
The VLDB Journal (2012) 21:437–461
DOI 10.1007/s00778-011-0252-8

REGULAR PAPER

Trie-join: a trie-based method for efficient string similarity joins

Jianhua Feng · Jiannan Wang · Guoliang Li

Received: 24 January 2011 / Revised: 20 June 2011 / Accepted: 25 August 2011 / Published online: 4 October 2011
© Springer-Verlag 2011

Abstract A string similarity join finds similar pairs between
two collections of strings. Many applications, e.g., data inte-
gration and cleaning, can significantly benefit from an effi-
cient string-similarity-join algorithm. In this paper, we study
string similarity joins with edit-distance constraints. Existing
methods usually employ a filter-and-refine framework and
suffer from the following limitations: (1) They are inefficient
for the data sets with short strings (the average string length is
not larger than 30); (2) They involve large indexes; (3) They
are expensive to support dynamic update of data sets. To
address these problems, we propose a novel method called
trie-join, which can generate results efficiently with small
indexes. We use a trie structure to index the strings and utilize
the trie structure to efficiently find similar string pairs based
on subtrie pruning. We devise efficient trie-join algorithms
and pruning techniques to achieve high performance. Our
method can be easily extended to support dynamic update
of data sets efficiently. We conducted extensive experiments
on four real data sets. Experimental results show that our
algorithms outperform state-of-the-art methods by an order
of magnitude on the data sets with short strings.

Keywords String similarity joins · Data integration and
cleaning · Edit distance · Trie index · Subtrie pruning

J. Feng · J. Wang (B) · G. Li
Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China
e-mail: wjn08@mails.tsinghua.edu.cn

J. Feng
e-mail: fengjh@tsinghua.edu.cn

G. Li
e-mail: liguoliang@tsinghua.edu.cn

1 Introduction

The similarity join is an essential operation in many appli-
cations, such as data integration and cleaning, near duplicate
object detection and elimination, and collaborative filtering.
Recently, it has attracted significant attention in both aca-
demic and industrial community. For example, SSJoin [13]
proposed by Microsoft has been used in the data debugger
project [12].

In this paper, we study string similarity joins with edit-
distance constraints, which, given two sets of strings, find
all similar string pairs from the two sets, such that the edit
distance between each string pair is within a given threshold.
The string similarity join can be used to find near duplicated
queries in query log mining and correlate two sets of data
(e.g., people name, place name, address).

Existing studies to address this problem, such as Part-
Enum [5], All-Pairs-Ed [7], Ed-Join [56], usually employ
a filter-and-refine framework. In the filter step, they gen-
erate signatures for each string and use the signatures to
generate candidate pairs. In the refine step, they verify the
candidate pairs and output the final results. However, these
approaches have the following disadvantages. Firstly, they
are inefficient for the data sets with short strings (the average
string length is not larger than 30 based on the experimen-
tal results in Sect. 6), since they cannot select high-quality
signatures for short strings, and thus, they may generate a
large number of candidate pairs that need to be further ver-
ified. Secondly, they cannot support dynamic update of data
sets efficiently. For example, in order to achieve a high per-
formance, Ed-Join and All-Pairs-Ed need to select signatures
with high weights. They typically use inverse document fre-
quency (IDF) as the weights of signatures. Obviously, the
dynamic update may change the weights. Thus, the two meth-
ods need to reselect signatures, rebuild indexes, and rerun

123

438 J. Feng et al.

their algorithms from scratch. Thirdly, they involve large
index sizes as they will generate large numbers of signa-
tures.

To address above-mentioned problems, in this paper, we
propose a new trie-based framework for efficient string sim-
ilarity joins with edit-distance constraints (Sect. 2). We use
a trie structure to index strings, which needs much smaller
space than existing methods, since the trie structure can share
many common prefixes of strings. A straightforward algo-
rithm utilizing trie structures to do similarity joins first con-
structs a trie structure for one data set and then for each string
in the other data set checks whether the string is similar to
a string in the trie structure. Note that if the string are not
similar enough to a trie node, the string will not be similar
to those strings under the trie node. Based on this obser-
vation, we propose a subtrie pruning technique. To further
improve the performance, we develop a dual substring prun-
ing technique, which guarantees that if two trie nodes are not
similar enough, the string pairs under the two nodes will not
be similar. In this way, we can prune large numbers of string
pairs.

To efficiently check whether two nodes are similar enough,
we propose several trie-based algorithms (Sect. 3). Our
algorithms only need to access each node once, which
can avoid many unnecessary computations. To avoid con-
sidering node pairs repeatedly, we propose efficient algo-
rithms to dynamically construct the trie structures and
compute the similar pairs on the fly. To further improve
the performance, we also develop three effective prun-
ing techniques based on length filtering and count filter-
ing.

We discuss how to support dynamic update of data sets.
We first set the trie nodes for the original data set as visited
and then append the trie nodes of the update data set as unvis-
ited. Finally, we find similar string pairs by only accessing
the unvisited nodes (Sect. 4). We also extend our algorithms
to do similarity joins on two different sets by building two
trie structures.

To support large edit-distance thresholds efficiently, we
propose to partition strings into two parts, the left-half
part and the right-half part. We prove that if two strings
are similar, their left-half parts or right-half parts must
be similar enough. Based on this observation, we build a
trie structure for the left-half parts and another trie struc-
ture for the right-half parts. We extend our trie-based algo-
rithms to find the candidate pairs on the two trie structures
with a smaller threshold (a half of the original threshold).
Finally, we verify the candidate pairs to get the final results
(Sect. 5).

We have constructed an extensive set of experiments on
four real data sets. Experimental results on real data sets show
that our approach can improve the performance by an order
of magnitude (Sect. 6.2).

2 Trie-based framework

In this section, we first formalize the problem of string simi-
larity joins with edit-distance constraints and then introduce
a trie-based framework for efficient similarity joins.

2.1 Problem formulation

Given two sets of strings, a similarity join finds all simi-
lar string pairs from the two sets. In this paper, we use edit
distance to quantify the similarity between two strings. For-
mally, the edit distance between two strings r and s, denoted
as ed(r, s), is the minimum number of single-character edit
operations (i.e., insertion, deletion, and substitution) needed
to transform r to s. For example, ed(koby, ebay)=3. In
this paper, two strings are similar if their edit distance is no
larger than a given edit-distance threshold τ . We formalize
the problem of string similarity joins as follows.

Definition 1 (string similarity joins) Given two sets of
strings R and S, and a specified edit-distance threshold τ , a
similarity join finds all string pairs 〈r, s〉 ∈ R × S such that
ed(r, s) ≤ τ , i.e., {〈r, s〉 | ed(r, s) ≤ τ, r ∈ R, s ∈ S}.

2.2 Prefix pruning

One naïve solution to address this problem is all-pair verifi-
cation, which enumerates all string pairs 〈r, s〉 ∈ R × S and
computes their edit distances. However, this solution is rather
expensive. In fact, in most cases to check whether two strings
are similar, we need not compute the edit distance between
the two complete strings. Instead, we can do an early termi-
nation in the dynamic-programming computation as follows
[46].

Given two strings r = r1r2 . . . rn and s = s1s2 . . . sm ,
let D denote a matrix with n + 1 rows and m + 1 columns,
and D(i, j) be the edit distance between the prefix r1r2 . . . ri

and the prefix s1s2 . . . s j . We use the dynamic-programming
algorithm to compute the matrix: D(0, j) = j for 0 ≤ j ≤ n,
and

D(i, j) = min
(
D(i − 1, j) + 1,

D(i, j − 1) + 1, D(i − 1, j − 1) + θ
)
, (1)

where θ = 0 if ri = s j ; otherwise, θ = 1. D(i, j) is called
an active entry if D(i, j) ≤ τ . Figure 1 shows the matrix to
compute the edit distance between “ebay” and “koby”. The
shaded cells (e.g., D(1, 1)) denote active entries for τ = 1.
(Unless otherwise specified, for all running examples in the
remainder of this paper, we assume τ = 1.) To check whether
r = “ebay” and s = “koby” are similar, we first compute
the entries in row D(0, ∗) (only those entries enclosed by
the bold lines). As D(0, 0) and D(0, 1) are active entries, we
compute the entries in row D(1, ∗). Similarly, we compute

123

Trie-join: a trie-based method for efficient string similarity joins 439

1 4320j

0 1 32

1 1 2 4

2 2 32

32 4

4 4 3 3

e yab

1

2

3

4

0

i

k

o

b

y

3

4

3 3

3

4

1 4320j

0 1 32

1 1 2 4

2 2 32

32 4

4 4 3 3

e yab

1

2

3

4

0

i

k

o

b

y

3

4

3 3

3

4

Fig. 1 Prefix pruning. Matrix for computing edit distance of two
strings “ebay” and “koby”. Shaded cells denote active entries for
τ = 1

the entries in row D(2, ∗). We find that D(2, 1), D(2, 2),
and D(2, 3) are not active entries. Based on the dynamic-
programming algorithm, the following rows D(i > 2, ∗)

cannot have active entries; thus, we can do an early termina-
tion. This pruning technique is called prefix pruning. How-
ever, the method using prefix pruning for similarity joins also
needs to do all-pair verification. To improve prefix pruning
and increase performance, we make the following two obser-
vations.

2.3 Our observations

Observation 1—subtrie pruning: Consider a string set R.
Let |Σ | denote the number of distinct characters in R. There
are at most |Σ |i possible prefixes with i characters in R.
Many strings may share common prefixes, especially when
there are a large number of strings in R. For example, sup-
pose |R| = 106 and |Σ | = 26. On average, there are at least
|R|
|Σ | = 38462 strings sharing one common one-character pre-
fix. Note that this is the analysis of the worst case. In Sect. 6.1,
we show that strings in real data sets can share many more
common prefixes. Based on this observation, we can extend
prefix pruning to prune a group of strings. We use a trie struc-
ture to index all strings. Trie is a tree structure where each
path from the root to a leaf represents a string in the data set
and every node on the path has a label of a character in the
string. For instance, Fig. 2 shows a trie structure of a sample
data set with six strings. String “ebay” has a trie node ID of
12, and its prefix “eb” has a trie node ID of 10. For simplicity,
a node is mentioned interchangeably with its corresponding
string in later text. For example, both node “ko” and string
“ko” refer to node 14, and node 14 also refers to string “ko”.
Given a trie node n, let |n| denote its depth (the depth of the
root node is 0). For example, |“ko”| = 2.

Note that many strings with the same prefixes share the
same ancestor nodes on the trie structure. Based on this prop-
erty, we can extend the idea of prefix pruning to prune a group
of strings. Given a trie and a string s, node n in the trie is

Fig. 2 Trie index of a sample data set

called an active node of string s if ed(s, n) ≤ τ . If n is not
an active node for every prefix of string s, then all the strings
under n cannot be similar to s. The reason is the following.
For any string with prefix n in the trie, say r , in the dynamic-
programming algorithm, we can take r as the row and s as the
column. As the row D(|n|, ∗) has no active entry, r cannot
be similar to s based on prefix pruning. Based on this obser-
vation, we propose a new pruning technique, called subtrie
pruning: Given a trie and a string s, to compute the similar
strings of s on the trie, for each trie node n, if n is not an
active node for any prefix of s, we need not traverse the subt-
rie rooted at n. The following Lemma shows the correctness
of the subtrie pruning.

Lemma 1 (subtrie pruning) Given a trie T , a string s and
an edit-distance threshold τ , if node n is not an active node
for any prefix of s, then n’s descendants will not be similar
to s.

Proof Let u denote a child node of n. We first prove u is
not an active node for any prefix of s. Consider an arbitrary
prefix of s, s′ = s1s2 · · · s|s′|, and the matrix D between s′
and u. Based on Eq. 1, the edit distance between s′ and u is

D(|s′|, |u|)
= min

(
D(|s′|−1, |u|)+1, D(|s′|, |u|−1)+1, D(|s′|−1, |u|−1)+θ

)

= min
(
D(|s′| − 1, |u|) + 1, D(|s′|, |n|) + 1, D(|s′| − 1, |n|) + θ

)

≥ min
(
D(|s′| − 1, |u|) + 1, D(|s′|, |n|) + 1, D(|s′| − 1, |n|)). (2)

To prove u is not an active node for s′, i.e., D(|s′|, |u|) > τ ,
we only need to prove the right-hand side (RHS) of Eq. 2
is larger than τ . Consider D(|s′| − 1, |n|) that denotes the
edit distance between s1s2 · · · s|s′|−1 and string n. One pos-
sible transformation from s1s2 · · · s|s′|−1 to string n is to
first transform s1s2 · · · s|s′|−1 to u with D(|s′| − 1, |u|) edit
operations and then delete the last character of u, which
needs D(|s′| − 1, |u|)+1 edit operations in total. Since
D(|s′| − 1, |n|) denotes the minimum number of edit oper-
ations (i.e., insertion, deletion, and substitution) needed to
transform s1s2 · · · s|s′|−1 to n, then we have

123

440 J. Feng et al.

e k

b

root

o

Fig. 3 Dual subtrie pruning

D(|s′| − 1, |u|) + 1 ≥ D(|s′| − 1, |n|). (3)

Since n is not an active node for every prefix of s, then

D(|s′|, |n|) > τ and D(|s′| − 1, |n|) > τ. (4)

Based on Eqs. 3 and 4, we deduce that the RHS of Eq. 2 is
larger than τ , thus D(|s′|, |u|) > τ . As s′ could be any prefix
of s, u is not an active node for every prefix of s. Using the
same idea, we can also prove that child nodes of u are not
active nodes for every prefix of s. Accordingly, n’s descen-
dants are not active nodes for every prefix of s. Therefore,
n’s descendants are not similar to s. 	

