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Abstract Maximal clique enumeration is a fundamen-

tal problem in graph theory and has been extensively

studied. However, maximal clique enumeration is time-

consuming in large graphs and always returns enormous

cliques with large overlaps. Motivated by this, in this

paper, we study the diversified top-k clique search prob-

lem which is to find top-k cliques that can cover most

number of nodes in the graph. Diversified top-k clique

search can be widely used in a lot of applications includ-

ing community search, motif discovery, and anomaly

detection in large graphs. A naive solution for diversi-

fied top-k clique search is to keep all maximal cliques

in memory and then find k of them that cover most

nodes in the graph by using the approximate greedy

max k-cover algorithm. However, such a solution is im-

practical when the graph is large. In this paper, instead

of keeping all maximal cliques in memory, we devise an

algorithm to maintain k candidates in the process of

maximal clique enumeration. Our algorithm has limited

memory footprint and can achieve a guaranteed approx-

imation ratio. We also introduce a novel light-weight
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PNP-Index, based on which we design an optimal max-

imal clique maintenance algorithm. We further explore

three optimization strategies to avoid enumerating all

maximal cliques and thus largely reduce the compu-

tational cost. Besides, for the massive input graph, we

develop an I/O efficient algorithm to tackle the problem

when the input graph cannot fit in main memory. We

conduct extensive performance studies on real graphs

and synthetic graphs. One of the real graphs contains

1.02 billion edges. The results demonstrate the high ef-

ficiency and effectiveness of our approach.

Keywords Graph · Diversified Top-k Search · Clique ·
I/O Efficient

1 Introduction

Maximal clique enumeration is a fundamental graph

operation. Given an undirected graph G, a clique C is

a subset of nodes in G in which every two nodes are

connected by an edge, and C is a maximal clique if no

superset of C is a clique. Maximal clique enumeration

aims to enumerate all maximal cliques in G. Maximal

clique enumeration has been extensively studied in the

literature [3, 11, 13, 15, 16, 22, 23, 37, 40, 43]. Max-

imal clique enumeration is known to be computation-

ally intractable since the number of maximal cliques in

a graph G can be exponential in the number of nodes

in G [22]. It is difficult to process and analyze such a

large number of maximal cliques. A possible solution

is to compute top-k maximal cliques ranked by their

size, since maximal cliques with larger size are more im-

portant and preferred for a user [8]. However, maximal

cliques in a graph are usually highly overlapping [43],

which significantly reduces the amount of useful infor-

mation contained in the returned results. Motivated by
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Fig. 1 Part of the Collaboration Network in DBLP

this, in this paper, we study the problem of diversified

top-k clique search, which aims to find k cliques that are

not only individually large but also lowly overlapping

with each other.

Applications. Diversified top-k clique search can be

applied in a wide range of applications. For example:

(1) Gene expression and motif discovery in molec-

ular biology. In the gene co-expression network, Co-

Expression Groups (CEGs) are represented as cliques

[52]. Motif discovery in molecular biology requires to

obtain the large CEGs with low overlaps, which can be

modelled as the diversified top-k clique search problem.

(2) Anomaly detection in complex networks. In this

application, cliques are used as signals of rare events

and the problem is to find a set of large cliques with low

overlaps [9], which can be modelled as the diversified

top-k clique search problem.

(3) Community search in social networks. Diversified

top-k cliques can serve as the seeds for community

search, which can be expanded to lowly overlapping

communities [30].

Specifically, given a graph G and an integer k, di-

versified top-k clique search is to find k cliques that are

large and informative in the sense that they together

cover most nodes in the graph. We illustrate this by

the following example.

Example 1 Fig. 1 shows part of the collaboration net-

work in the DBLP dataset (http://www.informatik.

uni-trier.de/~ley/db/), in which each node rep-

resents an author and each edge indicates the co-

author relationship between two authors. There are

three maximal cliques: C1 = {v1, v2, v3, v4, v5, v6}, C2 =

{v1, v2, v3, v4, v5, v7}, and C3 = {v7, v8, v9, v10, v11}. Let

k = 2. For top-k maximal cliques, we get the result

D1 = {C1, C2}. For diversified top-k cliques, the result

is D2 = {C1, C3}. Although |C2| > |C3|, obviously, D2

is preferred to D1, since the two maximal cliques in D1

are highly overlapping with each other, while the two

cliques in D2 cover all nodes in the graph.

Challenges. In order to compute diversified top-k

cliques, a straightforward solution is to enumerate all

maximal cliques first and then apply a greedy max k-

cover algorithm [25] to compute an approximate result

with a guaranteed approximation ratio. However, such

a solution falls short to handle large graphs because

clique enumeration is a costly operation and keeping all

maximal cliques in memory is infeasible due to the ex-

ponential number of maximal cliques in a graph. There-

fore, comparing to the conventional k-cover algorithm

[25] and its variants (e.g. [31]), the following issues need

to be addressed in order to make diversified top-k clique

search practically applicable: (1) How to avoid generat-

ing all maximal cliques to compute the final result effi-

ciently? (2) How to avoid keeping all generated maximal

cliques in memory? and (3) How to guarantee the result

quality when not all maximal cliques are generated and

kept in memory? (4) How to solve the diversified top-k

clique search problem when the input graph is too large

to be loaded into main memory?

Contributions. In this paper, we answer all the above

questions. The preliminary version is published in [48].

The main contributions of this work are summarized

below.

(1) A simple problem model considering both size

and diversity . We formalize the diversified top-k clique

search as a problem to maximize the total number of

nodes covered by the top-k cliques. The model is sim-

ple yet effective since it can be utilized to find large and

diversified cliques simultaneously.

(2) An efficient algorithm with bounded memory con-

sumption and a guaranteed approximation ratio. We de-

vise an efficient algorithm based on the maximal clique

enumeration algorithm to compute the diversified top-k

cliques with a guaranteed approximation ratio. Our al-

gorithm maintains at most k candidate maximal cliques

in the memory and keeps updating the candidate set

when more promising maximal cliques are generated.

The key issue is how to efficiently update the candi-

date set when new maximal cliques are generated. A

basic solution requires O(|A| · k · |Cmax|) time, which

is costly, to maintain the candidate set, where A is the

set of all maximal cliques, and Cmax is the maximum

clique in the graph. In this paper, we introduce a light-

weight online PNP-Index. Based on the PNP-Index, we

can reduce such time complexity to O(Σc∈A|C|), which

is optimal in the sense that every generated maximal

clique is accessed only once.

(3) Three novel pruning strategies with high pruning

power . We explore three novel optimization strategies,

namely, global pruning, local pruning, and initial can-

didate computation, to further improve the efficiency of

our algorithm. Global pruning specifies a global search

order of nodes during maximal clique computation,
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such that the algorithm can terminate as soon as ex-

panding a certain node cannot improve the quality of

current candidate set. Local pruning adopts a local

pruning rule to avoid expanding unpromising partial

cliques whenever possible. Initial candidate computa-

tion precomputes an initial candidate set using a greedy

strategy before enumerating maximal cliques, such that

both global pruning and local pruning methods can be

applied more effectively. By applying the three opti-

mization strategies, instead of generating all maximal

cliques A, our algorithm only needs to generate r max-

imal cliques, where r << |A|, without sacrificing any

result quality, thus the computational cost is largely

reduced. Moreover, by using initial candidate compu-

tation, the result quality can be improved as well.

(4) An efficient algorithm with guaranteed I/O com-

plexity . We develop an efficient algorithm with guaran-

teed I/O complexity to handle the scenario when the

input graph cannot fit in main memory. We devise an

oriented subgraph based partition approach specialized

for diversified top-k clique search problem and propose

an I/O efficient algorithm which can utilize the lim-

ited main memory effectively and efficiently. Further-

more, our new proposed algorithm can achieve the same

guaranteed approximation ratio as the in-memory algo-

rithm.

(5) Extensive performance studies on real and synthetic

datasets. We conduct extensive performance studies us-

ing real graphs and synthetic graphs . The experimental

results demonstrate that our proposed algorithm can

achieve both high effectiveness and high efficiency. Re-

markably, for the in-memory approach, on a graph that

contains 0.3 billion edges, our proposed algorithm can

terminate in only one minute; for the I/O efficient ap-

proach, our approach can process massive graphs with

billion-scale edges.

Outline. Section 2 provides the formal problem defi-

nition, shows the problem hardness, and presents two

baseline solutions for the problem. Section 3 studies

our new approach, introduces the novel PNP-Index, and

proves its optimality. Section 4 explores three optimiza-

tion strategies. Section 5 shows our I/O efficient algo-

rithm for the large input graphs that cannot be held

in main memory. Section 6 reviews the related work.

Section 7 evaluates all introduced algorithms using ex-

tensive experiments, and Section 8 concludes the paper.

2 Preliminaries

2.1 Problem Definition

We consider an undirected, unweighted, simple graph

G = (V,E), where V (G) represents the set of nodes

and E(G) represents the set of edges in G. We denote

the number of nodes and number of edges of graph G by

n and m respectively, i.e., n = |V (G)| and m = |E(G)|.
For each node u ∈ V (G), we use id(u) to denote the id

of node u , and use N(u,G) to denote the set of neigh-

bors of u in G, i.e., N(u,G) = {v|(u, v) ∈ E(G)}. The

degree of a node u ∈ V (G), denoted by d(u,G), is the

number of neighbors of u in G, i.e., d(u,G) = |N(u,G)|.
For simplicity, we use N(u) and d(u) to denote N(u,G)

and d(u,G) respectively if the context is self-evident. A

subgraph g of G is a graph such that V (g) ⊆ V (G)

and E(g) ⊆ E(G). We use g ⊆ G to denote that g is a

subgraph of G.

