
the database shall contain two tuples t1 and t2 such that t1 subsumes t2. Without null
values, this amounts to saying that no two tuples are identical, an explicit requirement
for database relations. The results we develop in this article for Armstrong tables and
the class of FDs, however, remain valid even when we lift this restriction. For a more
detailed analysis see Section 8.

For a set X ⊆ R, a tuple t over R is X-total, if for all A ∈ X, t[A] ̸= ni. A relation r
over R is X-total, if every tuple t of r is X-total. A relation r over R is a total relation,
if it is R-total.

3.2 Agree sets of tuples

Over total relations, Mannila, Räihä, Beeri, Dowd, Fagin and Statman used the notion of
an agree set of tuples for the investigation of Armstrong relations. Over partial relations
this notion requires a refinement that we introduce in the next definition.

Definition 1 Let R be some relation schema. For two tuples t, t′ over R let ag(t, t′) =
(X, Y) denote the agree set of t and t′, where X = {A ∈ R | t[A] = t′[A] ∧ t[A] ̸=
ni ≠= t′[A]} and Y = {A ∈ R | t[A] = t′[A]}. For ag(t, t′) = (X, Y) we define
ags(t, t′) = X to be the strong agree set, and agw(t, t′) = Y to be the weak agree set of

10

t and t′. For a relation r over R let ag(r) = {ag(t, t′) | t, t′ ∈ r ∧ t ̸= t′} denote the
agree set of r, let ags(r) = {X | (X, Y) ∈ ag(r)} denote the strong agree set of r, and let
agw(r) = {Y | (X, Y) ∈ ag(r)} denote the weak agree set of r. Finally, for X ∈ ags(r)
let w(X) =

∩
{Y | (X, Y) ∈ ag(r)}.

Remark 1 Over total relations [40, 42], it suffices to define ag(t, t′) := {A ∈ R | t[A] =
t′[A]} since a total relation r satisfies ags(r) = agw(r), and w(X) = X for all X ∈ ags(r).
Note that all elements of ag(r) have the form (X,X) in the case of total relations.

Example 4 Let r denote the relation from Example 2:

Emp Dept Mgr
Hilbert Math Gauss

Pythagoras Math Gauss
Einstein Physics Gauss
Turing ni von Neumann
Turing ni Gödel

.

The agree set of the last two tuples is

({Emp},{Emp,Dept})

and the remaining agree sets of r are:

• ({Dept,Mgr},{Dept,Mgr})

• ({Mgr},{Mgr})

• (∅,∅).

Specifically, w(Emp) = {Emp,Dept}.

3.3 FDs and null-Free subschemata

FDs between sets of attributes have always played a central role in the study of relational
databases [56, 59, 1], and seem to be central for the study of database design in other
data models as well [66, 71, 75, 76, 78, 10, 79, 80, 81]. In relational databases the notion
of a functional dependency is well-understood and the semantic interaction between these
dependencies has been syntactically captured by Armstrong’s axioms [50]. Lien defined
the semantics of a functional dependency over partial relations [47]. Here we state this
definition in terms of our agree sets.

Definition 2 A functional dependency (FD) over the relation schema R is a statement
X → Y where X, Y ⊆ R. The FD X → Y over R is satisfied by a relation r over R, de-
noted by |=r X → Y , if and only if for all t1, t2 ∈ r the following holds: if X ⊆ ags(t1, t2),
then Y ⊆ agw(t1, t2). FDs of the form ∅ → Y are called non-standard, otherwise they are
called standard.

11

Hence, whenever two tuples agree on a non-null restriction to X, then they also agree
on the restriction to Y , which may be partial. In other words, an FD X → Y can only
be violated by a relation r if there are two distinct X-total tuples t1, t2 ∈ r such that
t1[X] = t2[X] and there is some attribute A ∈ Y such that t1[A] ̸= t2[A] (i.e. either t1[A]
and t2[A] have different non-null values, or one of t1[A] and t2[A] is null but the other
value is non-null).

For total relations the definition of an FD reduces to that of a functional depen-
dency, and so is a correct generalization of the concept. It is also consistent with the
no information interpretation [46]. Firstly, tuples with nulls in attributes in X cannot
cause a violation of a functional dependency X → Y : the nulls mean that no informa-
tion is available about those attributes. Secondly, the functional dependence of Y on X
forces any two X-total tuples t1, t2 where t1[X] = t2[X] to have the same information
on all the attributes in Y . That is, for all A ∈ Y we have either t1[A] = ni = t2[A]
or ni ̸= t1[A] = t2[A] ̸= ni. One could also define the semantics differently, e.g. by
saying that (i) for all t1, t2 ∈ r: if t1, t2 are both XY -total and X ⊆ ags(t1, t2), then
Y ⊆ ags(t1, t2), or (ii) for all t1, t2 ∈ r: if X ⊆ ags(t1, t2), then Y ⊆ ags(t1, t2). However,
option (i) removes the functional dependence of Y on X by stipulating that any tuples
that are not Y -total cannot contribute to a violation of the FD X → Y , independently
of their values on X. Moreover, option (ii) makes the unnecessarily strict requirement
that any tuples t1, t2 with X ⊆ ags(t1, t2) must also be Y -total.

According to Atzeni and Morfuni [46], a null-free subschema (NFS) over the relation
schema R is a an expression Rs where Rs ⊆ R. The NFS Rs over R is satisfied by a
partial relation r over R, denoted by |=r Rs, if and only if for all t ∈ r and for all A ∈ Rs

we have t[A] ̸= ni. Hence, the satisfaction of a null-free subschema Rs over R requires
that partial relations over R are Rs-total. Without loss of generality, we can assume that
on each relation schema a single NFS is defined. Null-free subschemata occur naturally
in database practice: SQL allows one to specify attributes as NOT NULL, cf. Example 1.
Consequently, the set of such attributes over a table definition would form the single
null-free subschema over this table.

For a set Σ of constraints over some relation schema R, we say that a (partial) relation
r over R satisfies Σ, denoted by |=r Σ, if r satisfies every element of Σ. If for some σ ∈ Σ
the relation r does not satisfy σ we sometimes say that r violates σ (in which case r also
violates Σ) and write ̸|=r σ (̸|=r Σ).

Example 5 For Example 1 we obtain the relation schema

Employment={Emp,Dept,Mgr}

with NFS Employments = {Emp,Mgr}. The relation

Emp Dept Mgr
Turing ni von Neumann
Turing ni Gödel

satisfies Employments as well as the FDs Emp → Dept and Dept → Mgr. However,
the relation violates the FD Emp→ Mgr.

12

3.4 Implication and inference

For the design, maintenance and applications of a relational database, data dependencies
are identified as semantic constraints on the relations which are intended to be instances
of the database schema. During the design process or lifetime of a database one usually
needs to determine further dependencies which are logically implied by the given ones. In
line with the literature of database constraints, we restrict our attention to the implication
of constraints in some fixed class C: FDs in the presence of an NFS.

Let R be a relation schema, let Rs ⊆ R denote an NFS over R, and let Σ ∪ {φ} be a
set of FDs over R. We say that Σ implies φ in the presence of Rs, denoted by Σ |=Rs φ,
if every relation r over R that satisfies Σ and Rs also satisfies φ. If Σ does not imply φ
in the presence of Rs we may also write Σ ̸|=Rs φ.

The implication problem for functional dependencies in the presence of a null-free
subschema is to decide, given any relation schema R, any NFS Rs over R, and any set
Σ ∪ {φ} of FDs over R, whether Σ |=Rs φ. For the class of FDs in the presence of an
NFS, the sets Σ ∪ {φ} over a relation schema R are always finite. Moreover, if Rs = ∅
we also write Σ |= φ instead of Σ |=∅ φ. This covers the case where every attribute is
NULL [47]. The case where every attribute is NOT NULL is covered when Rs = R.

Note that for FDs (in the presence of an NFS) it does not matter whether we restrict
our attention to relations that are finite, i.e., the implication problem coincides with the
finite implication problem where only finite relations are considered [2]. For this reason,
we will only speak of the implication problem.

For an FD set Σ over a relation schema R and an NFS Rs over R, let the FD set
Σ∗

Rs
= {φ | Σ |=Rs φ} denote the semantic closure of Σ. For a finite FD set Σ ∪ {φ}

and a set R of inference rules let Σ ⊢R φ denote an inference of φ from Σ by R. That
is, there is some sequence γ = [σ1, . . . , σn] of FDs such that σn = φ and every σi is an
element of Σ or results from an application of an inference rule in R to some FDs in
{σ1, . . . , σi−1}. For a finite FD set Σ let Σ+

R = {φ | Σ ⊢R φ} denote the syntactic closure
of Σ under inferences by R. R is said to be sound (complete) for the implication of FDs
in the presence of an NFS if for every relation schema R, for every NFS Rs over R and
for every FD set Σ over R we have Σ+

R ⊆ Σ∗
Rs

(Σ∗
Rs
⊆ Σ+

R). The (finite) set R is said to
be a (finite) axiomatization for the implication of FDs in the presence of an NFS if R is
both sound and complete for the implication of FDs in the presence of an NFS.

Example 6 Consider the relation schema Employment with the NFS Employments

from Example 5 again. Let Σ denote the set of FDs over Employment that consists
of Emp → Dept and Dept → Mgr. Since the relation in Example 5 satisfies the NFS
Employments as well as Σ, but it violates the FD Emp→ Mgr we conclude that Emp→
Mgr is not in the semantic closure Σ∗

Employments
of Σ.

Remark 2 It was shown recently [48] that an FD set Σ implies an FD φ in the presence
of the NFS Rs if and only if the set Σ′ of Horn clauses resulting from Σ logically implies
the Horn clause φ′ resulting from φ in Cadoli and Schaerf ’s para-consistent family of S-3
logics. Here, S consists of those propositional variables that correspond to the attributes
of the NFS Rs and must be interpreted as either true or false, whereas variables outside
of S can also be interpreted as both true and false. Importantly, the truth tables that

13

XY → X

X → Y ;X → Z

X → Y Z

X → Y Z

X → Y
(reflexivity) (union) (decomposition)

X → Y ;Y → Z

X → Z
Y −X ⊆ Rs

(null transitivity)

Table 1: Axiomatization of FDs in the presence of the NFS Rs.

define the logical operators of negation, disjunction and conjunction are the tables that
Codd suggested for extending the relational algebra by means of a three-valued logic and
the null substitution principal, and which has been adopted by SQL [99].

Atzeni and Morfuni have established a finite axiomatization [46] for the implication
of FDs in the presence of an NFS. The inference rules are given in Table 1.

Note that the null transitivity rule can only infer the FD X → Z from the FDs
X → Y and Y → Z, if all the attributes in Y − X have been declared NOT NULL, i.e.,
are members of the NFS Rs. Also note that the so-called augmentation rule

X → Y

XZ → Y

follows from the reflexivity axiom and the null transitivity rule [46].

Example 7 Consider the relation schema Employment with the NFS Employments

from Example 5 again. Then the FD Emp → Mgr cannot be inferred from the two FDs
Emp → Dept and Dept → Mgr by means of the null transitivity rule since the attribute
Dept is not an element of Employments.

Atzeni and Morfuni also established a linear-time algorithm for deciding the implica-
tion problem for FDs in the presence of an NFS[46]. As Beeri and Bernstein did for total
relations [56], Atzeni and Morfuni utilized the notion of an attribute closure

X∗
Σ,Rs

= {A ∈ R | Σ |=Rs X → A}

of an attribute set X with respect to an FD set Σ and an NFS Rs over the relation
schema R [46]. An FD X � Y over R is implied by Σ in the presence of Rs if and only
if Y ⊆ X∗

Σ,Rs
holds [46]. Algorithm 1 on page 15 computes the attribute closure X∗

Σ,Rs

of X with respect to Σ and Rs over R [46].
Algorithm 1 corrects the algorithm originally proposed in [46]. For example, consider

the relation schema Employment with the NFS {Dept} and let Σ consist of the two
FDs Emp→ Dept and Dept→ Mgr. On input

({Emp},Σ,{Dept},Employment)

14

Algorithm 1 Closure Computation

1: procedure NFSClosure(X,Σ, Rs, R)
2: Closure← X;
3: repeat
4: OldClosure← Closure;
5: for all V → W ∈ Σ do
6: if V ⊆ Closure ∩XRs then
7: Closure← Closure ∪W ;
8: end if
9: end for
10: until Closure=OldClosure;
11: return(Closure);
12: end procedure

the original algorithm [46] returns the set {Emp,Dept}, but the correct result is the set
{Emp,Dept,Mgr}.

Example 8 Consider the relation schema Employment with the NFS Employments

from Example 5 again, and let Σ consist of the two FDs Emp→ Dept and Dept→ Mgr.
On input

({Emp},Σ,Employments,Employment)

Algorithm 1 returns the set {Emp,Dept}. Consequently, the FD Emp → Mgr is not
implied by Σ in the presence of the NFS Employments since Mgr is not an element of
{Emp}∗Σ,Employments

= {Emp,Dept}.

3.5 Uniqueness constraints and Codd keys

Functional dependencies in the presence of arbitrary null-free subschemata subsume
SQL’s uniqueness constraint as well as so-called Codd keys.

A uniqueness constraint over a relation schema R is an expression unique(X) with
X ⊆ R. A relation r over R satisfies unique(X) if and only if for all distinct t, t′ ∈ r
the following holds: if t and t′ are X-total, then t[X] ̸= t′[X]. It follows that r satisfies
unique(X) if and only if r satisfies the FD X → R.

Moreover, a Codd key over a relation schema R is an expression Codd(X) withX ⊆ R.
A relation r over R satisfies Codd(X) if and only if r is X-total and for all distinct t, t′ ∈ r
it is true that t[X] ̸= t′[X]. From this definition it follows that r satisfies Codd(X) if and
only if r satisfies the NFS X and satisfies the FD X → R.

It is now relatively easy to see that we can express uniqueness constraints and Codd
keys by means of FDs and an NFS.

Theorem 1 Let Σ be a set of FDs and let Rs be an NFS over R. Then the following
hold:

1. Σ |=Rs unique(X) if and only if Σ |=Rs X → R,

15

2. Σ |=Rs Codd(X) if and only if Σ |=Rs X → R and X ⊆ Rs.

