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Abstract This article describes an approximation algo-
rithm for computing the probability of propositional formulas
over discrete random variables. It incrementally refines lower
and upper bounds on the probability of the formulas until the
desired absolute or relative error guarantee is reached. This
algorithm is used by the SPROUT query engine to approxi-
mate the probabilities of results to relational algebra queries
on expressive probabilistic databases.

Keywords Probabilistic databases · Query evaluation ·
Anytime approximation ·Model-based approximation

1 Introduction

The problem of query evaluation in probabilistic databases
has received tremendous attention in recent years [53].

The probabilistic database formalism considered in this
article is that of pc-tables, where each input tuple is anno-
tated by a propositional formula over independent discrete
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random variables [53]. Such formulas define the probabil-
ities of database tuples and can express arbitrary correla-
tions between tuples, such as conditional independence and
positive and negative correlations. This formalism subsumes
tuple-independent probabilistic databases, such as NELL
tables learned from the web [7], and block-independent dis-
joint databases, such as Google Squared tables that aggregate
Google Search results [18] and probabilistic tables obtained
from information extraction models [26]. It can also cap-
ture more complex correlations that arise when conditioning
probabilistic databases using constraints [35].

The query language considered in this article is that of
relational algebra. Following the standard deterministic case
where queries map between relational databases, in our set-
ting queries map between pc-tables: The query results are
pc-tables, whose tuples are computed as in the deterministic
case and their associated formulas are constructed from the
input formulas using conjunction, disjunction, and negation,
and reflect the derivation of the result from the input [28].

When contrasted to the deterministic case, the key novel
challenge in the probabilistic setting is the computation of
probabilities of query results or, equivalently, the probabil-
ity computation for the propositional formulas that anno-
tate these results. This latter problem is known to be
#P-hard already for positive bipartite formulas in disjunctive
normal form [45]. In database terms, the query evaluation
problem has #P-hard data complexity already for a limited
form of conjunctive queries without self-joins (i.e., conjunc-
tive queries without repeating relation symbols) on tuple-
independent probabilistic databases, where the annotations
of the input tuples are independent random variables [11].

Approximate query evaluation is preferred over exact
query evaluation in cases where fast approximate answers are
favoured over delayed exact answers. This article describes
the approximate probability computation algorithm used
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by the SPROUT query engine [18,27] and thereby unifies
aspects of this algorithm that have previously been reported
separately [19,20,41]. The algorithm works for arbitrary
propositional formulas and thus for any relational algebra
query and pc-table, it is anytime, and admits absolute and
relative error guarantees. Given a formula Φ whose exact
probability is p, it computes a probability p̂ such that

(i) p − ε ≤ p̂ ≤ p + ε for a given absolute error ε, or

(ii) p(1− ε) ≤ p̂ ≤ p(1+ ε) for a given relative error ε.

More precisely, the algorithm can compute a contiguous
interval of approximations p̂ within the given error bounds.
It starts with trivial lower and upper bounds [0, 1] and incre-
mentally tightens the interval until the approximation is
reached. It is thus an anytime algorithm, since it returns an
approximation even if it is stopped before it ends and finds
increasingly better bounds the longer it runs.

The algorithm is an interplay of two techniques: (1) effi-
cient computation of lower and upper bounds on the proba-
bility of a formula and (2) decomposition of a formula into
an equivalent disjunction or conjunction of independent or
mutually exclusive simpler formulas. Given bounds on the
probability of the simpler formulas, we can then efficiently
compute bounds on the probability of the original formula.

The algorithm works as follows: Given a formula, we first
compute probability bounds via the first technique. If the
bounds are tight enough to meet the error guarantee, then
we stop; otherwise, we decompose the formula into simpler
formulas using the second technique, compute probability
bounds for the simpler formulas using the first technique
and use them to derive bounds for the original formula. This
decomposition step is repeated until the error guarantee is
met. By exhaustively decomposing the formula down to liter-
als as approached by knowledge compilation techniques [13],
we can compute its exact probability.

The first technique can compute probability bounds
without error guarantees in polynomial time. The second
technique can compute bounds with error guarantees, and
although each decomposition step takes polynomial time, it
may require exponentially many steps to reach the desired
approximation. The quality of bounds computed by the
first technique is crucial since good bounds can drastically
decrease the number of decomposition steps performed by
the second technique. Our approach is to derive such bounds
via model-based approximation as explained next.

Given a formula Φ, let M (Φ) denote the set of mod-
els (or satisfying assignments) of Φ. A pair of formu-
las ΦL and ΦU from a language L ′ of propositional for-
mulas represents a model-based approximation of Φ if
M (ΦL) ⊆ M (Φ) ⊆ M (ΦU ), that is, the set of models
of Φ includes the set of models of ΦL and is included in

the set of models of ΦU . We call ΦL and ΦU lower and
upper bounds for Φ, respectively. The lower bound ΦL is
optimal if there is no other formula Φ ′L in L ′ such that
M (ΦL) ⊂ M (Φ ′L) ⊆ M (Φ); the case of optimal upper
bounds is symmetric. Our interest in model bounds stems
from the observation that model bounds imply probability
bounds: P(ΦL) ≤ P(Φ) ≤ P(ΦU ). The bounds ΦL and
ΦU are chosen such that they are optimal in a more restrictive
language L ′ of formulas for which probability computation
can be done in polynomial time. In this article, we consider
the language of so-called read-once formulas, called 1OF for
short, and its subset of positive formulas in disjunctive nor-
mal form, called iDNF for short. These languages are defined
in Sect. 2.

There are two main observations behind the design of
our algorithm. Firstly, sufficient approximations can often
be obtained within a few decomposition steps and there is
thus no need to exhaustively decompose the input formula
down to literals. This motivates the incremental nature of the
algorithm as well as the use of effective termination checks.
According to our experiments, a relatively small number
of well-chosen decomposition steps computable within a
few seconds usually suffice to guarantee good precision.
The formulas obtained after these decomposition steps may
still be large, yet they account for a very small fraction of
the overall probability mass. The second observation con-
cerns tractable query evaluation in probabilistic databases.
We can effectively derive orders of decomposition steps
under which any approximation, and in particular, the exact
probability can be obtained in polynomially many steps
when decomposing formulas annotating results of tractable
conjunctive query without self-joins. Most notably, this is
achieved without a priori knowledge of the query or the
input database.

In addition to the anytime algorithm, this article con-
tributes a syntactic characterization of optimal iDNF lower
and upper bounds for positive formulas in disjunctive normal
form. We give algorithms that enumerate such bounds with
polynomial delay and thus allow to inspect several lower
and upper bounds and choose among them a pair whose
probabilities are closest to the exact probability of the input
formula. For formulas with clauses of arity at most k, such
as those annotating results of positive relational queries on
tuple-independent databases [53], we give a polynomial-time
algorithm that can find an optimal iDNF lower bound whose
probability is within a factor k from the largest probability of
optimal iDNF lower bounds; finding the latter is NP-hard. For
nested positive formulas, we show how to efficiently compute
1OF lower and upper bounds.

This article is organized as follows. Section 2 recalls
background on propositional formulas and probabilistic data-
bases. Sections 3 and 4 discuss model-based approximations
and incremental decomposition of formulas. We report on

123



Anytime approximation in probabilistic databases

experiments in Sect. 5, on related work in Sect. 6, and we
conclude in Sect. 7. Proofs of formal statements and details
on the experiments can be found in “Appendix”.

2 Preliminaries

2.1 Propositional formulas

Syntax. Let X be a finite set of Boolean variables. A literal is
a variable or its negation. A clause is a conjunction of literals.
A formula can be constructed using variables and constants
� (true) and⊥ (false) using the logical connectives∨ (“or”),
∧ (“and”), and ¬ (“not”). We use vars(Φ) to denote the set
of variables of the formula Φ. Two formulas Φ and Ψ are
independent if their variable sets are disjoint, i.e., vars(Φ)∩
vars(Ψ ) = ∅; otherwise, they are dependent.

We assume that formulas are in negation normal form
(NNF), where negation can only appear at literals; any for-
mula can be brought in NNF in linear time. A formula (in
NNF) is positive if all of its literals occur positively; unate
formulas, i.e., formulas where each variable occurs either
only positively or only negatively, can trivially be converted
into equivalent positive formulas.

A formula is in disjunctive normal form (DNF) if it is a
disjunction of clauses; it is in one-occurrence form (1OF)
or read-once, if each of its variables occurs once; it is in
independent DNF (iDNF) if it is in 1OF and DNF.

We alternatively see clauses as sets of literals, DNF formu-
las as sets of clauses, and arbitrary (NNF) formulas as their
parse trees: Inner nodes are logical connectives, and leaves
are variables. Given two DNF formulas (clauses) Φ and Ψ ,
Φ ⊆ Ψ means thatΦ consists of a subset of the clauses (liter-
als, respectively) ofΨ . The constants� and⊥ correspond to
an empty set of literals and clauses, respectively. By using the
set perspective, we implicitly assume that a clause (a literal)
only appears once in a DNF formula (clause, respectively);
indeed, for all our purposes, we can ignore duplicate clauses
and literals; if duplicates are created during processing, then
they are trivially removed.

Example 1 The formula x1 y1 ∨ x1 y2 is in DNF, but not in
iDNF, since its clauses share variable x1. Its equivalent for-
mula x1(y1 ∨ y2) is in 1OF. Figures 6 and 7 show the parse
trees of two formulas. If the marked leaves are removed, we
obtain formulas in 1OF.

A DNF formula Φ has arity (max-arity) k if every clause
in Φ has exactly (at most, respectively) k variables.
Semantics. Given the set X of variables, we denote by I the
set of possible assignments of all variables from X to con-
stants true and false. For a formula Φ, its set of assignments
is denoted by I (Φ) = {I : vars(Φ) → {true, false}}. A
model of Φ is a satisfying assignment, i.e., an assignment

I that maps Φ to true, also denoted by I |
 Φ. The set of
models of Φ is denoted by M (Φ).

Given two formulas Φ and Ψ over the same variables,
Φ is semantically contained in Ψ , denoted by Φ |
 Ψ , if
M (Φ) ⊆M (Ψ ). We also say thatΦ impliesΨ . Equivalence
is two-way containment and denoted by≡. Given two clauses
Φ and ψ , it holds that ϕ |
 ψ if and only if ϕ ⊇ ψ . For
DNF formulas, we use the following key result (formulated
in terms of tableaux containment, Theorem 3 in [49]):

Lemma 1 ([49]) LetΦ,Ψ be positive DNF formulas. Then,

Φ |
 Ψ iff ∀ϕ ∈ Φ ∃ψ ∈ Ψ : ϕ |
 ψ (1)

iff ∀ϕ ∈ Φ ∃ψ ∈ Ψ : ϕ ⊇ ψ. (2)

A positive DNF formula Φ is reducible if there exist
clauses ϕ,ψ ∈ Φ that satisfy ϕ |
 ψ , in which case ϕ is
redundant and can be removed; otherwise, it is irreducible.

Corollary 1 (Lemma 1) Two irreducible positive DNF for-
mulas are equivalent if and only if they have the same clauses.

Computing the irreducible equivalent of a positive DNF
formula can be done in polynomial time.

Probabilistic interpretation. Let X be a set of independent
Boolean random variables. For each variable x ∈ X, let Px be
the probability of x being true; we assume Px > 0 without
loss of generality. The probability mass function Pr(I ) =[∏I (x)=true

x∈X Px

]
·
[∏I (x)=false

x∈X (1− Px )
]

for each assignment

I ∈ I and the probability measure Pr(E) = ∑
I∈E Pr(I )

for all E ⊆ I define the probability space (I , 2I ,Pr) that
we call the probability space induced by X.

A formula Φ can be interpreted as a random variable
Φ : I → {true, false} over (I , 2I ,Pr) by letting
Φ : I �→ I (Φ) and with probability distribution defined
as

Pr(Φ = true) =
∑

I∈I ,I (Φ)=true

Pr(I ). (3)

We write PΦ or P(Φ) for Pr(Φ = true) and P¬Φ or
P(¬Φ) for Pr(Φ = false) = 1− Pr(Φ = true).

The task of probability computation is #P-hard already for
bipartite positive DNF formulas [45]. In contrast, formulas in
1OF and iDNF admit probability computation in linear time.
Recall that a 1OF formula is a variable or a conjunction or
disjunction of independent 1OF formulas. Computing the
probability of a 1OF formula Φ is a trivial task:

– If Φ = Φ1 ∧ · · · ∧Φn , then Pr(Φ) = �n
i=1 Pr(Φi ).

– IfΦ = Φ1∨· · ·∨Φn , then Pr(Φ) = 1−�n
i=1(1−Pr(Φi )).

– If Φ = x for a variable x , then Pr(Φ) = Px .
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2.2 Probabilistic databases

Syntax and semantics. Probabilistic c-multitables, or pc-
tables for short, are relational databases where each tuple is
annotated with a propositional formula over a set X of inde-
pendent Boolean random variables [28,53]. Under possible
worlds semantics, a pc-table D represents a finite set of pos-
sible worlds: Each valuation I of the variables in X defines a
possible world representing a relational database consisting
of exactly those tuples in D whose annotations are satisfied
by I . The probability of each world is the product of proba-
bilities of the variable assignments in I . This representation
formalism is complete in the sense that it can represent arbi-
trary probability distributions over any finite set of possible
worlds. It is a strong representation system since query results
can be represented as pc-tables.
Query evaluation. Given a query Q and a pc-table D , the
query evaluation problem is to compute the distinct tuples
in the results of Q in the worlds of D together with their
probabilities. The probability P(t ∈ Q(D)) of a tuple t is
the probability that t is in the result of Q in a world randomly
drawn from D . We adopt the intensional approach to query
evaluation [53]: For each answer tuple t , first construct a
propositional formula Φ that annotates t such that P(t ∈
Q(D)) = P(Φ), then compute P(Φ).