Definition 1 (Clique) Given a graph G, a clique C

in G is a set of nodes such that for any u ∈ C, v ∈ C
(u 6= v), we have (u, v) ∈ E(G). A clique C in G is

called a maximal clique if there exists no clique C ′ in

G such that C ⊂ C ′.

Definition 2 (Coverage cov(D)) Given a set of

cliques D = {C1, C2, · · · } in graph G, the coverage of

D, denoted by cov(D), is the set of nodes in G covered

by the cliques in D, i.e., cov(D) =
⋃
C∈D C.

Problem Statement. Given a graph G and an integer

k, the problem of diversified top-k clique search is to

compute a setD, such that each C ∈ D is a clique, |D| ≤
k, and |cov(D)| is maximized. D is called diversified top-

k cliques.

Problem Hardness. We show the hardness of the

problem by considering the simple case: k = 1. In this

case, the problem becomes the maximum clique prob-

lem which is NP-hard [26]. Therefore, the diversified

top-k clique search problem is an NP-hard problem. In

the literature, the fastest algorithm known to compute

the maximum clique runs in time O(20.249n) [35].

2.2 Baseline Solutions

In the literature, there are several algorithms to enu-

merate all maximal cliques in a graph G, and an al-

gorithm to enumerate maximal cliques by consider-

ing the overlaps among cliques. These algorithms lead

to two baseline solutions for diversified top-k clique

search. The first solution EnumAll enumerates all max-

imal cliques in the graph G, and then formulates the
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Algorithm 1 EnumAll(graph G = (V,E), integer k)

1: A ← CliqueAll(V, ∅, ∅);
2: return MaxCover(V,A, k);

3: procedure CliqueAll(node set P , node set R, node set X)
4: if P ∪X = ∅ then
5: output R as a maximal clique;
6: u← argmaxv∈P∪X{|P ∩N(v)|};
7: for all v ∈ P \N(u) do
8: CliqueAll(P ∩N(v), R ∪ {v}, X ∩N(v));
9: P ← P \ {v}; X ← X ∪ {v};

10: procedure MaxCover(set V , sets S, integer k)
11: D ← ∅; V ′ ← V ;
12: for i = 1 to k do
13: C ← argmaxC′∈S−D{|C′ ∩ V ′|};
14: V ′ ← V ′ \ C; D ← D ∪ {C};
15: return D;

problem of diversified top-k clique search as a max

k-cover problem which can be solved using a greedy

strategy with a bounded approximation ratio. The sec-

ond solution EnumSub computes a subset S of maximal

cliques in G by considering the overlaps among cliques,

and then applies the same greedy strategy as EnumAll
to compute the diversified top-k cliques. However, the

size of S cannot be bounded, and the result returned

by EnumSub has no approximation guarantee.

2.3 Algorithm EnumAll

The EnumAll algorithm is shown in Algorithm 1.

It first computes the set A of all maximal cliques using

CliqueAll (line 1) and then computes the diversified top-

k cliques using the greedy algorithm MaxCover (line 2).

Procedure CliqueAll. CliqueAll is the state-of-the-art

algorithm for maximal clique enumeration introduced

in [22]. It is a recursive backtracking algorithm based

on three disjoint sets of nodes, P , R, and X (line 3).

R is a partial maximal clique. P and X together cover

the nodes that are connected to all nodes in R. The

difference is that, P is the set of candidate nodes to

be added into R to form larger cliques, and X contains

the set of nodes that have been traversed to form max-

imal cliques in all previous levels of recursion. X is the

set of nodes that must be excluded from R in order

to avoid generating duplicated maximal cliques. Obvi-

ously, when P ∪X is ∅, R is a maximal clique (line 4-5).

In line 6, the algorithm finds a pivot node u that can

maximize |P ∩N(u)|, and in line 7-9, the algorithm tra-

verses all nodes v in P \ N(u) (line 7), adds v into R

recursively (line 8), and updates P and X (line 9). Note

that the pivot node u computed in line 6 is used to re-

duce the number of candidate nodes to be added into

R in each level of recursion by excluding N(u) from P

(line 7). As shown in [22], CliqueAll can be implemented

in time O(d · n · 3d/3) by specifying an order for nodes

traversed in line 7, where d ≤
√
m is the degeneracy of

graph G with d = maxg⊆G{minv∈V (g){d(v, g)}}. It is

proved in [22] that CliqueAll is worst-case optimal since

there can be Θ((n − d) · 3d/3) maximal cliques in the

worst case.

Procedure MaxCover. The MaxCover algorithm

(line 10-15) follows the greedy algorithm for the max

k-cover problem, which is the problem of selecting k

subsets from a collection of subsets such that their

union contains as many elements as possible. Given

the set of cliques S, the nodes V of G, and an integer

k, let D be the selected cliques, and V ′ be the set of

nodes in V not covered by cliques in D (line 11). The

algorithm greedily selects k cliques into D (line 12-14).

Each time, the clique C to be selected is the one that

can cover most nodes in V ′ (line 13). After selecting

C, V ′ and D are updated accordingly (line 14). The

MaxCover algorithm can achieve an approximation

ratio of (1 − 1/e) ≈ 0.632 which is the best-possible

polynomial time approximation algorithm for the

k-cover problem as shown in [25].

2.4 Algorithm EnumSub

The EnumSub algorithm is shown in Algorithm 2. Simi-

lar to EnumAll, EnumSub first computes a set S of max-

imal cliques in G using CliqueSub (line 1) and then in-

vokes the greedy algorithm MaxCover to compute the

diversified top-k cliques (line 2). The CliqueSub algo-

rithm is proposed by Wang et al. [43] which computes

a subset S of maximal cliques in a graph G by consider-

ing the overlaps among cliques. Suppose A is the set of

all maximal cliques in G, it is guaranteed that for each

maximal clique C ∈ A, there exists a maximal clique

C ′ ∈ S, such that the similarity between C and C ′, de-

noted by |C∩C ′|/|C|, is no less than τ , for a parameter

τ (0 < τ ≤ 1).

The CliqueSub algorithm [43] follows the same

framework of the CliqueAll algorithm (see the procedure

CliqueAll in Algorithm 1). In [43], the authors observe

that the CliqueAll algorithm typically outputs maximal

cliques in an order such that two maximal cliques tend

to be similar if they are near in the output sequence.

Based on such an observation, the CliqueSub algorithm

modifies the CliqueAll algorithm, such that each newly

computed maximal clique C is reported only if its sim-

ilarity to the previously reported maximal clique C ′ is

small. In [43], a randomized algorithm and a determin-

istic algorithm are introduced to solve such a problem

and some pruning rules are introduced to prune partial

cliques at early stages of the CliqueSub algorithm.
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Algorithm 2 EnumSub(graph G = (V,E), integer k)

1: S ← CliqueSub(V, ∅, ∅);
2: return MaxCover(V,S, k);

2.5 Limitations of Baseline Solutions

Comparing EnumAll (Algorithm 1) and EnumSub (Al-

gorithm 2), EnumAll has a bounded approximation ra-

tio, however, it needs to enumerate all maximal cliques;

while EnumSub does not need to enumerate all maxi-

mal cliques, however, neither the number of reported

maximal cliques nor the approximation ratio can be

guaranteed. Both EnumAll and EnumSub are not scal-

able enough to handle large graphs due to the following

two reasons:

(R1) Exponential number of cliques to be kept in mem-

ory. Recall that the number of maximal cliques enumer-

ated in EnumAll can achieve Θ((n−d) ·3d/3) for a graph

G with degeneracy d, which requires a huge amount of

memory to keep all maximal cliques for the greedy al-

gorithm MaxCover to compute the final top-k answers.

Although the EnumSub algorithm can reduce the num-

ber of reported maximal cliques compared to EnumAll,
it still outputs exponential number of maximal cliques

without a bound. Therefore, as also verified by our ex-

perimental results in Section 7, EnumSub cannot essen-

tially solve the problem when the graph is large.

(R2) Independent clique enumeration and top-k search

processes. The MaxCover algorithm, which is used in

both EnumAll and EnumSub, adopts a global selection

criteria in each iteration to greedily select the maximal

clique that covers most new nodes in the graph as one
of the top-k answers. Although MaxCover can achieve

a bounded approximation ratio, the global selection

criteria requires that all candidate maximal cliques

should have been computed before invoking MaxCover.
As a result, the maximal clique enumeration procedure

(CliqueAll or CliqueSub) and the top-k search procedure

(MaxCover) have to be invoked independently. However,

if we maintain the top-k answers in the process of max-

imal clique enumeration, there will be more opportuni-

ties to prune the unpromising partial cliques at early

stages of maximal clique enumeration, and thus largely

reduce the computational cost.