Proof The first equivalence is a straight consequence of the fact that a relation satisfies
unique(X) if and only if it satisfies the FD X → R. For the second equivalence we first
show that if Σ |=Rs X → R and X ⊆ Rs hold, then Σ |=Rs Codd(X) holds as well. In
fact, let r denote an arbitrary relation over R that satisfies Σ and Rs. It follows that
r satisfies X → R as well since Σ |=Rs X → R. Since X ⊆ Rs holds, we know that r
satisfies the NFS X. Consequently, r satisfies Codd(X).

It remains to show that if Σ ̸|=Rs X → R or X ̸⊆ Rs, then Σ ̸|=Rs Codd(X).
Suppose first that Σ ̸|=Rs X → R. Then there is some relation r over R that satisfies

Σ and the NFS Rs, but violates the FD X → R. Consequently, there are two tuples
t, t′ ∈ r such that t[X] = t′[X], t and t′ are X-total and t ̸= t′. The two-tuple relation
r′ = {t, t′} shows that Σ ̸|=Rs Codd(X) since r′ satisfies Σ and Rs (since r′ ⊆ r holds),
but violates Codd(X).

Suppose now that X ̸⊆ Rs holds, i.e., X − Rs is non-empty. In this case we define
a single-tuple relation r := {t} for some tuple t over R such that t[A] := ni for all
A ∈ R − Rs and t[B] ∈ dom(B)− {ni} for all B ∈ Rs. It follows that r satisfies Σ and
the NFS Rs, but r violates Codd(X) since X ∩ (R−Rs) ̸= ∅.

3.6 Armstrong relations

Let Σ be a set of constraints in class C over some relation schema R. A relation r over R
is said to be an Armstrong relation for Σ, if for all φ in C over R it is true that r satisfies
φ if and only if Σ implies φ. Hence, r is a perfect representation of the constraint set Σ in
the sense that it satisfies all the constraints implied by Σ, but violates all the constraints
not implied by Σ.

A class C of constraints is said to enjoy Armstrong relations if and only if for every
relation schema R, and for every set Σ of constraints in C over R there is some relation
r over R that is an Armstrong relation for Σ.

In this paper, we are interested in the class C of FDs in the presence of an NFS, which
permits arbitrary FD sets together with a single arbitrary null-free subschema. In this
context, we also speak of Armstrong tables instead of Armstrong relations. Note that an
NFS Rs implies another NFS R′

s if and only if R′
s ⊆ Rs holds.

Example 9 The relation of Example 3 is an Armstrong table for the FD set

Σ = {Emp→ Dept,Dept→ Mgr}

and the NFS Rs = R = {Emp,Dept,Mgr}. The relation of Example 2 is an Armstrong
table for the FD set Σ and the NFS Rs = {Emp,Mgr} over R = {Emp,Dept,Mgr}. The
relation of Example 2 is not an Armstrong table for Σ and Rs = R, and the relation of
Example 3 is not an Armstrong table for Σ and Rs = {Emp,Mgr}: it satisfies R′

s = R
and the FD Emp→ Mgr, but neither is implied by Σ and Rs.

Further Outline. The development of these notions have led us to several questions.
A first fundamental question is whether the class of FDs in the presence of an NFS

16

enjoys Armstrong tables. We will pursue a first answer to this question in Section 4.
Another question is the following: how can we validate that the relations in Examples
2 and 3 are indeed Armstrong tables? More generally, we would like to have a simple
characterization that allows us to judge whether any given relation is an Armstrong table
for an arbitrarily given set of FDs and an arbitrarily given NFSRs. Such characterizations
will be established in Section 5. These will assist us in Section 6 when we develop an
algorithm that computes an Armstrong table for an arbitrarily given FD set and an
arbitrarily given NFS. We investigate questions regarding the complexity of Armstrong
tables in Section 7.

4 FDs Do Not Enjoy Armstrong Tables

For total relations, i.e. in the special case where the null-free subschema contains all the
attributes of the underlying relation schema, it is well-known that FDs enjoy Armstrong
relations [50, 40, 43]. We will show now, however, that the class of FDs does not enjoy
Armstrong tables if there are attributes that are not declared NOT NULL. Intuitively in
such a case, non-standard FDs force all the tuples of a relation to have the same value on
some attribute. For relations to be Armstrong, however, it may also be required that the
values of such an attribute do differ for some distinct tuples. Consequently, Armstrong
tables cannot exist in general.

Theorem 2 The class of functional dependencies in the presence of a null-free sub-
schema does not enjoy Armstrong tables.

Proof We show that there is a relation schema R, an NFS Rs and an FD set Σ over R
such that there is no Armstrong table for Σ and Rs.

Let R = ABC, Rs = BC and let Σ = {∅ → A,A → B}. First we show that an
Armstrong table r for Σ and Rs must violate the FDs AB → C and C → B. In fact, the
relation

A B C
a b c
a b c′

satisfies the FD set Σ and the NFS Rs, but violates the FD AB → C. Consequently,
Σ ̸|=Rs AB → C. Moreover, the relation

A B C
ni b′ c
ni b c

satisfies the FD set Σ and the NFS Rs, but violates the FD C → B. Consequently,
Σ ̸|=Rs C → B. We conclude that an Armstrong table for Σ in the presence of Rs must
at least satisfy Σ and violate the FDs AB → C and C → B.

We show now that any relation that satisfies the FD ∅ → A and violates the FDs
AB → C and C → B must violate the FD A→ B. Let r be a relation that satisfies the

17

FD ∅ → A and violates the FDs AB → C and C → B. Since r violates AB → C there
are two distinct tuples t1, t2 ∈ r such that t1[AB] = t2[AB] and t1, t2 are both AB-total,
and t1[C] ̸= t2[C]. Since r violates the FD C → B there are two distinct tuples t3, t4 ∈ r
such that t3[C] = t4[C] and t3, t4 are both C-total, and t3[B] ̸= t4[B]. Since r satisfies
the FD ∅ → A, it follows that t3[A] = t4[A] = t1[A], and, in particular, that t3 and t4 are
A-total. Hence, the tuples t3, t4 witness that r violates the FD A→ B. Consequently, r
cannot be an Armstrong table for Σ and Rs.

For the proof of Theorem 2 it actually suffices to consider the FD AB → C and the
null-free subschema Rs = BC. A relation that violates the FD AB → C must contain
two tuples that are A-total. A relation that is Armstrong for Σ and Rs should contain a
tuple that carries the no information null value ni on A. Consequently, no relation can
violate the FD AB → C and the NFS A, and satisfy the FD ∅ → A. Hence, there is no
Armstrong table for Σ and Rs.

However, the proof of Theorem 2 also shows that Lien’s class of FDs over partial
relations [47] does not enjoy Armstrong relations. That is, the proof argument also applies
when no NFS Rs is present. In particular, note that Σ ̸|= AB → C and Σ ̸|= C → B
also hold.

Corollary 1 Lien’s class of FDs does not enjoy Armstrong relations.

The next two examples illustrate the difference between the special case of total
relations (Example 10) and the general case (Example 11) we consider here.

Example 10 Consider the relation schema

Employment={Emp,Dept,Mgr},

the NFS Rs = {Emp,Dept,Mgr} and let Σ consist of the two FDs ∅ → Mgr and Mgr→
Dept. The relation r

Emp Dept Mgr
Hilbert Maths Gauss

Pythagoras Maths Gauss

is an Armstrong table for Σ and Rs. In particular, note that the FD ∅ → Dept is implied
by Σ and Rs.

Example 11 Consider the relation schema

Employment={Emp,Dept,Mgr},

the NFS Rs = {Emp,Dept} and let Σ consist again of the two FDs ∅ → Mgr and
Mgr→ Dept. This is the case of the proof in Theorem 2. Here, the relation r′

Emp Dept Mgr
Gauss Maths ni

Gauss Physics ni

Turing Computers Gödel
von Neumann Computers Gödel

18

is not an Armstrong table for Σ and Rs. Indeed, it violates all FDs not implied by Σ and
Rs, and satisfies all FDs implied by Σ and Rs except ∅ → Mgr.

While the result of Theorem 2 is negative in general, we will see that Armstrong
tables do exist for the class of standard FDs in the presence of an NFS. Since it can be
argued that non-standard FDs rarely occur in practice, the situation is actually rather
pleasant. It is reminiscent of Fagin and Vardi’s result that the class of standard FDs and
inclusion dependencies over total relations enjoys Armstrong databases, while the class
of FDs and inclusion dependencies does not [49].

5 Characterization of Armstrong Tables

In this section we continue Lien [47], Atzeni and Morfuni’s study [46] of the class of
FDs in the context of partial relations and NFSs, respectively. As a first main result we
extend Mannila, Räihä, Beeri, Dowd, Fagin and Statman’s characterization of Armstrong
relations for FDs from total relations [40, 42]. Our generalization requires an extension
of Demetrovics’ notion of maximal sets of attributes [51, 42] and uses a refinement of
Mannila, Räihä, Beeri, Dowd, Fagin and Statman’s notion of an agree set of tuples,
already given in Definition 1. Due to Theorem 2 we will focus in Sections 5, 6 and 7 on
the class C of standard FDs. In Section 8 we will look at extensions of our results.

5.1 Maximal families of sets

Definition 3 Let Σ be a set of standard FDs and let Rs be an NFS over a relation
schema R. For an attribute A ∈ R we define the maximal set maxΣ,Rs(A) of A with
respect to Σ and Rs as follows:

maxΣ,Rs(A) := {∅ ̸= X ⊆ R | Σ ̸|=Rs X → A∧
∀B ∈ R−X(Σ |=Rs XB → A)}.

The maximal sets of R with respect to Σ and Rs are maxΣ,Rs(R) =
∪

A∈R maxΣ,Rs(A). If Σ
and Rs are clear from the context, we may simply write max(A) and max(R), respectively.

Thus, the maximal sets of an attribute A ∈ R with respect to Σ and Rs are the
maximal attribute subsets of R that do not functionally determine A.

Example 12 Let Σ = {Emp → Dept,Dept → Mgr} and let Rs = {Emp,Dept,Mgr}
be an NFS over the relation schema Employment. Then maxΣ,Rs(Emp) consists of
{Dept,Mgr}, maxΣ,Rs(Dept) contains the single element {Mgr}, and maxΣ,Rs(Mgr) = ∅.

For Rs = {Emp,Mgr}, maxΣ,Rs(Emp) consists of {Dept,Mgr}, maxΣ,Rs(Dept) con-
sists of {Mgr}, and maxΣ,Rs(Mgr) consists of {Emp}.

19

5.2 Characterizations

For a relation r over a relation schema R let

total(r) := {A ∈ R | ∀t ∈ r(t[A] ̸= ni)}

denote the set of those attributes A of R such that no tuple t ∈ r carries a null value ni
on A.

Theorem 3 Let R be some relation schema, let Σ be a set of standard FDs and let Rs

be an NFS over R. For all relations r over R it holds that r is an Armstrong table for Σ
and Rs if and only if both of the following conditions are satisfied:

1. for all non-empty X ⊆ R we have

X∗
Σ,Rs

=
∩
{w(Z) | X ⊆ Z ∈ ags(r)}, and

2. total(r) = Rs.

Proof Sufficiency. Let r be a relation over R that satisfies the conditions. We show
that r is an Armstrong table for Σ and Rs.

Let X → A ∈ Σ. That is, A ∈ X∗
Σ,Rs

. Assume that there are distinct tuples t, t′ ∈ r
such that t[X] = t′[X] and t, t′ are X-total. That is, X ⊆ X ′ = ags(t, t′). Hence, the
first condition shows that A ∈ w(X ′), and thus A ∈ agw(t, t′). Therefore, t[A] = t′[A]
holds. We have shown that r satisfies Σ.

Let X → A ̸∈ Σ∗
Rs
. Hence, A ̸∈ X∗

Σ,Rs
. By the first condition there is some Z ∈

ags(r) such that X ⊆ Z and A ̸∈ w(Z). In particular, there are tuples t, t′ such that
X ⊆ Z = ags(t, t′) and A ̸∈ agw(t, t′). That is, we have t[X] = t′[X], t, t′ are X-total
and t[A] ̸= t′[A]. This shows that r violates every FD not in Σ∗

Rs
.

Finally, the condition total(r) = Rs ensures that r satisfies every NFS implied by Rs

and violates every NFS not implied by Rs. Consequently, r is indeed an Armstrong table
for Σ and Rs.

Necessity. Let r be a relation over R that is Armstrong for Σ and Rs. We show that
r satisfies the conditions. Let t, t′ ∈ r be distinct tuples such that X ⊆ X ′ = ags(t, t′).
As r satisfies Σ∗

Rs
we have X∗

Σ,Rs
⊆ agw(t, t′), and thus X∗

Σ,Rs
⊆ w(X ′). Therefore,

X∗
Σ,Rs
⊆

∩
{w(Z) | X ⊆ Z ∈ ags(r)} holds.

Next we show that X∗
Σ,Rs

⊇
∩
{w(Z) | X ⊆ Z ∈ ags(r)}. Assume there is an

A ̸∈ X∗
Σ,Rs

such that A ∈ {w(Z) | X ⊆ Z ∈ ags(r)}. Then we have A ∈ agw(t, t′)
for all distinct tuples t, t′ ∈ r with X ⊆ Z = ags(t, t′). That is, r satisfies X → A.
This, however, contradicts the assumption A ̸∈ X∗

Σ,Rs
since r is Armstrong for Σ and Rs.

Consequently, X∗
Σ,Rs
⊇

∩
{w(Z) | X ⊆ Z ∈ ags(r)} holds. Finally, since r is Armstrong

for Σ and Rs it follows that total(r) = Rs.

For the special case of total relations, i.e. where Rs = R, it is well-known that every
FD set Σ and the NFS R over R defines a closure operator (·)∗Σ,R : P(R) → P(R) by
mapping every attribute subset X ⊆ R to its attribute closure X∗

Σ,R. In fact, (·)∗Σ,Rs

20

is a closure operator since it is extensive (X ⊆ X∗
Σ,R), increasing (for X ⊆ Y we have

X∗
Σ,R ⊆ Y ∗

Σ,R) and idempotent
((

X∗
Σ,R

)∗
Σ,R

= X∗
Σ,R

)
. In particular, an attribute subset

X of R is said to be closed with respect to the FD set Σ and the NFS R if X∗
Σ,R = X.

The set of all subsets of R that is closed with respect to the FD set Σ and the NFS
R is denoted by clΣ,R(R). For the special case where Rs = R it is well-known that
clΣ,Rs(R) is closed under intersection. Thus there is a unique minimal subfamily of
generators genΣ,R(R) ⊆ clΣ,R(R) such that each member of clΣ,R(R) can be expressed as
an intersection of sets in genΣ,R(R) [40].