The tuples together with their annotation in the result of a
query Q can be computed directly from the input pc-table D ,
thus circumventing the need to evaluate the query Q in each
possible world of D . This is achieved by rewriting Q into a
query Q′ such that standard relational evaluation of Q’ on
D yields a pc-table D ′ representing the results of Q in the
worlds of D . Figure 1 specifies such a rewriting function [[·]]
for any relational algebra query. It assumes that the formu-
las annotating the tuples in the input pc-table are stored in a

Fig. 1 Query rewriting procedure for queries over pc-tables

distinguished column calledΦ; for a relation R, we consider
that this column is not selected by the selector R.*. The
rewriting is expressed here in SQL and—besides a straight-
forward encoding of the relational operators in SQL—it con-
structs formulas annotating result tuples based on the formu-
las of input tuples as follows. In case of identity, selection,
and renaming operators, the input annotations are just copied
in the result. For projection, the formula of each distinct result
tuple is constructed as the disjunction of all input tuples with
the same restriction to the attributes in the projection list. For
the join operator, the formula of a result tuple is the conjunc-
tion of the formulas of the contributing input tuples; to avoid
cluttering, we slightly abuse notation in stating the attributes
of the select clause: R.*, S.* means here the set-union
of the attributes in R and S. The union operator is treated
similarly to the projection operator, where the distinct result
tuples are annotated by the disjunctions of equal input tuples.
A tuple t in the result of Q1−Q2 has annotationΦ1 if t is in
Q1 with annotationΦ1 and t is not in Q2 and has annotation
Φ1 ∧ ¬Φ2 if t is in Q1 with annotation Φ1 and t is in Q2

with annotationΦ2. These two cases are implemented in [[·]]
by a left outer join.

Given the annotated query result, the remaining query
evaluation task is the computation of its probabilities, i.e.,
the probability P(t ∈ Q(D)) = P(Φ) for each result tuple t
and its annotation Φ. In general, this problem is #P-hard,
though there are known polynomial-time cases [53]. We
refer to queries with #P-hard and PTIME data complexity
as intractable and tractable queries, respectively.

Example 2 Figure 2 shows pc-tables, where each tuple is
annotated by a distinct Boolean random variable stored in
columnΦ, and the formulasΦ1 andΦ2 annotating the results
of two Boolean queries Q1 and Q2, respectively. The answers

Fig. 2 A pc-table with relations R, S, T annotated with variables from
disjoint sets V1 = {x1, . . . , x3}, V2 = {y1, . . . , y6}, V3 = {z1, . . . , z4},
respectively. Formulas Φ1 and Φ2 are the annotations of the results of
queries Q1 and Q2 evaluated on this database
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to these queries are the sets consisting of the empty tuple
whose probability is P(Φ1) and P(Φ2), respectively.

3 Model-based approximations

The problem investigated in this section is as follows: Given
a formula Φ in a propositional language L , find formulas
in a (more restrictive) language L ′ that approximate Φ. We
restrict our investigation to positive (or without loss of gen-
erality, unate) and irreducible formulas; the reason for this
restriction is efficiency, since for arbitrary formulas, it is NP-
hard to decide whether true (�) or false (⊥) are bounds. This
defeats our goal of efficient model-based approximation.

Before looking into approximating positive DNF formulas
within the language of iDNF (Sects. 3.1 and 3.2) and of pos-
itive nested formulas within the language of 1OF (Sect. 3.3),
we define the notion of optimal bounds.

Definition 1 (Optimal lower and upper bounds) Let L ′ and
L be languages of propositional formulas such that L ′ ⊆
L . Given a formula Φ ∈ L , the formulas ΦL , ΦU ∈ L ′
are lower and upper bounds for Φ with respect to L ′ if
M (ΦL) ⊆M (Φ) and M (Φ) ⊆M (ΦU ), respectively.

If in addition there are no formulas Φ ′L , Φ ′U ∈ L ′
such that M (ΦL) ⊂ M (Φ ′L) ⊆ M (Φ) and M (Φ) ⊆
M (Φ ′U ) ⊂ M (ΦU ), then ΦL is a greatest lower bound
(GLB) and ΦU is a least upper bound (LUB) for Φ with
respect to L ′.

The notions GLB and LUB provide an intuitive semantic
characterization of optimal bounds. We consider languages
L ′ such that (i) we can efficiently find optimal bounds in
L ′, and (ii) L ′ allows for efficient probability computation.
The 1OF and iDNF languages satisfy both desiderata.

Our interest in model-based approximation stems from
the observation that, for formulas over independent random
variables, model-based bounds imply probability bounds:

Proposition 1 For any formulasΦ and Ψ withΦ |
 Ψ and
thus M (Φ) ⊆M (Ψ ), it holds that P(Φ) ≤ P(Ψ ).

Before we discuss iDNF and 1OF approximations, we
give a simple syntactic characterization of (not necessarily
optimal) bounds for positive DNF formulas:

Proposition 2 Let Φ and Ψ be positive DNF formulas. The
following statements are equivalent:

1. Φ |
 Ψ ;
2. Ψ can be obtained fromΦ by adding clauses and remov-

ing literals from Φ’s clauses;
3. Φ can be obtained from Ψ by removing clauses and

adding literals to Ψ ’s clauses.

According to Proposition 2, all bounds for a given positive
DNF formulaΦ can be defined by simple syntactic manipula-
tions ofΦ: Lower bounds by removing clauses or adding lit-
erals to existing clauses, and upper bounds by adding clauses
or removing literals from existing clauses. Removing all
clauses results in the lower bound ⊥. Removing all literals
from a clause results in the upper bound�. Indeed, by remov-
ing clauses from a formula, we reduce its set of models. By
adding variables to clauses, we further constrain their satisfi-
ability and hence reduce the set of models. In both cases, one
obtains formulas that are lower bounds. The inverse manipu-
lations lead to upper bounds. More importantly, Proposition 2
states that all bounds can be gained in this way. The following
sections show that it is not necessary to add literals to clauses
in order to find optimal iDNF lower bounds, while removing
variables may be required in order to get to optimal iDNF
upper bounds.

Example 3 Neither formula Φ1 nor Φ2 from Fig. 2 are in
iDNF. The following iDNF formulas are lower and upper
bounds for Φ1 (several others are possible):

ΦL = x1 y1z1 ∨ x2 y4z2 ∨ x3 y5z3

ΦU = z1 ∨ x1 y2 ∨ x2 y4z2 ∨ x3.

Indeed, ΦL is a lower bound since it is a subset of Φ. Each
clause in Φ implies at least one clause of ΦU ; hence, ΦU is
an upper bound. A closer inspection reveals that each clause
in ΦU can be obtained by dropping literals from clauses in
Φ. We will show in the remainder of this section that the
bounds ΦL and ΦU are indeed optimal for iDNF.

The following sections characterize syntactically the opti-
mal iDNF bounds for positive formulas and give algorithms
to find such bounds.

3.1 iDNF greatest lower bounds

Our main tool used to find optimal iDNF lower bounds is the
syntactic notion of maximal lower bounds.

Definition 2 (Maximal lower bound for iDNF) Let Φ be a
positive DNF formula. An iDNF formula ΦL is a maximal
lower bound (MLB) for Φ if it satisfies the conditions:

1. (Lower bound) ΦL is a subset of Φ: ΦL ⊆ Φ;
2. (Maximality)ΦL cannot be further extended: There is no

clause ϕ ∈ Φ with vars(ϕ) ∩ vars(ΦL) = ∅.

The first condition ensures that ΦL is indeed an iDNF
lower bound. The second condition enforces that it is a max-
imal lower bound. An MLB for a formulaΦ is thus a maximal
set of pairwise independent clauses of Φ.
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Example 4 The MLBs for formula Φ1 from Fig. 2 are:

1 : x1 y1z1 ∨ x2 y4z2 ∨ x3 y5z3 2 : x1 y1z1 ∨ x2 y4z2 ∨ x3 y6z4

3 : x1 y2z2 ∨ x2 y3z1 ∨ x3 y5z3 4 : x1 y2z2 ∨ x2 y3z1 ∨ x3 y6z4

With respect to the iDNF language, maximal lower bounds
correspond precisely to greatest lower bounds. This is par-
ticularly important, since MLB is a syntactic notion defined
in terms of sets of clauses, and GLB is a semantic notion
defined in terms of sets of models.

Theorem 1 LetΦ be a positive DNF formula. An iDNF for-
mula ΦL is a maximal lower bound for Φ if and only if ΦL

is a greatest lower bound for Φ.

The implication GLB ⇒ MLB holds since if any of the
two MLB conditions fail, then we cannot obtain a GLB. For
the other direction, it can be shown that no strict upper bound
Φ ′L for ΦL is an iDNF lower bound for Φ. The latter case
has two subcases: There is a clause ϕ ∈ Φ that is in Φ ′L and
either is or is not in ΦL . In the first subcase, ϕ necessarily
shares variables with one clause in ϕL ∈ ΦL , and, according
to Lemma 1, it must be contained in ϕL . But then, ϕ must be
ϕL ; otherwise, ΦL can be further extended and hence is no
MLB. The second subcase follows similarly.

The syntactic definition of MLBs suggests an algorithm
for enumerating all GLBs by recursively constructing all
maximal subsets of pairwise independent clauses ofΦ. This
algorithm needs time exponential in the number of clauses.
The following proposition shows that this is necessarily so:

Proposition 3 The positive DNF formula

Φ = (x1 y1 ∨ x1 y2) ∨ · · · ∨ (xn y2n−1 ∨ xn y2n)

has 2n clauses and 2n iDNF GLBs. Any disjunction of either
xi y2i−1 or xi y2i for all 1 ≤ i ≤ n is an iDNF GLB of Φ.

Since there can be exponentially many GLBs that are
by definition incomparable with respect to their model sets,
it may be desirable to find “the best” GLB for a formula
according to different criteria. Possible rankings of GLBs
are by the number of clauses or, useful in our context, by
their probabilities, provided they are defined over random
variables. Additionally, it can be useful to have an enu-
meration of all GLBs with polynomial delay [31], which
means that the time before finding the first GLB, as well
as the time between every two consecutive GLBs, is poly-
nomial only in the input size, and not in the number of
GLBs. We obtain results for ranking and enumerating GLBs
by exploiting the following correspondence between GLBs
and independent sets in the clause-dependency graphs of
formulas.

Definition 3 (Clause-dependency graph) Let Φ be a DNF
formula. The clause-dependency graph ofΦ is a graph G =
(Φ, E), where nodes are clauses of Φ, and two nodes ϕ and
ψ are connected if vars(ϕ) ∩ vars(ψ) �= ∅.

Each node ϕ ∈ Φ in G has a weight defined by

w(ϕ) = − ln
(
1− P(ϕ)) = − ln

(
1−

∏
x∈ϕ

Px

)
. (4)

The weight W (Ψ ) of a node setΨ is W (Ψ ) =∑
ψ∈Ψ w(ψ).

Lemma 2 Let Φ be a positive DNF formula. A formula
ΦL ⊆ Φ is an iDNF greatest lower bound for Φ if and
only if the clauses of ΦL represent a maximal independent
set in the clause-dependency graph of Φ.

As the following proposition shows, the correspondence
of Lemma 2 can be extended to the case of greatest lower
bounds with the largest probability. Such bounds correspond
to maximal independent sets with the largest weight.

Proposition 4 Let Φ be a positive DNF formula and G =
(Φ, E) be its clause-dependency graph. A formula ΦL is an
iDNF greatest lower bound ofΦ with the largest probability
among all iDNF greatest lower bounds of Φ if and only if
ΦL is a maximum-weight independent set in G.

By the correspondence between iDNF greatest lower
bounds and maximal independent sets, known results for the
latter, such as enumeration of maximal independent sets with
polynomial delay, immediately carry over to the former.

Corollary 2 (Lemma 2, [55,31]) The set of all iDNF greatest
lower bounds for a positive DNF formula with n clauses can
be enumerated with O(n3) delay.

Since finding a maximum independent set is NP-hard, we
cannot efficiently enumerate the maximal independent sets,
or equivalently the iDNF GLBs, in decreasing order of their
sizes, and, more importantly here, of their probabilities.

Corollary 3 (Lemma 2, [21]) Enumerating iDNF greatest
lower bounds for a given positive DNF formulaΦ in decreas-
ing order of their probabilities is NP-hard.

Although we cannot efficiently obtain an iDNF GLB with
largest probability, a constant-factor approximation can be
obtained for positive DNF formulas with max-arity k. For
such a formula Φ, Algorithm 1 constructs an iDNF greatest
lower bound ΦL by iterating over Φ’s clauses in decreasing
order of their probabilities and greedily selecting a maximal
set of independent clauses: ΦL thus contains the first clause
ϕ1 in the order, then the next clause independent of ϕ1, and
so on. The probability of this lower bound is at most a factor
k smaller than the largest probability among the probabilities
of all iDNF greatest lower bounds for Φ:
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Algorithm 1: Finding an iDNF greatest lower bound with
probability at most factor k smaller than the largest probabil-
ity of iDNF greatest lower bounds.

GreedyIDnfGlb(Positive DNF Φ with max-arity k)
� outputs an iDNF GLB of Φ
Sort clauses of Φ in descending order ϕ1, . . . , ϕn of their
probabilities P(ϕ1) ≥ P(ϕ2) ≥ · · · ≥ P(ϕn).
ΦL ← ∅
for i = 1 . . . n do

if vars(ϕi ) ∩ vars(ΦL ) = ∅ then
ΦL ← ΦL ∪ {ϕi }

output ΦL

Proposition 5 Given a positive DNF formula Φ with max-
arity k and n clauses, Algorithm 1 constructs an iDNF
greatest lower bound ΦL for Φ in time O(n2) such that
P(Φ ′L) ≤ k · P(ΦL) for every iDNF greatest lower bound
Φ ′L for Φ.

3.2 iDNF least upper bounds

As for iDNF greatest lower bounds, we next give a syntac-
tic characterization of iDNF least upper bounds for positive
DNF formulas. We first introduce a few necessary notions.

Definition 4 (Witness and critical witness) Let Φ and Ψ be
formulas. A clause ϕ ∈ Φ is a witness for a clause ψ ∈ Ψ if
ϕ |
 ψ . We also say that ψ has the witness ϕ. If in addition,
there is no clause ψ ′ ∈ Ψ with ψ �= ψ ′ and ϕ |
 ψ ′, then ϕ
is a critical witness for ψ , and ψ has the critical witness ϕ.

Example 5 Consider formulasΦ1 in Fig. 2 and Ψ = x1 y1 ∨
x2 ∨ z2 ∨ x1 y6. Clause x1 y1 ∈ Ψ has the critical witness
x1 y1z1 ∈ Φ1, clause x2 y4z2 is a non-critical witness for x2

and z2 ∈ Ψ , and clause x1 y6 ∈ Ψ has no witness in Φ1.

We are now ready to present our main syntactic tool for
finding iDNF optimal upper bounds.