For example, consider the trie in Fig. 2 and suppose τ = 1.
Given a string “ebay”, since node “ko” is not an active
node for every prefix of “ebay”, we can figure out that all
the strings in the subtree rooted at “ko” cannot be similar
to “ebay” based on Lemma 1, and thus, those strings under
“ko” (e.g., “kobe” and “koby”) can be pruned.

Observation 2—dual subtrie pruning: Subtrie pruning
only utilizes the trie structure to index strings in R. In fact,
the strings in S also share prefixes, and we can do subtrie
pruning for the strings in S. To this end, we construct a trie
for stings in both R and S1 and use the trie to do subtrie prun-
ing for strings in both the two sets. For example, in Fig. 3,
based on subtrie pruning, all the nodes in the subtrie rooted
at “ko” can be pruned for the string “ebay” in S. In terms of
the similarity-join problem, there are a collection of strings
with prefix “eb” in S, and all such strings cannot be simi-
lar to strings with prefix “ko”. Thus, we can prune the two
subtries rooted at “eb” and “ko”.

Based on this observation, we propose a new pruning tech-
nique, called dual subtrie pruning: Given a trie, for any two
nodes u and v, if u is not an active node for every ancestor of
v, and v is not an active node for every ancestor of u, we can
prune the subtries rooted at u and v. The following Lemma
shows the correctness of dual subtrie pruning.

Lemma 2 (dual subtrie pruning) Given two trie nodes u and
v, and an edit-distance threshold τ , if u is not an active node

1 Section 4.2 gives the details about how to construct a trie structure
for two data sets.

for every ancestor of v, and v is not an active node for every
ancestor of u, the strings under u and v cannot be similar to
each other.

Proof Consider any two strings su and sv under nodes u and
v, respectively. Based on Lemma 1, since u is not an active
node for every ancestor of v, u’s descendants will not be sim-
ilar to v. Thus, node v is not an active node for every node in
the path from node u to node su . Similarly, since v is not an
active node for every ancestor of u, v is not an active node
for every ancestor of su . Based on Lemma 1, v’s descendants
will not be similar to su . As sv is a descendant of v, sv is not
similar to su . Therefore, the strings under u and v cannot be
similar to each other. 	

For example, in Fig. 2, consider node “ba” and node “ko”,
as node “ba” is not an active node of “φ”, “k” and “ko” and
node “ko” is not an active node of “φ”, “b” and “ba”, all
strings in the subtries of the two nodes cannot be similar,
e.g., “bag” and “kobe”, “bag” and “koby”, “bay” and
“kobe”, “bay” and “koby”. It is not straightforward to tra-
verse the trie structure to find similar pairs using dual trie
pruning. This paper proposes efficient trie-based algorithms.

3 Trie-based algorithms

We first introduce a straightforward trie-search-based method
for similarity joins, called Trie-Search, which only utilizes
subtrie pruning. Given two string sets R and S, Trie-Search
first constructs a trie structure for all strings in R, and then
for each string s ∈ S, computes its active-node set As . For
each r ∈ As , if r is a leaf node (i.e., r ∈ R), 〈s, r〉 is a
similar string pair. For example, in Fig. 2, given a string
s = “ebay′′,A“ebay′′ = {4, 11, 12}. As node 4 (“bay”) is
a leaf node, 〈“ebay′′, “bay′′〉 is a similar string pair.

We can use the incremental algorithm proposed by
Choudri and Kaushik, Ji et al. [14,28] to compute the active-
node sets. For a string s = s1s2 . . . sm , the algorithm first
initializes the active-node set of an empty string, which is
composed of the nodes with depths no larger than τ in the
trie. Then, it computes the active-node set of each prefix of s
incrementally. That is the active-node set of s1s2 . . . si is com-
puted using the active-node set of s1s2 . . . si−1(i ∈ [1, m]).

However, Trie-Search has a limitation that it neglects
strings in S also share common prefixes; thus, it cannot ben-
efit from dual subtrie pruning. For example, consider two
strings ànd ìn S with a common prefix .̀ To obtain A“kobe′′
and A“koby′′ , Trie-Search will suffer from redundant com-
putation since it needs to compute A“k′′,A“ko′′ and A“kob′′
twice. In this section, using dual subtrie pruning, we propose
three efficient algorithms and pruning techniques to improve
the performance.

123

Trie-join: a trie-based method for efficient string similarity joins 441

Fig. 4 Trie-Traverse algorithm

3.1 Trie-traverse algorithm

In this section, we propose a trie-traversal-based method,
called Trie-Traverse, to improve the performance of Trie-
Search. Intuitively, Trie-Traverse utilizes dual subtrie
pruning to avoid duplicated computation in Trie-Search.
Trie-Traverse constructs a trie for the strings in both R
and S and computes the active-node set for a node in the trie
exactly once even though the node is a prefix of a potentially
large number of strings.

For ease of presentation, in the following, we focus on
self-join, that is R = S. Our approach can be easily extended
to R �= S (Sect. 4.2). Trie-Traverse first constructs a trie
index for all strings in S and then traverses the trie in preorder.
For each trie node, Trie-Traverse computes its active-node
set. When reaching a leaf node l, for s ∈ Al , if s is a leaf
node (i.e., s ∈ S), Trie-Traverse outputs 〈l, s〉 as a simi-
lar string pair. Figure 4 gives the pseudo-code of the Trie-
Traverse algorithm. It first constructs a trie index for all

Fig. 5 An example to use Trie-Traverse algorithm to find all similar
pairs (τ = 1)

strings (Line 2), computes the active-node set of the root node
(Line 4), and then calls its subroutine findSimilarPair
to find all similar string pairs recursively (Lines 5–6).find-
SimilarPair first calculates the active-node set Ac of
node c based on its parent’s active-note set Ap (Line 2), using
the above-mentioned incremental algorithm. If c is a leaf
node, it calls a subroutineoutputSimilarPair to output
all the similar string pairs of c (Line 3). Finally, findSim-
ilarPair calls itself to compute the similar string pairs of
c’s descendants (Lines 6–7).

In the worst case, the time complexity of computing Ac

from its parent’s active-note set Ap is O(τ · |Ac|), since each
active node only can be computed from its ancestors within
τ steps. Therefore, the time complexity of Trie-Traverse
is O(τ · |AT |) where |AT | is the sum of the numbers of the
active-node sets of all the trie nodes in the trie T . When tra-
versing the trie nodes, we need to maintain the trie and the
active nodes of ancestors of the current node. Given a leaf
node l, let C(l)denote the sum of the active nodes of ancestors
of node l and Cmax is the maximal value of C(l) among all
leaf nodes. The space complexity is O(|T |+Cmax), where |T |
is the size of trie T . Example 1 shows how Trie-Traverse
works.

Example 1 Consider the string set and the corresponding trie
structure in Fig. 5. Initially, we construct a trie index for all
strings. We compute the active-node set of the root node
A0 = {0, 1, 9, 13}, which is composed of the nodes with
depths within τ = 1, since their edit distances to the root node
(an empty string) are within τ . Then, we compute active-
node sets of every node using preorder traversal (following
the dashed lines). This traversal can guarantee that, for each
node, we always compute its parent’s active-node set before
its own active-node set. Consider node 2, we use its par-
ent’s active-node set A1 to compute its active-node set A2.
Similarly, we compute A3 using A2. As node 3 is a leaf node,
and node 4 is a leaf node in A3 = {2, 3, 4, 7}; thus, we output
the similar pair 〈3, 4〉. 	

123

442 J. Feng et al.

Theorem 1 Given a set of strings S and an edit-distance
threshold τ , Trie-Traverse can compute all similar string
pairs 〈s ∈ S, t ∈ S〉 such that ed(s, t) ≤ τ .

Proof Let T be a trie index constructed from S with nodes
V (T) and edges E(T). For a node v in T , let P(v) denote
v’s preorder number and Av = {u ∈ V (T) | ed(u, v) ≤ τ }
denote the active-node set of v.

We first prove that after visiting a node v in preorder tra-
versal, Trie-Traverse can compute active-node sets of v

and v’s ancestors correctly. We prove this claim by induction.
The base case for the root node clearly holds since after visit-
ing the root node r , it is obvious that Ar = {u ∈ V (T) | |u| ≤
τ }. Assume this claim holds for a node v. We prove that this
claim also holds for the next node v′ (i.e., P(v′) = P(v)+1).
Based on the preorder traversal, v′ is either a child of v or
a child of some ancestor of v; thus, active-node sets of v′’s
ancestors are correctly computed. Since the active-node set
of v′’s parent is correctly computed, Trie-Traverse can cor-
rectly compute v′’s active-node set. Then, active-node sets of
v′ and v′’s ancestors are also correctly computed. Therefore,
the claim is proved.

Obviously for each string pair 〈s ∈ S, t ∈ S〉, ed(s, t) ≤
τ if and only if both the nodes s and t are leaf nodes of T , and
s is in At . Based on the proved claim, after visiting the node
t , we can correctly compute the active-node set At . Also note
that for each string s in S, its corresponding node in T must
be a leaf node. Therefore, the theorem is proved. 	

3.2 Trie-dynamic algorithm

Trie-Traverse has to compute the active-node sets for every
trie node. However, we need not compute all of them. For
instance, in Fig. 5, consider node 3, as it is an active node
of node 2 (i.e., 3 ∈ A2). Based on the symmetry property
of active nodes: if u is an active node of v, then v must be
an active node of u, node 2 must be in the active-node set
of node 3 (i.e., 2 ∈ A3). Thus, we can avoid unnecessary
computation when computing the active-node set of node 3.

Based on this observation, we design a new algorithm,
called Trie-Dynamic., which avoids the redundant active-
node computation introduced by Trie-Traverse. Intui-
tively, Trie-Dynamic avoids the redundant active-node
computation introduced by Trie-Traverse using symmet-
ric property. Figure 6 gives the pseudo-code. Initially, Trie-
Dynamic constructs an empty trie with only a root node
(Line 2) and then incrementally inserts strings into the trie.
At each step, Trie-Dynamic maintains a trie index of all
previously inserted strings. For a new string s = s1s2 . . . sm ,
Trie-Dynamic inserts it into the trie structure as follows
(Lines 4–10). First Trie-Dynamic finds the trie node t =
s1s2 . . . si , which is the longest prefix of s. Then, Trie-
Dynamic updates the trie by adding some new nodes under

Fig. 6 Trie-Dynamic algorithm

node t (Lines 6–7) and computing their corresponding active-
node sets (Line 8). As the active-node set of an existing node
may be affected by a newly added node, Trie-Dynamic
updates all such active-node sets based on the symmetry
property (Lines 9–10). Finally, as t is a leaf node (i.e., s),
Trie-Dynamic outputs the similar pairs (Line 12).

As Trie-Dynamic utilizes the symmetry property of
active nodes, its time complexity is reduced to O(τ

2 · |AT |).
As it needs to keep active nodes of all trie nodes, its space
complexity increases to O(|T | + |AT |). Example 2 shows
how the Trie-Dynamic algorithm works.

Example 2 Consider the string set in Figs. 2, 7 shows how
to dynamically construct the trie structure by adding a new
string. Each node in the trie is associated with an ID and its
active-node set. In Fig. 7a, we initialize a trie index with only
a root node 0 and its active-node set A0 = {0}. To insert a
new string “bag”, as every prefix of “bag” is not in the trie,
we first insert node 1 with label “b” as a child of node 0,
compute its active-node set A1 = {0, 1} using A0 = {0},
and update A0 by inserting node 1 based on the symmetry
property of active nodes, i.e., A0 = {0, 1}; then insert node 2
with label “a” as a child of node 1, compute its active-node
set A2 = {1, 2} using A1 = {0, 1}, and update A1 by insert-
ing node 2, i.e., A1 = {0, 1, 2}; finally insert node 3 with
label “g” as a child of node 2, compute its active-node set
A3 = {2, 3} using A2 = {1, 2}, and update A2 by insert-
ing node 3, i.e., A2 = {1, 2, 3}. Figure 7b gives the detailed
steps.

Similarly, we can insert “ebay” (Fig. 7c). In Fig. 7d, we
insert “bay” into the trie. As the prefix “ba” of “bay” is in
the trie, we only need to create node 8 with label “y” and
append node 8 as a child of node 2. Compared Fig. 7d with

123

Trie-join: a trie-based method for efficient string similarity joins 443

Fig. 7 An example to use
Trie-Dynamic algorithm to
find all similar pairs (τ = 1)

(a)

(b) (c) (d)

Fig. 7c, we find that A2,A3,A7 are different. Because after
we insert node 8 and compute A8 = {2, 3, 7, 8}, we update
the active-node sets of nodes in A8(nodes 2, 3, 7). For each
node n in A8, we add node 8 to n’s active-node set based on
the symmetry property. 	

Theorem 2 Given a set of strings S and an edit-distance
threshold τ , Trie-Dynamic can compute all similar string
pairs 〈s ∈ S, t ∈ S〉 such that ed(s, t) ≤ τ .