3 A New Approach

In this paper, we devise a new algorithm for diversi-

fied top-k clique search, which can overcome the chal-

lenges introduced in Section 2.5. In the new algorithm,

we modify the maximal clique enumeration algorithm

Algorithm 3 EnumKBasic(graph G = (V,E), integer

k)

1: D ← ∅;
2: CliqueAll(V, ∅, ∅) (replace line 5 in Algorithm 1 with

CandMaintainBasic(R));
3: return D;

4: procedure CandMaintainBasic( clique C)
5: if |D| < k then { D ← D ∪ {C}; return; }
6: D′ ← (D \ {Cmin(D)}) ∪ {C};
7: if |priv(C,D′)| > |priv(Cmin(D),D)|+ α× |cov(D)|

|D| then

8: D ← D′;

CliqueAll (see the procedure CliqueAll in Algorithm 1)

to integrate diversified top-k clique search into the pro-

cess of maximal clique enumeration. Specifically, during

the maximal clique enumeration process, we maintain k

candidates of the most promising cliques that can max-

imize the total node coverage, and update the k candi-

dates when new maximal cliques are reported. The new

algorithm has the following three advantages:

(A1) Low memory consumption. Unlike EnumAll and

EnumSub, our algorithm does not need to keep all enu-

merated maximal cliques in memory. Instead, our algo-

rithm just needs to keep the graph G and the k can-

didates of the most promising cliques in main memory,

the size of which is much smaller than the size of all

maximal cliques.

(A2) Guaranteed result quality . Our algorithm can

achieve a guaranteed approximation ratio of 0.25, and

can be much better in practice as verified in the exper-

iments (Section 7).

(A3) High pruning power . By integrating diversified

top-k clique search into the process of maximal clique

enumeration, we can develop more pruning strategies

to avoid expanding unpromising partial cliques at early

stages of the maximal clique enumeration algorithm,

thus largely improve the efficiency of the algorithm.

In this section, we introduce our basic algorithm

and an improved algorithm which target at achieving

A1 and A2. In the next section, we will focus on the

optimization strategies such that A3 can be achieved.

3.1 The Basic Algorithm

Before showing our basic algorithm EnumKBasic for di-

versified top-k clique search, we introduce some defini-

tions.

Definition 3 (Private-Node-Set priv(C,D)) Given

a set of cliques D = {C1, C2, · · · } in graph G, for each

clique C ∈ D, the private-node-set of C in D, denoted

by priv(C,D), is the set of nodes in C that are not
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Fig. 2 Illustration for the Proof of Lemma 1

contained in other cliques in D, i.e., priv(C,D) = C \
cov(D \ {C}). Each v ∈ priv(C,D) is called a private

node of C in D.

Definition 4 (Min-Cover-Clique Cmin(D)) Given

a set of cliques D = {C1, C2, · · · } in graph G, the min-

cover-clique of D, denoted by Cmin(D), is the clique

C ∈ D with minimum |priv(C,D)|, i.e., Cmin(D) =

argminC∈D{|priv(C,D)|}.

Algorithm EnumKBasic. Our basic algorithm

EnumKBasic is shown in Algorithm 3. It first ini-

tializes the clique set D, which is used to keep the

candidates of diversified top-k cliques (line 1). Then it

invokes the CliqueAll algorithm to enumerate maximal

cliques without keeping all enumerated maximal cliques

in memory. Instead, for each enumerated maximal

clique C, the procedure CandMaintainBasic is invoked

to update D using C (line 2). Finally, D is returned as

the diversified top-k cliques (line 3).

The procedure CandMaintainBasic is shown in line 4-

8 of Algorithm 3. When |D| < k,D is updated by simply

adding C (line 5). Otherwise, we try to replace Cmin(D)

with C to generate a new clique set D′ (line 6). If the

number of private nodes of C in the new set D′ is larger

than the number of private nodes of Cmin(D) in D by

α × |cov(D)|
|D| for a parameter α (0 < α ≤ 1), then D is

updated to be D′ (line 7-8).

Algorithm Analysis. Obviously, Algorithm 3 only

needs to keep graph G and the candidate set D in

main memory. Next, we analyze the time cost of Al-

gorithm 3. Suppose Cmax is the maximum clique in G,

and A is the set of all maximal cliques in G, in proce-

dure CandMaintainBasic, we need to compute Cmin(D),

|priv(C,D′)|, |priv(Cmin(D),D)|, and |cov(D)|. It is easy

to prove that each of the four values can be computed

in time O(k · |Cmax|) by traversing nodes in C and all

cliques in D only once. Suppose Tenum(G) is the time

to enumerate all maximal cliques in G, the time com-

plexity of Algorithm 3 is O(Tenum(G)+ |A| ·k · |Cmax|).
The following lemma shows the quality of the result

for the diversified top-k cliques computed using Algo-

rithm 3.

Lemma 1 Given a graph G and an integer k, suppose

D∗ is the optimal diversified top-k cliques, and D is the

diversified top-k cliques returned by Algorithm 3 with

α = 1, we have |cov(D)| ≥ 0.25× |cov(D∗)|.

Proof Sketch: The proof is based on a theoretical re-

sult derived in [5], which shows the following result:

Given a stream of sets A = {C1, C2, · · · }, and an

integer k, let Ai = {C1, C2, · · · , Ci} for i > 0, and Di =

Ai for 0 < i ≤ k. For any i > k, we construct Di from

Di−1 as follows: suppose D′i = (Di−1 \{Cmin(Di−1)})∪
{Ci}, then Di = D′i if |cov(D′i)| > (1 + 1

k )|cov(Di−1)|,
and Di = Di−1 otherwise. It can be guaranteed that

Di is a 0.25-approximation solution of the max k-cover

problem on Ai.
The above problem has the same setting as our

problem. Thus, we only need to prove that when α = 1,

the condition in line 7 of Algorithm 3, |priv(C,D′)| >
|priv(Cmin(D),D)| + |cov(D)|

|D| , is equivalent to the con-

dition |cov(D′)| > (1 + 1
k )|cov(D)| used in [5], for

D′ = (D \ {Cmin(D)}) ∪ {C}. Let Cmin = Cmin(D),

the relationship of D, D′, C, and Cmin is illustrated in

Fig. 2 using the seven subsets A, B, E, F , J , H, and

I. Obviously, the condition |cov(D′)| > (1 + 1
k )|cov(D)|

is equivalent to |A| + |B| + |E| + |F | + |H| + |I| >
(1+ 1

k )(|A|+ |B|+ |E|+ |F |+ |H|+ |J |), which is equiv-

alent to |H|+|I| > |H|+|J |+ 1
k×|cov(D)|. Since |D| = k,

we have |priv(C,D′)| > |priv(Cmin,D)|+ |cov(D)|
|D| . 2

Discussion. Note that when α = 1, Algorithm 3 is

essentially the same as the approach introduced in [5].

However, in this paper, we use a parameter α to al-

low more flexibility in choosing the size of the newly

added cliques to replace the min-cover-clique. Gener-

ally, a smaller α will lead to more covered nodes and

result in a higher computational cost in the meantime.
However, there are no theoretical results on how to set

the best α. From the results of our experiments, 0.3 is a

good candidate considering the tradeoff between the ef-

ficiency and effectiveness of the algorithm. In addition,

in [5], the algorithm needs to compute |cov(D′)|, which

is costly, while in Algorithm 3, we only use |priv(C,D′)|
and |priv(Cmin(D),D)|, which can lead to an efficient

algorithm with the help of an online Private-Node-set

Preserved Index (PNP-Index), which will be introduced

in the next subsection.

3.2 Optimal Candidate Maintenance

As discussed in Section 3.1, in addition to the time

O(Tenum(G)) to enumerate all the maximal cliques A,

Algorithm 3 needs extra O(|A| · k · |Cmax|) time to

maintain the candidate set D. It is highly possible that

O(|A| · k · |Cmax|) > O(Tenum(G)) when either k or

|Cmax| is large. Therefore, the algorithm is inefficient.
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The main cost lies on computing the values of Cmin(D),

|priv(C,D′)|, |priv(Cmin(D),D)|, and |cov(D)|, each of

which needs to traverse all nodes of the cliques in D in

the worst case. In this subsection, we introduce a novel

online Private-Node-set Preserved Index (PNP-Index),
which is used to maintain |priv(C,D)| for each C ∈ D,

such that Cmin(D), |priv(C,D′)|, |priv(Cmin(D),D)|,
and |cov(D)| can be computed efficiently. We will show

that the PNP-Index is compact which only consumes

O(ΣC∈D|C|) space, and with PNP-Index, EnumK only

takes O(Tenum(G)) time, which is optimal in the sense

that no extra cost is introduced in the time complexity

when maintaining D.

Definition 5 (Reverse Coverage rcov(v,D)) Given

a set of cliques D in graph G, for each node v ∈ V (G),

the reverse coverage of v, denoted by rcov(v,D), is the

set of cliques in D that contain v, i.e., rcov(v,D) =

{C|v ∈ C,C ∈ D}.

Definition 6 (Reverse Private-Node-Set

rpriv(i,D)) Given a set of cliques D in graph G,

for each integer 0 ≤ i ≤ |V (G)|, the reverse private-

node-set of i, denoted by rpriv(i,D), is the set of

cliques C in D such that |priv(C,D)| = i, i.e.,

rpriv(i,D) = {C|C ∈ D, |priv(C,D)| = i}.

The PNP-Index. In the following, for simplicity, we

use cov, priv(C), Cmin, rcov(v), and rpriv(i) to denote

cov(D), priv(C,D), Cmin(D), rcov(v,D), and rpriv(i,D)

respectively, if the context is self-evident. The PNP-

Index is built on D and graph G. In addition to D, the

PNP-Index consists of five additional components:

– |priv(C)|: the number of private nodes for each C ∈
D.

– rcov(v): the reverse coverage for each v ∈ V (G).

– |cov|: the number of nodes covered by D.

– Cmin: the clique C in D with minimum |priv(C)|.
– rpriv(i): the reverse private-node-set for 0 ≤ i ≤
|V (G)|.

Where rcov(v) is used to check whether the node v is

privately contained in a certain clique in D, and rpriv(i)

is used to update Cmin in time O(|C|) (which is inde-

pendent to k) when processing a newly generated clique

C.