Definition 5 (Minimal upper bound for iDNF) Let Φ be a
positive DNF formula. An iDNF formula ΦU is a minimal
upper bound (MUB) for Φ if it satisfies the conditions:

1. (Upper bound) Every clause ϕ ∈ Φ is a witness for at
least one clause in ΦU ;

2. (Maximality) There is no clause ϕu ∈ ΦU that can be
extended by a variable from vars(Φ) while preserving
condition (1) and keeping ΦU in iDNF;

3. (Criticality) Every clause ϕu ∈ ΦU has at least one crit-
ical witness in Φ.

Following Lemma 1, the first condition ensures thatΦ |

ΦU . The second condition ensures that we cannot obtain an
iDNF refinement of ΦU which is still an upper bound for

Φ by making clauses in ΦU more specific (thus narrowing
the set of models of ΦU ). The third condition states that all
clauses inΦU are necessary, and dropping any of them would
lead to clauses in Φ violating Lemma 1.

This syntactic characterization of upper bounds precisely
matches the semantic notion of least upper bounds:

Theorem 2 LetΦ be a positive DNF formula. An iDNF for-
mula ΦU is a minimal upper bound for Φ if and only if ΦU

is a least upper bound for Φ.

The implication LUB ⇒ MUB holds since, if any of the
three MUB conditions fail, we cannot obtain an LUB. For
the other direction, any difference between an MUB ΦU for
Φ and a potentially better upper boundΦ ′U requires a clause
ϕ′u ∈ Φ ′U strictly containing (syntactically) a clause ϕ ∈ ΦU .
A case analysis on a variable x ∈ ϕ′u and x �∈ ϕu shows
that ΦU does not satisfy the syntactic characterization of an
MUB: Either the criticality condition fails or a clause in ΦU

may be expanded by x to obtain a smaller bound.

Example 6 The iDNF formulaΦ1
1,u = x1 y1∨ y2∨ x2 y3z1∨

y4z2 ∨ x3 y5z3 ∨ y6z4 is an MUB for Φ1 from Fig. 2. Every
clause inΦ1

1,u has exactly one witness inΦ1 which is also crit-

ical. No clause can be extended further, since vars(Φ1
1,u) =

vars(Φ1). The iDNF formulaΦ2
1,u = x1∨x2∨x3 y5z3∨ y6z4

is also an MUB; each of the two clauses x1 and x2 has two crit-
ical witnesses. It can be checked thatΦ2

1,u cannot be extended
by any variable from vars(Φ1).

As in the case of lower bounds, the number of least upper
bounds for a given formula can be exponential in its size:

Proposition 6 The positive DNF formula

Φ = (x1 y1 ∨ x1 y2) ∨ · · · ∨ (xn y2n−1 ∨ xn y2n)

has 2n clauses and 3n iDNF LUBs. Any disjunction of either
xi , or xi y2i−1 ∨ y2i , or y2i−1 ∨ xi y2i for all 1 ≤ i ≤ n is an
iDNF LUB of Φ.

Algorithm 2 enumerates iDNF least upper bounds with
polynomial delay using a simple strategy that relies on the
compositional nature of minimal upper bounds: An MUB of
an irreducible positive DNF formulaΦ = ψ∨Φ ′, whereψ is
a clause andΦ ′ is a formula, is the disjunction of the MUB of
ψ , which isψ itself, and of the MUB ofΦ ′, where we remove
from Φ ′ the variables in ψ and subsumed clauses. Multiple
MUBs can then be obtained by picking different clauses ψ
that share a variable. This condition is necessary to guarantee
distinct MUBs; indeed, these clauses are incomparable and
each of them will be in an MUB. Note how empty clauses
are handled: If the irreducible input formula is {∅}, i.e., true,
then PolyMub returns its only MUB {∅}. In each recursive
call, Φ cannot contain the empty clause, because removing
from the irreducible formula ΦR the variables from one of
its clauses ψ cannot yield an empty clause.
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Algorithm 2: Enumerating iDNF least upper bounds with
polynomial delay. Initial call: PolyMub(Φ,∅).
PolyMub(Positive DNF Φ, iDNF ΦU )

� outputs iDNF MUBs of Φ with polynomial delay
if Φ = {∅} then

�Φ is true and has the trivial MUB {∅}
output Φ

else if Φ = ∅ then
output ΦU

else
� Remove redundant clauses from Φ

� Duplicates are automatically discarded since ΦR is a set
ΦR ← {ϕ | ϕ ∈ Φ∧ � ∃ψ ∈ Φ : ψ ⊂ ϕ}
x ← Pick variable from ΦR
foreach ψ ∈ ΦR with x ∈ ψ do

� Add clause ψ to ΦU and recursively find MUBs of the
formula obtained from ΦR by removing ψ and variables
in vars(ψ) from all other clauses

PolyMub
({ϕ \ vars(ψ) | ϕ ∈ ΦR ∧ ϕ �= ψ}, ΦU ∪ {ψ}

)

Theorem 3 Algorithm 2 enumerates iDNF least upper
bounds of a positive DNF formula with n clauses with
O(n3) delay.

Algorithm 2 is correct, i.e., every returned formula is an MUB
and thus an LUB, since properties 1–3 in Definition 5 induc-
tively carry over from the recursively generated MUB to the
formula obtained by adding clause ψ . The returned MUBs
are unique and thus incomparable, since they differ in the
clause that contains variable x picked before the for-loop.
The delay between consecutive MUBs is cubic in the num-
ber n of clauses in the input formulaΦ, because the recursion
depth of PolyMub is bounded by n, and each recursion step
can be performed in time quadractic in n.

Algorithm 2 is not complete: For instance, it does not find
MUBs a ∨ b and x ∨ y for the formula ax ∨ bx ∨ ay ∨
by, because it cannot factorize it into (a ∨ b) ∧ (x ∨ y).
A complete enumeration algorithm for MUBs is given in the
electronic supplementary material, albeit without polynomial
delay guarantees.

3.3 1OF lower and upper bounds

We now turn to approximation of nested formulas. Such for-
mulas naturally annotate results of queries with negation in
probabilistic databases, as per their construction using the
translation in Fig. 1. While their size is polynomial in the
size of the input database, un-nesting them in DNF can lead
to formulas of size exponential in the size of the input data-
base. We therefore search for approximations that are nested
as well and that can be computed without unfolding the input
in DNF. We recall our restriction to positive (or unate) formu-
las for efficiency reasons. This restriction corresponds here

to queries where all occurrences of each relation are either
positive or negative.

The iDNF bounds are, by definition, in DNF and thus do
not meet our requirements here. However, the 1OF language
naturally allows for nested formulas. Consider for instance
the unate formula Φ = (

∨
i xi ) ∧∧

j (¬y j ). Then, any two
clauses in the DNF ofΦ would share variables, which means
that we can only use one of these clauses as iDNF lower
bound. The formula Φ is however in 1OF.

As in the iDNF case, Proposition 2 gives us a useful tool
to find 1OF bounds. A practical caveat is that it talks about
clauses in the DNF representation of a formula, whereas we
deal here with nested formulas. We therefore consider an
efficient heuristic for computing (a) lower bounds by drop-
ping clauses, in particular by setting one of their literals to
false, and (b) upper bounds by dropping literals from clauses,
in particular by setting these literals to true. The following
proposition formalizes this intuition.

Proposition 7 LetΦ be a positive formula, x be a variable in
Φ, andΦL andΦU be formulas obtained fromΦ by replacing
one occurrence of x by⊥ and, respectively,�. Then,ΦL and
ΦU are lower and, respectively, upper bounds of Φ.

We can then obtain lower and upper 1OF bounds of a
positive (or equivalently, unate) formula by setting all but one
occurrence of each distinct variable to false and, respectively,
to true. Depending on which occurrences are chosen, we may
obtain different 1OF bounds.

Example 7 The formulaΦ = (x1 y1∨¬x2 y2)[x1(y1∨ y3)∨
x3(y4∨y5)] is not in 1OF since x1 and y1 occur twice. Setting
the second occurrences of both these variables to false results
in the 1OF lower bound (x1 y1 ∨ ¬x2 y2)x3(y4 ∨ y5). For an
1OF upper bound, we set the same occurrences of the two
variables to true and obtain x1 y1 ∨ ¬x2 y2.

Different bounds can be obtained by setting different
occurrences of the two variables to false and true, respec-
tively. For example, setting the first occurrences of x1 and y1

results in the lower bound (¬x2 y2)[x1(y1∨ y3)∨x3(y4∨ y5)]
and the upper bound x1(y1 ∨ y3) ∨ x3(y4 ∨ y5).

4 Probability computation via decomposition

This section introduces our probability computation algo-
rithm for propositional formulas. We first give in Sect. 4.1
an exact version and then lift it to a memory-efficient any-
time approximation algorithm in Sect. 4.2. Considerations
for efficient implementation are given in Sect. 4.2.4.

4.1 Exact probability computation

The key idea behind our algorithm is that the probability of
formulasΦ∧Ψ andΦ∨Ψ can be efficiently computed from
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the probabilities P(Φ) and P(Ψ ) of the subformulas Φ and
Ψ , if these subformulas are independent or inconsistent:

– if Φ and Ψ are independent, then

P(Φ ∧ Ψ ) = P(Φ) · P(Ψ )

P(Φ ∨ Ψ ) = 1− (1− P(Φ)) · (1− P(Ψ ))

– if Φ and Ψ are inconsistent (i.e., there is no valuation of
the random variables for which both are true: the disjunc-
tion is exclusive), then

P(Φ ∧ Ψ ) = 0

P(Φ ∨ Ψ ) = P(Φ)+ P(Ψ ).

The above equations can be derived from Eq. (3). We use
explicit notation to denote independence and mutual exclu-
siveness:⊗ for independent-or,� for independent-and and⊕
for exclusive-or. A decomposition tree is an alternative repre-
sentation of formulas that makes independent and exclusive
relationships between subformulas explicit.

Definition 6 (Decomposition Tree) A decomposition tree
(d-tree) is recursively defined as follows:

– Every propositional formulaΦ is a d-tree T with a single
node representing Φ.

– If TΦ and TΨ are d-trees representing independent for-
mulas Φ and Ψ , then

are d-trees representingΦ ∨Ψ andΦ ∧Ψ , respectively.
– If TΦ and TΨ are d-trees representing mutually exclusive

formulas Φ and Ψ , then

is a d-tree representing the formula Φ ∨ Ψ .

A d-tree in which all leaves are literals is complete.

A d-tree can also be seen as the parse tree of a formula
composed of propositional formulas (with∨,∧,¬) and inde-
pendent and mutual exclusive operators ⊗,�,⊕.

Example 8 Consider the formula (x∨y)∧((z∧u)∨(¬z∧v)).
It is easy to verify that this formula satisfies the independence
and mutual exclusiveness properties expressed by the equiv-
alent partial d-tree (x ⊗ y)� (zu ⊕ ¬zv) and the complete
d-tree (x ⊗ y)� (

(z � u)⊕ (¬z � v)).

Definition 7 (Probability of D-tree) The probability of a d-
tree T is recursively defined on its structure:

– If T is a leaf node for formula Φ, then P(T ) = PΦ
– If T = TΦ⊗TΨ , then P(T ) = 1−(1−P(TΦ))(1−P(TΨ ))
– If T = TΦ � TΨ , then P(T ) = P(TΦ) · P(TΨ )
– If T = TΦ ⊕ TΨ , then P(T ) = P(TΦ)+ P(TΨ )

Example 9 The probability of formula (x ∨ y)∧ ((z ∧ u)∨
(¬z ∧ v)) and its d-tree (x ⊗ y) � (z � u ⊕ ¬z � v) is(
1− (1− Px ) · (1− Py)

) · (Pz · Pu + P¬z · Pv
)
.

Since the operations⊗,� are associative, the independent
decompositions readily extend to decompositions into more
than two independent formulas; for example, Φ1 ∨Φ2 ∨Φ3

(with Φ1, Φ2, Φ3 independent) can be decomposed into

It follows from the definitions of ⊕, ⊗, and � that:

Proposition 8 Given the probabilities of all the leaves of a
d-tree, its probability can be computed in time linear in its
size (assuming unit-cost arithmetic operations).

Any formula can be compiled into a d-tree by finding inde-
pendent subformulas and decomposing with respect to⊗ and
�, and otherwise by applying Shannon expansion to yield a
mutually exclusive ⊕-decomposition. Algorithm 3 sketches
this generic compilation approach, where the compilation
is exhaustive, i.e., the leaves of the d-tree represent literals.
This is refined in Sect. 4.2, where we describe how a partial
compilation of d-trees gives rise to approximate probability
computation. The notations Φ|x←� and Φ|x←⊥ denote for-
mulas obtained by replacing every occurrence of variable x
in Φ by � and, respectively, ⊥.

Algorithm 3: Compilation of formulas into d-trees.

Compile (Formula Φ)
RemoveRedundantClauses (Φ)
if Φ is a literal or � or ⊥ then

return Φ
if ∃ independent Φ1, Φ2 s.t. Φ1 ∨Φ2 = Φ then

return Compile(Φ1) ⊗ Compile(Φ2)

if ∃ independent Φ1, Φ2 s.t. Φ1 ∧Φ2 = Φ then
return Compile(Φ1) � Compile(Φ2)

� Apply Shannon expansion:
Choose variable x ∈ X occurring in Φ
return

(
x � Compile(Φ|x←�)

)⊕ (¬x � Compile(Φ|x←⊥)
)

Example 10 Figure 3 shows a formula and its complete d-
tree obtained by executing Algorithm 3 to completion.
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Fig. 3 D-tree for Φ = x ∨ ¬xy ∨ ¬xz ∨ uv ∨ ¬u

The correctness of Algorithm 3 follows directly from the
recursive definition of the represented formula and the prob-
ability of a d-tree (Definitions 6 and 7):

Proposition 9 Let Φ be a formula and T be the d-tree
returned by Compile(Φ). Then, the formula represented by
T is equivalent to Φ and PΦ = P(T ).

Any formula can be decomposed into a complete d-tree,
since Shannon expansion (a.k.a. variable elimination in the
Davis–Putnam algorithm for SAT solving [14]) can always
be applied and leads to formulas with less variables. We can
compute the probability of the input formula by inlining the
equations from Definition 7 in Algorithm 3.