Beeri, Dowd, Fagin, and Statman [40] have shown that r is an Armstrong table for
an FD set Σ and the NFS R over R if and only if genΣ,R(R) ⊆ ags(r) ⊆ clΣ,R(R) holds.
Later, Mannila and Räihä [42] have shown that for an arbitrary relation schema R, an
arbitrary FD set Σ and the special NFS R over R it is true that maxΣ,R(R) = genΣ,R(R).

If we allow arbitrary null-free subschemata Rs of R, then the situation is different.
In particular, (·)∗Σ,Rs

: P(R) → P(R) is no longer idempotent, and therefore no closure
operator, as the next example illustrates.

Example 13 Let R denote the relation schema Employment from Example 2 where
the FD set Σ consists of the two FDs Emp → Dept and Dept → Mgr, and the NFS Rs

consists of the attributes Emp and Mgr. Then the attribute subset closures are:

• ∅∗Σ,Rs
= ∅,

• {Emp}∗Σ,Rs
= {Emp,Dept},

• {Dept}∗Σ,Rs
= {Dept,Mgr},

• {Mgr}∗Σ,Rs
= {Mgr},

• {Emp,Dept}∗Σ,Rs
= R,

• {Emp,Mgr}∗Σ,Rs
= R,

• {Dept,Mgr}∗Σ,Rs
= {Dept,Mgr}, and

• {Emp,Dept,Mgr}∗Σ,Rs
= R.

Hence, we can see that the attribute subset closure (·)∗Σ,Rs
is not idempotent, and

clΣ,Rs(R) = {∅, {Mgr}, {Dept,Mgr}} = genΣ,Rs
(R),

is different from

maxΣ,Rs(R) = {{Emp}, {Mgr}, {Dept,Mgr}}.

Since clΣ,Rs does not define a closure operator for arbitrary NFS Rs over R the concept
of closed attribute subsets is no longer useful in this context. For this reason, we will utilize
the maximal set families maxΣ,Rs(R) to characterize the situation when an arbitrary
relation is an Armstrong table for a given FD set Σ and a given NFS Rs over the relation
schema R.

21

Theorem 4 Let R be some relation schema, let Σ be a set of standard FDs and let Rs

be an NFS over R. For all relations r over R it holds that r is an Armstrong table for Σ
and Rs if and only if the following conditions are satisfied:

1. ∀A ∈ R∀X ∈ maxΣ,Rs(A)(X ∈ ags(r) ∧ A /∈ w(X)),

2. ∀X ∈ ags(r)(X∗
Σ,Rs
⊆ w(X)), and

3. total(r) = Rs.

Proof Sufficiency. Let r be some relation over R that satisfies conditions 1., 2. and 3.
We show that r is an Armstrong table for Σ and Rs.

Let X → A ∈ Σ. Assume that there are distinct t, t′ ∈ r such that t[X] = t′[X]
and t is X-total. That is, X ⊆ X ′ = ags(t, t′). Note that A ∈ (X ′)∗Σ,Rs

by soundness
of the augmentation rule. Hence, condition 2. implies that A ∈ w(X ′). In particular,
A ∈ agw(t, t′). Therefore, t[A] = t′[A]. Hence, r satisfies Σ.

Let X → A /∈ Σ∗
Rs
. It follows that there is some X ′ ∈ maxΣ,Rs(A) such that X ⊆ X ′

and A /∈ (X ′)∗Σ,Rs
. Condition 1. implies that X ′ ∈ ags(r) and A /∈ w(X ′). Hence, there

is some Y ∈ agw(r) such that (X ′, Y) ∈ ag(r) and A /∈ Y . This shows that there are two
distinct t, t′ ∈ r such that t[X ′] = t′[X ′] and t, t′ are X ′-total and t[A] ̸= t′[A]. We have
shown that r violates every functional dependency that is not in Σ∗

Rs
.

Condition 3. ensures that r satisfies every NFS implied by Rs, and violates every
NFS not implied by Rs. Consequently, r is an Armstrong table for Σ and Rs.

Necessity. Let r be some relation over R that is an Armstrong table for Σ and Rs.
We show that r satisfies conditions 1., 2. and 3.

Let A ∈ R, and let X ∈ maxΣ,Rs(A). That is, Σ ̸|=Rs X → A and for all B ∈ R −X
it is true that Σ |=Rs XB → A. Since r is an Armstrong table for Σ and Rs it follows
that r violates X → A and for all B ∈ R − X that r satisfies the FD XB → A. The
violation of X → A implies that there are distinct t, t′ ∈ r such that X ⊆ ags(t, t′) and
A /∈ agw(t, t′). If there was some attribute C of R in ags(t, t′)−X, then r would violate
the FD XC → A. Consequently, X = ags(t, t′). We have just shown that for every
A ∈ R and for every X ∈ maxΣ,Rs(A) it is true that X ∈ ags(r) and A /∈ w(X), i.e.,
condition 1. holds.

Next we show that r satisfies condition 2. Therefore, let X ∈ ags(r). We need to
show that X∗

Σ,Rs
⊆ w(X). Let A be some attribute of R such that A /∈ w(X). That is,

there is some Y ∈ agw(r) such that (X, Y) ∈ ag(r) and A /∈ Y . Consequently, there are
some distinct t, t′ ∈ r such that X = ags(t, t′) and A /∈ agw(t, t′). That is, r violates the
FD X → A. Since r is an Armstrong table for Σ and Rs it follows that A /∈ X∗

Σ,Rs
. We

have just shown that X∗
Σ,Rs
⊆ w(X).

Since r is an Armstrong table for Σ and Rs it follows that total(r) = Rs.

Remark 3 Theorem 4 generalizes the characterization of Armstrong relations for stan-
dard FDs from the special case where the NFS Rs is R. In fact, if r is total, then
condition 1. says that for all A ∈ R and for all X ∈ maxΣ,Rs(A) we have X ∈ ags(r)
(and that A /∈ X which follows from X ∈ maxΣ,Rs(A)). That is, condition 1. says that
maxΣ,Rs(R) ⊆ ags(r). Furthermore, condition 2. says that ∀X ∈ ags(r)(X∗

Σ ⊆ X), i.e.,
all (strong) agree sets are closed: ags(r) ⊆ clΣ,Rs(R).

22

The following example illustrates Theorem 4.

Example 14 Let Employment and the FD set

Σ = {Emp→ Dept,Dept→ Mgr}

as before, but let Rs = {Emp,Mgr}. The following relation r:

Emp Dept Mgr
Hilbert Math Gauss

Pythagoras Math Gauss
Einstein Physics Gauss
Turing ni von Neumann
Turing ni Gödel

is an Armstrong table for Σ and Rs. Indeed, the maximal set families are:

• maxΣ,Rs(Emp) = {{Dept,Mgr}},

• maxΣ,Rs(Dept) = {{Mgr}}, and

• maxΣ,Rs(Mgr) = {{Emp}}.

The agree sets of r are:

• (∅,∅),

• ({Dept,Mgr},{Dept,Mgr}),

• ({Mgr},{Mgr}),

• ({Emp},{Emp,Dept}).

The conditions 1., 2. and 3. of Theorem 4 are satisfied.

One may expect condition 2. of Theorem 4 to read

∀X ∈ ags(r)(X∗
Σ,Rs

= w(X)),

but a slight change of Example 14 shows that this condition would fail to recognize some
Armstrong tables.

Example 15 Let Employment and

Σ = {Emp→ Dept,Dept→ Mgr}

be as before, but let Rs = {Mgr}. The following relation r:

23

Emp Dept Mgr
Hilbert Math Gauss

Pythagoras Math Gauss
ni Astronomy Newton
ni Physics Newton

Turing ni von Neumann
Turing ni Gödel

is an Armstrong table for Σ and Rs. Indeed, the maximal set families are as before:

• maxΣ,Rs(Emp) = {{Dept,Mgr}},

• maxΣ,Rs(Dept) = {{Mgr}}, and

• maxΣ,Rs(Mgr) = {{Emp}}.

The agree sets of r are:

• (∅,∅),

• ({Dept,Mgr},{Dept,Mgr}),

• ({Mgr},{Emp,Mgr}),

• ({Emp},{Emp,Dept}).

The conditions 1., 2. and 3. of Theorem 4 are satisfied. Note, in particular, that
(Mgr)∗Σ,Rs

= {Mgr} which is a proper subset of w(Mgr) = {Emp,Mgr}.

Finally, we illustrate Theorem 4 for the case when the input relation is not an Arm-
strong table for the input FD set and input NFS.

Example 16 Let the relation schema R, FD set Σ, and relation r be given as in Ex-
ample 3, but let the NFS Rs be {Emp,Mgr}. Recall from Example 12 the maximal sets
{Dept,Mgr}, {Mgr} and {Emp}. The agree sets of r are:

• ({Dept,Mgr},{Dept,Mgr}),

• ({Mgr},{Mgr}),, and

• (∅,∅).

While condition 2. of Theorem 4 is satisfied, conditions 1. and 3. are both violated. In
fact, {Emp} ∈ maxΣ,Rs(Mgr)− ags(r), and Dept ∈ total(r)−Rs.

24

5.3 Characterizing the satisfaction of FD sets

The next theorem generalizes the result from total relations [113] saying that a total
relation satisfies a set of FDs precisely when the agree sets of the total relation are closed
attribute sets.

Theorem 5 Let R be some relation schema, let Σ be an FD set, and Rs an NFS over R.
For all relations r over R it holds that r satisfies Σ and Rs if and only if Rs ⊆ total(r)
and ∀X ∈ ags(r)(X∗

Σ,Rs
⊆ w(X)) holds.

Proof Sufficiency. The proof of Theorem 4 shows that r satisfies Σ, if ∀X ∈ ags(r)(X∗
Σ ⊆

w(X)) holds. Furthermore, if Rs ⊆ total(r), then r is Rs-total.
Necessity. If r satisfies Rs, then Rs ⊆ total(r). It remains to show that ∀X ∈

ags(r)(X∗
Σ,Rs

⊆ w(X)) holds, if r satisfies Σ and Rs. Assume that there is some X ∈
ags(r) and there is some A ∈ R such that A ∈ X∗

Σ,Rs
− w(X). Since A /∈ w(X), there

is some Y ⊆ R such that (X, Y) ∈ ag(r) and A /∈ Y . Consequently, there are distinct
t, t′ ∈ r such that X = ags(t, t′) and Y = agw(t, t′). That is, t[X] = t′[X] and t, t′ are
X-total, and t[A] ̸= t′[A]. Hence, r violates the FD X → A. From A ∈ X∗

Σ,Rs
it follows

that X → A ∈ Σ∗
Rs
. The definition of implication shows that r violates Σ.

Example 17 Example 16 shows that the relation from Example 3 satisfies the FD set Σ
and NFS Rs from Example 3.

6 Computation of Armstrong Tables

Following Section 4 we need to ask whether there is a reasonable class of FDs in the
presence of an NFS that does enjoy Armstrong tables. We can give an affirmative answer:
the focus on standard FDs guarantees the existence of Armstrong tables in the presence
of an NFS. Instead of showing the mere existence of Armstrong tables, we establish an
algorithm that computes an Armstrong table for an arbitrarily given relation schema,
an arbitrarily given set of standard FDs and an arbitrarily given NFS over the relation
schema.

Our refinement of the notion of an agree set in Definition 1 enables us to utilize
a similar idea that Mannila and Räihä used to compute Armstrong relations for sets
of FDs over total relations [42]. We specify tuples that have strong agree sets on the
maximal sets of the attributes. In addition, these tuples are total and unique on the
null-free subschema. Before we can present the computation of these Armstrong tables,
we establish an algorithm for computing the families of maximal sets.

Lemma 1 Let R be a relation schema, Rs a null-free subschema over R, and Σ =
Σ′ ∪ {X → A} a set of standard FDs over R. For WC ⊆ R, it takes O(|R| × ||Σ||) time
to test whether W ∈ maxΣ,Rs(C).

Proof Using the NFSclosure-algorithm, C ̸∈ W ∗
Σ,Rs

can be checked in time O(||Σ||), and
C ∈ (WB)∗Σ,Rs

for all B ∈ R−W can be checked in time O(|R| × ||Σ||).

25

We use mtest(W,C,R,Rs,Σ) to denote the test if W ∈ maxΣ,Rs(C) from Lemma 1.
The maximal sets for R with respect to Σ and Rs can be computed by testing all subsets
of R. This, however, will hardly be efficient. The following result establishes an iterative
approach for computing the maximal sets for R with respect to Σ and Rs. The algorithm
starts with the maximal sets for R with respect to an empty FD set in the presence of
Rs, and then adds the FDs of Σ one by one while monitoring the resulting changes to
the family of maximal sets.

Theorem 6 Let R be a relation schema, Rs a null-free subschema over R, and Σ =
Σ′ ∪ {X → A} a set of standard functional dependencies over R. For C ∈ R let V ∈
maxΣ,Rs(C). Then V ∈ maxΣ′,Rs(C) or (C = A or A ∈ Rs) holds and there is some
B ∈ X − V such that

i) V B ∈ maxΣ′,Rs(C), if X ̸⊆ Rs, or

ii) V = W ∩ Z for some W ∈ maxΣ′,Rs(C) and some Z ∈ maxΣ′,Rs(B).

The proof uses the following simple observation:

Remark 4 Let Σ = Σ′ ∪ {X → A} and U ⊆ R. When A ∈ U∗
Σ,Rs

we have

U∗
Σ,Rs

=

{
(UA)∗Σ,Rs

= (UA)∗Σ′,Rs
, if A ∈ Rs,

U∗
Σ′,Rs

A , otherwise,

while U∗
Σ,Rs

= U∗
Σ′,Rs

holds when A ̸∈ U∗
Σ,Rs

. Furthermore, the following statements are
equivalent: a) U∗

Σ′,Rs
⊂ U∗

Σ,Rs
, b) A ∈ U∗

Σ,Rs
− U∗

Σ′,Rs
, and c) A ̸∈ U∗

Σ′,Rs
and X ⊆

URs ∩ U∗
Σ′,Rs

, cf. Algorithm 1.