Algorithm EnumK. The new algorithm EnumK is

shown in Algorithm 4, which follows the same frame-

work of Algorithm 3 with different candidate mainte-

nance procedures. The new procedure CandMaintain is

shown in line 5-9. For each generated clique C, when

|D| < k, it inserts C into D by invoking a procedure

Insert(C) (line 6). Otherwise, it calculates pnew which

Algorithm 4 EnumK(graph G = (V,E), integer k)

1: D ← ∅; |cov| ← 0; Cmin ← ∅;
2: rcov(v) ← ∅ for all v ∈ V (G); rpriv(i) ← ∅ for all 0 ≤ i ≤
|V (G)|;

3: CliqueAll(V, ∅, ∅) (replace line 5 in Algorithm 1 with
CandMaintain(R));

4: return D;

5: procedure CandMaintain( clique C)
6: if |D| < k then { Insert(C); return; }
7: pnew ← |{v ∈ C s.t. |rcov(v)| = 0 or (|rcov(v)| = 1 and

v ∈ Cmin) }|;
8: if pnew > |priv(Cmin)|+ α× |cov||D| then

9: Delete(Cmin); Insert(C);

10: procedure Delete( clique C)
11: D ← D \ {C}; remove C from rpriv(|priv(C)|);
12: for all v ∈ C do

13: rcov(v)← rcov(v) \ {C};
14: if |rcov(v)| = 0 then |cov| ← |cov| − 1;
15: if |rcov(v)| = 1 then

16: C′ ← the maximal clique in rcov(v);
17: |priv(C′)| ← |priv(C′)|+ 1;
18: move C′ from rpriv(|priv(C′)| − 1) to rpriv(|priv(C′)|);
19: procedure Insert( clique C)
20: D ← D ∪ {C}; |priv(C)| ← 0;
21: for all v ∈ C do

22: rcov(v)← rcov(v) ∪ {C};
23: if |rcov(v)| = 1 then

24: |priv(C)| ← |priv(C)|+ 1; |cov| ← |cov|+ 1;
25: if |rcov(v)| = 2 then
26: C′ ← the clique in rcov(v) \ {C};
27: |priv(C′)| ← |priv(C′)| − 1;
28: move C′ from rpriv(|priv(C′)|+ 1) to rpriv(|priv(C′)|);
29: rpriv(|priv(C)|)← rpriv(|priv(C)|) ∪ {C};
30: for i = 0 to |priv(C)| do
31: if rpriv(i) 6= ∅ then
32: Cmin ← an arbitrary clique in rpriv(i);
33: break;

is |priv(C,D′)| for D′ = (D \ {Cmin}) ∪ {C} (line 7).

If the update condition is satisfied, D is updated by

deleting Cmin using Delete(Cmin) and inserting C us-

ing Insert(C) (line 8-9). The key procedures are how to

calculate pnew = |priv(C,D′)| (line 7) and how to main-

tain the PNP-Index using Delete and Insert. Below, we

show an example to illustrate the EnumK algorithm and

the PNP-Index, and then we introduce the details of the

three key procedures.

Example 2 Fig. 3 (a) shows a graph G with 12 nodes.

Suppose k = 3 and the current candidate set is D =

{C1, C2, C3}, we have Cmin = C2 with |priv(Cmin)| =

|{v6}| = 1, and |cov| = 10. Let C4 = {v6, v7, v9, v11, v12}
be the next clique generated, then D′ = (D \ {C2}) ∪
C4 = {C1, C3, C4}. We have pnew = |priv(C4,D′)| =

|{v6, v11, v12}| = 3. Suppose α = 0.5, we have pnew =

3 > |priv(Cmin)| + α × |cov||D| = 2.67. Therefore, after

processing C4,D is updated to be {C1, C3, C4} as shown

in Fig. 3 (b).
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Fig. 3 Candidate Maintenance on Graph G

Fig. 4 shows the corresponding PNP-Index before

and after processing C4, in which each row corresponds

to a clique C and each column corresponds to a node

v in G. We also show |priv(C)| for each clique C in

the last column, |rcov(v)| for each node v in the last

row, and |cov| in the bottom right cell. The columns

for private nodes are coloured grey. For each v ∈ C, the

corresponding cell is marked 1̂ if v ∈ priv(C), and 1 oth-

erwise. Cmin is marked a star (∗) in the corresponding

cell of the last column.

Computing priv(C,D′). priv(C,D′) consists of two

parts:

(P1) The nodes that are contained in C but not

contained in cov(D), e.g., the part denoted by I in

Fig. 2. This part can be calculated using |{v ∈ C s.t.

|rcov(v)| = 0}|.

(P2) The nodes that are contained in both C and

priv(Cmin, D), e.g., the part denoted by H in Fig. 2.

This part can be calculated using |{v ∈ C s.t.

|rcov(v)| = 1 and v ∈ Cmin)}|.

In summary, priv(C,D′) (or pnew) can be calculated

as |{v ∈ C s.t. |rcov(v)| = 0 or (|rcov(v)| = 1 and

v ∈ Cmin) }|, as shown in line 7 of Algorithm 4.

Example 3 We show how to compute pnew =

priv(C,D′) in Example 2 when processing C = C4.

The part P1 can be computed as |{v11, v12}| = 2, and

the part P2 can be computed as |{v6}| = 1, since

v6 ∈ Cmin = C2 and |rcov(v6)| = 1, as shown in Fig. 4.

As a result, priv(C,D′) = 2 + 1 = 3.

Procedure Delete(C). After removing an existing

clique C from D, we also need to maintain rcov(v), |cov|,
and rpriv(i) (for some nodes v and integers i) whose

values are changed due to the deletion of C. This is

processed by the procedure Delete(C), which is shown

in line 10-18 of Algorithm 4.

After removing C from both D and rpriv(|priv(C)|)
(line 11), the algorithm visits all nodes v ∈ C (line 12),

and for each such v, it processes the updates in line 13-

18. Since C covers node v, rcov(v) is updated by remov-

ing C (line 13). After updating rcov(v), there are two

cases to be considered:

(Case 1) |rcov(v)| decreases from 1 to 0: This case in-

dicates that a existing node v which is privately covered

by C is not covered by any cliques after removing C,

thus, |cov| decreases by 1 (line 14).

(Case 2) |rcov(v)| decreases from 2 to 1: In this case, v

becomes a private node for the clique C ′, where C ′ is the

only clique that contains v after removing C (line 16).

Thus |priv(C ′)| is updated by increasing 1 (line 17), and

C ′ is removed from rpriv(|priv(C ′)| − 1)and added into

rpriv(|priv(C ′)|) (line 18).

In other cases when |rcov(v)| decreases to be larger

than 1, no other updates will be triggered.

Example 4 Continue Example 3. Before adding C4 into

D, we need to remove Cmin = C2 from D. After re-

moving C2, v6 is not covered by any other cliques (the

case for |rcov(v6)| = 0), and thus |cov| decreases by 1

(line 14); v3 is only covered by C1 ∈ rcov(v3) (the case

for |rcov(v3)| = 1), and thus |priv(C1)| increases by 1

(line 17).

Procedure Insert(C). After inserting a new clique C

into D, we also need to maintain priv(C ′), rcov(v), |cov|,
rpriv(i), and Cmin (for some cliques C ′, nodes v, and

integers i) whose values are changed due to the inser-

tion of C. This is processed by the procedure Insert(C),

which is shown in line 19-33 of Algorithm 4.

After inserting C into D and initializing |priv(C)|
to be 0 (line 20), the algorithm visits all nodes v ∈ C
(line 21), and for each such v, it processes the updates

in line 22-28. Since C covers node v, rcov(v) is updated

by adding C (line 20). After updating rcov(v), there are

two cases to be considered:

(Case 1) |rcov(v)| increases from 0 to 1: This case in-

dicates that a new node v is privately covered by C,

thus, both |priv(C)| and |cov| increase by 1 (line 23-24).

(Case 2) |rcov(v)| increases from 1 to 2: In this case,

v is removed from the private node set of a clique C ′,

where C ′ is the only clique that contains v before adding

C (line 26). Thus |priv(C ′)| is updated by decreasing 1

(line 27), and C ′ is removed from rpriv(|priv(C ′)| + 1)

and added into rpriv(|priv(C ′)|) (line 28).

In other cases when |rcov(v)| increases to be larger

than 2, no other updates will be triggered. After travers-

ing all nodes in C, |priv(C)| is computed. Thus, we need

to update rpriv(|priv(C)|) by adding a new element C

(line 29 ). Finally, we need to update Cmin as follows.

Updating Cmin: A straightforward solution to update

Cmin is to search the clique C ′ with minimum priv(C ′)
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C \ v v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 |priv(C)|
Before processing C4:

C1 1̂ 1̂ 1 1 1 2

C2 1 1 1 1̂ 1 1∗

C3 1 1 1̂ 1̂ 1̂ 3

|rcov(v)| 1 1 2 2 3 1 2 1 1 1 |cov|:10

C4 1 1 1 1 1

After processing C4:

C1 1̂ 1̂ 1̂ 1̂ 1 4

C3 1 1 1̂ 1 1̂ 2∗

C4 1̂ 1 1 1̂ 1̂ 3

|rcov(v)| 1 1 1 1 2 1 2 1 2 1 1 1 |cov|:12

Fig. 4 Example of the PNP-Index

from D. However, such an operation may introduce an

extra cost which is dependent on the value of k, mak-

ing the algorithm inefficient when k is large. Note that

we have maintained the sets rpriv(i) for all possible i.