The order of the variable choices in Shannon expansion
influences the size of the d-tree. In general, the compilation
of a formula creates a d-tree of exponential size, and it is
important to find compilation strategies that lead to d-trees
of small sizes [13,35]. For tractable queries, it is possible
to efficiently identify optimal variable orders [39–41]. For
non-tractable queries, we choose a variable that occurs most
frequently in the formula.

We next analyze the complexity of Algorithm 3. All
three decompositions steps can be done efficiently. Shan-
non expansion requires linear time for each subformula. The
independent-or and independent-and partitioning finds con-
nected components in the dependency graph of the input
formula Φ. Given Φ = ∧

i Φi or Φ = ∨
i Φi , the depen-

dency graph of Φ has one node for each subformula Φi ,
and there is an edge between two nodes Φi and Φ j if
vars(Φi )∩vars(Φ j ) �= ∅. A more effective independent-and
partitioning can be achieved if Φ is in DNF, since we can
apply existing algebraic factorisation of DNF formulas [6].
For a relational encoding of DNF formulas of arity k and
n clauses, as used in query evaluation on probabilistic data-
bases [3], the ⊗-decomposition is unique and requires time
O(k · n · log n) [42].

We close this section with some observations regarding
tractable classes of conjunctive queries without self-joins and
their connection to linear-size d-trees [38–41].

Firstly, the annotations of the results of any tractable con-
junctive query without self-joins on a tuple-independent data-
base are positive DNF formulas equivalent to formulas in
1OF and can be compiled in polynomial time into complete
d-trees of size linear in the number of variables and whose
inner nodes are ⊗ and � only [38].

Secondly, the annotations of the results of any query in
a previously defined class of tractable conjunctive queries
with inequalities on tuple-independent databases are positive
DNF formulas that can be compiled in polynomial time into
complete d-trees of size linear in the size of the formulas and
whose inner nodes are ⊕ only [39].

4.2 Approximate probability computation

Let us now turn to approximate probability computation.
We start by discussing the correspondence between d-trees
and probability bounds for represented formulas, then define
our approximation algorithm (Sect. 4.2.2) and refine it to a
memory-efficient implementation (Sect. 4.2.3).

4.2.1 Lower and upper probability bounds for D-trees

Algorithm 3 and Definition 7 give us a recipe for exact prob-
ability computation for any formula, provided we exhaus-
tively decompose it into a d-tree where the leaves are literals
with known exact probabilities. By using partial instead of
complete decompositions, and thus by allowing arbitrary for-
mulas at leaves, the same approach yields lower and upper
probability bounds for partial d-trees.

We next assume that for each leaf nodeΦ, we know prob-
abilities P L

Φ and PU
Φ such that PΦ ∈ [P L

Φ , PU
Φ ].

Definition 8 (Probability Bounds of D-trees) The lower and
upper probability bounds P L(T ) and PU (T ) of a d-tree T
are recursively defined by its structure:

– If T is a leaf node for formula Φ, then

P L(T ) = P L
Φ , PU (T ) = PU

Φ .

– If T = TΦ ⊗ TΨ , then

P L(T ) = 1− (1− P L(TΦ))(1− P L(TΨ ))

PU (T ) = 1− (1− PU (TΦ))(1− PU (TΨ ))

– If T = TΦ � TΨ , then

P L(T ) = P L(TΦ) · P L(TΨ )

PU (T ) = PU (TΦ) · PU (TΨ )

– If T = TΦ ⊕ TΨ , then

P L(T ) = P L(TΦ)+ P L(TΨ )

PU (T ) = PU (TΦ)+ PU (TΨ )

Intuitively, the definition implies that the lower (upper)
probability bound of a d-tree is obtained by propagating up
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Fig. 4 Partially decomposed d-tree. Leaves: Φ1 and x are closed (•),
Φ2 is current (→), Φ3 is open (◦)

the lower (upper) probability bounds of the leaf formulas
according to Definition 7. Since the operators in this defi-
nition are all monotonically increasing as a function of the
probability of their child nodes, we obtain

Proposition 10 For any d-tree T , P(T )∈[P L(T ), PU (T )].

Example 11 Consider the partial d-tree T = Φ1 ⊗ ((x �
Φ2) ⊕ Φ3) of Fig. 4, where the leaves are annotated with
their lower and upper bounds. Then, the lower and upper
bounds [P L(T ), PU (T )] of the d-tree can be computed as
follows:

PU (T )=1−(1−0.11) · (1−(0.5 · 0.44+ 0.38))=0.644

P L(T )=1−(1−0.1) · (1−(0.5 · 0.4+ 0.35))=0.595

An immediate question is how good the bounds of a par-
tial d-tree are and whether one can make guarantees about
the approximation quality. We consider two types of such
guarantees, given a fixed error threshold ε ∈ [0, 1]:
Definition 9 A value p̂ is an absolute (or additive) ε-
approximation of a probability p if p − ε ≤ p̂ ≤ p + ε.

A value p̂ is a relative (or multiplicative) ε-approximation
of a probability p if (1− ε) · p ≤ p̂ ≤ (1+ ε) · p.

We will abbreviate P L(T ) and PU (T )with L and U if the
context is clear. Let us now investigate under which condi-
tions the bounds [L ,U ] of a given d-tree for a formulaΦ are
sufficiently tight to specify an ε-approximation of PΦ . The
connection between bounds of d-trees and ε-approximations
of formulas is given by the following proposition.

Proposition 11 Let ε be a fixed error threshold, and Φ a
formula with probability bounds [L ,U ], i.e., PΦ ∈ [L ,U ].

– If U − ε ≤ L + ε, then any value in [U − ε, L + ε] is
an absolute ε-approximation of PΦ .

– If (1− ε) ·U ≤ (1+ ε) · L, then any value in [(1− ε) ·
U, (1+ ε) · L] is a relative ε-approximation of PΦ .

A d-tree for a formulaΦ is an ε-approximation ofΦ if its
bounds satisfy one of the above sufficient conditions. Both
conditions can be checked in linear time in the size of the
d-tree, because its lower and upper bounds can be computed
in one bottom-up pass, cf. Proposition 8.

Algorithm 4: Approximate probability computation with
relative or absolute error guarantee for a partial d-tree T .

Approx(D- tree T , Error Guarantee ε, Error Type type)
L ← P L (T )
U ← PU (T )
if type = absolute and U − L ≤ 2ε then

return [U − ε, L + ε]
if type = relative and (1− ε) ·U − (1+ ε) · L ≤ 0 then

return [(1− ε) ·U, (1+ ε) · L]
� Approximation not reached; choose and refine a leaf in T
Choose a leaf t of T representing a formula Φ
RemoveRedundantClauses (Φ)
if Φ is a literal or � or ⊥ then

� Do nothing

else if ∃ independent Φ1, Φ2 s.t. Φ1 ∨Φ2 = Φ then
Replace t in T by Φ1 ⊗Φ2

else if ∃ independent Φ1, Φ2 s.t. Φ1 ∧Φ2 = Φ then
Replace t in T by Φ1 �Φ2

else
Choose variable x ∈ X occurring in Φ
Replace t in T by (x �Φ|x←�)⊕ (¬x �Φ|x←⊥)

return Approx(T , ε, type)

4.2.2 An anytime approximation algorithm

We next present two algorithms for computing ε-
approximations of formula probabilities via d-trees. The
algorithm detailed in this section resembles Best-first Search
in that it incrementally builds a d-tree from a formula by
decomposing one of its leaves until the desired approxima-
tion is reached. Since the d-tree can be exponential in the
number of variables in worst-case, the next section presents
a refined version that mimics depth-first search and only
keeps in memory one root-to-leaf path in the d-tree at any
one time.

Algorithm 4 specifies our incremental refinement proce-
dure for approximate probability computation. Starting with
the d-tree T = Φ for a formula Φ, it checks whether T is
already an ε-approximation forΦ. For this, it computes lower
and upper bounds for Φ and its probability. If the desired
approximation is reached, it returns the probability interval
according to Proposition 11. Otherwise, it picks a leaf of the
d-tree, e.g., a leaf with widest probability interval among all
leaves, it performs one decomposition step, and it recurses.

The critical ingredient to this algorithm is the availability
of good bounds for formulas at leaves. Given a positive for-
mulaΦ, we employ the techniques for model-based formula
approximation (cf. Sect. 3) to approximate Φ and hence PΦ
by (i) optimal iDNF bounds if Φ is a DNF formula, and (ii)
1OF bounds if Φ is a nested formula.

In case a leaf represents a non-unate formula, we do not
have access to efficiently computable model-based bounds,
since deciding their existence is already a hard problem:
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Proposition 12 LetΦ be a formula. Deciding whether there
exist non-trivial iDNF formulas L �= ⊥ and U �= � such
that M (L) ⊆M (Φ) ⊆M (U ) is NP-hard.

This follows from hardness of satisfiability and tautology
for propositional formulas. We thus cannot even decide effi-
ciently whether the probability of a non-unate formula is 0
or 1. By default, we approach this obstacle by first repeat-
edly applying Shannon expansion until all leaves represent
unate formulas. Once the leaves represent unate formulas,
we can compute model-based bounds efficiently as described
in Sect. 3.3.

In case of non-unate DNF formulas, such as those annotat-
ing results of positive queries on block-independent disjoint
tables, we consider a different approach. We compute iDNF
lower bounds using Algorithm 1. Such bounds are however
not optimal in the iDNF language; for instance, the non-unate
DNF formula xy ∨ x¬y is equivalent to x , which represents
the iDNF optimal lower and upper bounds, yet Algorithm 1
would output one of the clauses as iDNF lower bound. As
upper bound, we compute a probability bound U instead of a
model-based bound, as the sum of probabilities of the lower
bound returned by Algorithm 1 and of all other clauses in
the input DNF formula. If U is larger than 1, we set it to the
trivial bound 1.

We close this section with two remarks. Firstly, in order
to compute the new bounds [P L(T ), PU (T )] after a decom-
position step, it is not necessary to recompute the probability
bounds of the entire d-tree. If we memorize the local proba-
bility bounds at each node of T , then it suffices to propagate
the new bounds of the decomposed leaf up the d-tree.

Secondly, it is not immediately clear that the overall prob-
ability bound of a d-tree improves between two subsequent
refinement steps. Consider a leaf node with memorized prob-
ability bounds [L ,U ]. The decomposition of this leaf node
may result in new probability bounds [L ′,U ′] that are no
improvement over [L ,U ], i.e., [L ′,U ′] �⊆ [L ,U ]. However,
since both bounds are correct, we may memorize and propa-
gate their intersection [L ,U ]∩[L ′,U ′] ⊆ [L ,U ] and thereby
obtain an anytime algorithm by guaranteeing that the bounds
never get worse between subsequent refinement steps.

4.2.3 A memory-efficient variant

Algorithm 4 may construct an exponentially large d-tree
before reaching the desired approximation. This memory
usage is not feasible for large input. We next present a variant
that only keeps in memory one root-to-leaf path of the d-tree
at any one time. For exact computation, we accumulate the
probability of the d-tree while exploring it depth-first. The
explored branches can be safely discarded since their prob-
abilities were already accumulated. The same idea can be
used to devise an approximation approach as follows. We

also explore the complete d-tree depth-first, but stop as soon
as the desired approximation is reached, cf. Proposition 11.
For this, we need to maintain a pair of lower and upper proba-
bility bounds for the not-yet-explored children of each node
along the current root-to-leaf path. While this approxima-
tion approach performs better than the exact algorithm since
it may avoid the complete exploration of the d-tree, it has
one important practical shortcoming: It still needs to explore
deep fragments of the d-tree, yet the deeper a branch goes,
the more work it requires and the less probability mass it
contributes to the probability of the d-tree.

Similarly to Algorithm 4, we would like to traverse a shal-
low upper part of the d-tree. In contrast to Algorithm 4, we
would like to traverse the tree depth-first and only keep one
path in memory at any one time. This requires a criterion
to stop the depth-first exploration when the probability mass
represented by the sub-tree of a node is insignificant and can
be discarded under the premise that subsequent exploration of
the remaining tree can still yield the desired approximation.
We next detail this approach; it represents the approximation
algorithm implemented in the SPROUT engine.

In the sequel, we call leaves that may be further refined
open and leaves that are not further refined closed. We need
to address the challenge of deriving an ε-approximation con-
dition in the presence of closed leaves. Based on this, we
can incrementally compile the input formula into a d-tree in
depth-first traversal and decide locally, whether the current
leaf under exploration can be closed or must be refined fur-
ther. When a leaf gets closed, its bounds are accumulated and
it can be removed from the d-tree.

For reasons explained later, we restrict our discussion to
d-trees in which at most one child of each � node can be
closed without computing its exact probability. This con-
straint does not restrict our encoding of Shannon expansion
using � nodes, since one of their two children is always a
literal for which the exact probability is known.

To understand the worst-case scenario when we want to
close a leaf t in a d-tree T , we need to compute the largest
bounds interval of T for any possible exact probability that
each open leaf may take. If these worst-case bounds fail to
satisfy the condition for an ε-approximation, then we might
not reach the approximation by only refining the open leaves
and must thus not close t . Let us formalize this intuition.

Definition 10 The bounds space of a d-tree T is the set of
possible bounds [L ,U ] of T obtained by choosing for each
open leaf any point interval between the bounds of that leaf
and for each closed leaf Ψ its probability interval [P L

Ψ , PU
Ψ ].

Let us denote by L(T ) the element of the bounds space
obtained by choosing for each open leafΦ the point interval
[P L
Φ , P L

Φ ], where P L
Φ is a lower bound for Φ.

Lemma 3 For a d-tree T , L(T ) is the pair of bounds [L ,U]
that maximizes U − L for absolute approximation and
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(1− ε) ·U − (1+ ε) · L for relative approximation, over the
entire bounds space of T .

Lemma 3 gives us a strategy to decide whether closing
leaves in a d-tree still allows for an ε-approximation. This
only holds for closing ⊗ and ⊕ nodes; for � nodes, L(T )
does not necessarily maximize the bounds in general. This
explains our above restriction for � nodes.

Since we can compute L(T ) in just one scan of T , finding
the maximal values of U − L and (1− ε) ·U − (1+ ε) · L
can be done very efficiently. Our main result concerning the
closing of leaves follows from Lemma 3 and the fact that
refinement eventually leads to completion of T .

Theorem 4 Let T be a d-tree for a formula Φ, and ε be a
fixed error. If the bounds L(T ) satisfy the sufficient condition
for an ε-approximation in Proposition 11, then there is a
refinement of T that is an ε-approximation of PΦ .