Proof From V ∈ maxΣ,Rs(C) and V ⊆ V ∗
Σ′,Rs

⊆ V ∗
Σ,Rs

we get C ̸∈ V ∗
Σ,Rs

and C ̸∈ V ∗
Σ′,Rs

.
If V ∈ maxΣ′,Rs(C) we are done. Otherwise, there is some W ∈ maxΣ′,Rs(C) with
V ⊂ W . By V ∈ maxΣ,Rs(C) we obtain C ∈ W ∗

Σ,Rs
−W ∗

Σ′,Rs
, so that W ∗

Σ′,Rs
⊂ W ∗

Σ,Rs
.

When applying Remark 4 to the set W , we note A ∈ W ∗
Σ,Rs
− W ∗

Σ′,Rs
and, therefore,

(C = A or A ∈ Rs).
Remark 4 for W further yields A ̸∈ W ∗

Σ′,Rs
and X ⊆ WRs∩W ∗

Σ′,Rs
. Hence, A ̸∈ V ∗

Σ′,Rs

as V ⊂ W . Assume A ∈ V ∗
Σ,Rs
− V ∗

Σ′,Rs
. Then, C ̸= A as C ̸∈ V ∗

Σ,Rs
, and thus A ∈ Rs.

When applying Remark 4 to the set V , we observe V ∗
Σ,Rs

= (V A)∗Σ,Rs
= (V A)∗Σ′,Rs

. Hence,
C ̸∈ (V A)∗Σ,Rs

. By V ∈ maxΣ,Rs(C) we obtain A ∈ V . Thus A ∈ V ⊆ W ⊆ W ∗
Σ′,Rs

which
contradicts A ∈ W ∗

Σ,Rs
−W ∗

Σ′,Rs
. Hence, our assumption is false, and A ̸∈ V ∗

Σ,Rs
holds.

From A ̸∈ V ∗
Σ,Rs

and Remark 4 for V we conclude V ∗
Σ,Rs

= V ∗
Σ′,Rs

, and X ̸⊆ V Rs ∩ V ∗
Σ′,Rs

,
that is, (X ̸⊆ V Rs or X ̸⊆ V ∗

Σ′,Rs
). By X ⊆ WRs we obtain ((X − Rs) ∩ (W − V) ̸= ∅

or X ̸⊆ V ∗
Σ′,Rs

). Therefore, V is a subset of a member U of

V := {W −B : B ∈ X −Rs}∪
{W ∩ Z : W ̸⊆ Z ∈

∪
B∈X maxΣ′,Rs(B)}.

From U ⊂ W and W ∈ maxΣ′,Rs(C) we get C ̸∈ U∗
Σ′,Rs

. By definition of V , we observe
X ̸⊆ URs∩U∗

Σ′,Rs
which yields U∗

Σ,Rs
= U∗

Σ′,Rs
by Remark 4. Thus, we obtain C ̸∈ U∗

Σ,Rs
.

From V ∈ maxΣ,Rs(C) we derive V = U , that is, V itself is a member of V . This concludes
the proof of Theorem 6.

26

Theorem 6 extends Theorem 4 in [42, page 137] from the special case where Rs = R
to an arbitrary NFS. Indeed, for total relations case i) of Theorem 6 cannot occur, and
the condition X ⊆ Rs and (C = A or A ∈ Rs) is always satisfied. That is, Theorem 6
becomes Theorem 4 in [42, page 137] for the special case of total relations. Based on
Theorem 6 we will now establish an algorithm for computing the maximal set families
for a given relation schema R, a given set Σ of standard FDs and a given NFS Rs over
R. Recall that mtest(W,C,R,Rs,Σ) denotes the test whether W ∈ maxΣ,Rs(C) from
Lemma 1. Theorem 6 shows that Algorithm 2 on page 28 is correct.

Theorem 7 Algorithm 2, on input (R,Σ, Rs), computes the families maxΣ,Rs(A) for
every A ∈ R.

The following example illustrates that the evolution of maximal sets is conceptually
different from the case of total relations, in particular for the case of a new FD whose
LHS is not a subset of Rs.

Example 18 Let R = KLM , Σ′ = {K → L,L→M}, and Σ = Σ′∪{M → K}. Assum-
ing that L ̸∈ Rs we find maxΣ′,Rs(K) = {LM}, maxΣ′,Rs(L) = {M}, and maxΣ′,Rs(M) =
{K}. The remaining families of maximal sets depend on the precise choice of Rs. If
Rs = ∅ we have maxΣ,Rs(K) = {L} and maxΣ,Rs(L) = {M}. This is case i) in Theo-
rem 6. It is important to note that maxΣ,Rs(K) is not an intersection of maximal sets for
R with respect to Σ′ and Rs. If Rs = M we have maxΣ,Rs(K) = ∅ and maxΣ,Rs(L) = {M}.
This is the case of Theorem 6 when a new dependency is added whose RHS is not declared
null-free. Note that only members of maxΣ′,Rs(K) can change as K is the attribute on
the RHS of the new dependency. Finally, if Rs = KM we have maxΣ,Rs(K) = ∅ and
maxΣ,Rs(L) = ∅. This is the case of Theorem 6 where a new dependency is added whose
RHS is null-free. Only this special case can be regarded as similar to [42, Theorem 4].

Algorithm 3 on page 29 computes an Armstrong table for an arbitrary set Σ of
standard FDs and an NFS Rs. In the algorithm, A0 denotes an arbitrary fixed attribute
of the underlying relation schema R. For A ∈ R let cA,1, cA,2, . . . ∈ dom(A) denote
distinct elements of the domain. The main construction is achieved between lines 5 and
13. The steps in lines 14-30 guarantee that the output relation is total on exactly those
attributes that belong to Rs, and that the relation is subsumption-free. For the soundness
proof of Algorithm 3 we utilize Atzeni and Morfuni’s axiomatization [46].

Theorem 8 Algorithm 3, on input (R,Σ, Rs), computes an Armstrong table for Σ and
Rs.

Proof Let r denote the output of Algorithm 3. We show first that the output r of
Algorithm 3 is a subsumption-free relation. Let t, t′ ∈ r denote two distinct tuples.
Suppose t results from some X ∈ max(A) and t′ results from some Y ∈ max(A). The
construction guarantees that t[A] ̸= t′[A] and t[A] ̸= ni ̸= t′[A]. Hence, neither of
t, t′ subsumes the other. Suppose that t results from some X ∈ max(A) and t′ results
from some Y ∈ max(B) where A ̸= B. If t′[A] ̸= ni, then t[A] ̸= t′[A] and t[A] ̸=

27

Algorithm 2 Maximal set computation

1: procedure MAX-SETS(R,Σ, Rs)
2: for all C ∈ R do
3: max(C)← {R− C};
4: end for
5: Θ := ∅;
6: for all X → A ∈ Σ do
7: Θ← Θ ∪ {X → A};
8: for all C ∈ R where (C = A or A ∈ Rs) do
9: nmax(C)← max(C);
10: for all W ∈ max(C) do
11: if not mtest(W,C,R,Rs,Θ) then
12: nmax(C)← nmax(C)− {W};
13: for all B ∈ X do
14: if B /∈ Rs and mtest(W −B,C,R,Rs,Θ) then
15: nmax(C)← nmax(C) ∪ {W −B};
16: end if
17: for all Z ∈ max(B) do
18: if mtest(W ∩ Z,C,R,Rs,Θ) then
19: nmax(C)← nmax(C) ∪ {W ∩ Z};
20: end if
21: end for
22: end for
23: end if
24: end for
25: end for
26: for all C ∈ R do
27: max(C)← nmax(C);
28: end for
29: end for
30: for all c ∈ R do
31: max(C) := {W | W ∈ max(C) and W ̸= ∅};
32: end for
33: return max(C) for all C ∈ R;
34: end procedure

28

Algorithm 3 Armstrong table computation

1: procedure Armstrong(R,Σ, Rs)
2: MAX-SETS(R,Σ, Rs) (Algorithm 2 on page 28);
3: r := ∅;
4: i := 1;
5: for all X ∈ max(R) do
6: Z := {A ∈ R | X ∈ max(A)};
7: for all A ∈ R do

8: ti(A) :=

{
cA,i , if A ∈ XZRs

ni , else
;

9: ti+1(A) :=

cA,i , if A ∈ X
cA,i+1 , if A ∈ Z(Rs −X)
ni , else

;

10: end for
11: r := r ∪ {ti, ti+1};
12: i := i+ 2;
13: end for
14: total(r) := {A ∈ R | ∀t ∈ r(t[A] ̸= ni)};
15: if total(r)−Rs ̸= ∅ then
16: if Rs = ∅ and total(r) = R and |R| > 1 then
17: for all A ∈ R do

18: ti(A) :=

{
cA,i , if A = A0 ∈ R
ni , else

;

19: ti+1(A) :=

{
ni , if A = A0 ∈ R
cA,i+1 , else

;

20: end for
21: return r := r ∪ {ti, ti+1};
22: else
23: for all A ∈ R do

24: ti(A) :=

{
ni , if A ∈ total(r)−Rs

cA,i , else
25: end for
26: return r := r ∪ {ti}
27: end if
28: else
29: return r
30: end if
31: end procedure

29

ni ̸= t′[A]. If t[B] ̸= ni, then t[B] ̸= t′[B] and t[B] ̸= ni ̸= t′[B]. If t′[A] = ni

and t[B] = ni, then neither of t, t′ subsumes the other. Finally, if t results from some
X ∈ max(A) and t′ results from lines 14-30, or if t and t′ result from lines 14-30, then the
construction (distinct values) guarantees that neither of t, t′ subsumes the other. Hence,
r is a subsumption-free relation.

We show r to be an Armstrong table for Σ and Rs.
Let X → A ∈ Σ. Assume that r violates X → A. Then there are distinct t, t′ ∈ r

such that t[X] = t′[X] and t, t′ are X-total and t[A] ̸= t′[A]. Since X ̸= ∅, it follows
from construction that {t, t′} = {t2i−1, t2i} for some positive integer i. According to
lines 6-11 we conclude that there is some X ′ ∈ max(R) and there is some B ∈ Z :=
{C ∈ R | X ′ ∈ max(C)} such that X ⊆ X ′ and A ∈ ZRs. Suppose that A ∈ Z.
Consequently, X ⊆ X ′ ∈ max(A), i.e., A /∈ (X ′)∗Σ,Rs

. However, due to the soundness of
the augmentation rule we conclude that A /∈ X∗

Σ,Rs
. This means that X → A /∈ Σ∗

Rs

which contradicts X → A ∈ Σ. Suppose now that A ∈ Rs − Z. From X ′ ∈ max(B) it
follows that X ′ → B /∈ Σ∗

Rs
and that X ′A → B ∈ Σ∗

Rs
. From X → A ∈ Σ∗

Rs
follows

X ′ → A ∈ Σ∗
Rs

by the soundness of the augmentation rule. From the soundness of the
reflexivity axiom and the union rule we conclude that X ′ → X ′A ∈ Σ∗

Rs
. An application

of the null transitivity rule to X ′ → X ′A, X ′A → B and A ∈ Rs results in X ′ → B.
Due to the soundness of the null transitivity rule we conclude that X ′ → B ∈ Σ∗

Rs
. This

contradicts the fact that X ′ ∈ max(B). We have just shown that r satisfies Σ. The
construction in lines 6-11 ensures that r satisfies the NFS Rs.

It is not difficult to see that the relation r violates all standard FDs X → A /∈ Σ∗
Rs
. In

fact, by definition of max(A) there is some X ′ ⊆ R such that X ′ ∈ max(A) and X ⊆ X ′.
Lines 7-11 guarantee that there are some distinct t, t′ ∈ r such that t[X ′] = t′[X ′], t, t′

are X ′-total and t[A] ̸= t′[A]. Hence, r violates X → A.
It is now quite easy to see that the relation r is an Armstrong table for Σ and Rs.

In fact, lines 14-30 guarantee that r is total on precisely those attributes of R that
belong to Rs. Note that Rs ⊆ total(r) always holds due to the construction. Hence, if
total(r)−Rs ̸= ∅, then we need to add some tuples with occurrences of ni in all columns
A ∈ total(r) − Rs. If Rs = ∅, total(r) = R and |R| > 1, then we require two tuples to
ensure that r remains subsumption-free. Otherwise, we can just add a single tuple with
occurrences of ni in all columns A ∈ total(r) − Rs. Hence, r satisfies precisely those
null-free subschema constraints implied by Rs (namely the subsets of Rs).

Example 19 Let Employment={Emp,Dept,Mgr},

Σ = {Emp→ Dept,Dept→ Mgr}

and Rs = {Emp,Mgr} be as in Example 2. The following table illustrates the evolution of
the maximal set families for the attributes of Employment using Algorithm 2 on input
(Employment,Σ, Rs) when the first FD considered is σ = Dept→ Mgr:

A max∅,Rs
(A) max{σ},Rs

(A) maxΣ,Rs (A)

Emp {{Dept,Mgr}} {{Dept,Mgr}} {{Dept,Mgr}}
Dept {{Emp,Mgr}} {{Emp,Mgr}} {{Mgr}}
Mgr {{Emp,Dept}} {{Emp}} {{Emp}}

.

Based on the elements of maxΣ,Rs Algorithm 3 would compute the following Armstrong
table

30

Emp Dept Mgr
cEmp,1 cDept,1 cMgr,1

cEmp,2 cDept,1 cMgr,1

cEmp,3 cDept,3 cMgr,3

cEmp,4 cDept,4 cMgr,3

cEmp,5 ni cMgr,5

cEmp,5 ni cMgr,6

for Σ and Rs.

Finally, we state some consequences of the results we have established in this section.

Corollary 2 The class of standard FDs enjoys Armstrong tables in the presence of an
NFS.

Algorithm 3 can also be used to compute Armstrong relations for Lien’s class of
standard FDs [47]. In that case, we simply set the null-free subschema to Rs = ∅, but
lines 14-30 are unnecessary since we do not need to consider any NFS.

Corollary 3 Algorithm 3, on input (R,Σ, ∅), computes an Armstrong relation with re-
spect to Σ.

Corollary 4 Lien’s class of standard FDs enjoys Armstrong relations.

Note that Algorithm 3 can also be used to compute Armstrong relations for the class
of standard FDs over total relations.