Proof As Trie-Dynamic constructs the trie structure
dynamically, let Tv denote the trie index constructed from
all the nodes inserted before v (including itself). For a node
v in Tv , let P(v) denote the number of nodes in Tv . Tv’s node
set V (Tv) = {u ∈ V (T) | P(u) ≤ P(v)} and its edge set
E(Tv) = {(ui , u j) ∈ E(T) | ui ∈ V (Tv), u j ∈ V (Tv)}. In

addition, let ATv
u = {t ∈ V (Tv) | ed(u, t) ≤ τ } denote the

active-node set of u w.r.t Tv .
We first prove that after adding a new node v in the trie,

for each node u of Tv , Trie-Dynamic can compute ATv
u cor-

rectly. We prove this claim by induction. The base case for
the root node clearly holds since after adding a root node
r, Tr has only one node and ATr

r = {r} is correct. Assume
this claim holds for a node v. We want to prove that it also
holds for the next added node v′ (i.e., P(v′) = P(v) + 1).
For each node u in Tv′ , if u = v′, since the active-node set of
u’s parent w.r.t Tv is correctly computed (as u’s parent is in

Tv), Trie-Dynamic can correctly compute ATv′
u (i.e., ATv′

v′);

if u �= v′, then u must be a node of Tv , so ATv
u is correctly

computed. Trie-Dynamic uses ATv
u to compute ATv′

u . If u is

in ATv′
v′ , then ed(v′, u) ≤ τ ; thus, Trie-Dynamic can obtain

ATv′
u correctly by adding v′ to ATv

u ; if u is not in ATv′
v′ , then

ed(v′, u) > τ ; thus, Trie-Dynamic can obtain ATv′
u cor-

rectly by setting it as ATv
u . Therefore, for each node u of Tv′ ,

Trie-Dynamic can compute ATv′
u correctly. Thus, our claim

is true.
Obviously for each string pair 〈s ∈ S, t ∈ S〉 (Without

loss of generality, suppose P(s) ≤ P(t).), ed(s, t) ≤ τ if

and only if both the nodes s and t are leaf nodes of Tt , and s
is in ATt

t . Based on the proved claim, after adding the node
t,ATt

t is correctly computed. Also note that for each string s
in S and P(s) ≤ P(t), its corresponding node in Tt must be
a leaf node. Therefore, the theorem is proved. 	

3.3 Trie-PathStack algorithm

When inserting a new string, Trie-Dynamic may gener-
ate some new nodes and append them as children of any
existing node. Thus, Trie-Dynamic may use active-node
sets of any existing node to compute the active-node sets
of newly added nodes. For example, in Fig. 7d, when insert-
ing a string “bay”, Trie-Dynamic generates a new node 8,
appends it as a child of existing node 2, and uses the active-
node set of node 2 to compute the active-node set of the
newly inserted node 8. Thus, although Trie-Dynamic avoids
unnecessary active-node computation introduced by Trie-
Traverse, Trie-Dynamic involve large memory space to
maintain the active-node sets of all trie nodes.2 Recall Trie-
Traverse, it first constructs a trie index for all strings and
then gets similar string pairs by traversing the trie in preorder.
Throughout the algorithm, the maximal number of active-
node sets that Trie-Traverse needs to maintain is the same
as the maximal depth of trie leaf nodes. To summarize, Trie-
Traverse uses little memory space but involves unnecessary
active-node computation; on the contrary, Trie-Dynamic
avoids such repeated computation but involves large memory
space.

To address this problem, we propose a new algorithm,
called Trie-PathStack, which not only requires little mem-
ory space but also achieves much higher performance.
Intuitively, Trie-PathStack can integrate the ideas of Trie-
Dynamic and Trie-Traverse together. To achieve higher

2 If we first sort the strings and then dynamically insert them into the
trie, Trie-Dynamic need not maintain all active-node sets. However,
it has two problems: (1) it involves an additional sorting step; (2) it is
still expensive to update the active-node sets (the symmetry property).

123

444 J. Feng et al.

Fig. 8 Trie-PathStack algorithm

performance as Trie-Dynamic, when traversing the trie
nodes, we maintain a “virtual partial” subtrie to keep the
visited nodes. For each unvisited node, we first set it as “vis-
ited” and then compute its active-node set in the virtual par-
tial trie. For subsequent unvisited nodes, when computing
their active nodes, we only consider the visited nodes. Thus,
we can avoid the redundant computation. To require little
memory space as Trie-Traverse, we traverse the trie nodes
in preorder and use a stack to maintain the nodes that need
to be updated. Throughout the preorder traversal, we use a
stack to maintain the nodes from the root to the current node
(with corresponding active-node sets). When visiting a node
n, as its parent node must be the top element in the stack, we
can use the active-node set of the top element to compute n’s
active-node set. After computing n’s active-node set, we only
need to update the active-node sets of the topmost τ elements
(i.e., n’s ancestors within τ steps away from n) in the stack.
This is because we can guarantee that any unvisited node’s
parent will be pushed into the stack, and only the topmost τ

nodes are active nodes of n. Experimental results shows that
Trie-PathStack can avoid a lot of unnecessary update.

Based on the two ideas, we devise the Trie-PathStack
algorithm. Figure 8 shows the pseudo-code. Initially, Trie-
PathStack constructs a trie structure T for all strings
(Line 2). To avoid repeated active-node computation, we

<0,{0}>top

top

top

<0,{0,1}>

<1,{0,1}>

<0,{0,1}>

<1,{0,1,2}>

<2,{1,2}>

<0,{0,1}>

<1,{0,1,2}>

<2,{1,2,3}>

<3,{2,3}>top

top

top

<0,{0,1}>

<1,{0,1,2}>

<2,{1,2,3}>

<0,{0,1}>

<1,{0,1,2}>

<2,{1,2,3,4}>

<4,{2,3,4}>

(a) init (b) push 1 (c) push 2

(d) push 3 (e) pop 3 (f) push 4

Fig. 9 An example to use Trie-PathStack algorithm to find all
similar pairs (τ = 1)

logically maintain a virtual partial trie index consisting of the
nodes marked by “visited”. In the beginning, we only set the
root as “visited” (Line 4). Accordingly, in this partial trie, we
define the active-node set of a node u as A′

u = {v|v ∈ Au, v

has been visited} and we can get A′
r = {r} (Line 5). Through-

out the Trie-PathStack, we use a stack S to maintain active-
node sets of nodes from the root node to the current node.
When pushing a new node c into the stack, we first compute
c’s active-node set Ac

′ based on its parent’s active-node set
Ap

′ by calling subroutine calcActiveNode′3 (Line 12)
and then update active-node sets affected by c (Lines 14–16).
If c is a leaf node, Trie-PathStack outputs corresponding
similar string pairs.

As Trie-PathStack utilizes the symmetry property of
active nodes, its time complexity is the same as Trie-
Dynamic, i.e., O(τ

2 ·|AT |). As Trie-PathStack only main-
tains a stack to store active-node sets whose size is equal to the
maximal depth of trie leaf nodes, its space complexity is the
same as Trie-Traverse, i.e., O(|T |+Cmax). In comparison
with Trie-Traverse and Trie-Dynamic, Trie-PathStack
can achieve high performance with less memory. Example 3
shows how Trie-PathStack works.

Example 3 Consider the string set and the corresponding trie
structure in Figs. 2, 9 shows how to use Trie-PathStack to
compute similar pairs. In the initial step, besides construct-
ing a trie index, we also create a stack from the root node
to the current node. We first push node 0 and its active-node
set A′

0 = {0} into the stack and get its first child, node 1
(Fig. 9a). In Fig. 9b, we compute A′

1 = {0, 1} using A′
0 =

{0}. Though node 2 is also an active node of node 1, we ignore
it since it is unvisited in preorder traversal. We then update the
active-node sets of its ancestors by adding node 1 to A′

0

3 Note that calcActiveNode′ only returns visited nodes.

123

Trie-join: a trie-based method for efficient string similarity joins 445

(the underlined number). We repeat these steps until visit-
ing node 3, which has no children. We pop node 3 (Fig. 9e)
from the stack and push its sibling node 4 into the stack
(Fig. 9f). We continue to push the first child of node 4 (if
any). When visiting a leaf node, i.e., nodes 3 and 4, we output
the similar string pairs. We repeat above steps until the stack
is empty. 	

Theorem 3 Given a set of strings S and an edit-distance
threshold τ , Trie-PathStack can compute all similar string
pairs 〈s ∈ S, t ∈ S〉 such that ed(s, t) ≤ τ .

Proof Let T be a trie index constructed from S with nodes
V (T) and edges E(T). For a node v in T , let P(v) denote v’s
preorder number, v(i) denote v’s ancestor node with i steps
away from v, and Tv be a partial trie of T w.r.t v where its
node set V (Tv) = {u ∈ V (T) | P(u) ≤ P(v)} and its edge
set E(Tv) = {(ui , u j) ∈ E(T) | ui ∈ V (Tv), u j ∈ V (Tv)}.
Let ATv

u = {t ∈ V (Tv) | ed(u, t) ≤ τ } denote the active-
node set of u w.r.t Tv .

We first prove that after visiting a node v in the preor-
der traversal, the current stack {〈v,ATv

v 〉, 〈v(1),ATv

v(1)〉, 〈v(2),

ATv

v(2)〉, . . .} is correctly computed. For ease of pre-
sentation, we simplify the denotation of the stack as
{ATv

v ,ATv

v(1) ,ATv

v(2) , . . .}. We prove this claim by induc-
tion. The base case for the root node holds since after
visiting the root node r , the stack is {ATr

r }, and thus,
ATr

r = {r} is true. Assume this claim holds for a node
v. We want to prove that it holds for the next node v′
(i.e., P(v′) = P(v) + 1). Based on this assumption, we
can deduce that when reaching the node v′, the stack is
{ATv

v′(1) ,ATv

v′(2) , . . .} and ATv

v′(i) is correctly computed. Since
the active-node set of v′’s parent w.r.t Tv (i.e., the top ele-
ment of the stack) is correctly computed, Trie-PathStack

can correctly compute ATv′
v′ . Consider each element ATv

v′(i) in

the stack. If i ≤ τ , then ed(v′, v′(i)) = i ≤ τ , thus Trie-

PathStack can obtain ATv′
v′(i) correctly by adding v′ to ATv

v′(i) ;

if i > τ , then ed(v′, v′(i)) = i > τ , thus Trie-PathStack

can obtain ATv′
v′(i) correctly by setting it as ATv

v′(i) . After pushing

ATv′
v′ into the stack, Trie-PathStack correctly gets the stack

{ATv′
v′ ,ATv′

v′(1) ,A
Tv′
v′(2) , . . .} for node v′. Therefore, the claim is

proved.
Obviously, for each string pair 〈s ∈ S, t ∈ S〉 (Without

loss of generality, suppose P(s) ≤ P(t).), ed(s, t) ≤ τ if
and only if both the nodes s and t are leaf nodes of Tt and
s is in ATt

t . Based on the proved claim, after visiting a node
t , the stack {ATt

t ,ATt
t (1) , . . .} can be correctly computed, and

thus, ATt
t is correct. Also note that for each string s in S and

P(s) ≤ P(t), its corresponding node in Tt must be a leaf
node. Therefore, the theorem is proved. 	

root

uv[5,7] [2,3]

u

v u

v

Length Pruning
Single Branch

Pruning
Count Pruning

u active node for vv pruned active node for uLegend:

Fig. 10 Three pruning techniques (τ = 1)

3.4 Pruning techniques

Based on dual subtrie pruning, we devise three trie-based
algorithms. To further improve the performance, we propose
three pruning techniques that can reduce the sizes of active-
node sets.

Length pruning: Consider two strings r and s, if their
length difference is larger than τ , their edit distance cannot
be within τ [19]. We exploit this property for pruning in our
framework. In Fig. 10, in the left box, for each node, we
maintain a range of lengths of strings in the subtrie, [ls, ll],
where ls is the length of the shortest string in the subtrie and ll
is the length of the longest string in the subtrie. For instance,
the length range of strings in subtrie of v is [5, 7] and that
of u is [2, 3]. As the lengths of strings from the two subtries
have at least two differences (larger than τ = 1), node v can
be pruned from Au through length pruning, although node v

is an active node of node u.
Single-branch pruning: If node v is an ancestor node of

node u and their subtries have the same leaf nodes, then node
v can be pruned from Au , even if node v is an active node of
node u. Intuitively, as there is only a single branch from node
v to node u, when we use Au to compute the active-node sets
of u’s children, v will not generate new leaf active nodes;
thus, we can remove v from Au . We call this pruning tech-
nique single-branch pruning. For instance, in the center box
of Fig. 10, as node v and node u have the same leaf nodes,
based on single-branch pruning, v can be pruned from Au .

Count pruning: Given two nodes v and u, if there is only
one string that has both nodes v and u as prefixes, node v can
be safely pruned from Au because we cannot find two strings
in their subtries. As an example in the right box of Fig. 10,
v can be excluded from Au since we cannot find a similar
string pair in both of their subtries.