Example 12 Consider the d-tree T of Fig. 4 and an absolute
error ε = 0.012. We are at Φ2 and would like to know (1)
whether we can stop with an absolute ε-approximation, and
in the negative case, (2) whether we can close Φ2.

(1) We compute the lower and upper bounds of the d-tree
as if all the leaves are closed. We plug in the lower
bounds of the leaves and obtain L = 0.1 ⊗ ((0.5 �
0.4) ⊗ 0.35) = 0.595. Similarly for the upper bound:
U = 0.11⊗ ((0.5� 0.44)⊗ 0.38) = 0.644. The condi-
tion U − L = 0.049 ≤ 2 · 0.012 = 0.024 is not satisfied.
Hence, we cannot stop now.

(2) We compute L(T ) = [L ,U ′], where L is as before
and U ′ = 0.11 ⊗ ((0.5 � 0.44) ⊗ 0.35) = 0.6173. We
then have that U ′ − L = 0.0223 ≤ 0.024. We may thus
close this leaf.

Our incremental algorithm follows the depth-first com-
pilation scheme of Algorithm 3 where instead of construct-
ing the d-tree, node probabilities are computed and propa-
gated recursively. Before constructing a node, we perform
two checks: (1) The sufficient condition of Proposition 11
that checks whether ε-approximation is already reached, and
if this fails, then (2) the condition of Theorem 4 that decides
whether the current node to be constructed can be safely
closed. This algorithm closes d-tree branches eagerly in order
to keep the d-tree height small, while still guaranteeing that
the required ε-approximation can be reached.

Example 13 We would like to find relative and absolute 0.1-
approximations for Φ1 from Fig. 2 using our incremen-
tal decomposition and iDNF model-based bounds that are
factor-k lower bounds from Proposition 5 and upper bounds
according to Algorithm 2. For this, we incrementally con-
struct the d-tree in Fig. 5 as discussed below.

Fig. 5 D-tree for formula Φ1 from Fig. 2 used in Example 13. Some
inner nodes carry an additional label (e.g. Φ2 = ⊕) in order to better
illustrate the decomposition steps taken. In the top d-tree, colored areas
represent d-trees T1 (darkest) through T5 (lightest) discussed in Exam-
ple 13. In the bottom d-tree, colored areas represent root-to-leaf paths
as discovered by the algorithm’s depth-first exploration: darker paths
are discovered earlier, lighter paths are discovered later. At each point
in time, the algorithm needs to memorize only one of these paths

For numerical calculations, we use the following proba-
bilities: Px1 = 0.2, Px2 = 0.4, Px3 = 0.4, Py1 = 0.4, Py2 = 0.1,

Py3 = 0.0, Py4 = 0.7, Py5 = 0.5, Py6 = 0.3, Pz1 = 0.4, Pz2 = 0.9,

Pz3 = 0.5, Pz4 = 0.3.

1st Iteration. We start with the d-tree T1 = Φ1 and compute
model-based bounds L1 and U1 that yield probability bounds
[0.348, 0.809]. This is not a 0.1-approximation, so we next
decompose Φ1 using independent-or: Φ1 = Φ2 ⊗Φ3.

2nd Iteration. We obtain bounds [0.348, 0.809] for the
probability of the d-tree T2 = Φ2 ⊗ Φ3, where we used
the model-based bounds in Fig. 5 forΦ2 andΦ3 with proba-
bility bounds [0.276, 0.736] and [0.1, 0.277]. T2’s bounds
are as in the 1st Iteration, since independent-or partitioning
does not alter iDNF bounds, and are thus not tight enough.

We next check whether we can closeΦ2 and compute the
pessimistic bound L(T2) using the above bounds for Φ2 and
the point interval defined by a lower bound for the open node
Φ3. The pessimistic lower bound L2 ⊗ L3 has probability
0.348, and the upper bound U2 ⊗ L3 has probability 0.809.
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These bounds fail the stopping condition for both relative
and absolute errors; hence, we cannot close Φ2. We further
decompose Φ2 using Shannon expansion by variable x1.
3rd Iteration. The bounds now become [0.348, 0.753] for
d-tree T3 = ((x1 � Φ4) ⊕ (¬x1 � Φ5)) ⊗ Φ3, yet no 0.1-
approximation is reached. We continue with Φ4 and first
check whether we can close it. The pessimistic bounds are
[0.348, 0.420] and suffice for both relative and absolute
approximation; we thus close Φ4. We continue depth-first
with Φ5; this node cannot be closed and we decompose it
into x1 �Φ6.
4th Iteration. Since Φ6 is in 1OF, we can directly com-
pute its probability 0.63. The resulting d-tree T4 has bounds
[0.348, 0.534] that constitute an absolute 0.1-approximation
interval [0.534− 0.1, 0.348+ 0.1] = [0.434, 0.448].

Since we have not yet reached a relative approximation, we
decompose the next open leaf in depth-first traversal without
known exact probability, i.e., Φ3, into x3 �Φ7.
5th Iteration. We detect that Φ7 is in 1OF and compute its
probability 0.318. The resulting d-tree T5 has bounds [0.368,
0.438] and is thus a relative 0.1-approximation interval
[(1− 0.1) · 0.438, (1+ 0.1) · 0.368] = [0.3942, 0.4048].

4.2.4 Considerations for an efficient implementation

We next discuss several aspects regarding the efficient imple-
mentation of our algorithm. The following desiderata have
been considered in the design of the algorithm: (1) The input
formula can be very large and copying parts of it after each
decomposition step is not feasible. (2) For each decomposi-
tion step, we should only touch necessary nodes and as few
times as possible. (3) We should use memory-conscious data
structures to support our decomposition steps.

Formulas are decomposed into subformulas such that the
latter represent syntactic restrictions of the former. This moti-
vates the following compact representation of formulas in
our implementation: Whenever a formula Ψ is constructed
by decomposing a formula Φ, instead of explicitly storing
Ψ , we represent it by a mask applied toΦ, where we specify
which clauses and literals from Φ make up the new formula
Ψ . A mask together with the original formula uniquely iden-
tify any subformula obtained by decomposition.

Algorithm 5 depicts the procedure Mask. When called
with truth value b on a node n in the parse tree of a formulaΦ
in NNF, it computes the formula obtained from Φ by setting
the variable x in node n to b and propagating � and ⊥ in
the parse tree of the formula by means of the equivalences
⊥ ∧ Ψ ≡ ⊥,�∧ Ψ ≡ Ψ , ⊥∨ Ψ ≡ Ψ , and � ∨ Ψ ≡ �.

Example 14 Consider Shannon expansion for variable x1 in
formula Φ from Fig. 6a. Instead of constructing data struc-
tures for the formulas Φ|x1←� and Φ|x1←⊥, we can mask
the parts of the formula affected by setting x1 to � and ⊥.

Algorithm 5: The masking procedure. We set a leaf node n
to truth value b and then further simplify the formula.

Mask(node n, bool b, root node r )
switch n do

case leaf node
if n represents positive literal x then

Mask(n.parent(), b, r )

else
� n represents negative literal ¬x
Mask(n.parent(), ¬b, r )

case inner node
if (b=true and n=∨) or (b=false and n=∧) then

if n.allLeavesMasked() and n �= r then
Mask(n.parent(), b, r )

The result of this masking operation is depicted in Fig. 6b, c;
when the blue parts are ignored, those parse trees represent
the formulas Φx1←� and Φx1←⊥.

In order to compute Φ|x1←�, we need to mask every
occurrence of x1 in Φ with true, cf. Fig. 6a. We hence mask
the leaf¬x1; since it is unsatisfiable under x1 ←� and since
its parent p is ∧, we mask all other leaves under p in order
to propagate the identity ⊥ ∧ Ψ ≡ ⊥. We move up to the
parent of p. This is a ∨-node with unmasked leaves and we
stop. We then mask the second leaf of x1. We stop since its
parent is a ∧-node that has un-masked leaves. The masked
tree is shown in Fig. 6b and represents Φ|x1←�.

To compute Φx1←⊥, we mask all occurrences of x1 to
false: the leftmost leaf ¬x1, and then the second leaf of x1

together with all the other leaves of its parent.

Besides its use to encode subformulas obtained by decom-
position, this masking procedure can also be used to compute
1OF bounds for formulas as defined in Sect. 3.3.

Example 15 1OF lower and upper bounds for unate formulas
can be obtained by setting all but one occurrence of each vari-
able to false and true, respectively. This can be implemented
using masking: Both x1 and y1 occur twice in formula Φ
of Fig. 7a; masking the second occurrences of x1 and y1 to
false (true), yields a lower (upper) bound, cf. Fig. 7b, and c,
respectively.

Our approach to masking leaves has proven very effective
in capturing the first two above-mentioned efficiency desider-
ata. To speed it up, and in response to the third desideratum,
we record at each inner node the start and end index of the
leaf nodes under that node in the list of all leaf nodes. The
masking status of leaves is kept in a bitset, with one bit per
leaf. Checking whether all leaves under a given node are
masked then requires to check whether a range of bits in a
bitset is set. Masking is compositional: Subsequent masking
can be added to an existing one by a bitwise-or operation.
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(a) (b) (c)

Fig. 6 Masking for Shannon expansion: Parse tree for Φ, and after masking all occurrences of x1 to true and false, respectively

(a) (b) (c)

Fig. 7 Masking for bounds: Parse tree for Φ, and for bounds of Φ obtained by masking the second x1 and y1 to false and true, respectively

Efficient independent decompositions are implemented
using a linear algorithm for finding connected components
in a graph. We keep a bitset to encode which variables occur
under each child of an and/or-operation. Checking indepen-
dence can then be formulated as bitset intersection. If two
children are not independent, then the explanation is given
by means of variables with bits set in this intersection. Also,
1OF formulas are not decomposed further; instead, we can
directly evaluate their probability in one pass.

5 Experimental evaluation

In this section, we report on experiments with our approxi-
mate and exact techniques and existing techniques used by
probabilistic database management systems. We found that
our approximation technique is consistently more efficient
than sampling-based approximation and offers a reliable, sig-
nificant performance advantage over exact methods, even for
small relative error thresholds. It can also keep pace with
state-of-the-art techniques for tractable queries.
Algorithms. We compare the following algorithms:

MC (Monte Carlo) computes an FPTRAS approximation
of result probabilities. MystiQ [46] uses an MC variant based
on the Karp–Luby unbiased estimator for DNF counting [33].
MayBMS [27] uses the probabilistic adaptation of a version
of the Karp–Luby estimator described by Vazirani [57] which
computes fractional estimates that have smaller variance than
the zero-one estimates of the Karp–Luby estimator. It com-
bines this estimator with the Dagum–Karp–Luby–Ross opti-
mal algorithm for Monte Carlo estimation [9], which deter-
mines the number of invocations of the Karp–Luby estimator
needed to achieve the required bound by running the estima-
tor a small number of times to estimate its mean and variance.
We use the MayBMS implementation and set the probabilis-
tic guarantee to 0.0001.

TRACT is the algorithm implemented in SPROUT for
exact probability computation of tractable queries [39,40].

d-tree and d-treeε are the exact and approximate proba-
bility computation techniques as presented in this article.

Experimental Setup. The experiments were performed on
an AMD 64 x2 Dual Core Processor 4600+ (2.4 GHz), 2 GB
running Linux 3.2.0-32, gcc 4.6.3, JDK1.6. Our algorithms
are implemented in C (for positive queries) and Java/C (for
queries with negation). They are integrated in the SPROUT
query engine, which is an extension of PostgreSQL8.3.3.

Queries are executed in the psql shell and their results
materialized to disk. Each point in the reported plots repre-
sents 25 runs. We used five different seeds to generate random
input probabilities; for each seed, we run the query five times
and report average wall-clock execution times after dropping
the largest and smallest times. For TPC-H queries, we report
the average times and standard deviation over the five seeds.
For the other queries, we only report the average wall-clock
execution times.

Experiment Design. We provide insight into the perfor-
mance of our techniques across a variety of queries.

Queries. We consider four classes of queries: tractable
TPC-H conjunctive queries, intractable (#P-hard) TPC-H
conjunctive queries, intractable conjunctive queries that
express patterns in graphs, and TPC-H queries with negation
and self-joins. Queries and statistics for formulas annotat-
ing their results are given in the electronic supplementary
material.

Probabilistic databases. We generated tuple-independent
TPC-H databases up to scale factor 1 using TPC-H 2.7.0
and annotate tuples with distinct Boolean random variables
whose probabilities are drawn at random. We also used block-
independent-disjoint tables representing graphs as edge rela-
tions with two records for each edge encoding the probability
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Fig. 8 Experiments with tractable TPC-H queries on tuple-
independent TPC-H data with scale factor 1. The graphs compare Monte
Carlo (MC) and d-tree-based (d-treeε ) relative ε-approximations with
exact d-tree-based (d-tree) and TRACT performance. For the experi-
ments d-treeε(0,0.01) and d-treeε(0,1), the probability of each tuple being
present in the database is drawn from the intervals (0, 0.01) and (0, 1),
respectively. The time taken to compute the result tuples and their anno-
tations is depicted in column Φ. The x-axis specifies the queries used.
In queries in (a), aggregations and inequality joins are dropped; queries
in (b) use inequality joins. All approximations are relative with error
ε = 0.01

for being in and missing from the graph. The queries under
consideration also generate complex and highly correlated
formulas that annotate the query results.

Easy-hard-easy pattern. In earlier work [35], we
observed an easy-hard-easy pattern similar to those in com-
binatorial algorithms for propositional satisfiability and con-
straint satisfaction: When the ratio of the number of variables
to formula size is large, the formula readily decomposes into
independent parts. Conversely, if there are only few variables
in a large formula, then a few Shannon expansion steps com-
pletely decompose the formula. In both cases, satisfiability,
model counting, and probability are efficiently computable.
However, in-between there is a critical region of variable-to-
formula-size ratios where probability computation is hard.
There is hence a pitfall in increasing the instance sizes in
experiments: If we do not proportionally add interesting vari-
ability (and increase the probability space), then the instances
get easier rather than harder. On the other hand, an easy-hard-
easy pattern is also good news, because it shows that hard
instances are only restricted to a narrow section of the space
of possible input instances.

Absolute versus relative approximation. For proba-
bilities close to 1, our algorithm behaves similarly for
both absolute and relative approximation. To study rela-
tive approximation, we thus have to construct instances with
small result probabilities. As pointed out in the previous para-
graph, this is not entirely trivial. However, understanding

the properties of relative approximation for our algorithm is
important, since relative approximation is a staple of MC.