7 Complexity Results

We show that the gain in generality we have established for the toolbox of Armstrong
relations does not result in a loss of efficiency when compared to the special case of total
relations. Firstly, the problem of finding an Armstrong table for a given set of standard
FDs and a given NFS remains precisely exponential in the size of the input, as was the
case for total relations [40]. Nevertheless, our algorithm for computing Armstrong tables
remains quite conservative in the sense that the size of the output is at most quadratic
in the size of the best output possible, similar to the special case of total relations [42].
Next we examine the most concise way of representing the information inherent in an
FD set. We conclude that already for the special case of total relations neither the
representation in form of an FD set or the representation in form of an Armstrong table
strictly dominates the other. Finally, we show that the problem of deciding whether
there is some Codd key with at most k attributes that is implied by a given set of FDs
and an NFS with k attributes is NP-complete for the representation either as FD set or
an Armstrong table thereof. Hence, the complexity remains the same as in the special
case of total relations [40, 114].

31

7.1 The time-complexity to find Armstrong tables

The user-friendly representation of an FD set and an NFS in form of an Armstrong
table comes, in general, at a price. In fact, the number of tuples in a minimum-sized
Armstrong table can be exponential in the number of attributes. Due to this result we
cannot design an algorithm for generating Armstrong tables in polynomial time in the
worst case. The next result shows that the number of attribute sets maximal for Σ and
Rs is a lower bound for the number of agree sets found in any Armstrong table for Σ and
Rs. A similar result holds for the special case of total relations [40].

Proposition 1 Let Σ be a set of standard FDs, let Rs be some NFS over some relation
schema R, and let r be an Armstrong table for Σ and Rs. Then |maxΣ,Rs(R)| ≤ |ag(r)| ≤(|r|
2

)
.

Proof The first condition of Theorem 4 implies that |maxΣ,Rs(R)| ≤ |ags(r)|. Moreover,

|ags(r)| ≤ |ag(r)|, and |ag(r)| ≤
(|r|
2

)
since every distinct pair of distinct tuples in r has

precisely one agree set.

We recall what we mean by precisely exponential [40]. Firstly, it means that there
is an algorithm for computing an Armstrong table, given a set Σ of standard FDs and
an NFS Rs, where the running time of the algorithm is exponential in the number of
attributes. Secondly, it means that there is a set Σ of standard FDs and an NFS Rs

in which the number of tuples in each minimum-sized Armstrong table for Σ and Rs is
exponential — thus, an exponential amount of time is required in this case simply to
write down the relation.

Proposition 2 The complexity of finding an Armstrong table, given a set of standard
functional dependencies and a null-free subschema, is precisely exponential in the number
of attributes.

Proof The time complexity of Algorithm 3 is dominated by that of Algorithm 2 which
runs clearly in time exponential in the number of attributes.

It remains to show that there is a set Σ of standard FDs and an NFS Rs for which
the number of tuples in each Armstrong table for Σ and Rs is exponential in the number
of attributes. According to Proposition 1 it suffices to find a set Σ of standard FDs such
that maxΣ,Rs(R) is exponential in the number of attributes. Such a set Σ is given by∪

1≤i≤n

{{A2i−1, A2i} → B}

and the NFS Rs = A1 · · ·A2nB. This is the same set that Beeri, Dowd, Fagin and
Statman used to show that the time complexity of finding an Armstrong relation for FDs
over total relations takes at least exponential time in the number of attributes [40]. This
set works here for the same purpose since all FDs in Σ have the same right-hand side.

32

7.2 The size of minimum-sized Armstrong tables

Despite the general worst-case exponential complexity in the number of attributes, Algo-
rithm 3 is a fairly simple algorithm for generating Armstrong tables that is, as we show
now, quite conservative in its use of time.

Let the size of an Armstrong table be defined as the number of tuples that it contains.
In practice, the most appealing Armstrong table for an FD set Σ should be of minimum
size. The reason is that a small number of tuples is easier to comprehend for humans.
Therefore, it is a practical question to ask how many tuples a minimum-sized Armstrong
table requires. An Armstrong table r for Σ and Rs is said to be minimum-sized if there
is no Armstrong table r′ for Σ and Rs such that |r′| < |r|. That is, for a minimum-sized
Armstrong table for Σ and Rs there is no Armstrong table for Σ and Rs with a smaller
number of tuples.

Proposition 3 Let Σ be a set of standard FDs, let Rs be some NFS over some relation
schema R, and let r be a minimum-sized Armstrong table for Σ and Rs. Then√

1 + 8 · |maxΣ,Rs(R)|
2

≤ |r| ≤ 2× |maxΣ,Rs(R)|+ 1.

Proof The lower bound follows from Proposition 1. Indeed, it follows that |maxΣ,Rs(R)| ≤(|r|
2

)
. Consequently, we have that

√
1 + 8 · |maxΣ,Rs(R)|

2
≤ |r|. The upper bound

2×|maxΣ,Rs(R)|+2 follows immediately from Theorem 8. However, Algorithm 3 outputs
an Armstrong table of size 2× |maxΣ,Rs(R)|+ 2 if and only if total(r) = R holds before
line 14 and Rs = ∅. We have B ∈ total(r) before line 14 if and only if B ∈ XA ∪ Rs

for every maximal set X ∈ maxΣ,Rs(A) and all A ∈ R. Therefore, we have total(r) = R
before line 14 and Rs = ∅ if and only if maxΣ,Rs(A) = {R−A} for all A ∈ R and Rs = ∅.
This again holds if and only if Σ = ∅ and Rs = ∅. In this special case and when |R| > 1,
one may use the Algorithm from Mannila and Räihä [42] to compute an Armstrong re-
lation for Σ of size maxΣ,Rs(R)+ 1 = |R|+1 and add two tuples according to lines 14-30
of Algorithm 3 to obtain an Armstrong table for Σ and Rs. If |R| = 1, then the singleton
relation consisting of the tuple t = ni is an Armstrong table for Σ and Rs.

We conclude that Algorithm 3 always computes an Armstrong table of reasonably
small size.

Corollary 5 On input (R,Σ, Rs), Algorithm 3 computes an Armstrong table for Σ and
Rs whose size is at most quadratic in the size of a minimum-sized Armstrong table for Σ
and Rs.

There are also instances for which Algorithm 1 computes a minimum-sized Armstrong
table. For each n ≥ 3, such an instance is given by Rn = A1 · · ·An, Rs = ∅, and
Σ =

∪n−1
i=1 {Ai → Ai+1} ∪ {An → A1}.

Theorem 9 There is some relation schema R, some NFS Rs and some standard FD set
Σ over R such that Algorithm 3 computes a minimum-sized Armstrong table for Σ and
Rs.

33

Proof Let R = A1 · · ·An with n ≥ 3, Rs = ∅, and Σ consist of the FDs Ai → Ai+1

with i = 1, . . . , n. We find maxΣ,Rs(Ai) = {R − Ai−1Ai} for i = 1, . . . , n (with the
convention that Ai = Ai+n = Ai−n). Let r be any Armstrong table for Σ and Rs. We
show that its size it at least 2 × |maxΣ,Rs(R)|. By Theorem 4 there are tuples ti, t

′
i ∈ r

for all i = 1, . . . , n such that ags(ti, t
′
i) = R − Ai−1Ai and ti[Ai] ̸= t′i[Ai]. We conclude

ti[Ai−1] = ni = t′i[Ai−1] for i = 1, . . . , n since r satisfies the FD Ai−2 → Ai−1, and also
ti[Ai] ̸= ni ̸= t′i[Ai] for i = 1, . . . , n since r is subsumption-free. Hence, total({ti}) =
R − Ai−1 = total({t′i}) = R − Ai−1 for i = 1, . . . , n. As t1, t

′
1, . . . , tn, t

′
n are mutually

distinct, r has size at least 2× n = 2× |maxΣ,Rs(R)|.

7.3 The size of representations

We show that, in general, there is no most concise way of representing the information
inherent in a set of standard FDs and a null-free subschema. We have already seen a
case where the representation using Armstrong tables can be exponentially larger than
the best equivalent FD set, see Proposition 2.

Corollary 6 There is some standard FD set Σ and an NFS Rs such that Σ has size
O(n), and the size of a minimum-sized Armstrong table for Σ and Rs is O(2n/2).

The following theorem shows that in other cases, the representation using Armstrong
tables can be exponentially smaller than the best representation using FD sets. Extending
Maier’s notion of an optimal cover from total relations [115], for an FD set Σ and an
NFS Rs we call an FD set Σ′ an optimal cover of Σ with respect to Rs if

• Σ′ is a cover of Σ with respect to Rs, i.e., for every FD σ ∈ Σ we have Σ′ |=Rs σ;
and for every FD σ′ ∈ Σ′ we have Σ |=Rs σ

′; and

• there is no cover Σ′′ of Σ with respect to Rs such that Σ′′ contains fewer symbol
occurrences than Σ′ (repeated symbol occurrences are counted as many times as
they occur).

Let R = A1B1 · · ·AnBnC, Rs = R and

Σ = {X1, . . . , Xn → C | ∀i = 1, . . . , n(Xi ∈ {Ai, Bi})}.

Then Σ is its own optimal cover with respect to Rs, but there is an Armstrong table for
Σ and Rs where the number of tuples is in O(n).

Theorem 10 There is some relation schema R, some NFS Rs and some standard FD
set Σ over R such that there is an Armstrong table for Σ and Rs where the number of
tuples is in O(n), and the optimal cover of Σ with respect to Rs has size O(2n).

Proof Let R = A1B1 · · ·AnBnC, Rs = R and

Σ = {X1, . . . , Xn → C | ∀i = 1, . . . , n(Xi ∈ {Ai, Bi})}.

34

We show that Σ is the optimal cover of Σ with respect to Rs, but there is an Armstrong
table for Σ and Rs where the number of tuples is in O(n).

We will show first that Σ is non-redundant (no subset of Σ implies all FDs in Σ), and
then show that Σ is an optimal cover of itself. We note that for every FD σ ∈ Σ, where
X = LHS(σ) denotes the attribute set on the left-hand side of σ, the closure X∗

(Σ−{σ},Rs)

of X with respect to Σ − {σ} and Rs is X itself, i.e., X∗
(Σ−{σ},Rs)

= X. The reason is

that there is no σ′ ∈ Σ − {σ} such that LHS(σ′) ⊆ X. Hence, C /∈ X∗
(Σ−{σ},Rs)

and

we conclude that σ is not implied by Σ − {σ} and Rs. That is, Σ is non-redundant.
Next we remark that every optimal cover Σ′ of Σ with respect to Rs contains only FDs
X → Y such that Y = C. Suppose, to the contrary, that there is some FD X → Y
in Σ′ such that Y ̸= C. If Y − X = C and Y ∩ X ̸= ∅, then Σ′ is not optimal since
(Σ′−{X → Y })∪{X → Y −X} is equivalent to Σ but contains less attributes than Σ′.
If Y −X = ∅, then Σ′−{X → Y } is equivalent to Σ but contains less symbol occurrences
than Σ′. If Y −X ̸= ∅ and Y −X ̸= C, then Σ ̸|=Rs X → Y and, therefore, Σ′ is not a
cover of Σ with respect to Rs. Moreover, every FD X → Y in an optimal cover Σ′ of Σ
with respect to Rs satisfies that C /∈ X. If there was an FD X → C ∈ Σ′ and C ∈ X,
then

(Σ′ − {X → C}) ∪ {X − C → C}

is equivalent to Σ but contains less attributes than Σ′.
Next we prove that there is no cover Σ′ of Σ with respect to Rs with a smaller number

of attribute occurrences. Suppose there were an optimal cover Σ′ of Σ with respect to Rs

with a fewer number of attribute occurrences than Σ. Then for all σ′ in Σ′ it is the case
that Σ |=Rs σ

′. Consequently, there must be some σ ∈ Σ such that LHS(σ) ⊆ LHS(σ′).
Suppose every FD σ ∈ Σ has the property that LHS(σ) ⊆ LHS(σ′) for a different FD
σ′ ∈ Σ′. Then Σ′ contains at least as many attribute occurrences as Σ, a contradiction.
Otherwise, there is a proper subset Σ′′ of Σ such that every FD σ′ ∈ Σ′ has the property
that LHS(σ) ⊆ LHS(σ′) for some σ ∈ Σ′′. Consequently, Σ′′ implies every FD in Σ′

with respect to Rs and therefore also every FD in Σ. This, however, is impossible since
Σ is non-redundant.

Thus we have just shown that Σ is its own optimal cover with respect to Rs, and
thus exponential in the number of attributes. Now we show that there is an Armstrong
table for Σ and Rs where the number of tuples is in O(n). It suffices to show that the
set maxΣ,Rs(R) contains a number of elements that is linear in the number of attributes.
For each i = 1, . . . , n we have maxΣ,Rs(Ai) = R−Ai, and maxΣ,Rs(Bi) = R−Bi. These
are 2n different maximal sets in total. The set maxΣ,Rs(C) consists of the following n
elements: R − AiBiC, i = 1, . . . , n. Therefore, maxΣ,Rs(R) has 3n different elements.
Using Mannila and Räihä’s algorithm [42] (which applies since we are in the case where
Rs = R) we can easily create an Armstrong table for Σ and Rs that has 3n + 1 tuples
only.

We can see that the representation in form of an Armstrong table can offer tremendous
space savings over the representation as an FD set, and vice versa.

35

7.4 The time-complexity to find a Codd key

Finally, it follows easily that the well-known problem [40, 114] of deciding whether there
is a key of size at most k is also NP -complete when functional dependencies and null-free
subschemata are given. An input to the problem can be either a relation schema R, a
set Σ of FDs and an NFS Rs over R, and a non-negative integer k ≤ |Rs|, or a relation
schema R, an Armstrong table r over R for some FD set Σ and some NFS Rs, and
a non-negative integer k ≤ |Rs|. For the first type of input the problem is to decide
whether there is a Codd key Codd(X) with |X| ≤ k such that Σ |=Rs Codd(X). For the
second type of input the problem is to decide whether there is a Codd key Codd(X) with
|X| ≤ k such that r satisfies Codd(X). We say that we are deciding the problem if there
is a Codd key of size at most k for either type of input. For the hardness part of the
next result we simply choose Rs to be R [40].

Proposition 4 For either type of input, the problem of deciding whether there is a Codd
key of size at most k is NP-complete.

8 Extensions of Our Results

In this section we establish some extensions of our results. We analyze the impact
of lifting the restriction to subsumption-free relations, and study Armstrong tables for
standard functional dependencies with respect to the class of standard and non-standard
functional dependencies.

8.1 Subsumption in SQL tables

So far, we have imposed the following restriction: No relation in the database shall contain
two tuples t1 and t2 such that t1 subsumes t2. The reason was to keep consistency with
previous work in this area [46, 47, 112, 109]. In this subsection we analyze the impact
on the validity of our results when lifting the restriction.