We give an example to illustrate how to use the three tech-
niques for pruning. In Fig. 2, consider computing the active-
node set of node 6, we have A6 = {2, 5, 6, 7}. Using length
pruning, we have A6 = {5, 6, 7}. Using single-branch prun-
ing, we have A6 = {6, 7}. Using count pruning, we have

123

446 J. Feng et al.

A6 = {}. Using the three pruning techniques, we can signif-
icantly reduce the number of active nodes.

The three pruning techniques can be easily plugged into
Trie-Traverse and Trie-PathStack by adding the prun-
ing process after the calculation of active-node sets (See
Figs. 4, 8). However, the pruning techniques are not applica-
ble to Trie-Dynamic, since they rely on the structure of the
trie index, but Trie-Dynamic will change the structure.

4 Supporting dynamic data updates
and two different sets

4.1 Incremental similarity joins

In this section, we discuss how to extend our methods to
support dynamic update of data sets efficiently. Suppose we
have gotten the self-join results of a string set S, and then S
is updated by adding another string set ΔS, it is challeng-
ing to do the similarity join incrementally. We formalize the
incremental similarity-join problem as follows.

Definition 2 (incremental similarity joins) Given a set of
strings S, a new string set ΔS, and an edit-distance thresh-
old τ , an incremental similarity join finds all similar string
pairs (r ∈ ΔS, s ∈ S ∪ ΔS) such that ed(r, s) ≤ τ .

Trie-Traverse and Trie-PathStack can be extended to
support incremental similarity joins efficiently, while Trie-
Dynamic does not have such advantage since it needs to
rebuild the trie for each data update. Next, we use Trie-
PathStack algorithm as an example to show our idea, and
the idea can be easily extended to Trie-Traverse algo-
rithm. Consider the trie index T constructed from S. Given
a new string set ΔS, we update the original trie T to T ′
by inserting the strings in ΔS. In the updated trie T ′, let
ΔT denote the partial trie for strings ΔS. Then, we extend
Trie-PathStack to find similar string pairs for trie nodes in
ΔT as follows. When reaching a trie node n, different from
Trie-PathStack that computes n’s active-node set An from
visited nodes, the incremental similarity-join algorithm com-
putes An from the nodes in T ′. Figure 11 shows the pseudo-
code. Firstly, we update the original trie T by inserting all
strings in ΔS and set the nodes in ΔT as “unvisited”. Sec-
ondly, we initialize A′

r as r ’s visited active nodes. Thirdly,
we change the condition of pushing an element into the stack.
Fourthly, we need push all unvisited elements into the stack.
Example 4 shows how the algorithm works.

Example 4 Consider the trie structure T in Fig. 2. Suppose
ΔS={“eby”}. Based on our incremental trie-join algorithm,
we update the original T to T ′ by inserting “eby” (Fig. 12)
and get the partial trie ΔT marked by the dot lines. Then,
we traverse the trie ΔT to find similar string pairs. Initially,

Fig. 11 Incremental Trie-PathStack algorithm

we push node 0 and its active-node set {0, 1, 13} into the
stack. Nodes 1 and 13 are the active nodes in T ′. Next, we
push nodes 9, 10 and 18 into the stack. When reaching leaf
node 18 (Fig. 12d), we output similar string pair (18,12). The
algorithm stops when the stack is empty. 	

4.2 Similarity joins between two different sets

In this section, we discuss how to extend our algorithm to
support similarity joins between two different sets R and
S. We choose Trie-PathStack algorithm as an example to
explain our idea, and our techniques can be easily adapted
to other algorithms with minor modifications. For ease of
presentation, we first introduce a concept.

Definition 3 Given a trie T , a trie node n, and a string set
S, node n appears in S if there exists a string s in S with a
prefix n.

For example, in the left of Fig. 13, given the trie index and
S = {bag,beagy}, node “be” appears to S, since there
exists a string s = “beagy′′ with a prefix “be”.

We take Trie-PathStack as an example to introduce our
idea and propose an algorithm, called Trie-PathStack+
as shown in Fig. 14. Different from Trie-PathStack algo-
rithm, Trie-PathStack+ builds a trie index on stings in
R ∪ S (Line 2) and for each node appearing in R, computes
its active-node set composed of nodes appearing in S. The
active-node set of node r is defined as Ar

′′= {n| for each
trie node n, such that |n| ≤ τ and n ∈ S} (Line 5), and
calcActiveNode′′ returns those active nodes that appear
in S. We restrict that only nodes u ∈ R can be pushed into the
stack (Line 9). Example 5 shows how the algorithm works.

Example 5 In Fig. 13, we illustrate an example to join two
different string sets. On the left, it is the trie index for strings

123

Trie-join: a trie-based method for efficient string similarity joins 447

Fig. 12 Incremental similarity
joins on sample data set in Fig. 2
(ΔS = {“eby”}, τ = 1)

(a) (b)

(c) (d)

Fig. 13 Similarity joins
between R = {bay,ebay} and
S = {bag,beagy}(τ = 1). We
push nodes in R into the stack
and find their active nodes in S

(a) (b) (c)

(d) (e) (f)

in R = {bay,ebay} and S = {bag,beagy}. Each node
is marked by appearing in which set, such as R,S or R ∪ S.
In Fig. 13a, the stack is initialized with node 0 and A0

′′ =
{0, 1}. Though node 9 is similar to node 0, it is excluded from
the set since node 9 /∈ S. After pushing node 2 into the stack
(Fig. 13c), we then push node 4 into the stack, but will not
push node 3 as node 3 /∈ R. In Fig. 13d, as node 4 is a leaf
node, we output similar string pair (4, 3) by finding the leaf
node in A4

′′ = {2, 3}. We continue these steps until the stack
is empty. 	

Next, we discuss how to extend Trie-PathStack+ to
support dynamic update of data sets efficiently.

Suppose we have gotten the join results of two string sets
R and S. Without loss of generality, assume R is updated by
adding another string set ΔR, then the incremental Trie-
PathStack+ algorithm can find all similar string pairs
〈r, s〉 ∈ ΔR×S such that ed(r, s) ≤ τ . Figure 15 shows the
pseudo-code. Comparing to Trie-PathStack+, the incre-
mental algorithm firstly updates the original trie by inserting
the strings in ΔR, then for each node appearing in ΔR, com-
putes its active-node set composed of nodes appearing in S.

5 Improving Trie-PathStack on large edit-distance
thresholds

Recall Trie-PathStack, it traverses the trie constructed
from the string set and computes the active-node set for
each node. When the edit-distance threshold τ gets larger,
the algorithm of computing active-node sets will become
more expensive, since the size of the active-node set of
each node will increase. To address this problem, we pro-
pose a new algorithm Bi-Trie-PathStack to improve Trie-
PathStack on large edit-distance thresholds.

For ease of presentation, given a string r = r1r2 . . . r|r |,
we use L(r) = r1r2 . . . r
 |r |

2 � to denote the left-half part of

r and R(r) = r
 |r |
2 +1� . . . r|r | to denote the right-half part of

r . We have an observation that for a string s, if r is simi-
lar to s within edit-distance threshold τ , then at least one of
the following conditions holds: (1) L(r) is similar to a prefix
of s within
 τ

2 �; (2) R(r) is similar to a suffix of s within

 τ

2 �. For example, consider a string r = “srivastava′′,
and its left-half part L(r) = “sriva′′ and its right-half part
R(r) = “stava′′. Given a string s = “sratava′′, as r is

123

448 J. Feng et al.

Fig. 14 Trie-PathStack+: a similarity-join algorithm for two
different sets

Fig. 15 Incremental Trie-PathStack+ algorithm

similar to s within edit-distance threshold 3, we can see the
second condition holds, that is R(r) = “stava′′ is similar
to the suffix “tava′′ of s within
 3

2� = 1. The following
Lemma shows the correctness of this idea.

Lemma 3 Consider a string r = r1r2 . . . r|r |. Its left-half
part L(r) = r1r2 . . . r
 |r |

2 � and right-half part R(r) =
r
 |r |

2 +1� . . . r|r |. Given an edit-distance threshold τ , for any

string s, if ed(r, s) ≤ τ , then at least one of the following
conditions holds:

1. There exists a prefix P(s) of s such that ed
(
L(r),P(s)

) ≤

 τ

2 �,
2. There exists a suffix s. of s such that ed

(
R(r), s.

) ≤
 τ
2 �.

Table 1 A string set S, its left-half part set L(S), its right-half part
set R(S), its truncated prefix set Pmax(S, τ), and its truncated suffix set
Smax(S, τ)(Pmax(S, τ) and Smax(S, τ) are defined in Sect. 5.2)

SID S L(S) R(S) Pmax(S, 3) Smax(S, 3)

s1 ricci ri cci ricc icci

s2 riedl ri edl ried iedl

s3 srivastava sriva stava srivas vastava

s4 sratava sra tava srata atava

Proof Let ed(r, s) = d (d ≤ τ), i.e., r can be transformed
to s with d edit operations. Suppose there are d1 edit opera-
tions on L(r) and d2 edit operations on R(r). If d1 ≤ d2, then
d = d1+d2 ≥ 2d1. As τ ≥ d ≥ 2d1, we have d1 ≤
 τ

2 �. That
is, there exists a prefix P(s) of s such that ed

(
L(r),P(s)

) =
d1 ≤
 τ

2 �. Similarly, if d1 ≥ d2, we can prove there exists a
suffix s. of s such that ed

(
R(r), s.

) = d2 ≤
 τ
2 �. Therefore,

the lemma is proved. 	

Based on Lemma 3, we propose the algorithm Bi-Trie-

PathStack. Given a string set S and a threshold τ , we first
construct a new string set L(S) that consists of the left-half
part of each string in S. Then, we run the Trie-PathStack+
on L(S) and S with edit-distance threshold
 τ

2 �. For a string
L(r) in L(S), to find all the strings in S whose prefix is
similar to L(r), we traverse the descendants of each active
node of node L(r) and find the leaf nodes in S. Clearly, these
leaf nodes have a prefix that is similar to L(r). Similarly, if
we reverse the strings in S, we can get all the string pairs
〈r, s〉 ∈ S × S such that the right-half part R(r) is similar to
a suffix of s within
 τ

2 �. We verify the candidate pairs gener-
ated from the two cases and obtain final results. Example 6
shows how the algorithm works.

Example 6 Consider the string set S in Table 1. Given τ = 3,
we show how Bi-Trie-PathStack finds all similar string
pairs in S. Firstly, we generate the left-half part set L(S) (see
Table 1). To find the string pairs that satisfy the first condi-
tion of Lemma 3, we run Trie-PathStack+ on L(S) and S
within the edit-distance threshold
 3

2� = 1. Figure 16 shows
the algorithm. On the left, it is the trie index constructed from
strings in L(S) ∪ S. The shaded nodes appear in L(S), and
the nodes with dotted-line boundaries appear in S. Firstly,
the stack is initialized with node 0 and its active-node set
{0, 1, 9} (Fig. 16a). Next, node 1,2 and their active-node sets
are pushed into the stack, respectively (Fig. 16b, c). As node 2
(i.e., “ri”) is a string in L(S), we traverse the descendants
of each active node of node 2 and find the leaf nodes in
S. Consider the active-node set {1, 2, 3, 6, 16} of node 2.
From the descendants of active nodes 1, 2, 3, 6, we obtain the
leaf nodes 5, 8; from the descendants of active node 16, we
obtain the leaf node 23. Consider the node 2 in L(S). There
are two leaf nodes, node 5 (i.e., “ricci”) and node 8 (i.e.,

123

Trie-join: a trie-based method for efficient string similarity joins 449

Fig. 16 Run
Trie-PathStack+ on L(S) and
S (the edit-distance threshold is

 τ

2 � = 1)

(a) (b) (c)

(d) (e)

“riedl”) whose left-half parts are node 2. For node 5, we
can generate two candidates with the obtained leaf nodes inS,
i.e., 〈5, 8〉, 〈5, 23〉. For node 8, we can also generate two can-
didates with the obtained leaf nodes in S, i.e., 〈5, 8〉, 〈8, 23〉.
Finally, we verify the candidates and output 〈5, 8〉 as a result.
The Trie-PathStack+ will continue until the stack is empty
(Fig. 16d, e). Using the similar idea, we can also find the
string pairs that satisfy the second condition in Lemma 3. 	

Bi-Trie-PathStack divides a string into two partitions
to improve trie-based methods for large edit distance. Note
that it is hard to divide the strings into more than two parti-
tions. Suppose the string r contains three partitions, denoted
by the left part L(r) = r1r2 . . . r
 |r |

3 �, the middle part M(r) =
r
 |r |

3 +1� . . . r
 2|r |
3 �, and the right part R(r) = r
 2|r |

3 +1� . . . r|r |.
If r can be transformed into another string s within τ edit
operations, there must exist one partition containing no larger
than
 τ

3 � edit operations. That is, at least one of the following
three conditions holds: (1) L(r) is similar to some prefixes
of s within
 τ

3 �; (2) R(r) is similar to some suffixes of s
within
 τ

3 �; (3) M(r) is similar to some substrings of s within

 τ

3 �. Since s may have many substrings, especially for a long
string, it would be very expensive to enumerate all substrings
of s.

Next, we propose two optimization techniques to further
improve Bi-Trie-PathStack.