With all rpriv(i) (1 ≤ i ≤ |V |), |priv(Cmin)| is the

first element j such that rpriv(j) 6= ∅. We also have

|priv(Cmin)| ≤ |priv(C)|. Therefore, we can try every i

from 0 to |priv(C)| (line 30), and find Cmin in rpriv(i) for

the first i with rpriv(i) 6= ∅ (line 31). In this way, Cmin
can be computed in O(|priv(Cmin)|) ≤ O(|priv(C)|) ≤
O(|C|) time which is independent to k.

Example 5 Continue Example 4. After deleting Cmin =

C2 from D, we insert C4 into D. After inserting C4, v11
is only covered by C4 (the case for |rcov(v11| = 1), and

thus both |priv(C4)| and |cov| increase by 1 (line 24);

v9 is covered by two cliques C3 ∈ rcov(v9) and C4 ∈
rcov(v9) (the case for |rcov(v9| = 2), and thus |priv(C3)|
decreases by 1 (line 27) indicating that v9 is not a pri-

vate node for C3.

Optimality. The following two lemmas show the op-

timality of Algorithm 4. Lemma 2 indicates that the

space complexity of the PNP-Index is the same as D.

Lemma 3 shows that the time complexity of Algo-

rithm 4 is the same as that of maximal clique enumer-

ation (CliqueAll in Algorithm 1). In other words, the

maintenance of D using PNP-Index does not take extra

cost w.r.t. both space and time complexities.

Lemma 2 The PNP-Index uses O(ΣC∈D|C|) memory.

Proof Sketch: Each C ∈ D can be stored as a hash

set with O(|C|) space s.t. for any v ∈ V (G), v ∈ C can

be detected in O(1) time. The reverse coverage rcov(v)

for all v ∈ V (G) consumes O(ΣC∈D|C|)) space. The

reverse private-node-set rpriv(i) for all 0 ≤ i ≤ |V (G)|
consumes O(|D|) space by only keeping those rpriv(i) 6=
∅ in memory, and |priv(C)| for all C ∈ D consumes

O(|D|) space. In summary, the total memory used by

PNP-Index is O(ΣC∈D|C|). 2

Lemma 3 The time complexity of Algorithm 4 is

O(Tenum(G)), where O(Tenum(G)) is the time to enu-

merate all maximal cliques in G.

Proof Sketch: The main cost of Algorithm 4 is spent

on the three key procedures used in CandMaintain to

processs maximal clique C, namely, computing pnew =

priv(C,D′), Delete(C), and Insert(C). Computing pnew
takes O(|C|) time, and Delete(C) takes O(|C|) time by

traversing every v ∈ C only once. Insert(C) also takes

O(|C|) time by traversing every v ∈ C only once in

line 21-28, and then computing Cmin in O(|C|) time in

line 30-33. As a result, processing each maximal clique

C takes time O(|C|) which is the same as the time of

outputting C. Therefore, the time complexity of Algo-

rithm 4 is dominated by O(Tenum(G)). 2

4 Optimization Strategies

4.1 Solution Overview

Recall that Algorithm 4 computes diversified top-k

cliques by processing each generated clique only once.

For each new clique C, it tries to use C to replace the

clique with the least number of private nodes in the cur-

rent candidate set D. Algorithm 4 is efficient to main-

tain D using PNP-Index. However, it does not consider

the possible opportunities to reduce the set of cliques

to be enumerated, and thus reduce the total compu-

tational cost. Therefore, in this section, we find three

strategies, namely, global pruning, local pruning, and

initial candidate computation, to further optimize Al-

gorithm 4 with the aim of reducing the total number

of cliques enumerated by Algorithm 4 without reduc-

ing the quality of the final answers. Our optimization

strategies are based on the following three observations.

(Observation 1) Global pruning : We assign a global

priority for all nodes in the graph G when enumerating

maximal cliques in Algorithm 4, such that the nodes

with high potential to result in large maximal cliques

are expanded first. Then the algorithm can terminate

early when expanding the remaining nodes does not

improve the quality of the current candidates.

(Observation 2) Local pruning : For a partial clique R

computed in Algorithm 4, if R has no potential to be

expanded to improve the quality of the current can-

didates, the whole branch expanded from R in Algo-

rithm 4 can be pruned.

(Observation 3) Initial candidate computation: We

compute a good initial candidate set D of k cliques be-

fore enumerating all cliques in Algorithm 4. Then both
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Algorithm 5 EnumKOpt(graph G = (V,E), integer k)

1: line 1-3 of Algorithm 4;
2: D ← InitK(G, k);
3: P ← V ; R← ∅; X ← ∅; u← argmaxv∈V {d(v)};
4: for all v ∈ V \N(u) in non-increasing order of score(v) do

5: if |D| = k and GlobalPruning(v) then break;
6: CliqueK(P ∩N(v), R ∪ {v}, X ∩N(v));
7: P ← P \ {v}; X ← X ∪ {v};
8: return D;

9: procedure CliqueK(P,R,X)
10: if P ∪X = ∅ then CandMaintain(R);
11: if LocalPruning(P,R) then return;
12: u← argmaxv∈P∪X{|P ∩N(v)|};
13: for all v ∈ P \N(u) do

14: CliqueK(P ∩N(v), R ∪ {v}, X ∩N(v));
15: P ← P \ {v}; X ← X ∪ {v};

global pruning and local pruning conditions can be sat-

isfied earlier.

Our optimized algorithm EnumKOpt is shown in Al-

gorithm 5, which follows the same framework of Al-

gorithm 4 by adding the three optimization strategies.

After initialization (line 1), the algorithm computes the

initial candidate set D using InitK(G, k) (Section 4.4).

Then the algorithm traverses the nodes v ∈ V in non-

increasing order of their priorities, denoted by score(v)

(line 4), and stops when the global pruning condition

(Section 4.2) is satisfied (line 5). Otherwise, the algo-

rithm invokes CliqueK to enumerate maximal cliques

expanded from v (line 6). CliqueK (line 9-15) follows the

same framework of CliqueAll in Algorithm 1 by adding

the local pruning rule (line 11) and replacing line 5

of Algorithm 1 with CandMaintain(R) which uses the

PNP-Index to efficiently maintain the candidate set D
(refer to Algorithm 4). In the following, we will intro-

duce the three optimization strategies.

4.2 Global Pruning

In global pruning, we need to calculate the priority

score(v) for each node v ∈ V (G) efficiently, and derive

a global pruning condition that makes use of score(v)

such that the algorithm can terminate as early as possi-

ble. Recall that score(v) represents the potential size of

the maximum clique expanded from v. Thus, the best

way is to use the clique number ω(v) as score(v) based

on the following definition:

Definition 7 (Clique Number ω(v) and ω(S))

Given a graph G and a node v ∈ V (G), the clique

number of v in G, denoted by ω(v), is the size of the

maximum clique C in G that contains v, i.e., ω(v) =

maxC∈A(G),v∈C{|C|}, where A(G) is the set of max-

imal cliques in G. Given a set of nodes S ⊆ V (G),

the clique number of S, denoted by ω(S), is the size

of the maximum clique C such that C ⊆ S, i.e.,

ω(S) = maxC⊆S,C is a clique{|C|}. Obviously, ω(v) =

ω(N(v)) + 1.

However, as shown in Section 2.1, finding the maximum

clique in G is an NP-hard problem, and thus computing

ω(v) for all v ∈ V (G) is also an NP-hard problem. Thus,

instead of using ω(v), we use an upper bound of ω(v)

as score(v), which is derived from two values, namely,

the color number color(S) for S ⊆ V (G) and the core

number core(v) for v ∈ V (G).

Definition 8 (Color Number color(S)) Given a

graph G, a graph coloring GC is a mapping that maps

each node v ∈ G to a color (a number), such that no

two adjacent nodes share the same color. Given a graph

coloring GC for G, and a set of nodes S ⊆ V (G), the

color number of S, denoted by color(S,GC), is the num-

ber of distinct colors in S. We use color(S) to denote

color(S,GC) if the context is self-evident.

Definition 9 (Core Number core(v)) Given a graph

G and a node v, the core number of v, denoted by

core(v), is the largest k s.t. there exists a subgraph

g ⊆ G with v ∈ V (g), and for any node u ∈ V (g),

d(u, g) ≥ k.

Computing the optimal graph coloring GC for graph

G with minimum color(V (G),GC) is an NP-hard prob-

lem [28]. Thus we adopt the Welsh-Powell algorithm

[44], which uses a greedy strategy to compute a graph

coloring GC in O(m+n) time. The core number core(v)

for all nodes v ∈ V (G) can also be computed in

O(m + n) time [7]. For any v ∈ V (G), we have the

following fact.

Fact 1 min{core(v), color({v ∪N(v)})} ≥ ω(v).

Based on Fact 1, we define score(v) as follows:

score(v) = min{core(v), color({v ∪N(v)})} (1)

Given score(v) for all v ∈ G, the global pruning condi-

tion can be defined as follows.

Definition 10 (Global Pruning Condition) The

global pruning condition GlobalPruning(v) used in line 5

of Algorithm 5 is defined as: score(v) ≤ |priv(Cmin)| +
α× |cov(D)|

|D| .

Lemma 4 The global pruning condition

GlobalPruning(v) defined in Definition 10 is cor-

rect.
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Proof Sketch: We only need to prove that once

GlobalPruning(v) is satisfied for a certain v, even if

we do not terminate the algorithm (line 5 of Algo-

rithm 5), the candidate set D will not be updated.