In general, all the results on Armstrong tables we have established for the class of
functional dependencies remain valid. Furthermore, if a Codd key Codd(X) has been
specified on the schema, then all the relations over the schema will be subsumption-free.
For the remainder of the discussion we therefore look at schemata where no Codd key
has been specified. In this case, Theorem 1 fails. In fact, there are now relations over
R that satisfy the FD X → R, but still violate the uniqueness constraint unique(X).
As a consequence, there is a real interest in studying the combined class of uniqueness
constraints and functional dependencies in the presence of an NFS. We exclude the non-
standard uniqueness constraint unique(∅) from our investigation since it would force our
relations to contain at most one tuple. Note that for a set Σ of uniqueness constraints
and FDs, and an NFS Rs over R, the following holds: Σ |=Rs Codd(X) if and only if
Σ |=Rs unique(X) and X ⊆ Rs. Hence, over relations in which subsumption is allowed
the combined class of uniqueness constraints and FDs in the presence of an NFS subsumes
the class of Codd keys.

36

For the remainder of this discussion we analyze how to compute Armstrong tables for
the combined class of uniqueness constraints and FDs in the presence of an NFS. Given a
set Σ = Σunique∪ΣFD of standard uniqueness constraints and standard FDs over relation
schema R, we first use Algorithm 3, exclusive of lines 14-30, to compute an Armstrong
table r′ for the set ΣFD

unique ∪ ΣFD of standard FDs. Here,

ΣFD
unique := {X → R | unique(X) ∈ Σunique}

consists of the FDs implied by the uniqueness constraints in Σunique. However, we need
to add further tuples to r′ in order to obtain an Armstrong table for Σ. In fact, we need
to ensure additionally that all uniqueness constraints unique(X) over R are violated that
are not implied by Σ. If Σ does not imply the FD X → R, then r′ already violates
unique(X). Therefore, it suffices to look at the following family of attribute sets:

dupΣ,Rs
(R) = {X ⊆ R | Σ |=Rs X → R ∧

Σ ̸|=Rs unique(X) ∧
∀A ∈ R−X(Σ |=Rs unique(XA))}.

To compute dupΣ,Rs
(R) we generate the hyper-graph H = (V,E) with vertex set V = R

and the set
E = {K −Rs | unique(K) ∈ Σunique}

as hyper-edges. From this we obtain dupΣ,Rs
(R) as

dupΣ,Rs
(R) = {R−X | X ∈ Tr(H) ∧

∀M ∈ maxΣ,Rs(R)(R−X ̸⊆M)}.

where Tr(H) denotes the minimal transversals of the hyper-graph H [70]. Algorithm 4
on page 38 extends Algorithm 3 on page 29 in order to compute an Armstrong table for
a set of standard uniqueness constraints and FDs in the presence of an NFS, considering
that relations are not necessarily subsumption-free. In particular, lines 3-11 add to the
table tuples that strongly agree on the attribute sets in dupΣ,Rs

(R). This ensures that
the resulting table violates all uniqueness constraints not implied by Σ. Note that for
all X ∈ dupΣ,Rs

(R) we have Rs ⊆ X. Lines 12-20 simplify lines 14-30 from Algorithm 3
since we do not need to ensure that the resulting Armstrong table is subsumption-free.

Example 20 Consider again the relation schema Employment with attribute set Emp,
Dept and Mgr, FD set ΣFD that consists of Emp→ Dept and Dept→ Mgr, and NFS Rs

consisting of Emp and Mgr. In particular, let Σunique be empty. Then the relation

Emp Dept Mgr
Hilbert Math Gauss
Hilbert Math Gauss

Pythagoras Math Gauss
Einstein Physics Gauss
Turing ni von Neumann
Turing ni Gödel

37

Algorithm 4 Armstrong table computation revised

1: procedure Armstrong-revised(Σ, Ts, T)
2: Let r be the output of Algorithm 3 from lines 2-13 on (R,ΣFD

unique ∪ ΣFD, Rs);
3: if ¬∃X(unique(X) ∈ Σunique ∧X ⊆ Rs) then
4: for all X ∈ dupΣ,Rs

(R) do
5: for all A ∈ R do

6: ti(A) = ti+1(A) :=

{
cA,i , if A ∈ X
ni , else

;

7: end for
8: r := r ∪ {ti, ti+1};
9: i := i+ 2;
10: end for
11: end if
12: total(r) := {A ∈ R | ∀t ∈ r(t[A] ̸= ni)};
13: if total(r)−Rs ̸= ∅ then
14: for all A ∈ R do

15: ti(A) :=

{
ni , if A ∈ total(r)−Rs

cA,i , else
16: end for
17: return r := r ∪ {ti}
18: else
19: return r
20: end if
21: end procedure

38

is an Armstrong table for Σunique∪ΣFD in the presence of Rs. Here, dupΣ,Rs
(R) = {R} and

the first two tuples are duplicates illustrating that no uniqueness constraint is considered
meaningful with the present design.

We now consider Beeri and Bernstein’s famous example that was originally used
to show that dependency-preserving Boyce-Codd Normal Form decompositions cannot
always be obtained in the relational model of data [56]. Here, we apply our toolbox of
Armstrong tables to the relational approximation of the application domain to derive a
concise SQL table definition.

Example 21 Suppose a team of data engineers has decided to use the three attributes
Address, City and ZIP as part of a contact address management system. They have
identified the set ΣFD with Address,City→ ZIP and ZIP→ City as a first approximation
for capturing the semantics of the underlying application domain. (This is the example
from [56].) Suppose that Σunique and the NFS Rs remain empty. Using our toolbox the
team produces

Address City ZIP
03 Hudson St Manhattan 10001
03 Hudson St Manhattan 10001
70 King St Manhattan 10001
70 King St San Francisco 94107

ni San Francisco 94129
15 Maxwell St ni ni

as an Armstrong table for Σunique∪ΣFD in the presence of Rs. The domain experts inspect
the table. They note from the first two tuples that the FD Address,City→ ZIP should be
replaced by the stronger uniqueness constraint unique(Address,City). Hence, the revised
constraint set becomes: Σunique = {unique(Address,City)}, ΣFD = {ZIP→ City}, and Rs

is the empty set. For these requirements, they produce

Address City ZIP
03 Hudson St Manhattan 10001
70 King St Manhattan 10001
70 King St San Francisco 94107

ni San Francisco ni

15 Maxwell St ni 60609
15 Maxwell St ni 60609

as an Armstrong table for Σunique ∪ΣFD in the presence of Rs. In particular, dupΣ,Rs
(R)

contains the set {Address,ZIP}. The domain experts are quite happy with the table, but
are confused about the last two rows. After some discussion there is consensus that there
is no reason to allow different rows with the same total values on Address and ZIP. In-
deed, the data engineers realize that they have not captured the uniqueness constraint
unique(Address,ZIP). (It is important to note here that in the relational model the FD
ZIP → City implies the key {Address,ZIP}, but over SQL tables the two constraints

39

unique(Address,City) and ZIP→ City do not imply unique(Address,ZIP).) For this rea-
son, the team revises the set of constraints again: Σunique consist of unique(Address,City)
and unique(Address,ZIP), and ΣFD = {ZIP→ City}. Rs still remains empty. Then they
produce

Address City ZIP
03 Hudson St Manhattan 10001
70 King St Manhattan 10001
70 King St San Francisco 94107

ni San Francisco ni

15 Maxwell St ni 60609

as an Armstrong table for Σunique∪ΣFD in the presence of Rs. Here, dupΣ,Rs
(R) = ∅. The

first two tuples ensure that the uniqueness constraint unique(City,ZIP) is violated. The
domain experts note now that there is a need to always have precise information in the
Address and ZIP columns. As a consequence, the data engineers decide to include both
column headers in the null-free subschema Rs. This is the same as having the following
constraints: Codd(Address,ZIP), unique(Address,City) and FD ZIP→ City. The table

Address City ZIP
03 Hudson St Manhattan 10001
70 King St Manhattan 10001
70 King St San Francisco 94107

35 Lincoln Blvd San Francisco 94129
15 Maxwell St ni 60609

is an Armstrong table for this design choice. One possible SQL table definition is the
following:

CREATE TABLE Contact (
Address VARCHAR,
City VARCHAR,
ZIP INT,
UNIQUE(Address,City),
PRIMARY KEY(Address,ZIP),
CHECK(Q = 0));

The state assertion is based on the following query Q:

SELECT COUNT(∗)
FROM Contact c1
WHERE c1.ZIP IN (
SELECT ZIP
FROM Contact c2
WHERE c1.ZIP=c2.ZIP
AND (c1.City <> c2.City
OR (c1.City IS NULL AND c2.City IS NOT NULL)
OR (c1.City IS NOT NULL AND c2.City IS NULL)));

and can be enforced on the data or middle tier.

40

8.2 Armstrong tables and non-standard FDs

One may also investigate the properties of Armstrong tables for a set of standard FDs
and an NFS with respect to the class of all FDs. More formally, a relation r is said to
be an Armstrong table for a set Σ of standard FDs and an NFS Rs in the world of all
FDs, if total(r) = Rs and the following holds for all standard and non-standard FDs σ:
r satisfies σ if and only if Σ |=Rs σ. Since any set of standard FDs does not imply any
non-trivial non-standard FD, this definition can be simplified as follows. A relation r is
an Armstrong table for a set Σ of standard FDs and an NFS Rs in the world of all FDs,
if total(r) = Rs, r violates every non-trivial non-standard FD, and the following holds
for all standard FDs σ: r satisfies σ if and only if Σ |=Rs σ.

Every Armstrong table r for a set Σ of standard FDs and an NFS Rs can be easily
modified to obtain an Armstrong table for Σ and Rs in the world of all FDs: just add to r
an additional tuple with previously unused domain values different from ni. An exception
is the special case where the underlying relation schema consists of only one attribute
A and the NFS Rs = ∅. In this case, no subsumption-free relation can simultaneously
violate the NFS Rs and the non-trivial, non-standard FD ∅ → A. Consequently, no
Armstrong table exists for the empty FD set Σ and the NFS Rs = ∅ in the world of
all FDs, if the underlying relation schema consists of only one attribute. Note, however,
that the singleton consisting of the tuple t = ni is an Armstrong table for the empty FD
set Σ and the NFS Rs = ∅ in the “world of all standard FDs”. Hence, there are relations
that are Armstrong tables in the world of all standard FDs, but not an Armstrong table
in the world of all FDs. Note that every relation that is an Armstrong table in the world
of all FDs is also an Armstrong table in the world of all standard FDs.

How do the results for standard FD sets from the previous sections change in the
world of all FDs? Regarding the notion of maximal sets in Definition 3 it is intuitive to
allow also empty attribute sets to be maximal for any attribute. The characterization of
Armstrong tables in Theorem 3 carries over to the world of all FDs, if the first condition
is true for all attribute sets X including the empty one. The characterization of Theorem
4 carries over to the world of all FDs as it is. Theorem 5 carries over with no change
since it is not concerned with the violation of any non-standard FDs. The next example
illustrates these points.

Example 22 Consider R = {Dept,Mgr} with standard FD set Σ = {Dept→ Mgr} and
NFS Rs = R. The relation r

Dept Mgr
Math Gauss
Physics Gauss

is an Armstrong table for Σ and Rs, but not an Armstrong table for Σ and Rs in the
world of all FDs: the non-standard FD ∅ → Mgr is not implied by Σ and Rs, but satisfied
by r. Indeed, the empty attribute set X violates the first condition of Theorem 3, and
the first condition of Theorem 4 is violated since the empty attribute set is an element
of maxΣ,Rs(Mgr)− ags(r). Adding t = (CS, von Neumann) to r results in an Armstrong
table for Σ and Rs in the world of all FDs.

41

For the computation of the maximal sets, the only change in Algorithm 2 is concerned
with line 31 where we simply remove the condition that W must not be the empty
set. Regarding the computation of Armstrong tables, Algorithm 3 does not require any
changes. However, the special case where |R| = 1 and Rs = ∅ should be excluded from
the set of all possible inputs to the algorithm since no Armstrong table exists in the world
of all FDs, as mentioned before. Corollaries 3 and 4, as well as the results from Section
7 carry over to the world of all FDs.

9 Impact and Applications

In this section we demonstrate the potential impact of our results on various database
applications.
An Example Domain. Let us assume that in developing an information system for
some manufacturer of electrical goods we identify the processing of orders by retail sellers
as a domain of interest. In particular, we define a relation schema Order that consists
of the attributes Order♯, Product♯, Description, Qty, and Total. These show for an order
(identified by its order number Order♯), a product in that order (identified by its unique
product number Product♯), a description Description of that product, the quantity Qty
of that product in that order, and the total value Total (in some fixed currency) of that
product in that order.

The data engineers of our information system have identified the following FD set Σ to
be meaningful: Order♯,Product♯ → Qty, Product♯ → Description, and Product♯,Qty →
Total. The team of data engineers agrees on the NFS Orders = {Order♯,Product♯}.