5.1 Leaf-node optimization

For each string in L(S), Bi-Trie-PathStack will compute
its active-node set, and for each node in the active-node set,
the algorithm needs to traverse its descendant nodes to get
all the leaf nodes. Actually, some leaf nodes can be pruned.
Given the left-half part L(r) of a string r , the string r has
two possible lengths, 2 · |L(r)| and 2 · |L(r)| + 1. For any
string s, if ed(r, s) ≤ τ , then the length difference

∣∣|s| − |r |∣∣
between r and s is no larger than τ , thus |s| must be within[
2·|L(r)|−τ, 2·|L(r)|+1+τ

]
. That is, for each active node

of L(r), when traversing its descendant nodes, we can prune
the leaf nodes whose depths are smaller than 2 · |L(r)|− τ or
larger than 2 · |L(r)|+1+τ . Moreover, since the depth of the
active node of L(r) and the edit distance between the active
node and L(r) are known, we can derive a tighter bound for
the depths of leaf nodes as shown in Lemma 4.

Lemma 4 Consider a string r = r1r2 . . . r|r |. Its left-half
part L(r) = r1r2 . . . r
 |r |

2 � and right-half part R(r) =
r
 |r |

2 +1� . . . r|r |. Given an edit-distance threshold τ , for any

string s, if ed(r, s) ≤ τ , then at least one of the following
conditions holds:

1. There exists a prefix P(s) of s such that ed
(
L(r),P(s)

) =
d1 ≤
 τ

2 � and the length |s| ∈ [�min, �max] where �min =
|L(r)| + |P(s)| − τ + d1 and �max = |L(r)| + |P(s)| +
τ − d1 + 1,

2. There exists a suffix s. of s such that ed
(
R(r), s.

) =
d2 ≤
 τ

2 � and the length |s| ∈ [�min, �max] where �min =
|R(r)|+| s.|−τ+d2−1 and �max = |R(r)|+| s.|+τ−d2.

Proof Since ed(r, s) ≤ τ and r is composed of two parts
L(r) and R(r), then there exist a prefix P(s) and a suffix s.
of s such that |P(s)| + | s.| = |s|, and

ed
(
L(r),P(s)

) + ed
(
R(r), s.

) ≤ τ. (5)

Firstly, we assume ed
(
L(r),P(s)

) ≤ ed
(
R(r), s.

)
. Let

ed
(
L(r),P(s)

) = d1. Then, d1 ≤
 τ
2 �. Next, we prove |s| ∈

[�min, �max]. Since the length difference between two strings
is no larger than their edit distance, we have

ed
(
R(r), s.

) ≥ ∣∣|R(r)| − | s.|∣∣. (6)

Based on Eqs. 5 and 6, we have

τ − d1 ≥ ∣∣|R(r)| − | s.|∣∣.
As |P(s)| + | s.| = |s|, we have

τ − d1 ≥ ∣∣|s| − |P(s)| − |R(r)|∣∣.

123

450 J. Feng et al.

Hence,

|R(r)| + |P(s)| − τ + d1 ≤ |s| ≤ |R(r)| + |P(s)| + τ − d1.

Based on the definition of L(r) and R(r), we have L(r) ≤
R(r) ≤ L(r) + 1. Thus,

|L(r)| + |P(s)|−τ +d1 ≤ |s| ≤ |L(r)| + |P(s)|+τ −d1+1.

Secondly, we assume ed
(
L(r),P(s)

) ≥ ed
(
R(r), s.

)
. Let

ed
(
R(r), s.

) = d2. Then, d2 ≤
 τ
2 �. Similarly, we can prove

|L(r)| + | s.| − τ + d2 ≤ |s| ≤ |L(r)| + | s.| + τ − d2.

Based on the definition of L(r) and R(r), we have R(r)−1 ≤
L(r) ≤ R(r). Thus,

|R(r)| + | s.| − τ + d2 − 1 ≤ |s| ≤ |R(r)| + | s.| + τ − d2.

Therefore, the lemma is proved. 	

Example 7 Recall Example 6, consider node 2 and its active-
node set {1, 2, 3, 6, 16}. By traversing all the descendants of
active node 16, we obtain the leaf node 23. Next, we show
this leaf node can be pruned based on Lemma 3. For node
2 corresponding to L(r) = “ri′′ and active node 16 cor-
responding to P(s) = “sri′′, as the edit distance between
L(r) and P(s) is d1 = 1, the minimum depth of leaf nodes is
�min = |L(r)| + |P(s)| − τ + d1 = 2 + 3 − 3 + 1 = 3 and
the maximum depth of leaf nodes �max = |L(r)| + |P(s)| +
τ − d1 + 1 = 2 + 3 + 3 − 1 + 1 = 8. As the depth of the
leaf node 23 is 10 (/∈ [3, 8]), we can prune it. 	

5.2 Trie-size optimization

To find similar string pairs from S, Bi-Trie-PathStack
needs to construct two trie indexes: one from L(S) and S
and the other from R(S) and S. Reducing the sizes of trie
indexes will not only save memory space, but also enhance
the efficiency of Trie-PathStack+ for computing active-
node sets and traversing the descendants. Recall Lemma 3,
consider two similar strings r and s, i.e., ed(r, s) ≤ τ . We
find that when verifying the first condition, there is no need to
retain the whole string s but rather some prefix of s. That is,
we only need to verify whether there exists a prefixP(s) of the
retained prefix such that ed

(
L(r),P(s)

) ≤
 τ
2 �. Similarly,

when verifying the second condition, there is no need to retain
the whole string s but rather some suffix of s. Consider two
strings r = r1r2 · · · r12 and s = s1s2 · · · s10. If ed(r, s) ≤ 3,
we only need to retain the prefix s1s2s3s4s5s6 since transform-
ing the left-half partL(r) to a longer prefix will make ed(r, s)
larger than 3. For example, if we transform the left-half part
L(r) = r1r2r3r4r5r6 to a longer prefix s1s2s3s4s5s6s7, there at
least needs 1 edit operation. And correspondingly, to trans-
form the right-half part R(r) = r7r8r9r10r11r12 to the rest
suffix s8s9s10, there at least needs 3 edit operations. Thus,
the minimum number of edit operations of transforming r to

s will be 4, which is larger than 3. Based on this idea, given
a string s, we prove that the retained prefix length is
 |s|+τ

2 �
and the retained suffix length is
 |s|+τ+1

2 �, as formalized in
Lemma 5.

Lemma 5 Consider a string r = r1r2 . . . r|r |. Its left-half
part L(r) = r1r2 . . . r
 |r |

2 � and right-half part R(r) =
r
 |r |

2 +1� . . . r|r |. Given an edit-distance threshold τ , for any

string s, if ed(r, s) ≤ τ , then at least one of the following
conditions holds:

1. There exists a prefix P(s) of s such that ed
(
L(r),P(s)

) ≤

 τ

2 � and the prefix length |P(s)| ≤
 |s|+τ
2 �,

2. There exists a suffix s. of s such that ed
(
R(r), s.

) ≤
 τ
2 �

and the suffix length | s.| ≤
 |s|+τ+1
2 �.

Proof Since ed(r, s) ≤ τ and r is composed of two parts
L(r) and R(r), there exist a prefix P(s) of s and a suffix s.
of s such that |P(s)| + | s.| = |s|, and

ed
(
L(r),P(s)

) + ed
(
R(r), s.

) ≤ τ. (7)

Firstly, we assume ed
(
L(r),P(s)

) ≤ ed
(
R(r), s.

)
. Then,

ed
(
L(r),P(s)

) ≤
 τ
2 �. Next, we prove |P(s)| ≤
 |s|+τ

2 �.
Since the length difference between two strings is no larger
than their edit distance, we have

ed
(
L(r),P(s)

) ≥ ∣
∣|L(r)| − |P(s)|∣∣,

ed
(
R(r), s.

) ≥ ∣∣|R(r)| − | s.|∣∣. (8)

Based on Eqs. 7 and 8, we have

τ ≥ ∣∣|L(r)| − |P(s)|∣∣ + ∣∣|R(r)| − | s.|∣∣
= ∣∣|L(r)| − |P(s)|∣∣ + ∣∣|R(r)| − |s| + |P(s)|∣∣
≥ 2 · |P(s)| − |s| + |R(r)| − |L(r)|.

Since |R(r)| − |L(r)| ≥ 0, we have τ ≥ 2 · |P(s)| − |s|, thus
|P(s)| ≤
 |s|+τ

2 �.
Secondly, we assume ed

(
L(r),P(s)

) ≥ ed
(
R(r), s.

)
.

Then, ed
(
R(r), s.

) ≤
 τ
2 �. Similarly, we can prove

τ ≥ 2 · | s.| − |s| + |L(r)| − |R(r)|.
Since |L(r)| − |R(r)| ≥ −1, we have τ ≥ 2 · | s.| − |s| − 1,
thus | s.| ≤
 |s|+τ+1

2 �.
Therefore, the lemma is proved. 	

To incorporate trie-size optimization into Bi-Trie-
PathStack, for each string s ∈ S, we truncate its prefix
with the length
 |s|+τ

2 � (if the length is larger than |s|, we
keep the original length) and generate a truncated prefix set,
denoted by Pmax(S, τ); for each string s ∈ S, we truncate its
suffix with the length
 |s|+1+τ

2 � (if the length is larger than
|s|, we keep the original length) and generate a truncated
suffix set, denoted by Smax(S, τ). Based on Lemma 5, we
only need to construct two trie indexes: one is for L(S) and

123

Trie-join: a trie-based method for efficient string similarity joins 451

Fig. 17 The trie index over L(S) and Pmax(S, 3)

Table 2 Data set statistics

Data sets Sizes avg_len max_len min_len |Σ |
English Dict 146,033 8.77 30 1 27

DBLP Author 613,542 12.82 46 4 37

AOL Query Log 1,000,000 20.94 500 1 37

DBLP Authors+ 863,267 104.78 1, 743 10 37

Title

Pmax(S, τ) the other is for R(S) and Smax(S, τ). They will
be smaller than the trie indexes constructed from L(S) and
S,R(S) and S, respectively. For example, consider the string
set S = {ricci,riedl,srivastava,srastava}
in Table 1. We truncate their prefixes with the length

 5+3

2 � = 4,
 5+3
2 � = 4,
 10+3

2 � = 6,
 7+3
2 � = 5

and obtain the truncated prefix set Pmax(S, 3) =
{ricc,ried,srivas,srata} as shown in Table 1.
Figure 17 shows the trie index over L(S) and Pmax(S, 3).
We can see that it is smaller than the trie index in Fig. 16,
which is constructed from L(S) and S.

6 Experiments

6.1 Experiment setup

Data sets: We conducted an extensive set of experimen-
tal studies on four real data sets. (1) English Dict.
It was composed of English words from the Aspell spell-
checker for Cygwin. (2) DBLP Author. We extracted
author names from DBLP data set.4 (3)AOL Query Log.5

We randomly chose one million distinct queries. (4) DBLP
Authors+Title [56]. Each string is a concatenation of
author names and the title of a publication. Table 2 illus-
trates detailed statistical information of the four data sets.
Figure 18a–d show their length distribution, respectively.

4 http://www.informatik.uni-trier.de/~ley/db.
5 http://www.gregsadetsky.com/aol-data/.

Common prefix sharing: Given a string set S and a pre-
fix length �. Let P� denote the number of the prefixes in S
whose lengths are no larger than � and Pd

� denote the number
of the distinct prefixes in S whose lengths are no larger than
�. We define the compression ratio of prefixes as P�

Pd
�

. It is

easy to see that the higher P�

Pd
�

, the larger numbers of shared

common prefixes. We illustrate P�

Pd
�

for various prefix length

on four data sets. Figure 19 shows the results. We can see
that a large number of strings share common prefixes. For
example, when � = 5, the compression ratios on every data
set are larger than 10.

Implementation of existing algorithms: We compared
our algorithms with state-of-the-art methods.

All-Pairs-Ed [7] is a q-gram-based algorithm. It gener-
ates |s| − q + 1 q-grams for each string s and selects the
first qτ +1 grams as gram prefix according to the predefined
ordering on all grams. Those string pairs that do not share
any gram will be filtered and the survived string pairs will be
verified by the edit-distance calculation.

Ed-Join [56] improves All-Pairs-Ed with both location-
based and content-based mismatch filtering. Location-based
filtering decreases the number of grams in the prefix of each
string, and content-based filtering reduces the amount of edit-
distance verification.

Part-Enum [5] takes the q-gram set of a string as a fea-
ture vector. For two strings, if their edit distance is within
τ , then the hamming distance between their feature vectors
is smaller than qτ . They use this property for filtering. Part-
Enum includes two steps: (1) Partitioning. They divide every
feature vector into n1 partitions; (2) Enumeration. For each
partition, they further divide it into n2 sub-partitions and gen-
erate several signatures. Finally, those string pairs that share
no signatures will be filtered.

M-Tree [15] is a tree-based data structure designed to
index metric data sets. It can provide effective pruning for
range queries by relying on the triangle inequality. Since edit
distance is a metric distance function, we can use M-Tree
to index strings to solve our problem. Given an edit-distance
threshold τ , for each string s, we search the range query (s, τ)

in M-Tree and find all the strings whose edit distances with
s are not larger than τ .