We prove this by contradiction. Note that once the

condition score(v) ≤ |priv(Cmin)| + α × |cov(D)|
|D| is sat-

isfied for a certain v, it will be satisfied for any of

the remaining u (the node u that is processed af-

ter v in line 4 of Algorithm 5) if D is not updated,

since score(u) ≤ score(v). Suppose D is updated to

D′ by replacing Cmin with C when processing u with

score(u) ≤ score(v), by the condition to update D, we

have |priv(C,D′)| > |priv(Cmin)|+α× |cov(D)|
|D| . However,

by Fact 1, we have |priv(C,D′)| ≤ ω(u) ≤ score(u) ≤
score(v), and by the global pruning condition, we have

score(v) ≤ |priv(Cmin)|+α× |cov(D)|
|D| , which contradicts

with score(v) > |priv(Cmin)|+ α× |cov(D)|
|D| . 2

Discussion. Note that the core numbers for all nodes in

G and the graph coloring GC can both be computed in

O(m+ n) time. Checking the global pruning condition

for node v based on Definition 10 requires to traverse

N(v) only once to compute color({v ∪ N(v)}). There-

fore, the time complexity of EnumK (Algorithm 4) will

not increase after applying global pruning.

4.3 Local Pruning

In local pruning, we need to define a sufficient condition

to stop expanding a partial clique R at early stages of

Algorithm 4. We can make use of the information in the

two sets P and R in the CliqueAll algorithm, where R is
the current partial clique and P is the set of candidate

nodes that can be used to expand R to maximal cliques.

Intuitively,R can be pruned when |P | is smaller enough,

or most nodes in P ∪R have been covered in the current

D.

Specifically, given the current candidate set D,

Cmin, P , and R, we define four sets Pa = P \ cov(D),

Pb = P ∩ priv(Cmin), Ra = R \ cov(D), and Rb =

R ∩ priv(Cmin). The relationship of all the above sets

is illustrated in Fig. 5 (a) and (b). The potential of the

current partial clique R to be expanded to replace Cmin
depends on the size of the maximum clique in the set

Pa∪Pb, i.e., ω(Pa∪Pb). However, similar to computing

ω(v) for v ∈ V (G), computing ω(S) for S ⊆ V (S) is an

NP-hard problem. Thus, instead of using ω(S) for any

S ⊆ V (S), we use an upper bound of ω(S), denoted by

score(S), which is based on the following fact.

Fact 2 min{maxv∈S |N(v) ∩ S|, color(S)} ≥ ω(S).

Based on Fact 2, we define score(S) as follows:

priv(C    )

C

(b) cov(D)

min

min

C

R

(c) P’ and R

min

P’
P’a P’b

R

Rb

a

C

R

(a) P and R

min
PPa

Pb

R

Rb

a

P

Fig. 5 Illustration for Local Pruning

score(S) = min{maxv∈S |N(v) ∩ S|, color(S)} (2)

The local pruning condition is defined as follows.

Definition 11 (Local Pruning Condition) The lo-

cal pruning condition LocalPruning(P,R) in line 11

of Algorithm 5 is: score(Pa ∪ Pb) + |Ra ∪ Rb| ≤
|priv(Cmin)|+ α× |cov(D)|

|D| .

Lemma 5 The local pruning condition

LocalPruning(P,R) defined in Definition 11 is correct.

Proof Sketch: We prove that once LocalPruning(P,R)

is satisfied, if we continue expanding R, the candidate

set D will not be updated. We prove this by contra-

diction. Suppose D is updated to D′ by replacing Cmin
with C = R ∪ P ′ when expanding R for P ′ ⊆ P , and

let P ′a = P ′ \cov(D) and P ′b = P ′∩priv(Cmin), the rela-

tionship of R, P ′, P ′a and P ′b is illustrated in Fig. 5 (c).

By the condition to update D, we have |priv(C,D′)| >
|priv(Cmin)| + α × |cov(D)|

|D| . However, by Fact 2 and

the local pruning condition, we have |priv(C,D′)| =

|P ′a∪P ′b∪Ra∪Rb| ≤ ω(P ′a∪P ′b)+ |Ra∪Rb| ≤ score(P ′a∪
P ′b) + |Ra∪Rb| ≤ |priv(Cmin)|+α× |cov(D)|

|D| , which con-

tradicts with |priv(C,D′)| > |priv(Cmin)|+α× |cov(D)|
|D| .2

Discussion. In local pruning condition, we need to

compute maxv∈Pa∪Pb
|N(v)∩ (Pa ∪ Pb)| and color(Pa ∪

Pb). Note that after checking LocalPruning(P,R)

(line 11 of Algorithm 5), we need to compute u ←
argmaxv∈P∪X{|P ∩ N(v)|} (line 12 of Algorithm 5).

Obviously, the cost of computing u is no less than

the cost of computing maxv∈Pa∪Pb
|N(v) ∩ (Pa ∪ Pb)|

and color(Pa ∪ Pb). Therefore, the time complexity of

EnumK (Algorithm 4) will not increase after applying

local pruning.

4.4 Initial Candidate Computation

Recall that a better initial candidate clique set can po-

tentially help both global pruning and local pruning to

gain higher pruning power. In this subsection, we intro-

duce a greedy algorithm to compute an initial candidate
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Algorithm 6 InitK(graph G = (V,E), integer k)

1: S ← ∅; U ← ∅;
2: for all v ∈ V in non-increasing order of score(v) do

3: if |S| = η × k then break;
4: if v /∈ U then

5: C ← CliqueGreedy(N(v), {v});
6: S ← S ∪ {C};
7: for all v ∈ C do U ← U ∪ {v} ∪N(v);
8: return top-k cliques in S with maximum size;

9: procedure CliqueGreedy(P,R)
10: if P = ∅ then return R;
11: u← argmaxv∈P {min{|P ∩N(v)|, score(v)}};
12: return CliqueGreedy(P ∩N(u), R ∪ {u});

clique set D. Intuitively, in a good D, the size |C| of each

C ∈ D should be large, and the size |Ci ∩ Cj | for each

pair Ci ∈ D and Cj ∈ D should be small.

Our algorithm InitK to compute the initial D is

shown in Algorithm 6. Generally speaking, D is com-

puted by generating a set S of η × k (η ≥ 1) maximal

cliques such that each C ∈ S is large, and for any two

maximal cliques Ci, Cj ∈ S, Ci∩Cj = ∅. In other words,

we generate a set of non-overlapping maximal cliques

and select the largest k of them to be D. In order to do

this, we use U to maintain the set of nodes that are cov-

ered by cliques in S as well as their neighbors in G, i.e.,

U =
⋃
C∈S,v∈C{v}∪N(v). Both S and U are initialized

to be ∅ (line 1). Recall that in Section 4.2, we show

that for each node v ∈ V (G), the potential size of the

maximum clique containing v can be computed using

score(v) (Eq. 1). Thus, in order to find large maximal

cliques, we traverse v ∈ V in non-decreasing order of

score(v) (line 2) and stops the traversal whenever η× k
maximal cliques are generated in S (line 3). In order to

avoid overlapping, we compute a maximal clique from

each v only if v /∈ U (line 4). The non-overlapping con-

dition, i.e., the maximal clique generated from v does

not overlap with any maximal cliques in S, is guaran-

teed because by the definition of U and the condition

v /∈ U , we can guarantee that v is not covered by the

current S, and none of the neighbors of v is covered

by S. For each such a v, we use a greedy algorithm

CliqueGreedy to compute a maximal clique C contain-

ing v (line 5), add C into S (line 6), and maintain U

by adding C along with all neighbors of nodes v ∈ C
(line 7). Finally, after S is generated, we return the

top-k cliques in S with the maximum size as the initial

candidate maximal clique set (line 8). Next, we intro-

duce how the greedy algorithm CliqueGreedy works to

generate a potentially large maximal clique containing

v.

Procedure CliqueGreedy(P,R). The algorithm

CliqueGreedy (line 9-12 of Algorithm 6) adopts a

recursive approach to generate a maximal clique where

R is the current partial clique generated and P is the

set of candidate nodes that can be added to R to form

larger cliques. The algorithm stops when P is empty

(line 10). Otherwise, it selects a node u from P that

is likely to form the largest clique with nodes in P .

Similar to global pruning (Section 4.2), the potential

size of such maximum clique in P containing node v

can be calculated as min{|P ∩N(v)|, score(v)} which is

obviously an upper bound of the size of the maximum

clique formed by v and other nodes in P . Therefore, u

can be computed by selecting a node v in P that can

maximize the potential size min{|P ∩ N(v)|, score(v)}
(line 11). After selecting u, we recursively invoke

CliqueGreedy by adding the new selected node u into R,

and updating P to be the set of nodes in the original

P which are adjacent to u (line 12).

Discussion. Compared to CliqueAll used in EnumK (Al-

gorithm 4) which enumerates all maximal cliques by

expanding from every node v ∈ V (G), in InitK (Algo-

rithm 6) used in EnumKOpt (Algorithm 5), for each

node v ∈ V (G), we only generate one maximal clique.

Obviously, the time cost of InitK is not larger than that

of CliqueAll. Therefore, the time complexity of EnumK
(Algorithm 4) will not increase after applying initial

candidate computation. In summary, applying the three

optimization strategies in EnumKOpt does not increase

the time complexity of the EnumK algorithm.