Before the implementation the team validates their design using the Armstrong ta-
ble for Σ and Orders from Table 2. The engineers observe that the product with
Product♯ 612 occurs with the same total value Total of 25000, but with the different
quantities Qty of 75 and 100. After consultation with the domain experts, the team
responds by including the additional meaningful FD Product♯,Total → Qty in Σ. The
team further notices that Codd(Order♯,Product♯) is not implied by their design choice:
the product with Product♯ 834 in the order with Order♯ 43056 has different total values
of 35000 and 40000. After some discussion the team responds by re-defining the NFS to
Orders = {Order♯,Product♯,Qty}. The inspection of the Armstrong table has resulted
in the recognition of additional meaningful business rules.
Efficient Processing of Updates. The main driver of database normalization is to
avoid data redundancy to guarantee efficient updates. The Boyce-Codd Normal Form
(BCNF) enforces a syntactic condition on relation schemata that eliminates data re-
dundancy in terms of FDs [60, 116, 117]. We assume familiarity with the definition of
such terms as BCNF, lossless and dependency-preserving decomposition [2]. Our schema
Order is not in BCNF with respect to the FD set Σ containing

• Order♯,Product♯→ Qty,

• Product♯→ Description,

• Product♯,Qty→ Total, and

42

Order♯ Product♯ Description Qty Total
10723 389 Microwave 50 25000
21834 389 Microwave 50 25000
21834 490 Microwave 50 25000
21834 501 Fridge 50 25000
21834 612 Fridge 75 25000
32945 612 Fridge 100 25000
32945 723 Fridge 100 30000
43056 834 Oven ni 35000
43056 834 Oven ni 40000
54167 945 ni 200 ni

Table 2: Armstrong table for Σ and Orders

• Product♯,Total→ Qty,

and the NFS Orders = {Order♯,Product♯,Qty}. Following standard techniques [2],
we decompose Order into Product={Product♯,Description} with the FD set Σ1 =
{Product♯→ Description} and Products = {Product♯}, Total={Product♯,Qty,Total}
with the FD set Σ2 containing

Product♯,Qty→ Total and Product♯,Total→ Qty,

and Totals = {Product♯,Qty}, and Qty={Order♯, Product♯,Qty} with FD set Σ3 =
{Order♯,Product♯ → Qty}, and Qtys = {Order♯,Product♯,Qty}. The three relation
schemata represent a lossless and dependency-preserving BCNF decomposition of Or-
der for Σ and Orders. Note that schema Order with the original FD set Σ and NFS
Orders = {Order♯,Product♯} every BCNF decomposition is lossy or not dependency-
preserving. Hence, an inspection of the Armstrong table enabled our data engineers to
find a database layout that represents all of the business rules, permits efficient consis-
tency checking, is free from data redundancies and update anomalies.
Efficient Processing of Queries. Besides updates, the efficient processing of database
queries is also a significant task of DBMSs. Indeed, there has been a lot of research
regarding the use of FDs and other constraints in semantic query optimization and query
processing with SQL databases including [118, 34, 35, 119, 120, 33, 36, 121, 122]. We will
illustrate how the use of our Armstrong tables can result in semantically optimized query
re-writings. Recall that the inspection of the Armstrong table enabled the data engineers
to identify the meaningful FD Product♯,Total→ Qty and to specify Qty as NOT NULL. The
Codd key Codd(Order♯,Product♯) is implied by Σ and Orders, in particular. Consider
the query that retrieves all combinations of order numbers and quantities associated with
the same product and total value. A naive implementation of this query is

SELECT Order’.Order♯, Order.Qty
FROM Order, Order AS Order’
WHERE Order.Product♯=Order’.Product♯ AND

Order.Total♯=Order’.Total♯

.

43

However, since Product♯,Total → Qty has been correctly specified as a meaningful FD,
the quantity is the same for each given combination of product and total value. Hence,
the query above can be rewritten into

SELECT Order.Order♯, Order.Qty FROM Order

which is much simpler and requires no join.
Inference Control is a security mechanism to ensure confidentiality in databases [37,
123, 124]. The objective is to avoid inferences of secrets by users based on their query
history and knowledge about the database. Suppose the fact that there is an order of a
Fridge with a total value of 100000 is a business secret. Hence, the fact that the sentence
Ψ = ∃XO∃XP∃XQOrder(XO, XP ,Fridge, XQ, 100000) is true in the database must not
be revealed to unauthorized users. A user may issue the queries:

• Φ1 = ∃XQ∃XTOrder(73956, 1645,Fridge, XQ, XT) and

• Φ2 = ∃XD∃XTOrder(73956, 1645, XD, XQ, 100000)

and learn that both queries are true in the current instance, since neither Φ1 nor Φ2 indi-
vidually reveal Ψ. The user may anticipate that the instance satisfies Order♯,Product♯→
Description,Total. Hence, the user may apply this FD to the answers to Φ1 and Φ2

to infer that ∃XQOrder(73956, 1645,Fridge, XQ, 100000) is true in the database in-
stance. This, however, would reveal the potential secret to the user. Fortunately,
the data engineers were able to utilize Armstrong tables to recognize that the FD
Order♯,Product♯ → Description,Total is indeed a meaningful constraint for the appli-
cation domain. Therefore, the security officer is able to anticipate such an inference, and
distort the answers to the queries suitably. In this example, it would suffice to refuse
an answer to query Φ2 after the user has learned Φ1. Consequently, Armstrong tables
also provide an aid that can help security officers to better understand the opportuni-
ties of potential inference attacks on future database instances, and therefore may prove
invaluable in preventing such attacks successfully.
Design approaches. Our toolbox of Armstrong tables complements any existing ap-
proaches to schema design, such as Entity-Relationship modeling [4, 9] and relational
normalization [2, 53]. As illustrated by Example 21, Armstrong tables provide data en-
gineers with concise test data that helps them to consolidate their final design choice.
It also helps them to communicate and justify their choice to other stakeholders of the
database. It is our assumption that the inspection of Armstrong tables exposes those
semantically meaningful uniqueness constraints and FDs that are not implied by the set
of constraints presently considered meaningful by the data engineers. Recent studies con-
firm this assumption empirically, already for relations where no duplicate rows and no
partial data are allowed to occur [44]. Suppose that the schema {Address,City,ZIP} with
Codd(Address,ZIP) and unique(Address,City) constitutes the current design choice. An
Armstrong table for the two uniqueness constraints will expose the FD ZIP→ City as a
meaningful constraint that is not captured by this choice. Finally, de-normalization is of-
ten applied in practice to increase the efficiency of query processing [2]. Armstrong tables
will be particularly useful in identifying the FDs exhibited by de-normalized schemata.

44

10 Conclusion and Future Work

We have investigated the existence and properties of Armstrong tables for Atzeni and
Morfuni’s class of FDs and NFS over relations that can contain occurrences of Zaniolo’s no
information null value. This covers the class of FDs defined over SQL table definitions
that contain NOT NULL constraints, and has therefore important implications for the
processing of data in real database systems. In contrast to the special case of total
relations, we have shown that FDs do not enjoy Armstrong tables, in general. However,
the class of standard FDs and NFSs does enjoy Armstrong tables. We have given sufficient
and necessary conditions for a given table to be an Armstrong table for a given set of
standard FDs and a given NFS. In general, the problem of finding an Armstrong table
remains precisely exponential in the number of attributes. However, we have established
a provably-correct algorithm that computes an Armstrong table in time that is at most
quadratic in the size of a minimum-sized Armstrong table. We have demonstrated that
data engineers should utilize not only an abstract representation in form of FD sets,
but also the representation in form of an Armstrong table. For SQL tables that are
not necessarily subsumption-free we have extended our results to the combined class of
uniqueness constraints and FDs in the presence of an NFS. In particular, our Armstrong
tables can visualize the delicate interactions of these constraints that can occur in real
SQL tables, but not in the relational model of data. Finally, we have illustrated that the
utilization of Armstrong tables can lead to the identification of meaningful constraints,
and result in database designs that facilitate efficient updates and queries, and are less
prone to inference attacks. In summary, our contributions extend well-known results from
total relations to SQL tables. Hence, the resulting toolbox can be applied to instances
that occur in real database systems, with only small space and no time penalties when
compared to the previously studied special case of total relations.

For future work, it would be interesting to investigate the properties of Armstrong
tables for the combined class of functional and inclusion dependencies in the presence
of a null-free subschema. Levene and Loizou have investigated the implication problem
for the class of inclusion dependencies where all attributes are assumed to be NULL [125].
Mannila and Räihä have also developed algorithms to compute Armstrong databases for
the class of functional and acyclic inclusion dependencies over total relations [126].

Fagin has shown that Armstrong relations exist for so-called implicational dependen-
cies [90]. It would be a worthwhile endeavor to identify broad classes of dependencies that
enjoy Armstrong relations in the presence of null values, e.g. multivalued dependencies
[48, 47, 112].

A main observation for the areas of impact from Section 9 is that most of the existing
theory does not apply to SQL tables. These areas include normalization [127], semantic
query optimization [34, 35], consistent query answering [84] and controlled query evalu-
ation [63].

We plan to implement our concepts and algorithms to extend design aids available for
total relations [41, 26, 42, 93]. It appears to be intuitive that data engineers find it more
difficult to understand the interaction of uniqueness constraints and FDs in the presence
of an NFS than that of just FDs over total relations. Hence, Armstrong tables might be
of even bigger value than reported for the special case of total relations [44].

45

In [7] Jagadish et al. develop a user-friendly approach towards spreadsheet design.
Here, functional dependencies are discovered from the given spreadsheet data. In other
words, the spreadsheet data is an Armstrong relation for the set of FDs discovered. The
FDs are then used to recommend auto-completions for updates, and to warn users about
potential data entry errors. Based on the users’ reply to these warnings the functional
dependencies are maintained incrementally. A user study showed that these guidance
features do improve usability [7]. However, spreadsheet data cannot be assumed to be
complete in practice. It would therefore be interesting to extend this approach to partial
information, for example under the no information interpretation of null values.

It is also an interesting problem to study the properties of Armstrong data trees for
FDs in the context of XML. The results of our article should provide valuable information
to learn more about the properties of Armstrong data trees for several classes of XML
FDs.

Other directions include the problem of dependency inference [62] or data cleaning
[82], but also the investigation of extremal problems [128, 129] in the context of partial
relations. Finally, all these problems should also be investigated for other interpretations
of null values [105, 110, 106, 107, 108].
Acknowledgements. This research is supported by the Marsden fund council from
Government funding, administered by the Royal Society of New Zealand. Sven Hartmann
is supported by a research grant of the Alfried Krupp von Bohlen and Halbach foundation,
administered by the German Scholars organisation.

References

[1] Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6) (1970) 377–387

[2] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

[3] Date, C.: Database in depth: relational theory for practitioners. 1 edn. O’Reilly
Media (2005)

[4] Elmasri, R., Navathe, S.: Fundamentals of Database Systems. 6 edn. Addison-
Wesley (2010)

[5] Delobel, C., Adiba, M.: Relational database systems. North Holland (1985)

[6] Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and
functional dependencies in description logics. In: Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI). (2001) 155–160

[7] Qian, L., LeFevre, K., Jagadish, H.: CRIUS: User-friendly database design. Pro-
ceedings of the VLDB Endowment 4(2) (2011) 81–92

[8] Rosenthal, A., Reiner, D.: Tools and transformations - rigorous and otherwise -
for practical database design. ACM Trans. Database Syst. 19(2) (1994) 167–211

46

[9] Thalheim, B.: Entity-Relationship modeling. Springer, Heidelberg, Germany
(2000)

[10] Toman, D., Weddell, G.: On keys and functional dependencies as first-class citizens
in description logics. J. Autom. Reasoning 40(2-3) (2008) 117–132

[11] Cohen, E.S.: The theory, practice and methodology of relational database design
and programming. http://www.openlineconsult.com/ (2008)

[12] Ling, T.: A normal form for Entity-Relationship diagrams. In: Proceedings of
the Fourth International Conference on the Entity-Relationship Approach (ER).
(1985) 24–35

[13] Rauh, O., Stickel, E.: Standard transformations for the normalization of ER
schemata. Inf. Syst. 21(2) (1996) 187–208

[14] Kolahi, S., Libkin, L.: An information-theoretic analysis of worst-case redundancy
in database design. ACM Trans. Database Syst. 35(1) (2010)

[15] Yu, C., Jagadish, H.: XML schema refinement through redundancy detection and
normalization. VLDB J. 17(2) (2008) 203–223

[16] Fan, W., Ma, S., Hu, Y., Liu, J., Wu, Y.: Propagating functional dependencies
with conditions. PVLDB 1(1) (2008) 391–407

[17] Klug, A., Price, R.: Determining view dependencies using tableaux. ACM Trans.
Database Syst. 7(3) (1982) 361–380

[18] Tan, H., Zhao, Y.: Automated elicitation of functional dependencies from source
codes of database transactions. Information & Software Technology 46(2) (2004)
109–117

[19] Fan, W., Geerts, F., X., J.: A revival of integrity constraints for data cleaning.
PVLDB 1(2) (2008) 1522–1523

[20] Fan, W., Geerts, F., X., J.: Semandaq: a data quality system based on conditional
functional dependencies. PVLDB 1(2) (2008) 1460–1463

[21] Marnette, B., Mecca, G., Papotti, P.: Scalable data exchange with functional
dependencies. PVLDB 3(1) (2010) 105–116

[22] Cali, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data integration under
integrity constraints. Inf. Syst. 29(2) (2004) 147–163

[23] Miller, R., Hernandez, M., Haas, L., Yan, L.L., Ho, C., Fagin, R., Popa, L.: The
Clio project: Managing heterogeneity. SIGMOD Record 30(1) (2001) 78–83

[24] Wang, D., Dong, X., Sarma, A., Franklin, M., Halevy, A.: Functional dependency
generation and applications in pay-as-you-go data integration systems. In: Pro-
ceedings of the 12th International Workshop on the Web and Databases (WebDB),
ACM (2009)

47

[25] Bisbal, J., Grimson, J.: Database sampling with functional dependencies. Infor-
mation & Software Technology 43(10) (2001) 607–615

[26] De Marchi, F., Petit, J.M.: Semantic sampling of existing databases through
informative Armstrong databases. Inf. Syst. 32(3) (2007) 446–457

[27] Lechtenbörger, J., Vossen, G.: Multidimensional normal forms for data warehouse
design. Inf. Syst. 28(5) (2003) 415–434

[28] Kimura, H., Huo, G., Rasin, A., Madden, S., Zdonik, S.: Correlation maps: A
compressed access method for exploiting soft functional dependencies. PVLDB
2(1) (2009) 1222–1233

[29] Kim, M.S., Whang, K.Y., Lee, J.G., Lee, M.J.: Structural optimization of a full-
text n-gram index using relational normalization. VLDB J. 17(6) (2008) 1485–1507

[30] Koch, C., Olteanu, D.: Conditioning probabilistic databases. PVLDB 1(1) (2008)
313–325

[31] Wolf, G., Kalavagattu, A., Khatri, H., Balakrishnan, R., Chokshi, B., Fan, J., Chen,
Y., Kambhampati, S.: Query processing over incomplete autonomous databases:
query rewriting using learned data dependencies. VLDB J. 18(5) (2009) 1167–1190

[32] Beskales, G., Ilyas, I., Golab, L.: Sampling the repairs of functional dependency
violations under hard constraints. PVLDB 3(1) (2010) 197–207

[33] Molinaro, C., Greco, S.: Polynomial time queries over inconsistent databases with
functional dependencies and foreign keys. Data Knowl. Eng. 69(7) (2010) 709–722

[34] Cheng, Q., Gryz, J., Koo, F., Leung, C., Liu, L., Qian, X., Schiefer, K.: Implemen-
tation of two semantic query optimization techniques in DB2 universal database.
In: Proceedings of the 25th International Conference on Very Large Data Bases
(VLDB). (1999) 687–698