For All-Pairs-Ed and Ed-Join, we downloaded their binary
codes from “Similarity Joins” project site.6 For Part-Enum,
we modified the implementation in Flamingo Project7 to sup-
port string similarity joins with edit-distance constrains. For
M-Tree, we extended the source code in “The M-Tree Pro-
ject” site8 to support edit-distance metric. For our trie-based

6 http://www.cse.unsw.edu.au/~weiw/project/simjoin.html.
7 http://flamingo.ics.uci.edu/.
8 http://www-db.deis.unibo.it/Mtree/.

123

http://www.informatik.uni-trier.de/~ley/db
http://www.gregsadetsky.com/aol-data/
http://www.cse.unsw.edu.au/~weiw/project/simjoin.html
http://flamingo.ics.uci.edu/
http://www-db.deis.unibo.it/Mtree/

452 J. Feng et al.

Fig. 18 String length
distribution

0.5

1

1.5

2

2.5

 5 10 15 20 25 30

of

 S
tr

in
gs

(*
10

4)

String Length

1

2

3

4

5

6

7

8

 5 10 15 20 25 30 35 40 45

of

 S
tr

in
gs

(*
10

4)

String Length
(a) (b)

1

2

3

4

5

 0 100 200 300 400 500

of

 S
tr

in
gs

(*
10

4)

String Length

0.2

0.4

0.6

0.8

1

1.2

 0 300 600 900 1200 1500 1800

of

 S
tr

in
gs

(*
10

4)

String Length
(a) (b)

1

101

102

103

104

105

 0 5 10 15 20 25 30

C
om

pr
es

si
on

 R
at

io

Prefix Lengths

English Dict
DBLP Author

AOL Query Log
DBLP Authors+Title

Fig. 19 Evaluation of common prefixes sharing on four data sets

algorithms, we used a radix trie to index strings, which is a
compact representation of a trie where any node with only
one child is merged with its child. All the algorithms were
implemented in C++ and compiled using GCC 4.2.3 with -
O3 flag. All the experiments were run on a Ubuntu machine
with an Intel Core 2 Quad X5450 3.00 GHz processor and
4 GB memory.

6.2 Comparison of four trie-based algorithms

In this section, we evaluate our trie-join algorithms and
compare them with the baseline algorithm Trie-Search on
the four data sets. As described in Sect. 2.3, Trie-Search
is a trie-search-based method algorithm, which only uti-
lizes subtrie pruning. Figure 20a–d illustrate their perfor-
mance by varying different edit-distance constraints. Our
three trie-join algorithms outperform Trie-Search, even

by 1–2 orders of magnitude on AOL Query Log. The
results indicate the superiority of using dual subtrie prun-
ing method. Trie-Traverse is approximately two times
slower than Trie-Dynamic and Trie-PathStack, as Trie-
Traverse does not take into account the symmetry property
of two active nodes and involves a lot of unnecessary compu-
tation. Trie-PathStack also outperforms Trie-Dynamic.
This is because after inserting (visiting) a new trie node n,
Trie-Dynamic needs to update |An| active-node sets, while
Trie-PathStack only updates τ (� |An|) active-node sets.
Table 3 illustrates the maximal number of active nodes that
four algorithms need to store. We can see that Trie-Dynamic
keeps a rather large number of active nodes, since it needs to
maintain the active-node sets of all trie nodes. For the other
algorithms, the maximal number of active-node sets is the
same as the maximal depth of trie leaf nodes. The number
of active nodes for Trie-PathStack is smaller than that of
Trie-Search and Trie-Traverse, since Trie-PathStack
utilizes the symmetry property of two active nodes.

6.3 Evaluation of pruning techniques

To evaluate the effect of the three pruning techniques,
we incorporated them into Trie-PathStack and com-
pared them with Trie-PathStack without pruning on AOL
Query Log. We used the number of pruned active nodes
to test the pruning power. Figure 21 shows the results. In the
figure, “No Pruning”, “Length”, “Single Branch”, “Count”,
and “All Pruning”, respectively, denote Trie-PathStack
without any pruning technique, with length pruning, with

123

Trie-join: a trie-based method for efficient string similarity joins 453

Fig. 20 Comparison of the four
algorithms

0.1

1

101

102

103

104

1 2 3

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

Trie-Search
Trie-Traverse
Trie-Dynamic

Trie-PathStack

1

101

102

103

104

105

1 2 3

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

Trie-Search
Trie-Traverse
Trie-Dynamic

Trie-PathStack

(a) (b)

1

101

102

103

104

105

1 2 3

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

Trie-Search
Trie-Traverse
Trie-Dynamic

Trie-PathStack

1

101

102

103

104

105

106

1 2 3

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

Trie-Search
Trie-Traverse
Trie-Dynamic

Trie-PathStack

(a) (b)

Table 3 Maximal #active nodes on AOL Query Log

τ Trie-Search, Trie-Dynamic Trie-PathStack
Trie-Traverse

1 2444 42346799 2172

2 31374 230511829 18477

3 257896 2444928000 201825

 0

 50

 100

 150

 200

 250

1 2

of

 A
ct

iv
e

N
od

es
(*

10
6)

Edit-Distance Threshold

No Pruning
Length

Single Branch
Count

All Pruning

Fig. 21 The number of active nodes of Trie-PathStack with differ-
ent pruning techniques on AOL Query Log

single-branch pruning, with count pruning, and with all three
pruning techniques. We can see that the three pruning tech-
niques indeed can prune useless active nodes. For exam-
ple, length pruning can prune 25% useless active nodes for
the edit-distance threshold τ = 2 and count pruning nearly
prunes 50% useless active nodes for τ = 1.

In addition, we also compared the running time of various
algorithms and Table 4 shows the results. We can see that

Table 4 Performance improvement of three pruning techniques onAOL
Query Log

τ No pruning (second) Pruning (second) Improvement (%)

1 9.76 7.35 24.7

2 122.48 104.48 14.7

3 1,174.94 1,066.12 9.3

the three pruning techniques can improve the performance
beyond Trie-PathStack by 24.7% when τ = 1, 14.7%
when τ = 2, and 9.3% when τ = 3. These results confirm
that our proposed pruning techniques can improve the per-
formance. As Trie-PathStack with all pruning techniques
achieves the best performance, we use it to compare with
existing algorithms in the remainder of this paper.

6.4 Evaluation of Bi-Trie-PathStack

We first evaluated the effect of optimization techniques
for Bi-Trie-PathStack. We incorporated the optimization
techniques into Bi-Trie-PathStack and compared them
with Bi-Trie-PathStack without optimization techniques
on AOL Query Log and DBLP Authors+Title.
Figure 22 shows the results. In the figure, we vary the
edit-distance threshold and report the running time of four
algorithms, “No Op”, “Leaf-node”, “Trie-size”, and “All
Op”, which respectively denote Bi-Trie-PathStack with-
out any optimization technique, with Leaf-node optimiza-
tion, with Trie-size optimization, and with both optimization

123

454 J. Feng et al.

Fig. 22 Comparison of running
time of Bi-Trie-PathStack
with different optimization
techniques

0.1

1

101

102

103

104

105

1 2 3

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

No OpNo Op
Leaf-node

Trie-size
All Op

0.1

1

101

102

103

104

105

1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

No Op
Leaf-node

Trie-size
All Op

(a) (b)

Fig. 23 Comparison of running
time between Trie-PathStack
and Bi-Trie-PathStack

0.1

1

101

102

103

104

1 2 3

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

Trie-PathStack
Bi-Trie-PathStack

0.1

1

101

102

103

104

105

1 2 3 4

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

Trie-PathStack
Bi-Trie-PathStack

(a) (b)

techniques. We can see the two optimization techniques can
significantly improve the efficiency of Bi-Trie-PathStack.
For example, in Fig. 22a for the edit-distance threshold τ =
2, Bi-Trie-PathStack with both optimization techniques
can reduce the computation time from 4882s to 234s. We also
observe that on AOL Query Log, the Leaf-node optimiza-
tion is more effective, while on DBLP Authors+Title,
the Trie-size optimization is more effective. In comparison
of DBLP Authors+Title, AOL Query Log contains
a large number of short strings. For the short strings, there are
much more leaf nodes in the descendants of active nodes of
their left (right)-half part. Therefore, the Leaf-node optimiza-
tion is more effective. In comparison of AOL Query Log,
DBLP Authors+Title contains a large number of long
strings. For the long strings, when truncating their prefixes
or suffixes using Lemma 5, we can remove more char-
acters. Therefore, the trie-size optimization is more effec-
tive on DBLP Authors+Title. As Bi-Trie-PathStack
with both optimization techniques achieves the best perfor-
mance, we use it to compare with other algorithms in the
remainder of this paper.

Next, we compared the efficiency of Bi-Trie-PathStack
and Trie-PathStack. We run the two algorithms on
AOL Query Log and DBLP Authors+Title by vary-
ing the edit-distance thresholds. Figure 23 shows the
results. We can see Trie-PathStack performs better than
Bi-Trie-PathStack for smaller edit-distance thresholds.
For example, in Fig. 23a, we can see that Trie-PathStack

took 7.4 s on DBLP Authors+Title with τ = 1,
which is about three times faster than Bi-Trie-PathStack.
But with the increase in edit-distance thresholds, Bi-Trie-
PathStack outperforms Trie-PathStack. For example,
in Fig. 23b when τ is larger than 2, Bi-Trie-PathStack
outperforms Trie-PathStack by an order of magnitude.
These results confirm that Bi-Trie-PathStack improves
Trie-PathStack on large edit-distance thresholds.

6.5 Comparison with existing methods

Index sizes: We compared index sizes with the state-of-the-
art methods, Ed-Join, All-Pairs-Ed, Part-Enum, on four data
sets (We exclude the M-Tree method since its index resides
in external memory). We tuned their parameters and com-
pared with their best performance. For Bi-Trie-PathStack,
we report the index size when τ = 1. Table 5 shows the
results. We can observe that existing methods involve much
more memory than our methods. For example, their index
sizes for AOL Query Log are larger than 100 MB, while
Bi-Trie-PathStack has 80 MB and Trie-PathStack only
has 29 MB. The reason is that they indexed a large number of
signatures for the data set, but we used a trie index to share
the common prefixes of strings.

Efficiency: We compared efficiency with the state-of-the-
art methods, Ed-Join, All-Pairs-Ed, Part-Enum, M-Tree, on
four data sets. As the performance of state-of-the-art methods

123

Trie-join: a trie-based method for efficient string similarity joins 455

Table 5 Comparison of index
sizes (MB) on four data sets

Data sets Trie-PathStack Bi-Trie-PathStack Part-Enum All-Pairs-Ed Ed-Join

English Dict 2 4 16 30 10

DBLP Author 16 25 54 155 65

AOL Query Log 29 80 120 305 160

DBLP Authors

+Title 96 127 142 830 751

Fig. 24 Comparison of running
time with state-of-the-art
methods on four data sets

(a) (b)

0.1

1

101

102

103

104

105

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold = 1

Trie-PathStack
Bi-Trie-PathStack

Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

All-Pairs-Ed(q=3)
Part-Enum(q,n

All-Pairs-Ed(q=3)
Part-Enum(q,n

All-Pairs-Ed(q=3)
1,n2=1,1,7)

M-Tree

1

101

102

103

104

105

106

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold = 2

Trie-PathStack
Bi-Trie-PathStack

Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

Part-Enum(q,nPart-Enum(q,n1,n2=1,1,7)=1,1,7)
All-Pairs-Ed(q=3)

M-Tree

1

101

102

103

104

105

106

107

108

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold = 3

Trie-PathStack
Bi-Trie-PathStack

Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

All-Pairs-Ed(q=2)
Part-Enum(q,n

All-Pairs-Ed(q=2)
Part-Enum(q,n

All-Pairs-Ed(q=2)
1,n2=1,2,3)

All-Pairs-Ed(q=2)
=1,2,3)

All-Pairs-Ed(q=2)

M-TreeM-Tree

1

101

102

103

104

105

106

107

108

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold = 4

Trie-PathStack
Bi-Trie-PathStack

Ed-Join(q=6)
Ed-Join(q=7)
Ed-Join(q=8)

All-Pairs-Ed(q=6)
Part-Enum(q,n

All-Pairs-Ed(q=6)
Part-Enum(q,n

All-Pairs-Ed(q=6)
1,n2=1,6,1)

All-Pairs-Ed(q=6)
=1,6,1)

All-Pairs-Ed(q=6)

M-Tree

(c) (d)

highly depends on parameters settings, it took considerable
time for tuning parameters to optimize their runtime for
each experiment. Figure 24 depicts the results. In Fig. 24,
q is a parameter of gram-based methods (the length of a
gram), and n1 and n2 are two additional parameters for Part-
Enum, which denote the numbers of partition and enumer-
ation, respectively. We can see M-Tree performs the worst
among all algorithms, indicating that M-Tree cannot pro-
vide effective pruning for our problem. Figure 24a shows
that Trie-PathStack is about 15 times faster than the best
existing method Ed-Join (q = 3) on English Dict with
τ = 1. Figure 24b shows that Trie-PathStack outperforms
the best existing method Ed-Join (q = 3), by an order of mag-
nitude on DBLP Author with τ = 2. In Fig. 24c, Bi-Trie-
PathStack performs the best on AOL Query Log with
τ = 3. It took 728 s, while Ed-Join (q = 2) involved 2,646 s.
In Fig. 24d, on DBLP Authors+Title with τ = 4,
Ed-Join outperforms our methods. Ed-Join (q = 6) took
89 seconds, while Bi-Trie-PathStack involved 256 s.