Experiments with tractable TPC-H conjunctive queries.
We consider tractable conjunctive queries without self-joins
(1, 15, 1B, 6B, 16B, 17B) and with inequality joins (IQ1B,
IQ4B, IQ6) from the literature [40,39]; queries marked with
“B” are Boolean, i.e., they return the probability that the
query is true. These are modified versions of standard TPC-
H queries without negation and aggregation but with special
aggregates for probability computation. The queries 1, 1B,
6B are selections on the large lineitem table, all other queries
are joins of two large tables (e.g., lineitem with supplier,
orders, or part). Each query IQ1B, IQ4B, and IQ6 joins two
relations using an inequality join and an equality join.

Figure 8 shows the running times of these queries on tuple-
independent probabilistic TPC-H databases of scale factor 1.
As expected, TRACT performs best in most cases, since it
is specifically designed to tackle tractable queries. MC times
out in all cases but query 15 (where the result annotation
consists of three clauses), as it does not exploit the structure of
the annotations for tractable queries for efficient evaluation; it
needs a number of runs proportional to the number of clauses,
even if these clauses are pairwise independent and allow for
trivial probability computation.

The plots show that our exact and approximation algo-
rithms are able to detect the tractable structure in the input
without knowledge of the query. They are very competitive
as they perform about the same or even better than TRACT
in some cases. When they need visibly much more time than
TRACT, it is due to the overhead of searches for indepen-
dence partitioning of the formulas at the leaves and, in case of
approximation, also of lower and upper bounds computation.
In case of query 1 (and its Boolean version, 1B), the formula
is a disjunction of independent literals; by static analysis of
the query, TRACT expects this and can efficiently compute
the overall probability, whereas our algorithms first need to
discover the independence of the literals. d-treeε can be better
than TRACT, e.g., for queries 15, 6B, and IQ6, if it reaches
an approximation in less than linearly many decomposition
steps, as required by TRACT.

A further observation is that most of the execution time
is dedicated to constructing the result tuples and their anno-
tations (leftmost bar, Φ). TRACT even outperforms Φ in
some cases since it can effectively use PostgreSQL’s pipelin-
ing mechanism to access annotations as they are produced
and need not wait for the entire result to materialize.

The standard deviation is small for the exact and approx-
imation algorithms when run over data with five different
seeds for input probabilities. This suggests that similar input
probability distributions lead to similar performance of our
algorithms. When the input probabilities are randomly drawn
from the much smaller interval (0,0.01), d-treeε needs to work
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harder and dig deeper in the decomposition tree to gain prob-
ability mass and it hence makes a small progress with each
decomposition step, e.g., for queries 16B, IQ1B, and IQ6.
In particular, for input probabilities drawn from (0,1), the
probability of query 16B is very close to 1 and d-treeε con-
verges quickly; for input probabilities drawn from (0,0.01),
the query probability is approximately 0.47 and d-treeε takes
longer to converge.

Experiments with intractable TPC-H conjunctive queries.
We consider four Boolean intractable conjunctive queries:
Query 20B is a join on supplier, nation, partsupplier, and part;
query 21B is a join on supplier, lineitem, orders, and nation;
query 2B is a join on part, supplier, partsupplier, nation, and
region; and query 9B is a join on part, supplier, lineitem,
partsupplier, orders, and nation.

Figure 9 depicts the time needed by d-treeε and MC to
compute the approximate probabilities of the four queries.
Our algorithm d-treeε outperforms MC for such queries
on tuple-independent TPC-H data of varying scale factors.
These queries have many joins, which leads to low marginal
probabilities of clauses, while formulas annotating the results
have up to 400 clauses and 1,000 variables (query 20B), up to
75,000 clauses and 150,000 variables (query 21B), up to 640
clauses and 1,600 variables (query 2B), and up to 350,000
clauses and 729,000 variables (query 9B).

Statistics collected from runtime traces show that in gen-
eral, as the size of formulas increases, so does the number
of decomposition steps. However, two scenarios may change
this trend. Firstly, for bound computation, with more input
clauses, both the lower and upper bounds increase while max-
imal values of upper bounds are 1. If upper bounds reach 1
and lower bounds still increase, this can lead to quick con-
vergence. This is for instance the case for query 9B for scale
factor 1. Secondly, the formulas of some TPC-H queries (that

have equality selections with constants) have the property
that very few variables from one input table occur in most of
the clauses. For instance, for queries 20B and 21B, there is
only one variable coming from table nation. After eliminat-
ing this variable, the residual formula has many independent
clauses and the approximation approach captures this and
tightens the lower and upper bounds very quickly. Hence, the
number of decomposition steps constructed remains small
and is not affected by the formula size.

As shown in the bottom-right plot in Fig. 9, most of the
query execution time for d-treeε is spent in the first phase of
constructing the result tuples and their annotations; except
for query 21B, d-treeε needs less than 10 % of the overall
execution time.

The top-right plot in Fig. 9 shows that for query 2B, the
bounds computed at each decomposition step quickly achieve
a relative error of 0.01. The plateau witnessed for scale 0.1
actually represents very small improvements made to both
lower and upper bounds over 60 steps. For scales 0.01, 0.5,
and 1, it converges in maximum five steps.

Experiments with intractable positive graph queries. We
next study queries on databases that encode social networks.
We consider two classes of datasets modeled as block-
independent disjoint tables. The first set consists of synthetic
random graphs where all edges have the same probability Pe.
An undirected random graph with n nodes is a probabilis-
tic database in which the possible worlds are the subgraphs
(obtained by removing zero or more edges) of the n-clique.
In the case of Pe = 1/2, the probability distribution over this
set of possible worlds is uniform and each world has prob-
ability (1/2)n·(n−1). The second class of graph datasets are
well-known social networks taken from the literature: One
is Zachary’s classic “Karate club” [60] with 34 nodes, and
the other represents friendship among a group of dolphins.

Fig. 9 Experiments with intractable TPC-H queries 2B, 9B, 20B, 21B
on tuple-independent tables. The left and middle graphs compare Monte
Carlo-based (MC) and d-tree-based (d-treeε ) relative ε-approximation
performance for TPC-H scale factors 0.01 through 1; the timeout is
set to 300 s. The bottom-right figure shows the percentage of the total

query answering time taken by approximate probability computation
with d-treeε=0.01 for the four queries. The top-right figure shows the
convergence of lower and upper bounds (y-axis) after each decompo-
sition step (x-axis) for d-treeε=0.01, query 2B and scales 0.05, 0.1, 0.5,
1; scale 0.01 behaves similarly to 0.5
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Fig. 10 Experiments with graph queries on social networks

The social networks generalize random graphs in that some
edges are missing with certainty, and the remaining edges
have varying probability of being present in the graph. The
idea here is that friendship between nodes is established by
observation and there may be a varying degree of confidence
in that a pair of nodes are friends (for dolphins), or varying
degrees of friendship (for karatekas).

The four queries in our experiments detect the following
patterns in graphs: triangles (G�), paths of length 2 (G P2),
paths of length 3 (G P3), and pairs of nodes that have at most
two degrees of separation (GS).

Our experimental results for queries on social networks
and random graphs are reported in Figs. 10 and 11. In
case of random graphs, for large edge probabilities (above
0.5), d-treeε converges quickly, since each clause has a non-
negligible marginal probability. When we consider smaller
edge probabilities (below 0.1), d-tree needs more time to con-
verge, especially for queries involving more joins (such as
the path queries). We witness an easy-hard-easy pattern for
edge probabilities of 0.3 in case of G� and G P2.

It is worth pointing out that while the random graphs and
social networks used here (on the order of 50 nodes) may
not seem very large, they are actually substantial; a 40-nodes
random graph has up to 780 edges. The triangle query uses a
three-way self-join and generates a formula of 780 variables
and 9,880 clauses; the path query G P2 uses a three-way self-
join and generates 60,000 clauses; the path query G P3 uses
a six-way self-join.

Fig. 11 Experiments with graph queries on random graphs. Pe is the
probability for each edge to be in the graph

Experiments with TPC-H queries with negation. Let us
now turn to queries with negation. We investigate four such
queries on tuple-independent TPC-H databases: N1 lists all
parts that were only ever sold at quantities of at least five per
order; N2 lists all parts that were only ever sold at quantities
of at least five per order and whose availability is smaller
than 8,500 at all suppliers; N3 lists all suppliers that offer all
parts with certain brand and size; and N4 lists all redundant
suppliers, i.e., suppliers for parts that are also available from
another supplier.

The number of tuples in the query answers is at least one
order of magnitude larger than in the deterministic case. This
is because tuples that do not qualify in the answer to a dif-
ference operation in the deterministic case may qualify with
a nonzero probability in the probabilistic case. We note that
this is specific to queries with difference and does not happen
for positive queries.

Another aspect concerns the size of annotations in query
results. For all queries but N3, the average size stabilizes
when the scale factor increases. This is inherent to TPC-
H data: The number of input tuples that participate in the
generation of one answer tuple remains roughly constant in
case of our queries, regardless of the database size. However,
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the number of result tuples increases. The size of N3’s answer
is expected to increase with the scale factor as it depends on
the number of suppliers.

Regarding running time, the computation of the answer
tuples and their annotations is rather close to the determinis-
tic case for our queries, since in both cases, the queries have
to “touch” all the relevant input tuples and most of the inter-
mediate tuples. The overhead due to the materialization of
more tuples in the answer and to the computation and mate-
rialization of the annotations is below 100 % for N1, N2, and
N4, but becomes one order of magnitude for N3.

Figure 12 compares the d-tree and d-treeε algorithms
for queries N1, N2, N3, N4 on the TPC-H datasets. Queries
N1 and N2 are tractable [20], and both the exact and approx-
imate d-tree algorithms perform within 10 seconds for scale
factor 1. Although the answer sizes increase linearly with the
scale factor, the average annotation size stays nearly constant
(between 30 and 40 bytes); thus, the performance of proba-
bility computation is of the same order of magnitude for all
scales. Query N3 exhibits a considerable performance gap
between exact and approximation computation: d-treeε per-
forms better than d-tree, since it can find good 1OF bounds
and stops.

Averaging over runs with different randomly assigned
probabilities to input variables yields runtime standard devi-
ation of less than 10 % in case of query N3. However, we
found this variation to be of the same order of magnitude
as the runtime fluctuation over different runs with the same
probability assignments to the input variables.

We verified the effectiveness of our heuristic for com-
puting 1OF lower and upper bounds. In all scenarios with
hard queries (N3, N4), all computed bounds were non-trivial,
except for non-unate formulas where we first had to apply
Shannon expansion on the variables occurring with both
polarities. Non-trivial means here that the lower bound is
not 0, unless the upper bound is also zero, and similarly, the
upper bound is not 1, unless the lower bound is also 1.

Fig. 12 Performance of probability computation in the TPC-H sce-
nario for queries with negation. All experiments use a relative error
ε = 10−4

The lower and upper bounds are also tight. We recorded
all bounds over all the experiments and computed the mean
10−4 and standard deviation 10−2 of their gaps.

6 Related work

We next survey related work on model-based approximations
and approximate computation in #SAT and databases.
Model-based Approximations. The closest in spirit to this
work on model-based bounds is by Selman on approximating
CNF theories by model-based lower and upper bound con-
junctions of Horn clauses [50]. The languages iDNF and 1OF
used in this article are incomparable to conjunctions of Horn
clauses and are natural in the context of probability compu-
tation due to their efficiency and connection to tractability of
query evaluation in probabilistic databases.

The 1OF language has a long history and many names,
such as read-once functions [23], fanout-free functions, or
non-repeating trees [44], and also many applications includ-
ing logic synthesis and circuit design [44] and probabilistic
databases [38]. Problems such as satisfiability, model count-
ing, and probability computation are hard for general propo-
sitional formulas but tractable for 1OF formulas. The equiv-
alent 1OF of any positive DNF formula, if it exists, can be
found in polynomial time [23] and is unique up to commu-
tativity of the binary connectives [44]. The 1OF language
is particularly relevant in the context of probabilistic data-
bases, since the formulas annotating the results of tractable
conjunctive queries without repeating relation symbols on
tuple-independent probabilistic databases admit 1OF equiv-
alents [38,51] and their probability can be computed using
relational query plans [11,40].

Beyond 1OF, tractability of probability computation is lost
quickly. It is NP-hard to decide if a positive formula admits
a read-twice equivalent formula, i.e., a formula where every
variable occurs at most twice [16]; this is still open for pos-
itive DNF formulas. For read-4 formulas, model counting,
and hence probability computation, is #P-hard [56].

A different direction is to consider complete languages
to express the bounds, i.e., languages that can represent any
propositional formula and that still allow for efficient prob-
ability computation. A prime example of such languages is
the family of Binary Decision Diagrams, including OBDDs,
FBDDs, and d-DNNFs [13]. Such languages allow for several
equivalent representations of a formula but with an exponen-
tial gap between their sizes. Finding a minimal representation
in any of these languages is NP-hard [37]. D-trees generalize
ws-trees [35] with independent-and decompositions, which
are crucial for the treatment of tractable queries because they
capture 1OF formulas [38]. We have also generalized the for-
malism to partial decompositions, which are the foundation
of the approximation techniques in Sect. 4.2. The and/xor
trees of [36] are modeled on the ws-trees but are a weaker
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representation system in that they have tuples, rather than
clauses, at their leaves.

An alternative approach to computing upper probability
bounds for positive DNF formulas has been proposed in the
context of propagation scores of conjunctive queries [22].
These bounds are not model-based, and in particular not opti-
mal. Although the formulas annotating query results can be
used to compute upper bounds on their probabilities, their
interpretation is non-standard: Each occurrence of a vari-
able v is considered a fresh variable with the same probabil-
ity as v. Arbitrary positive DNF formulas are thus seen as
iDNF formulas. One subtlety regarding the applicability of
this method to formulas annotating results of queries with
self-joins concerns clauses with multiple occurrences of the
same variable. Consider the formulaΦ = (x ∨ y)∧ x , where
x occurs twice. This approach would thus consider instead
the formulaΦ ′ = (x1∨ y)∧ x2, where x1 and x2 are distinct
but have the probability of x . Since Φ = x , it follows that
Φ ′ is not an upper bound of Φ, but in fact a lower bound.
Whereas in a DNF representation we could trivially remove
such redundancies, this is not always possible for nested for-
mulas without an exponential blowup in the formula size. A
possible approach that is easy to integrate in our algorithm is
as follows: We detect clauses with multiple occurrences of
the same variable x by checking whether any two leaves of
x have an and-operation as a common ancestor. If this is the
case, we replace one of the occurrences by true and mask.