[35] Deutsch, A., Ludäscher, B., Nash, A.: Rewriting queries using views with access
patterns under integrity constraints. Theor. Comput. Sci. 371(3) (2007) 200–226

[36] Paulley, G.: Exploiting functional dependence in query optimization. Technical
Report UW-CS-2000-11, University of Waterloo, Waterloo, Canada (2000)

[37] Biskup, J., Embley, D., Lochner, J.: Reducing inference control to access control
for normalized database schemas. Inf. Proc. Letters 106(1) (2008) 8–12

[38] Wang, H., Liu, R.: Privacy-preserving publishing data with full functional depen-
dencies. In: Proceedings of the 15th International Conference on Database Systems
for Advanced Applications, Part II (DASFAA). Volume 5982 of Lecture Notes in
Computer Science., Springer (2010) 176–183

48

[39] Alexe, B., Kolaitis, P., Tan, W.C.: Characterizing schema mappings via data
examples. In: Proceedings to the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS). (2010) 261–271

[40] Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of Armstrong
relations for functional dependencies. J. ACM 31(1) (1984) 30–46

[41] De Marchi, F., Lopes, S., Petit, J.M., Toumani, F.: Analysis of existing databases
at the logical level: the DBA companion project. SIGMOD Record 32(1) (2003)
47–52

[42] Mannila, H., Räihä, K.J.: Design by example: An application of Armstrong rela-
tions. J. Comput. Syst. Sci. 33(2) (1986) 126–141

[43] Fagin, R.: Armstrong databases. Technical Report RJ3440(40926), IBM Research
Laboratory, San Jose, California, USA (1982)

[44] Langeveldt, W.D., Link, S.: Empirical evidence for the usefulness of Armstrong
relations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3)
(2010) 352–374

[45] CA Technologies: ERwin Data Modeler - methods guide.
https://support.ca.com/cadocs/0/e002961e.pdf, page 86 (2011)

[46] Atzeni, P., Morfuni, N.: Functional dependencies and constraints on null values in
database relations. Information and Control 70(1) (1986) 1–31

[47] Lien, E.: On the equivalence of database models. J. ACM 29(2) (1982) 333–362

[48] Hartmann, S., Link, S.: When data dependencies over SQL tables meet the Log-
ics of Paradox and S-3. In: Proceedings to the Twenty-Ninth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS). (2010)
317–326

[49] Fagin, R., Vardi, M.: Armstrong databases for functional and inclusion dependen-
cies. Inf. Process. Lett. 16(1) (1983) 13–19

[50] Armstrong, W.W.: Dependency structures of database relationships. Information
Processing 74 (1974) 580–583

[51] Demetrovics, J.: On the equivalence of candidate keys with Sperner systems. Acta
Cybern. 4 (1980) 247–252

[52] Fagin, R., Vardi, M.: The theory of data dependencies - an overview. In: Proceed-
ings of the 11th Colloqium on Automata, Languages and Programming (ICALP).
Number 172 in Lecture Notes in Computer Science, Springer (1984) 1–22

[53] Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)

[54] Thalheim, B.: Dependencies in relational databases. Teubner (1991)

49

[55] Codd, E.F.: Further normalization of the database relational model. In: Proceed-
ings of the Courant Computer Science Symposia 6: Data Base Systems. (1972)
33–64

[56] Beeri, C., Bernstein, P.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. 4(1) (1979) 30–59

[57] Diederich, J., Milton, J.: New methods and fast algorithms for database normal-
ization. ACM Trans. Database Syst. 13(3) (1988) 339–365

[58] Beeri, C., Mendelzon, A.O., Sagiv, Y., Ullman, J.D.: Equivalence of relational
database schemes. SIAM J. Comput. 10(2) (1981) 352–370

[59] Bernstein, P.: Synthesizing third normal form relations from functional dependen-
cies. ACM Trans. Database Syst. 1(4) (1976) 277–298

[60] Beeri, C., Bernstein, P.A., Goodman, N.: A sophisticate’s introduction to database
normalization theory. In: Proceedings of the Fourth International Conference on
Very Large Data Bases (VLDB), IEEE Computer Society (1978) 113–124

[61] Biskup, J., Dayal, U., Bernstein, P.: Synthesizing independent database schemas.
In: Proceedings of the International Conference on Management of Data (SIG-
MOD). (1979) 143–151

[62] Mannila, H., Räihä, K.J.: Algorithms for inferring functional dependencies from
relations. Data Knowl. Eng. 12(1) (1994) 83–99

[63] Biskup, J.: Security in computing systems. Springer (2009)

[64] Deutsch, A., Popa, L., Tannen, V.: Query reformulation with constraints. SIG-
MOD Record 35(1) (2006) 65–73

[65] Arenas, M., Fan, W., Libkin, L.: On the complexity of verifying consistency of
XML specifications. SIAM J. Comput. 38(3) (2008) 841–880

[66] Arenas, M., Libkin, L.: A normal form for XML documents. ACM Trans. Database
Syst. 29(1) (2004) 195–232

[67] Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. J. ACM 56(3) (2009)

[68] Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Reasoning about keys for
XML. Inf. Syst. 28(8) (2003) 1037–1063

[69] Fischer, P.C., Saxton, L.V., Thomas, S.J., Van Gucht, D.: Interactions between
dependencies and nested relational structures. J. Comput. Syst. Sci. 31(3) (1985)
343–354

[70] Gottlob, G., Pichler, R., Wei, F.: Tractable database design through bounded
treewidth. Inf. Syst. 35(3) (2010) 278–298

50

[71] Hartmann, S., Link, S.: Characterising nested database dependencies by fragments
of propositional logic. Ann. Pure Appl. Logic 152(1-3) (2008) 84–106

[72] Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

[73] Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5)
(2010) 521–544

[74] Jensen, C., Snodgrass, R., Soo, M.: Extending existing dependency theory to
temporal databases. IEEE Trans. Knowl. Data Eng. 8(4) (1996) 563–582

[75] Kolahi, S.: Dependency-preserving normalization of relational and XML data. J.
Comput. Syst. Sci. 73(4) (2007) 636–647

[76] Levene, M., Loizou, G.: Axiomatisation of functional dependencies in incomplete
relations. Theor. Comput. Sci. 206(1-2) (1998) 283–300

[77] Sözat, M., Yazici, A.: A complete axiomatization for fuzzy functional and mul-
tivalued dependencies in fuzzy database relations. ACM Fuzzy Sets and Systems
117(2) (2001) 161–181

[78] Tari, Z., Stokes, J., Spaccapietra, S.: Object normal forms and dependency con-
straints for object-oriented schemata. ACM Trans. Database Syst. 22 (1997) 513–
569

[79] Vincent, M., Liu, J., Liu, C.: Strong functional dependencies and their application
to normal forms in XML. ACM Trans. Database Syst. 29(3) (2004) 445–462

[80] Weddell, G.: Reasoning about functional dependencies generalized for semantic
data models. ACM Trans. Database Syst. 17(1) (1992) 32–64

[81] Wijsen, J.: Temporal FDs on complex objects. ACM Trans. Database Syst. 24(1)
(1999) 127–176

[82] Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependen-
cies for capturing data inconsistencies. ACM Trans. Database Syst. 33(2) (2008)

[83] Davidson, S., Fan, W., Hara, C.: Propagating XML constraints to relations. J.
Comput. Syst. Sci. 73(3) (2007) 316–361

[84] Chomicki, J.: Consistent query answering: Five easy pieces. In: Proceedings of
the 11th International Conference on Database Theory. Number 4353 in Lecture
Notes in Computer Science, Springer (2007) 1–17

[85] Fagin, R., Kolaitis, P., Popa, L., Tan, W.: Reverse data exchange: coping with
nulls. In: Proceedings of the Twenty-Eight ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS). (2009) 23–32

51

[86] Libkin, L.: Data exchange and incomplete information. In: Proceedings of
the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS). (2006) 60–69

[87] Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange.
J. Comput. Syst. Sci. 73(3) (2007) 507–534

[88] Katona, G., Tichler, K.: Some contributions to the minimum representation prob-
lem of key systems. In: Proceedings of the 4th International Symposium on Foun-
dations of Information and Knowledge Systems (FoIKS). Volume 3861 of Lecture
Notes in Computer Science., Springer (2006) 240–257

[89] Demetrovics, J., Thi, V.: Some remarks on generating Armstrong and inferring
functional dependencies relation. Acta Cybern. 12(2) (1995) 167–180

[90] Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4) (1982) 952–985

[91] Demetrovics, J., Thi, V.: Armstrong relations, functional dependencies and strong
dependencies. Computers and Artificial Intelligence 14(3) (1995)

[92] Gottlob, G., Libkin, L.: Investigation on Armstrong relations, dependency infer-
ence, and excluded functional dependencies. Acta Cybern. 9(4) (1990) 385–402

[93] Silva, A., Melkanoff, M.: A method for helping discover the dependencies of a
relation. In: Advances in Data Base Theory. (1979) 115–133

[94] Enders, A., Romback, H.: A Handbook of Software and Systems Engineering;
Empirical Overservations, Laws and Theories. Addison-Wesley (2003)

[95] Martin, J.: Information Engineering. Prentice Hall (1989)

[96] Standish Group: Unfinished voyages. The Standish Group Interna-
tional, available on-line at http://www.standishgroup.com/sample research/

unfinsihed voyages 1.php (1995)

[97] Boehm, B.: Software Engineering Economics. Prentice Hall (1981)

[98] Zultner, R.: The deming way: Total quality management for software. In: Pro-
ceedings of Total Quality Management for Software. (1992) 134–145

[99] Codd, E.F.: Extending the database relational model to capture more meaning.
ACM Trans. Database Syst. 4(4) (1979) 397–434

[100] Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4) (1984) 761–791

[101] Levene, M., Loizou, G.: Database design for incomplete relations. ACM Trans.
Database Syst. 24(1) (1999) 80–125

52

[102] Imielinski, T., Van der Meyden, R., Vadaparty, K.: Complexity tailored design: a
new design methodology for databases with incomplete information. J. Comput.
Syst. Sciences 51(3) (1995) 405–432

[103] Libkin, L., Wong, L.: Semantic representations and query languages for Or-sets.
J. Comput. Syst. Sciences 52(1) (1996) 125–142

[104] Vadaparty, K., Naqvi, S.: Using constraints for efficient query processing in non-
deterministic databases. IEEE Trans. Knowl. Data Eng. 7(6) (1995) 850–864

[105] Codd, E.F.: Understanding relations. ACM SIGFIDET FDT Bulletin 7(3-4) (1975)
23–28

[106] Grahne, G.: Dependency satisfaction in databases with incomplete information.
In: Proceedings of the Tenth International Conference on Very Large Data Bases
(VLDB), Morgan Kaufmann (1984) 37–45

[107] Grant, J.: Null values in a relational data base. Inf. Process. Lett. 6(5) (1977)
156–157

[108] Makinouchi, A.: A consideration on normal form of not-necessarily-normalised
relation in the relational data model. In: Proceedings of the Third International
Conference on Very Large Data Bases (VLDB). (1977) 447–453

[109] Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1) (1984)
142–166

[110] Gottlob, G., Zicari, R.: Closed world databases opened through null values. In:
Proceedings of the Fourteenth International Conference on Very Large Data Bases
(VLDB), Morgan Kaufmann (1988) 50–61

[111] Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artif. Intell. 74
(1995) 249–310

[112] Link, S.: On the implication of multivalued dependencies in partial database
relations. Int. J. Found. Comput. Sci. 19(3) (2008) 691–715

[113] Ginsburg, S., Hull, R.: Characterizations for functional dependency and Boyce-
Codd normal form families. Theor. Comput. Sci. 26 (1983) 243–286

[114] Lucchesi, C., Osborn, S.: Candidate keys for relations. J. Comput. Syst. Sci. 17(2)
(1978) 270–279

[115] Maier, D.: Minimum covers in relational database model. J. ACM 27(4) (1980)
664–674

[116] Bernstein, P.A., Goodman, N.: What does Boyce-Codd Normal Form do? In: Pro-
ceedings of the Sixth International Conference on Very Large Data Bases (VLDB).
(1980) 245–259

53

[117] Vincent, M.: Semantic foundations of 4NF in relational database design. Acta Inf.
36(3) (1999) 173–213

[118] Bhargava, G., Goel, P., Iyer, B.: Hypergraph-based reorderings of outer join
queries with complex predicates. In: Proceedings of the International Conference
on Management of Data (SIGMOD), ACM (1995) 304–315

[119] Hasan, W., Pirahesh, H.: Query rewrite optimization in STARBURST. Technical
Report RJ6367, IBM Research Laboratory, San Jose, California, USA (1988)

[120] Ilyas, I., Markl, V., Haas, P., Brown, P., Aboulnaga, A.: CORDS: Automatic
discovery of correlations and soft functional dependencies. In: Proceedings of the
International Conference on Management of Data (SIGMOD), ACM (2004) 647–
658

[121] Paulley, G., Larson, P.A.: Exploiting uniqueness in query optimization. In: Pro-
ceedings of the Tenth International Conference on Data Engineering (ICDE), IEEE
Computer Society (1994) 68–79

[122] Simmen, D., Shekita, E., Malkemus, T.: Fundamental techniques for order opti-
mization. In: Proceedings of the International Conference on Management of Data
(SIGMOD). (1996) 57–67

[123] Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Int. J. Inf. Sec.
7(3) (2008) 199–217

[124] Farkas, C., Jajodia, S.: The inference problem: a survey. SIGKDD Explorations
4(2) (2002) 6–11

[125] Levene, M., Loizou, G.: Null inclusion dependencies in relational databases. Inf.
Comput. 136(2) (1997) 67–108

[126] Mannila, H., Räihä, K.J.: Design of Relational Databases. Addison-Wesley (1992)

[127] Fagin, R.: The decomposition versus the synthetic approach to relational database
design. In: Proceedings of the Third International Conference on Very Large Data
Bases (VLDB). (1977) 441–446

[128] Demetrovics, J., Katona, G., Miklos, D., Thalheim, B.: On the number of indepen-
dent functional dependencies. In: Proceedings of the 4th International Symposium
on Foundations of Information and Knowledge Systems (FoIKS). Number 3861 in
Lecture Notes in Computer Science, Springer (2006) 83–91

[129] Engel, K.: Sperner theory. Cambridge Univ. Press (1997)

54