In summary, our methods are always better than Ed-Join
on the three data sets with short strings (the average string

length is no larger than 30) while on the data set with long
strings, Ed-Join performs better. This is because short strings
can share a large number of prefixes and our trie-based
algorithms have high pruning power for strings with large
numbers of shared common prefixes. For example, in both
Trie-PathStack and Bi-Trie-PathStack algorithms, the
active nodes for a trie node are computed exactly once even
though the node is a prefix of a potentially large number of
strings. However, the q-gram-based methods such as Ed-Join
do not aggressively share computations across strings. On the
other hand, for long strings, the q-gram-based methods have
effective pruning power, since they can use large q values.
But for short strings, they cannot choose large q values, since
such values will destroy the majority or all of grams while
small q values will increase the inverted-list sizes and gen-
erate large numbers of candidates that need to be further
verified.

We also conduct an experiment by varying the amount of
shared common prefixes. Given a string set S, and a cor-
responding trie index T , we define compression ratio as∑

s∈S |s|
|T | where |T | denotes the number of nodes in T . We use

123

456 J. Feng et al.

0.1

1

101

102

103

104

4 3.5 3 2.5 2 1.5 1

T
im

e
(S

ec
on

ds
)

Compression Ratio

Trie-PathStack
Ed-Join

Fig. 25 Comparison of Trie-PathStack and Ed-Join for different
compression ratios on English Dict (τ = 1)

compression ratio to quantify the ratio of the total number
of strings in S to the number of shared prefixes in T . To
evaluate our trie-based methods for different compression
ratios, we repeat the following process to decrease compres-
sion ratio of the trie. Each time we randomly choose a trie
node n with at least two child nodes, split node n into two new
nodes, and then evenly append the subtries under node n to
this two new nodes. After splitting k nodes, we can decrease

the compression ratio of the trie to
∑

s∈S |s|
|T |+k . We compare

the running time of Trie-PathStack and Ed-Join by vary-
ing the compression ratio of the trie on English Dict.
Figure 25 shows the result. We can see Trie-PathStack
consumed more time with the decreasing of compression
ratio. When τ = 1, for compression ratio larger than 2,
Trie-PathStack outperforms Ed-Join while for compres-
sion ratios smaller than 2, Ed-Join is better. This is because
Trie-PathStack utilizes common prefixes to share com-
putations among strings, but for smaller compression ratio,
Trie-PathStack cannot utilize much shared computations.
However, as shown in Fig. 19, large numbers of strings in
real data sets share common prefixes. Therefore, trie-based
methods perform much better on real data sets with short
strings.

Algorithm selection: To help users select a good algo-
rithm, we conducted an experiment to suggest which algo-
rithms should be used for different data sets. We truncated
the prefix of each string in DBLP Authors+Title with
lengths of 10, 20, 30, 40, 50, and 60 and accordingly gen-
erated 6 data sets with different length distributions. In
Figure 26, we compared the running time of three algorithms,
Ed-Join, Trie-PathStack, Bi-Trie-PathStack, by vary-
ing the edit-distance thresholds from 1 to 8. Note that for
Ed-Join, we adjusted the q values to achieve the best per-
formance and used its best results. From Fig. 26a–h, we can
see that when the average string length is no larger than 30,
Bi-Trie-PathStack is always superior to Ed-Join. This is
because for these short strings, it is hard to select high-qual-
ity q-grams, and thus, Ed-Join has low pruning power and

will result in a large number of candidates, which need to be
further verified.

Even when the average string length is larger than 30,
for small thresholds (τ ≤ 3 in Fig. 26a–c), Bi-Trie-
PathStack is still better than Ed-Join. This is because
when τ ≤ 3, Bi-Trie-PathStack only needs to run
Trie-PathStack twice for threshold
 τ

2 � ≤ 1, and Trie-
PathStack is very efficient for smaller edit-distance thresh-
olds. In addition, Bi-Trie-PathStack generates a smaller
number of candidates than Ed-Join and thus achieves higher
efficiency.

Figure 26a–c also show that when τ is small, Trie-
PathStack has a good performance for short strings (the
average string length is no larger than 30). It is even faster than
Bi-Trie-PathStack in some cases. This is because for short
strings, both Bi-Trie-PathStack and Ed-Join will generate
a large number of candidates, which need to be further ver-
ified, but Trie-PathStack can directly generate all results.
For larger thresholds (τ ≥ 4) and longer strings (the aver-
age string length is larger than 30), as shown in Fig. 26d–h,
Ed-Join is more efficient than our algorithms since in these
cases, both Trie-PathStack and Bi-Trie-PathStack are
expensive to compute active nodes while Ed-Join can select
high-quality q-grams with low frequency and has high prun-
ing power.

Table 6 illustrates how to select a good algorithm based
on the results from Fig. 26, where TP, Bi-TP, and EJ, respec-
tively, denote Trie-PathStack, Bi-Trie-PathStack, and
Ed-Join. We have the following observations. Firstly, for
τ ≤ 3, our methods outperform Ed-Join. Secondly, for
τ ∈ [4, 8], both Bi-Trie-PathStack and Ed-Join are effec-
tive for the data sets with the average string length within
(30,40]. Thirdly, for τ ∈ [4, 8], Ed-Join is more effec-
tive for the data sets with the average string length within
(40,60].

Since Ed-Join, Trie-PathStack, Bi-Trie-PathStack
algorithms employ different experimental settings, we
describe an empirical solution to integrate three algorithms
to efficiently support similarity joins in a real system. Given a
string set S and a threshold τ , let SShort = {s ∈ S | |s| ≤ 30}
denote a short string set, and SLong = {s ∈ S | |s| > 30 − τ }
denote a long string set. To perform an efficient similarity
join on S, we use different algorithms on SShort and SLong.
According to the results of algorithm selection in Table 6,
when the edit-distance threshold is smaller (τ ≤ 3), we
use Trie-PathStack and Bi-Trie-PathStack to perform
a similarity join on SShort and SLong, respectively; when the
edit-distance threshold is larger (τ ≥ 4), we use Bi-Trie-
PathStack and Ed-Join to perform a similarity join on
SShort and SLong, respectively. Note that this method will
not miss any result. This is because for two similar strings
(i.e., ed(r, s) ≤ τ), their length difference is at most τ , thus
they are either both in SShort or both in SLong.

123

Trie-join: a trie-based method for efficient string similarity joins 457

Fig. 26 Comparison of
Ed-Join, Trie-PathStack, and
Bi-Trie-PathStack on DBLP
Authors+Title (Note that
Ed-Join did not finish in 106 s
for τ = 7, 8 and the string
length 10.)

1

101

102

103

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

(a) (b)

1

101

102

103

104

105

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

105

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

(c) (d)

1

101

102

103

104

105

106

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

105

106

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

(e) (f)

1

101

102

103

104

105

106

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

105

106

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

(g) (h)

6.6 Evaluation of update

In this section, we evaluate the performance of our incre-
mental similarity-join algorithm on AOL Query Log. Ini-
tially, we selected 500 K strings (S), and for each time, we
updated it by inserting 100 K strings (ΔS). We compared
therunning time between incremental Trie-Join and Trie-
PathStack. We used speed-up to evaluate the benefit of our

Table 6 Algorithm selection

Avg. Length τ = 1 τ = 2 τ = 3 τ ∈ [4, 8]
(0, 20] TP TP TP/Bi-TP TP/Bi-TP

(20, 30] TP TP/Bi-TP Bi-TP Bi-TP

(30, 40] TP Bi-TP Bi-TP Bi-TP/EJ

(40, 60] Bi-TP Bi-TP Bi-TP EJ

123

458 J. Feng et al.

Fig. 27 Evaluation of update
on AOL Query Log (e.g.,
6+1 denotes |S| = 600 K,

|ΔS| = 100 K)

1

101

102

103

5+1 6+1 7+1 8+1 9+1

T
im

e
(s

ec
on

ds
)

of strings (*100K)

Incremental Trie-Join
Trie-PathStack

1

101

102

103

104

5+1 6+1 7+1 8+1 9+1

T
im

e
(s

ec
on

ds
)

of strings (*100K)

Incremental Trie-Join
Trie-PathStack

(a) (b)

1

101

102

103

1 2 3

T
im

e
(S

ec
on

ds
)

Edit-Distance Threshold

|R|=200K,|S|= 400K
|R|=400K,|S|= 200K

Fig. 28 Evaluation of joining two different data sets on DBLP
Author

method, which is the ratio between the running time of two
algorithms. Figure 27 shows the results. We can see that,
with the increase of data sets, the speed-up of incremental
Trie-Join against Trie-PathStack (from scratch) tends to be
larger. For example, in Fig. 27a, the speed-up for |S| = 500 K
is 3.5 and that for |S| = 900 K is 4.5. This result shows the
superiority of our incremental algorithms.

6.7 Evaluation of joining two data sets

To evaluate the similarity join between two different data sets,
we selected 200 and 400 K strings from DBLP Author and
tested the running time of joining them and the experimental
results are shown in Fig. 28. Suppose we push nodes in R
into the stack and traverse the trie to find active nodes in S.
We can see that it is better to assign R as the set with smaller
size. This is because the smaller number of nodes pushed
into the stack, we need less time to traverse the trie to find
active nodes.

6.8 Scalability

We evaluated the scalability of Trie-PathStack and incre-
mental trie-join algorithm on AOL Query Log. Initially,
the data set was empty, and we inserted 100 K strings at each
time. We compared the running time of the two algorithms

0.1

1

101

102

103

0+1 1+1 2+1 3+1 4+1 5+1 6+1 7+1 8+1 9+1

of strings (*100K)

Incremental Trie-Join(τ=1)
Incremental Trie-Join(τ=2)
Incremental Trie-Join(τ=3)

0.1

1

101

102

103

0+1 1+1 2+1 3+1 4+1 5+1 6+1 7+1 8+1 9+1

T
im

e
(s

ec
on

ds
)

Trie-PathStack(τ=1)
Trie-PathStack(τ=2)
Trie-PathStack(τ=3)

Fig. 29 Scalability on AOL Query Log (e.g., 6+1 denotes |S| =
600 K, |ΔS| = 100 K)

and Fig. 29 shows the experimental results with the increase
of data sets. We observe that our incremental algorithm scales
better than Trie-PathStack. For example, for 100 K strings,
both Trie-PathStack and incremental trie-join algorithm
took 6.88 s (τ = 2); For 1 million strings, Trie-PathStack
increased to 104.65 s, while incremental trie-join algorithm
only took 23 s (τ = 2).

We also evaluated Bi-Trie-PathStack for the case that
the active nodes cannot fit in main memory. We used
the DBLP Authors+Title data set with average string
length 50 (Sect. 6.5). We set τ = 8. Bi-Trie-PathStack
took 29 MB for keeping the trie and 11 MB for maintaining
the active nodes (Bi-Trie-PathStack only needs to main-
tain the active nodes of the trie nodes from the root to a
leaf node). To evaluate the I/O behavior, we set the available
main memory buffer was 10% of the maximum memory.
As it needs to read/write disk, the running time of Bi-Trie-
PathStack increased to 6.3 × 104 s from 4 × 104 s for
in-memory setting.

7 Related work

String similarity joins have been extensively studied [4,5,
7,8,13,19,23,27,38,48,51,53,56,57]. Gravano et al. [19]

123

Trie-join: a trie-based method for efficient string similarity joins 459

proposed to use SQL statements for similarity joins in rela-
tional databases. Chaudhuri et al. [13] proposed a primi-
tive operator for effective similarity joins. Arasu et al. [5]
developed a signature scheme that can be used as a filter for
effective similarity joins. Arasu et al. [4] proposed transfor-
mation-based framework for similarity join by using func-
tions to define similar pairs, such as synonyms. Bayardo et al.
[7] proposed all-pair similarity joins, a prefix-filtering-based
algorithm. Xiao et al. [58] proposed ppjoin to improve all-
pair algorithm by introducing positional filtering and suffix
filtering. Xiao et al. [57] also studied top-k similarity joins,
which can directly find the top-k string pairs without a given
threshold. Bryan et al. [8] studied the “output explosion”
problem in similarity joins and proposed compact similarity
join algorithms to reduce the output size. Recently, Vernica
et al. [51] proposed efficient parallel set-similarity joins using
the popular MapReduce framework. Lian et al. [38] and Jes-
tes et al. [27] studied similarity joins on probabilistic data.
Wang et al. [53] proposed a hybrid similarity metrics, called
“fuzzy token matching-based similarity”, and studied simi-
larity joins using this new similarity metrics. In our paper,
we used edit distance to quantify string similarity. Since edit
distance is a metric distance function, some methods of using
metric indexes such as M-Tree [15] can be extended to solve
our problem. But the methods cannot achieve good perfor-
mance as shown in our experiments. There are many other
string similarity functions such as Jaro [26], Soundex [44],
Cosine [47]. SecondString [1] and SimMetrics [2] are two
open-source Java packages that implement a large collection
of string functions. Wang et al. [54] studied how to auto-
matically select appropriate similarity functions to address
entity-matching problem.