Ré and Suciu discuss model-based lower bounds and Tay-
lor/Fourier approximation of positive DNF formulas [47].
Their focus is on compressing a DNF formula by eliminat-
ing subformulas that only account for up to a given threshold
of its probability mass.

Application to provenance databases. Besides probabilis-
tic databases, our model-based approximations can also ben-
efit provenance management for annotated databases. Sim-
ilarly to the probabilistic case, formulas annotating query
results encode symbolically all possible explanations for the
existence of a tuple in the query answer in terms of com-
binations of the input tuples and can be interpreted as the
provenance of query results. Provenance bounds can then
represent coarser, more compact, and efficiently computable
explanations of the query result. Lower bounds are correct
but possibly incomplete explanations, while upper bounds are
complete but potentially incorrect explanations in the follow-
ing sense: Every explanation for a lower bound is necessarily
an explanation for the result; however, there may exist expla-
nations for the result that are not explanations for the lower
bound. The situation for upper bounds is symmetric.

Application to relational databases. Existing work on
approximate query answering in relational databases con-
siders the use of synopses (histograms, join synopses, and
wavelets) to speedup the evaluation of aggregate queries

with the goal of quickly reporting the leading digits of the
answers. A survey of these synopsis-based techniques has
been recently compiled [8]. Their focus is not on deriving
optimal bounds within a given language.

Given a query Q in a query language L , our approxi-
mation problem in the relational setting is to compute two
queries QL and QU in a query language L ′ such that
QL(D) ⊆ Q(D) ⊆ QU (D) for any relational database D
and the computational complexity for L ′ is lower than for
L . Within this framework, recent work characterizes lower
bounds for conjunctive queries where the bounds themselves
are expressed as conjunctive queries [4,19].

#SAT. There is a wealth of literature on approximate
and exact techniques for model counting used in #SAT
solvers [24]. Some of these techniques consider formulas
with various restrictions (such as bounded treewidth) or focus
on lower-bounding in extremely large combinatorial prob-
lems, with bounds off the true count by many orders of mag-
nitude, e.g., [59]. Extensions of the Davis–Putnam proce-
dure (which is based on Shannon expansion) have been used
for counting the solutions to formulas [5]. The decompos-
able Negation Normal Form [13] (and variations thereof) is
a propositional theory with efficient model counting, which
uses Shannon expansion and independence partitioning. Our
previous work [35] uses similar ideas to design an exact prob-
ability computation algorithm, although without polynomial-
time guarantees for tractable queries. These approaches do
not consider model-based approximation of propositional
formulas. Our decomposition approach shares ideas with
these techniques, yet two of its main aspects remain novel: (1)
the combination of incremental compilation and of model-
based bounds for fast approximate computation with error
guarantees, and (2) polynomial-time evaluation for classes
of tractable queries on probabilistic databases.

A different line of research is on randomised approxi-
mation algorithms. It was first shown by Karp, Luby, and
Madras [33] that there is a fully polynomial-time randomised
approximation scheme (FPTRAS) for DNF counting based
on Monte Carlo simulation. This algorithm can be modi-
fied to compute the probability of a DNF over independent
discrete random variables [12,25,34,46]. These techniques
yield an efficiently computable unbiased estimator that in
expectation returns the probability p of a DNF of n clauses
such that computing the average of a polynomial number of
such Monte Carlo steps (which are calls to the Karp–Luby
unbiased estimator) is an (ε, δ)-approximation for the prob-
ability (i.e., a relative approximation): If the average p̂ is
taken over at least �3 · n · log(2/δ)/ε2� Monte Carlo steps,
then Pr

[|p − p̂| ≥ ε · p
] ≤ δ.

In contrast to our algorithm, the Monte Carlo algorithm
runs in polynomial time, yet it has the following limita-
tions: (1) It can only guarantee probabilistically the computed
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approximation; (2) running one more Monte Carlo step does
not necessarily lead to a refinement of probability bounds,
and hence the approximation is not truly incremental [53]; (3)
it only works for DNF formulas; (4) it sees the input as a black
box and does not exploit their structure for faster evalua-
tion [35]. Limitations (1) and (2) have been shown to be a fun-
damental constraint for its applicability to ranking in proba-
bilistic databases [43]. In order to decide the relative rank of
two answer tuples, it suffices to approximate their probability
intervals until they are disjoint; this requires the approxima-
tion to be both deterministic and incremental. Limitation (3)
prohibits the use of the Monte Carlo algorithm for queries
with negation. Limitation (4) means that it does not under-
stand tractable queries and cannot distinguish between struc-
turally simple (such as when the ratio of clauses to variables
is very small or very large) and complex formulas.

The work by Karp, Luby, and Madras has started a line
of research to derandomise these approximation techniques,
eventually leading to a polynomial time deterministic (ε, 0)-
approximation algorithm [54] (for k-DNF, i.e., the size of
clauses is bounded, which is not an unrealistic assumption
for probabilistic databases, where k is bounded by the number
of joins for DNFs constructed by positive relational algebra).
However, the constant in this algorithm is astronomical: This
constant is above 250 for 3-DNF.

Probabilistic databases. Query evaluation is a core task
in probabilistic databases, and restricted instances of this
problem have been much investigated in recent years [53].
Common restrictions consider conjunctive queries with-
out self-joins and tuple-independent databases, e.g. [12,40].
Beyond these restrictions, there is work on tractability of
positive queries [10], on queries with aggregates [17,48]
and with negation [20,58]. The approximate probability
computation algorithm described in this article is used by
the SPROUT query engine [18] to complement its opti-
mized exact algorithm for tractable conjunctive queries with-
out self-joins [40]. It considers relational algebra queries
and pc-tables that go beyond these restrictions. This arti-
cle unifies work reported previously on decomposition-based
approximation for positive queries [41] and for queries with
negation [20] and on model-based approximation [19]. The
approximation algorithms used by the probabilistic data-
base management systems MystiQ [46], MayBMS [27], and
MCDB [29] are variations of the Monte Carlo algorithm pre-
sented above. Although used for probability computation and
not for modeling purposes, the decomposition trees resemble
the probabilistic XML model with independence and mutex
inner nodes and data values at leaves [1].

More recent work extends the probability computation
framework presented in this article. ProApproX evaluates
queries on probabilistic XML [52], where the formula anno-
tating the query answer is compiled into a restricted d-tree

without using Shannon expansion. Using cost-based heuris-
tics, different approximation algorithms, including the Monte
Carlo algorithm discussed above, are run at the leaves; the
bounds at the leaves are then used to derive overall probability
bounds as discussed in Sect. 4. Top-k queries can be evalu-
ated by incrementally approximating the probabilities of the
results using our anytime algorithm until the lower bounds of
k tuples are greater than the upper bounds of the remaining
tuples [43]. Our model-based bounds were also used for first-
order formulas, as recently proposed for top-k query evalu-
ation in the presence of non-materialized views [15]. The
d-tree formalism can support sensitivity analysis and expla-
nation for queries [32] by efficiently computing the result
probability in the face of changes to the input probabilities.
An extension of our framework has been recently proposed to
compile expressions over semirings and semimodules such
as those defining the exact probabilities of queries with aggre-
gates in probabilistic databases [2,17].

7 Conclusion and future work

This article presents an approximation algorithm for comput-
ing probabilities of propositional formulas over discrete ran-
dom variables. This is used by the SPROUT query engine to
compute confidences in results to relational queries on prob-
abilistic databases. Approximation is key to scalable query
evaluation in probabilistic databases since already simple
queries have #P-hard data complexity.

The proposed approximation algorithm has two key ingre-
dients: an incremental decomposition of formulas into inde-
pendent or mutually exclusive subformulas, and an approach
to compute model-based bounds on these subformulas and to
use them to derive lower and upper bounds on the probability
of the input formula. Together, the two components give rise
to an anytime, memory-efficient approximation algorithm
with relative or absolute error guarantees.

Extensions of the decomposition tree formalism and
the model-based bounds put forward in this article have
been used in the context of probabilistic databases for the
exact evaluation of top-k queries [15,43] and of queries
with aggregates [17], for approximate query evaluation over
probabilistic XML [52], for explaining query tractability
via linear-size d-trees [30,38,39], for conditioning proba-
bilistic databases [35] and for explanation and sensitivity
analysis [32].

The investigation of approximate probability computa-
tion for queries with aggregates via d-trees for semiring and
semimodule expressions [2] is compelling since the perfor-
mance of exact computation for such queries is prohibitively
low. Another promising extension of this work is to consider
model bounds with respect to more expressive formula lan-
guages such as decision diagrams.
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Appendix A: Proofs

This section contains proofs of formal statements in previ-
ous sections. Due to space constraints, further proofs can be
found in the electronic supplementary material.

A.1 Proof of Theorem 1

Let us first show the direction MLB ⇒ GLB. Let Φ be an
irreducible positive DNF formula and ΦL an MLB for Φ.
Assume ΦL is no GLB for Φ. Then, there exists an iDNF
formulaΦ ′L such that M (ΦL) ⊂M (Φ ′L) ⊆M (Φ) and the
following properties hold:

(i) ΦL ⊆ Φ (every clause in ΦL is also a clause in Φ)
(ii) Every clause ϕ inΦ and not inΦL contains a conflicting

variable, i.e., a variable x ∈ ϕ such that there exists a
clause ϕ̄L ∈ ΦL with x ∈ ϕL (ΦL is MLB for Φ)

(iii) ∀ϕ′L ∈ Φ ′L : ∃ϕ ∈ Φ : ϕ′L ⊇ ϕ (Φ ′L |
 Φ and
Lemma 1)

(iv) ∀ϕL ∈ ΦL : ∃ϕ′L ∈ Φ ′L : ϕL ⊇ ϕ′L (ΦL |
 Φ ′L and
Lemma 1)

(v) No two clauses ϕ, ϕ̄ ∈ Φ satisfy ϕ |
 ϕ̄ (Φ is irre-
ducible)

Properties (i) and (ii) follow from ΦL being an MLB for
Φ, (iii)–(iv) from M (ΦL) ⊂ M (Φ ′L) ⊆ M (Φ). We prove
that ΦL is equivalent to Φ ′L by case differentiation:

Case 1 � ∈ Φ. Then, since � has no conflicting variables
with any other clause, it follows that � ∈ ΦL and thus we
have M (ΦL) =M (Φ ′L) =M (Φ)which is a contradiction
to the assumption that ΦL is no GLB for Φ.

Case 2 � �∈ Φ. Let ϕ′L ∈ Φ ′L be any clause in Φ ′L and
ϕ ∈ Φ a clause such that ϕ′L ⊇ ϕ according to (iii). With
respect to property (i), we have the following two cases:
Case 2(a) ϕ ∈ ΦL . Let ϕ̄′L ∈ Φ ′L be a clause with ϕ ⊇ ϕ̄′L
according to (iv). Together with ϕ′L ⊆ ϕ from above, we
have ϕ̄′L ⊇ ϕ ⊇ ϕ′L , and since none of ϕ, ϕ′L , ϕ̄′L can be
the empty clause (see case 1), ϕ′L and ϕ̄′L must share at least
one variable. Since Φ ′L ∈ iDNF, it follows that ϕ′L and ϕ̄′L
are the same clause. Thus, ϕ ⊇ ϕ̄′L = ϕ′L ⊇ ϕ, i.e., ϕ = ϕ′L .
It follows that ΦL = Φ ′L which is a contradiction to the
assumption M (ΦL) ⊂M (Φ ′L).

Case 2(b) ϕ �∈ ΦL . According to (ii), there is a variable
x ∈ ϕ such that there exists a clause ϕL ∈ ΦL with x ∈ ϕL ;
furthermore, ϕL ∈ Φ due to (i). From ϕ′L ⊇ ϕ, it follows x ∈

ϕ′L . From (iv), it follows that there exist a clause ϕ̄′L ∈ Φ ′L
such that ϕL ⊇ ϕ̄′L . We distinguish two cases:

Case 2(b) i x ∈ ϕ̄′L . It follows ϕ̄′L = ϕ′L , because Φ ′L ∈
iDNF. From ϕL ⊇ ϕ̄′L = ϕ′L ⊇ ϕ, it follows that ϕL ⊇ ϕ.
Since ϕL , ϕ ∈ Φ, this is a contradiction to the assumption
that Φ is irreducible, property (v).

Case 2(b) ii x �∈ ϕ̄′L . Then, according to (iii), there is
a ϕ̄ ∈ Φ with ϕ̄′L ⊇ ϕ̄ and thus x �∈ Φ which in turn
implies ϕ̄ �= ϕ because x ∈ ϕ. Transitivity of ⊇ implies
ϕL ⊇ ϕ̄ which is a contradiction to the assumption that Φ is
irreducible, property (v).

Secondly, we prove the direction GLB⇒MLB. Assume
that a GLB ΦL for Φ is no MLB for Φ. Then, at least one
of the two MLB properties in Definition 2 is unsatisfied. We
show that in either case, ΦL is no GLB for Φ.

Case 1 Assume ΦL �⊆ Φ. Then, ΦL contains a clause ϕL

that is not in Φ.

Case 1(a) If there is a clause ϕ ∈ Φ such that ϕL ⊇ ϕ, then
ϕL ⊃ ϕ. Let x be a variable that occurs in ϕL but not in
ϕ. Then, the iDNF formula obtained from ΦL by removing
the variable x from ϕ has strictly more models than ΦL , and
thus, ΦL is no GLB for Φ.

Case 1(b) If there is no such clause, thenΦL �|
 Φ following
Lemma 1 and thus ΦL is no lower bound and in particular
no greatest lower bound for Φ.

Case 2 If there is a clause ϕ ∈ Φ such thatΦL ∪{ϕ} ∈ iDNF,
then M (ΦL) ⊂M (ΦL ∪{ϕ}) because none of the variables
in ϕ occur in ΦL and thus ΦL is no GLB for Φ.

A.2 Proof of Theorem 2

We use a graph representation of the witness relationships
between clauses, cf. Fig. 13. The clauses are the nodes of the
graph, and there is a directed edge between two clauses ϕ
and ψ whenever ϕ |
 ψ , i.e., ϕ is a witness of ψ .