5 An I/O Efficient Algorithm

Due to the rapid graph growth in the big data era, the

size of many graphs increases sharply so that they can-

not entirely reside in main memory. Motivated by this,

in this section, we study a new I/O efficient algorithm

for diversified top-k clique search in a graph G that

cannot be entirely held in main memory.

5.1 A Naive Solution

A naive solution to this problem is that we maintain the

candidate set D in memory and adopt an existing I/O

efficient maximal clique enumeration algorithm such as

the algorithm in [16] to enumerate all the cliques in the

input graph to update D. The naive solution SeqEnumK
is shown in Algorithm 7.

SeqEnumK first initializes the top-k candidate set D
(line 1). Then it repeatedly extracts a subgraph GS+

(named extended subgraph in the paper) of G which

can fit in memory (line 5) and computes the maximal

cliques locally in the subgraph GS+ (line 7). Here, S+

is the union of nodes in S and their neighbors in G, and
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Algorithm 7 SeqEnumK(graph G = (V,E), integer k)

1: line 1-2 of Algorithm 4;
2: S ← ∅; S+ ← ∅;
3: for each v ∈ V in increasing order of id(v) do
4: S ← S ∪ {v}; S+ ← S+ ∪ {v} ∪N(v,G);
5: if (φdeg · |S+| ≥ cM) then

6: scan G on disk once to extract GS+ ;
7: apply CliqueAll in Algorithm 1 to compute M(GS+);
8: for each C ∈M(GS+) do

9: if (C ∩ S 6= ∅ and (minv∈C{id(v)} ≥ minu∈S{id(u)})
then

10: Invoke CandMaintain (C) in Algorithm 4 to up-
date D;

11: S ← ∅; S+ ← ∅;
12: return D;

GS+ is the subgraph induced by nodes in S+. Line 5

is used to estimate whether the graph induced by S+

can fit in main memory with size M by checking the

condition φdeg · |S+| ≥ cM . The technique to compute

φdeg is introduced in details in [16]. For each computed

maximal clique C, procedure CandMaintain is invoked

to update the candidate set D (line 10). To avoid enu-

merating duplicate maximal cliques, SeqEnumK does

not output a maximal clique that has been computed

before. This is done by checking whether the node with

the smallest id in C is greater than or equal to the node

with the smallest id in the set S (line 9). The interested

reader is referred to [16] for details.

SeqEnumK can be used to solve the top-k diver-

sified clique search problem and can keep the same

approximation ratio as our in-memory algorithm (Al-

gorithm 5). However, this approach has the following

drawbacks: (1) As stated in Section 1, the number of

maximal cliques in a graph G can be exponential in

the number of nodes in G, thus it is computationally

intractable to enumerate all the maximal cliques in G

when G is very large. (2) The graph partition strategy

used in SeqEnumK leads to many duplicate maximal

cliques during the computation, thus SeqEnumK needs

to verify the duplicates in line 9, which results in the

inefficiency of the algorithm. (3) In the SeqEnumK, op-

timization strategies are difficult to be adopted, espe-

cially for the global pruning and initial candidate com-

putation strategies, because the maximal cliques can be

generated in an arbitrary order.

5.2 A New Approach

In this paper, we propose a new algorithm for the diver-

sified top-k clique search problem in a massive graph,

which can overcome the shortcomings of the naive ap-

proach while keeping the same worst-case approxima-

tion ratio. In the new algorithm, we process each node

in an order based on their core number. As shown in

Fact 1, for a node v, core number core(v) is an upper

bound of ω(v), thus it can be used as a pruning indica-

tor. With this processing order, we can prune unpromis-

ing clique enumeration at an early stage. Moreover, in

order to reap the benefit of initial candidate computa-

tion, in our new algorithm we leverage the edges that

have a large core number to compute the initial candi-

date clique set D. In addition, instead of the extended

subgraph used in SeqEnumK, we introduce a new par-

tition paradigm using oriented subgraph as the basic

component of the new algorithm. Compared with the

extended subgraph, oriented subgraph does not need

to verify the duplicates, which can further reduce un-

necessary computation. By adopting these strategies,

the optimization strategies can be applied naturally

and effectively and the unnecessary computation can

be largely reduced in our new algorithm. Before show-

ing the details of our algorithm, we first introduce some

definitions.

Definition 12 (Seed Nodes/Subgraph) Given a

graph G = (V,E), seed nodes, denoted by S, are a set

of nodes selected from V . The seed subgraph, denoted

by GS = (VS , ES), is the induced subgraph of G by S.

Definition 13 (Node Order). We define a total or-

der ≺ for nodes in G as: given two node u and v, u ≺ v
if and only if either of the following two conditions is

satisfied:

1. d(u) > d(v);

2. d(u) = d(v) and id(u) < id(v).

Definition 14 (Oriented Nodes/Subgraph).

Given a set of seed nodes S and a graph G = (V,E),

the oriented nodes, denoted by S∗, is defined as

S∗ = S ∪ {v : v ∈ N(u,G), u ∈ S, v ≺ u}. The oriented

subgraph, denoted by GS∗ = (VS∗ , ES∗), is the induced

subgraph of G by S∗.

When S contains only one node v, we call the cor-

responding oriented subgraph as a node-based oriented

graph, denoted by Gv∗ .

Definition 15 (Core Number core(e)) Given a

graph G and an edge e = (u, v), the core number of

an edge e, denoted by core(e), is defined as core(e) =

min{core(u), core(v)}.

As oriented subgraph is used as the basic compo-

nent in our new algorithm, we first prove that all the

maximal cliques in the input graph can be computed lo-

cally from the oriented subgraphs. This property leads

to the design of our oriented subgraph partition based

algorithm, which will be shown in Algorithm 8.
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Lemma 6 Given a graph G = (V,E), let S =

{S1, S2, ..., St}, where
⋃

1≤i≤t Si = V and Si ∩ Sj = ∅
for i 6= j, let M(GS∗i ) be the set of maximal cliques in

GS∗i . For each maximal clique C in G, there is one and

only one oriented subgraph GS∗i such that C ∈M(GS∗i ).

Proof Sketch: We first prove that for each maximal

clique C, there exists one oriented subgraph GS∗i such

that C ∈ M(GS∗i ). Suppose that there is a maximal

clique C ′ in G and there is no Si ∈ S such that C ′ ∈
M(GS∗i ). Then we can construct a seed set Si′ with

only one node v such that Si′ = {v : v ∈ C ′, u ≺ v

for any u ∈ C ′\{v}}. It is obvious that C ′ ∈ M(GS∗
i′

)

and v /∈ Si for any 1 ≤ i ≤ t, which contradicts that⋃
1≤i≤t Si = V . Thus, for each maximal clique C, there

exists at least one oriented subgraph GS∗i such that

C ∈M(GS∗i ).

We then prove that there is only one GS∗i such that

C ∈ M(GS∗i ). Suppose that there exists one maximal

clique C ′ which is contained in M(GS∗i ) and M(GS∗j ).

Then for the node v with the least order in C ′, it is

obvious that v ∈ Si and v ∈ Sj , which contradicts that

Si ∩ Sj = ∅ for i 6= j. Thus, for each maximal clique

C in G, there is only one oriented subgraph GS∗i such

that C ∈M(GS∗i ). 2

Note that the maximal cliques computed locally

from GS∗ may not be a maximal clique globally. How-

ever, using the oriented subgraph as the basic partition

component for the diversified top-k clique search prob-

lem is reasonable as follows: for the application sce-

narios of diversified top-k clique search, the coverage

of returned result is the most important focus of the

applications. In our algorithm, we can guarantee that

every maximal clique in the graph is enumerated in

one oriented subgraph, which is proved in Lemma 6. In

addition as shown in Lemma 7, our algorithm can still

achieve a guaranteed approximation ratio of 0.25, which

is the same as our in-memory algorithm (Algorithm 5).

Thus, it is reasonable to adopt oriented subgraphs in

our algorithm.

Algorithm IOEnumK Our new algorithm IOEnumK
is illustrated in Algorithm 8. The framework of

IOEnumK is similar to SeqEnumK. However, compared

to SeqEnumK, in IOEnumK, we need to overcome the

challenge to integrate the optimization strategies in the

algorithm to reduce unnecessary computation. To solve

this problem, IOEnumK contains two steps: (1) We first

compute an initial candidate set D (procedure IOInitK)

and prune the edges with core number smaller than

|priv(Cmin)|+α× |cov(D)|
|D| . The remaining edges form a

subgraph G′. (2) We then enumerate all the maximal

cliques in G′ to update the candidate set D with prun-

ing strategies (line 4-16). Such a procedure runs as fol-

Algorithm 8 IOEnumK(graph G = (V,E), integer k)

1: line 1-2 of Algorithm 4;
2: compute the core number for each node using the I/O

efficient algorithm in [14];
3: (D, G′)← IOInitK(G, k);
4: S ← ∅; S∗ ← ∅;
5: for each v ∈ V ′ in non-increasing order of core(v) do
6: if |D| = k and GlobalPruning(v) then break;
7: S ← S ∪ {v}; S′ ← ∅; load N(u,G′) into memory;
8: for each u ∈ N(v,G′) do
9: if GlobalPruning(u) = false and u ≺ v then

10: S′ ← S′ ∪ {u};
11: S∗ ← S∗ ∪ {v} ∪ S′;
12: if (φdeg · |S∗| ≥ cM) then

13: scan G′ on disk once to extract G′S∗ ;
14: apply CliqueK to G′S∗ ;
15: S ← ∅; S∗ ← ∅;
16: return D;