In addition, there have been many studies on approximate
string search [9,11,19,21,22,34,35,59]. That is, given a col-
lection of data strings and a query string, it finds all the strings
in the collection similar to the query string. Schulz and Mihov
[49] proposed an automaton-based approach to address this
problem. Kahveci et al. [29] developed an effective index
structure for substring matches. Sahinalp et al. [45] pro-
posed an index structure called “VP-tree” for answering NN
queries in terms of an edit-distance function. Navarro [41]
gave a deep comparison of methods based on edit distance
and its variants. Kim et al. [30] proposed a novel technique
called “n-Gram/2L” to improve the space and time complex-
ity for q-gram index structures. Li et al. [35] proposed a new
technique called VGRAM to judiciously select high-qual-
ity grams with variable lengths from a collection of strings
for supporting approximate string queries efficiently. Yang
et al. [59] proposed to use a cost model to extend VGRAM.
Li et al. [34] developed several list-merging algorithms to
improve search efficiency by skipping elements on q-gram
inverted lists. Thomas et al. [9] proposed an effective signa-
ture scheme by generating a deletion neighborhood for each

string, which can improve filtering effect for small edit-dis-
tance thresholds.

Another related problem is approximate string matching,
which given a query string and a text string, finds all sub-
strings of the text string that are similar to the query string.
Navarro [41] gave an excellent survey. These studies can be
used to look for common gene expressions. There are also
many other related studies, such as estimating selectivity of
approximate string queries [24,32,33], approximate entity
extraction [3,10,16,36,39,55], and approximate XML joins
[6,20]. Note that these problems are different from our sim-
ilarity-join problem.

The name of trie was derived from “information retrieval”
[17]. It has many real applications in various fields such as
spell checking in natural language processing [43], IP routing
in network [42]. In some cases, trie may involve large mem-
ory [25]. There are many studies on reducing the trie size [18,
31,40,50]. The trie-based approach to deal with string simi-
larity for edit distance has been proposed in [14,28,37], but
they focus on a different problem, fuzzy type-ahead search,
which returns answers as users type in keywords letter by let-
ter. They emphasized on an incremental algorithm to answer
a query based on the query’s prefixes. They are not designed
for the similarity-join problem. A straightforward method to
extend their methods to support similarity joins is as follows.
Given two string sets R and S, for each string in S, we find
its similar strings from set R. As discussed in Sect. 2, this
method is inefficient as they cannot utilize the fact that the
strings in S also share common prefixes. We propose new
effective algorithms and pruning techniques.

Compared with our previous work in [52], this article
includes the following additional materials. (1) We proposed
new optimization techniques to improve our original algo-
rithm on large edit-distance thresholds in Sect. 5 and con-
ducted additional experiments to evaluate the techniques in
Sect. 6.4. (2) We formally proved the correctness of our pro-
posed algorithms. (3) We added a new data set in Sect. 6 to
help users to select algorithms on different data sets.

8 Conclusion

In this paper, we have studied the problem of string similar-
ity joins with edit-distance constraints. We proposed a new
trie-based similarity-join framework, which can efficiently
find all similar string pairs with small indexes. We used a trie
structure to index strings and devised trie-join algorithms
based on dual subtrie pruning to achieve high performance.
We developed several pruning techniques to enhance perfor-
mance. We also extended our method to efficiently support
dynamic update of data sets. To support large edit-distance
thresholds efficiently, we devised an improved algorithm
with two optimization techniques. We have implemented

123

460 J. Feng et al.

our algorithms and our approach outperforms state-of-the-art
methods on data sets with short strings (the average string
length is no larger than 30).

Acknowledgments The authors thank the anonymous reviewers
for their insightful suggestions. This work was partly supported
by the National Natural Science Foundation of China under Grant
No. 60873065 and 61003004, the National Grand Fundamental
Research 973 Program of China under Grant No. 2011CB302206,
National S&T Major Project of China under Grant No. 2011ZX01042-
001-002, and the “NExT Research Center” funded by MDA, Singapore,
under the research Grant No. WBS:R-252-300-001-490.

References

1. http://secondstring.sourceforge.net/
2. http://www.dcs.shef.ac.uk/~sam/simmetrics.html
3. Agrawal, S., Chakrabarti, K., Chaudhuri, S., Ganti, V.: Scalable

ad-hoc entity extraction from text collections. PVLDB 1(1), 945–
957 (2008)

4. Arasu, A., Chaudhuri, S., Kaushik, R.: Transformation-based
framework for record matching. In: ICDE, pp. 40–49 (2008)

5. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity
joins. In: VLDB, pp. 918–929 (2006)

6. Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approxi-
mate joins for data-centric xml. In: ICDE, pp. 814–823 (2008)

7. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity
search. In: WWW, pp. 131–140 (2007)

8. Bryan, B., Eberhardt, F., Faloutsos, C.: Compact similarity joins.
In: ICDE, pp. 346–355 (2008)

9. Celikik, M., Bast, H.: Fast error-tolerant search on very large texts.
In: SAC, pp. 1724–1731 (2009)

10. Chakrabarti, K., Chaudhuri, S., Ganti, V., Xin, D.: An efficient filter
for approximate membership checking. In: SIGMOD Conference,
pp. 805–818 (2008)

11. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and
efficient fuzzy match for online data cleaning. In: SIGMOD Con-
ference, pp. 313–324 (2003)

12. Chaudhuri, S., Ganti, V., Kaushik, R.: Data debugger: An oper-
ator-centric approach for data quality solutions. IEEE Data Eng.
Bull. 29(2), 60–66 (2006)

13. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for
similarity joins in data cleaning. In: ICDE, pp. 5–16 (2006)

14. Chaudhuri, S., Kaushik, R.: Extending autocompletion to tolerate
errors. In: SIGMOD Conference, pp. 707–718 (2009)

15. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access
method for similarity search in metric spaces. In: VLDB, pp. 426–
435 (1997)

16. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and
indexing with errors and don’t cares. In: STOC, pp. 91–100 (2004)

17. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
18. Gonnet, G.H.: Handbook of Algorithms and Data structures.

Addison-Wesley , Reading (1984)
19. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N.,

Muthukrishnan, S., Srivastava, D.: Approximate string joins in a
database (almost) for free. In: VLDB, pp. 491–500 (2001)

20. Guha, S., Koudas, N., Srivastava, D., Yu, T.: Index-based approx-
imate xml joins. In: ICDE, pp. 708–710 (2003)

21. Hadjieleftheriou, M., Chandel, A., Koudas, N., Srivastava, D.:
Fast indexes and algorithms for set similarity selection queries.
In: ICDE, pp. 267–276 (2008)

22. Hadjieleftheriou, M., Koudas, N., Srivastava, D.: Incremental
maintenance of length normalized indexes for approximate string
matching. In: SIGMOD Conference, pp. 429–440 (2009)

23. Hadjieleftheriou, M., Srivastava, D.: Weighted set-based string
similarity. IEEE Data Eng. Bull. 33(1), 25–36 (2010)

24. Hadjieleftheriou, M., Yu, X., Koudas, N., Srivastava, D.: Hashed
samples: selectivity estimators for set similarity selection que-
ries. PVLDB 1(1), 201–212 (2008)

25. Heinz, S., Zobel, J., Williams, H.E.: Burst tries: a fast, efficient
data structure for string keys. ACM Trans. Inf. Syst. 20(2), 192–
223 (2002)

26. Jaro, M.A. Unimatch: A record linkage system: User’s manual.
Technical report, U.S. Bureau of the Census, Washington, D.C.,
(1976)

27. Jestes, J., Li, F., Yan, Z., Yi, K.: Probabilistic string similarity joins.
In: SIGMOD Conference, pp. 327–338 (2010)

28. Ji, S., Li, G., Li, C., Feng, J.: Efficient interactive fuzzy keyword
search. In WWW, pp. 433–439 (2009)

29. Kahveci, T., Singh, A.K.: Efficient index structures for string dat-
abases. In: VLDB, pp. 351–360 (2001)

30. Kim, M.-S., Whang, K.-Y., Lee, J.-G., Lee, M.-J. n-Gram/2L:
A space and time efficient two-level n-gram inverted index struc-
ture. In: VLDB, pp. 325–336 (2005)

31. Knuth, D.E.: The Art of Computer Programming, Volume 1:
Fundamental algorithms. Addison-Wesley, Reading (1968)

32. Lee, H., Ng, R.T., Shim, K.: Extending q-grams to estimate
selectivity of string matching with low edit distance. In: VLDB,
pp. 195–206 (2007)

33. Lee, H., Ng, R.T., Shim, K.: Power-law based estimation of set
similarity join size. PVLDB 2(1), 658–669 (2009)

34. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for
approximate string searches. In: ICDE, pp. 257–266 (2008)

35. Li, C., Wang, B., Yang, X. VGRAM: Improving performance of
approximate queries on string collections using variable-length
grams. In: VLDB, pp. 303–314 (2007)

36. Li, G., Deng, D., Feng, J. Faerie: efficient filtering algorithms for
approximate dictionary-based entity extraction. In: SIGMOD Con-
ference, pp. 529–540 (2011)

37. Li, G., Ji, S., Li, C., Feng, J.: Efficient fuzzy full-text type-ahead
search. VLDB J. 20(4), 617–640 (2011)

38. Lian, X., Chen, L.: Set similarity join on probabilistic
data. PVLDB 3(1), 650–659 (2010)

39. Lu, J., Han, J., Meng, X.: Efficient algorithms for approximate
member extraction using signature-based inverted lists. In: CIKM,
pp. 315–324 (2009)

40. Morrison, D.R.: Patricia: practical algorithm to retrieve informa-
tion coded in alphanumeric. J. ACM 15, 514–534 (1968)

41. Navarro, G.: A guided tour to approximate string matching. ACM
Comput. Surv. 33(1), 31–88 (2001)

42. Nilsson, S., Karlsson, G.: Ip-address lookup using lc-tries. IEEE J.
Selected Areas Commun. 17, 1083–1092 (1999)

43. Peterson, J.L.: Computer programs for detecting and correcting
spelling errors. Commun. ACM 23(12), 676–687 (1980)

44. Russell, R.C.: Available at http://patft.uspto.gov/netacgi/nph-
Parser?patentnumber=1261167 (1918)

45. Sahinalp, S.C., Tasan, M., Macker, J., Özsoyoglu, Z.M.: Distance
based indexing for string proximity search. In: ICDE, pp. 125–136
(2003)

46. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimi-
zation for spoken word recognition. IEEE Trans. Acoust Speech
Signal Process 26, 43–49 (1978)

47. Salton, G.: Introduction to Modern Information Retrieval. McGraw
Hill, NY (1987)

48. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates.
In: SIGMOD Conference, pp. 743–754 (2004)

49. Schulz, K.U., Mihov, S.: Fast string correction with levenshtein
automata. Intl J Doc Anal Recognit 5(1), 67–85 (2002)

50. Sussenguth, E.H.: Use of tree structures for processing files. Com-
mun. ACM 6, 272–279 (1963)

123

http://secondstring.sourceforge.net/
http://www.dcs.shef.ac.uk/~sam/simmetrics.html
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=1261167
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=1261167

Trie-join: a trie-based method for efficient string similarity joins 461

51. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins
using mapreduce. In: SIGMOD Conference, pp. 495–506 (2010)

52. Wang, J., Li, G., Feng, J.: Trie-join: Efficient trie-based string sim-
ilarity joins with edit-distance constraints. PVLDB 3(1), 1219–
1230 (2010)

53. Wang, J., Li, G., Feng, J.: Fast-join: An efficient method for fuzzy
token matching based string similarity join. In: ICDE pp. 458–469
(2011)

54. Wang, J., Li, G., Yu, J.X., Feng, J.: Entity matching: how similar
is similar. PVLDB 4(10), 622–633 (2011)

55. Wang, W., Xiao, C., Lin, X., Zhang, C.: Efficient approximate entity
extraction with edit distance constraints. In: SIGMOD Conference,
pp. 759–770 (2009)

56. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB 1(1), 933–
944 (2008)

57. Xiao, C., Wang, W., Lin, X., Shang, H.: Top-k set similarity joins.
In: ICDE, pp. 916–927 (2009)

58. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for
near duplicate detection. In: WWW, pp. 131–140 (2008)

59. Yang, X., Wang, B., Li, C.: Cost-based variable-length-gram selec-
tion for string collections to support approximate queries effi-
ciently. In: SIGMOD Conference, pp. 353–364 (2008)

123

	Trie-join: a trie-based method for efficient string similarity joins
	Abstract
	1 Introduction
	2 Trie-based framework
	2.1 Problem formulation
	2.2 Prefix pruning
	2.3 Our observations

	3 Trie-based algorithms
	3.1 Trie-traverse algorithm
	3.2 Trie-dynamic algorithm
	3.3 Trie-PathStack algorithm
	3.4 Pruning techniques

	4 Supporting dynamic data updates and two different sets
	4.1 Incremental similarity joins
	4.2 Similarity joins between two different sets

	5 Improving Trie-PathStack on large edit-distance thresholds
	5.1 Leaf-node optimization
	5.2 Trie-size optimization

	6 Experiments
	6.1 Experiment setup
	6.2 Comparison of four trie-based algorithms
	6.3 Evaluation of pruning techniques
	6.4 Evaluation of Bi-Trie-PathStack
	6.5 Comparison with existing methods
	6.6 Evaluation of update
	6.7 Evaluation of joining two data sets
	6.8 Scalability

	7 Related work
	8 Conclusion
	Acknowledgments
	References