MUB ⇒ LUB. Assume ΦU is an MUB for Φ but not an
LUB forΦ. Then, there exists a better iDNF upper boundΦ ′U
for Φ that satisfies M (Φ) ⊆ M (Φ ′U ) ⊂ M (ΦU ). Using
Lemma 1, the second inclusion unfolds to:

Z M (Φ ′U ) ⊂M (ΦU )

iff M (Φ ′U ) ⊆M (ΦU )and not M (ΦU ) ⊆M (Φ ′U )
iff ∀ϕ′U ∈ Φ ′U : ∃ϕU ∈ ΦU : ϕ′U ⊇ ϕU

and ∃ϕU ∈ ΦU : ∀ϕ′U ∈ Φ ′U : ¬(ϕU ⊇ ϕ′U ).
By collecting the assumptions and unfolding the definitions:

(i) ∀ϕ ∈ Φ : ∃ϕ′U ∈ Φ ′U : ϕ ⊇ ϕ′U (Φ |
 Φ ′U )
(ii) ∀ϕ ∈ Φ : ∃ϕU ∈ ΦU : ϕ ⊇ ϕU (Φ |
 ΦU )

(iii) ∀ϕ′U ∈ Φ ′U : ∃ϕU ∈ ΦU : ϕ′U ⊇ ϕU (Φ ′U |
 ΦU )
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(a)

(b)

Fig. 13 Witness graphs used in the proof of Theorem 2

(iv) ∃ϕU ∈ ΦU : ∀ϕ′U ∈ Φ ′U : ¬(ϕU ⊇ ϕ′U ) (ΦU �|
 Φ ′U )
(v) There is no clause ϕU ∈ ΦU that can be extended by a

variable from vars(Φ) and the resulting formula is still
in iDNF and implied by Φ

(vi) Every ϕ ∈ Φ is a witness for at least one clause ϕU ∈
ΦU , i.e., Φ |
 ΦU according to Lemma 1

(vii) Every clause ϕU ∈ ΦU has a critical witness in Φ.

Sentences (i)–(iv) are due to the assumption thatΦU is upper
bound but no LUB for Φ and sentences (v)–(vii) are the
syntactical characterization of the MUB property of ΦU .

Let ϕU ∈ ΦU be as in (iv). Let ϕ′U ∈ Φ ′U be a clause in
Φ ′U that shares a variable with ϕU . If no such clause exists,
then by transitivity of ⊇ and ΦU , Φ

′
U ∈ iDNF, ΦU cannot

have a witness in Φ which is a contradiction to (vii).
Then, since ΦU , Φ

′
U ∈ iDNF, ϕU can be the only clause

in ΦU that satisfies sentence (iii) and together with ¬(ϕU ⊇
ϕ′U ) from (iv) we can conclude ϕ′U ⊃ ϕU . Let x be a variable
that occurs in ϕ′U , but not in ϕU . We show a contradiction to
the above sentences (i)–(vii) by case differentiation:

Case 1 x �∈ ΦU . According to (vii), ϕU has a critical witness
w ∈ Φ. Consider Fig. 13a.

Case 1(a) w |
 ϕ′U . Then, ϕU can be extended by x , and the
resulting formula is still in iDNF and implied by Φ. This is
a contradiction to (v).

Case 1(b) If w �|
 ϕ′U . Then, according to (i), there is a
ϕ̄′U ∈ Φ ′U such that w |
 ϕ̄′U . Since Φ ′U ∈ iDNF, ϕ′U and
ϕ̄′U share no variables; due to (iii), there must be a ϕ̄U ∈ ΦU

which is implied by ϕ̄′U and is different from ϕU due to the
iDNF property ofΦU . From the transitivity of the implication
relation, it follows w |
 ϕ̄U which is a contradiction to the
assumption that w is a critical witness for ϕU .

Case 2 x ∈ ΦU . Let ϕ̄U ∈ ΦU such that x ∈ ϕ̄U , and w ∈ Φ
be a critical witness for ϕ̄U . Consider Fig. 13b.

Case 2(a) w |
 ϕ′U . As above, transitivity of |
 implies
w |
 ϕU which is a contradiction to the assumption that w
is a critical witness for ϕ̄U .

Case 2(b) w �|
 ϕ′U . Then, according to (i), there is a
ϕ̄′U ∈ Φ ′U such that w |
 ϕ̄′U . Since x ∈ ϕ′U and Φ ′U ∈
iDNF, ϕ̄′U does not contain the variable x ; due to (iii), there
must be a ϕ̂U ∈ ΦU which is implied by ϕ̄′U and does thus
not contain the variable x and is hence different from ϕ̄U .
Transitivity of |
 implies w |
 ϕ̂U which is a contradiction
to the assumption that w is a critical witness for ϕ̄U .

This completes the proof for the direction MUB⇒ LUB.
LUB⇒MUB. AssumeΦU is no MUB forΦ. We need to

show that whenever any of the three conditions in Definition
5 does not hold, then ΦU is no LUB for Φ.
Case 1 If there is a clause in Φ which is not a witness of
clauses in ΦU , then Φ �|
 ΦU and thus ΦU is no upper
bound for Φ and in particular no least upper bound.
Case 2 Let x be a variable such that a clause ϕU ∈ ΦU

can be extended by x and the resulting formula is in iDNF
and implied by Φ. It is clear that x does not occur in ΦU ,
because otherwise it would not be possible to extend the for-
mula without violating the iDNF property. Then, the assign-
ment with x ← false and all other variables true is a model
of ΦU but no model of the extended formula Φext

U . Thus,
M (Φext

U ) ⊂M (ΦU ) and ΦU is no LUB for Φ.
Case 3 Let ϕU ∈ ΦU be a clause without a critical witness in
Φ. Then, removing ϕU from ΦU creates a formula Φ̄U with
the following properties:

(i) Since ΦU is an iDNF formula, removing ϕU creates a
formula with strictly fewer models than ΦU .

(ii) Since all witnesses of ϕU are non-critical, they
imply other clauses in ΦU as well. Hence Φ̄U is
still implied by Φ.
Φ̄U is a better upper bound for Φ and ΦU is no LUB.

A.3 Proof of Theorem 3

The proof of Theorem 3 comprises three parts: (i) Every
formula returned by Algorithm 2 is an MUB, (ii) no two for-
mulas returned by the algorithm are equivalent, and (iii) the
delay between returning consecutive MUBs is polynomial in
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the size of the input formula. Properties (i) and (ii) are shown
in Lemmata 4 and 5. Regarding (iii), let us consider the tree
corresponding to the execution trace of the algorithm, where
each iteration of the for-loop generates a new branch and
each recursive call generates a child node; the leaves of the
tree represent the MUBs discovered. The algorithm explores
this tree in depth-first order. On each branch, the number of
recursions and hence the height of the tree is bounded by the
number n of clauses of the input formula. The formulas ΦR ,
{ϕ\vars(ψ) | ϕ ∈ ΦR ∧ ϕ �= ψ}, and ΦU ∪ {ψ} can be
constructed in time at most quadratic in n (and linear in the
max-arity ofΦ). Hence, the time required to traverse the tree
from the root to a leaf is bounded by O(n3) and constitutes
an upper bound for the delay between consecutive MUBs.

Lemma 4 Each formula returned by Algorithm 2 is an iDNF
minimal upper bound for the input formula Φ.

Proof by induction. Base case: If PolyMub is called with a
(possibly empty) clauseΦ, then it returnsΦ as its only MUB.

For the induction step, let ψ be a clause and Φ a DNF
formula such that ψ ∨ Φ is irreducible, and let Φr(ψ) be
the formula obtained fromΦ by removing all occurrences of
variables of ψ , i.e.Φr(ψ) = {ϕ\vars(ψ) | ϕ ∈ Φ}; we prove
the following property: If Φr(ψ)

U is an MUB for Φr(ψ), then

ϕ ∨ Φr(ψ)
U is an MUB for ψ ∨ Φ. This composition prop-

erty is exactly the induction step showing that PolyMub
constructs MUBs.

Let ψ , Φ, Φr(ψ) be as above, and let Φr(ψ)
U be an MUB

for Φr(ψ). Then, Φr(ψ)
U is an iDNF formula and satisfies

the upper bound, maximality, and criticality conditions from
Definition 5 with respect toΦr(ψ). It remains to be shown that
ψ ∨Φr(ψ)

U is an iDNF formula and satisfies those three con-
ditions with respect to ψ ∨ Φ. First, for the iDNF property:
Since Φr(ψ) does not contain variables from ψ , and since
Φ

r(ψ)
U is an MUB for Φr(ψ), it follows that ψ and Φr(ψ)

U do

not share variables, and thus ψ ∨Φr(ψ)
U is an iDNF formula.

Upper bound. We need to show that every clause in ψ ∨ Φ
implies a clause in U = ψ ∨ Φr(ψ)

U (cf. Lemma 1). For
ψ , this is evident. By transitivity of |
, and the fact that
Φr(ψ) |
 Φ

r(ψ)
U by induction hypothesis, it suffices to show

Φ |
 Φr(ψ). Let ϕ be a clause in Φ; then ϕ\vars(ψ) is a
clause in Φr(ψ) and is implied by ϕ (cf. Proposition 2).

Maximality. We show that every clause in U = ψ ∨ Φr(ψ)
U

is maximal. By induction hypothesis,Φr(ψ)
U is maximal with

respect toΦr(ψ) and variables vars(Φr(ψ)); moreover,Φr(ψ)
U

is also maximal with respect toΦ, since it cannot be extended
by any of the remaining variables vars(ψ), sinceψ is a clause
in U and this extension would violate the iDNF property of
U . ψ cannot be extended by a variable from vars(Φ), as it
would violate the upper bound property: Since Φr(ψ)

U does

not contain any variable from vars(ψ),ψ only implies clause
ψ in U . Any extension toψ would invalidate this implication.

Criticality. It needs to be shown that every clause in U =
ψ ∨ Φr(ψ)

U has a critical witness in ψ ∨ Φ. Since ψ ∨ Φ is
irreducible, ψ is the only witness for ψ ∈ U . Now let ϕ be a
clause inΦr(ψ)

U ; ϕ is not implied byψ since they do not share
any variables. We still need to show that ϕ has a critical wit-
ness in Φ. By induction hypothesis, ϕ has a critical witness
w ∈ Φr(ψ); let we(ψ) ∈ Φ be the clause w extended by vari-
ables from vars(ψ). we(ψ) is a critical witness for ϕ, since:
(i) we(ψ) cannot imply a different clause ϕ′ ∈ Φr(ψ)

U , since
ϕ′ does not contain variables from vars(ψ) and w does not
imply ϕ′; (ii)we(ψ) cannot implyψ , since this would require
ψ ⊂ we(ψ) and henceψ ∨Φ would not be irreducible which
is a contradiction to our initial assumptions. !"

Lemma 5 Let Φ and Ψ be two formulas returned by Algo-
rithm 2. Then Φ �≡ Ψ .

Proof Φ andΨ are irreducible since they are iDNF formulas
by Lemma 4. By construction,Φ and Ψ contain two distinct
clauses ϕ and ψ that share a variable x . Since Φ and Ψ are
iDNF formulas, we thus have ϕ ∈ Φ, ϕ �∈ Ψ , ψ ∈ Ψ , and
ψ �∈ Φ; it then follows from Corollary 1 that Φ �≡ Ψ . !"

A.4 Proof of Lemma 3

Consider the point interval of each open leaf be [x, x], where
x is a distinct variable. The upper and lower bounds of T
can be then expressed as functions fU and fL , respectively,
of such variables. We show that for each such variable x ,
∂( fU− fL )

∂x ≤ 0 and hence fU − fL is maximized when x is
minimized. That is, when x = L , where L is the lower bound
of that open leaf.

We denote by f n
U and f n

L the lower and upper bound func-
tions in variable x for a node at depth n. These functions are
linear: f n

U = an
U · x + bn

U and f n
L = an

L · x + bn
L .

Base case: Open leaf with variable x , depth n, and f n
U =

f n
L = x . Then,

∂( f n
U− f n

L )

∂x = 1− 1 = 0.
Assume now the property holds at a node c at level j + 1,

and c is an ancestor of the open leaf with x or that open leaf.
We show that the property also holds at the parent of c (and
depth j).
Case 1 The parent of c is a ⊕ node: ⊕(c1, . . . , ck), where c
is one of c1, . . . , ck . Then,

f j
U = f j+1

U + αU = a j+1
U · x + b j+1

U + αU

f j
L = f j+1

L + αL = a j+1
L · x + b j+1

L + αL
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where αU and αL represent the sum of the upper bounds, and
lower bounds, respectively, of all the siblings of c. We then

immediately have that
∂( f j

U− f j
L )

∂x = a j+1
U − a j+1

L ≤ 0.

Case 2 The parent of c is a� node:�(c1, . . . , ck), where c
is one of c1, . . . , ck . Recall that we only consider restricted
� nodes, where at most one child is not a clause and can have
different values for lower and upper bounds. If this child is
c, let q be the product of the (exact) probabilities of all other
children. Then, a j

U = a j+1
U · q and a j

L = a j+1
L · q and thus

the inequality a j
U − a j

L ≤ 0 is preserved.
Case 3 The parent of c is a ⊗ node: ⊗(c1, . . . , ck), where c
is one of c1, . . . , ck . Let

αL =
k
�

i=1,ci �=c
(1− L(ci )), αU = k

�
i=1,ci �=c

(1−U (ci ))

where L(ci ) and U (ci ) represent the formulas for the lower
and upper bounds, respectively, of node ci . Given that
L(ci ) ≤ U (ci ) for each node ci , it holds that αL ≤ αU .
Then,

f j
U = 1− αU · (1− f j+1

U )

= αU · a j+1
U · x + 1− αU + αU · b j+1

U

f j
L = 1− αL · (1− f j+1

L )

= αL · a j+1
L · x + 1− αL + αL · b j+1

L

∂( f j
U − f j

L )

∂x
= αU · a j+1

U − αL · a j+1
L ≤ 0.

The latter inequality holds since αU ≤ αL (as discussed
above) and a j+1

U ≤ a j+1
L (by hypothesis).

For relative approximation, we need to find x that maxi-
mizes (1−ε)·U−(1+ε)·L . This holds by a straightforward
extension of the previous proof: The coefficient of x is shown
to be greater in L than in U for U − L . Since 1− ε ≤ 1+ ε,
this property is preserved.
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