17: procedure IOInitK(G, k)
18: sort the edges based e ∈ E(G) in non-increasing order of

core(e) on disk;
19: load as many edges as possible with maximum core num-

bers to form subgraph Ginit into memory;
20: apply Algorithm 5 to Ginit and obtain initial D;
21: extract subgraph G′ on disk consisting of edges e with

core(e) > |priv(Cmin)|+ α× |cov(D)|
|D| ;

22: return D and G′;

lows: After computing the initial candidate set (line 3),

we partition the input graph into smaller oriented sub-

graphs GS∗ each of which can be held in main memory

(line 8-13) and compute the maximal cliques locally us-

ing CliqueK (line 14). To apply the GlobalPruning strat-

egy to our algorithm, we compute the core number of

nodes in line 2. Note that compared with EnumKOpt,
IOEnumK just uses core(v) as score(v). The reason to

adopt this strategy is that color(S) is hard to handle

when the input graph cannot fit into memory. IOEnumK
utilizes the I/O efficient core decomposition algorithm

in [14] to compute the core number of nodes. To es-

timate the size of GS∗ , we use the similar method

introduced in [16], i.e., φdeg = argmaxv∈S∗{deg(v)}
(line 12). In this paper, we assume that at least Gv∗

can be held in memory for any v ∈ V (G). This assump-

tion is reasonable in practice. For example, in the date-

sets UK-2005 and Webbase used in our experiment,

the maximum Gv∗ contains 1, 755, 518 and 1, 116, 179

edges, which covers only 0.19% and 0.11% of the edges

of the entire graph respectively. After all the nodes are

processed, IOEnumK returns the top-k results in line 16.

Procedure IOInitK For the IOInitK procedure, we aim

to compute k initial candidates to improve the prun-

ing power. In this procedure, we first construct a sub-

graph Ginit by loading as many edges as possible in

non-increasing order of their core numbers and then uti-

lize the in-memory algorithm EnumKOpt (Algorithm 5)
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to obtain the initial candidates. The reasons to utilize

Ginit here are as follows: (1) Compared with oriented

subgraph, the subgraph consisting of edges with large

core numbers is usually not huge and we can avoid es-

timating its size, thus the limited main memory can

be utilized more effectively. (2) The I/O efficient al-

gorithm for core decomposition has been explored in

literature, hence, the subgraph can be constructed eas-

ily. (3) core(v) will be used in the following processing

steps, thus we can share the core number information

with low extra cost. IOInitK first sorts the edges of G

based on the core(e) and extracts the subgraph Ginit
by loading as many edges as possible in non-increasing

order of their core numbers(line 18-19), then the in-

memory EnumKOpt(Algorithm 5) is invoked to obtain

the initial candidates (line 20). Note that cliques cho-

sen in line 20 are the cliques with size larger than the

smallest core number of edges loaded in main mem-

ory. This is because only the cliques with size larger

than the smallest core number of edges loaded in main

memory can be guaranteed to be maximal in the orig-

inal input graph. After obtaining the initial D, IOInitK
prunes the edges which cannot be used to further im-

prove the candidate set D and extract G′ (line 21) for

further refining D. G′ is stored in adjacency lists and

the nodes are ordered by their core number core(v). G′

can be easily computed in O(sort(m)) I/Os by sorting.

For each node u, the degree information d(u) is also

embedded in the node u. In this way, the node order

can be easily obtained in line 9.

The following Lemma 7 shows the top-k diversi-

fied cliques returned by IOEnumK can achieve the same

guaranteed approximation ratio of 0.25 as EnumKOpt.

Lemma 7 Given a graph G and an integer k, suppose

D∗ is the optimal diversified top-k cliques, and D is the

result returned by IOEnumK, then |cov(D)| ≥ 0.25 ×
|cov(D∗)|

Proof Sketch: The proof simply follows the proof of

Lemma 1. As shown in the Lemma 6, all the max-

imal cliques in original input graph G are processed

in IOEnumK, then IOEnumK has the same settings as

EnumKOpt. Thus the lemma is proved directly. 2

Algorithm Analysis. To analyse the complexity of

IOEnumK, we use the standard I/O complexity nota-

tions [1] as follows: M is main memory size and B is the

disk block size (1� B �M/2). The I/O complexity to

scan N elements is scan(N) = Θ(NB ), and the I/O com-

plexity to sort N elements is sort(N) = O(NB ·log M
B

N
B ).

The cost of IOEnumK contains three parts: (1) com-

pute the core number of nodes in the input graph. (2)

sort the graph. (3) partition the graph and compute

the maximal cliques. For part (1), as shown in [14], it

takes O(kmax(m + n)) CPU time and O(kmax(m+n)
B )

I/Os, where kmax is the maximum core number of the

input graph. For part (2), as shown in [1], it takes

O(m log(m)) CPU time and O(sort(m)) I/Os. For part

(3), IOEnumK needs to scan G′ for (s + 1) times,

where s is number of GS∗ computed in line 13. As

(φdeg · |S∗|) ≥ cM in line 12 and |S∗| ≤ (φdeg · |S|),
we have |S| ≥ cM

(φdeg)2
. As c < 1 is a constant, thus s =

O( n
|S| ) = O(

n·φ2
deg

M ). Hence, for part (3), IOInitK takes

O(s · Tenum(GS∗)) CPU time and O(s · scan(m + n))

I/Os. Thus, the overall CPU time that IOEnumK re-

quires is O(kmax(m+ n) +m log(m) + s · Tenum(GS∗))

and the overall I/Os is O(kmax(m+n)
B + sort(m) + s ·

scan(m+ n)).

Discussion. Note that the oriented subgraph GS∗ de-

fined in Definition 14 is different from the extended

subgraph GS+ defined in [16], which leads to totally

different algorithm design. In [16], the extended sub-

graph contains all edges among the nodes in S ∪ {v :

v ∈ N(u,G), u ∈ S}, while in our definition, we ex-

tend the subgraph by adding the neighbours v of u ∈ S
where v ≺ u. Compared to the extended subgraph,

oriented subgraph has the following advantages: (1)

With respect to the same seed nodes S, oriented sub-

graph GS∗ is generally smaller than extended subgraph

GS+ , which means we can contain more seed nodes

in one partition with the same memory and complete

the algorithm with less scans. (2) As there is no dupli-

cates among different oriented subgraphs, compared to

SeqEnumK (line 9), it is not necessary to verify whether

the computed maximal cliques have been generated in
other subgraphs. Both of the advantages improve the

performance of IOEnumK.

In [46], the authors propose a distributed algorithm

for maximal clique enumeration and a node order is de-

fined in their paper. The node order is used in both [46]

and our paper, but in different ways. In Definition 14,

the oriented subgraph is defined based on the node or-

der and it aims to reduce the size of a partition to be

loaded in memory. However, in [46], the node order is

used to reduce the computational and communication

cost, but it cannot be used to reduce the size of each

partition. Specifically, in order to guarantee that the

cliques generated are maximal cliques, in the algorithm

proposed in [46], given a set of nodes S, a partition still

needs to maintain the subgraph induced by the node

set S+ = S ∪ {v : v ∈ N(u,G)}, which can be much

larger than S∗ used in our paper when S contains some

high-degree nodes.
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6 Related Work

We review the related work to diversified top-k clique

search problem from five categories, namely, maximal

clique enumeration, maximum clique computation, max

k-cover, diversified top-k search and I/O efficient graph

algorithms.

Maximal Clique Enumeration. Maximal clique

enumeration is a fundamental graph problem and has

been extensively studied. Most algorithms for maximal

clique enumeration (e.g., [11] and [3]) are based on

backtracking search. [40] and [23] further speedup

maximal clique enumeration by selecting good pivots

to reduce the search path in backtracking. Maximal

clique enumeration in a sparse graph is studied in

[13]. A near-optimal algorithm for maximal clique enu-

meration in a sparse graph is given in [22]. Recently,

Wang et al. [43] propose an algorithm to enumerate

maximal cliques by taking the overlaps among cliques

into consideration. Both [22] and [43] are introduced

in details in Section 2.3 and Section 2.4 respectively.

In addition, parallel maximal clique enumeration is

studied in [37], and I/O efficient maximal clique enu-

meration algorithms are proposed in [15] and [16]. A

distributed algorithm for maximal clique enumeration

is proposed in [46].

Maximum Clique Computation. The maximum

clique within a graph G is the largest subgraph of G

that is a clique. A classical algorithm for maximum

clique computation is proposed in [12]. At every stage

of the algorithm, it maintains the largest known clique

size ω. For each subgraph G′, the algorithm finds the set

of nodes {w} which are not in G′ but are connected to

all nodes in G′. Let m be the number of nodes in {w}.
If m+ |G′| ≤ ω, the subgraph G′ is pruned. [33] intro-

duces an additional pruning strategy based on vertex

order. In [29, 38, 39], graph coloring is used to obtain

an upper bound of the size of maximum clique to fur-

ther prune the unnecessary computation. A distributed

algorithm based on MapReduce for maximum clique

computation is proposed in [45]. Based on maximum

clique computation, a naive solution to diversified top-

k clique search problem runs as follows: we first find

the maximum clique C in G and remove the nodes and

edges in C from G and repeat this procedure k times.

The obtained k maximum cliques are returned as the

result. However, this approach is not scalable as it needs

to scan the graph k times. We evaluate this approach

in our experiment (Exp-1 in Section 7).

Max k-Cover. As shown in Section 2.3, the greedy al-

gorithm to compute the max k-cover can achieve an ap-

proximation ratio of (1−1/e) which cannot be improved

by any polynomial time algorithm unless P=NP [25].

Some other works focus on computing max k-cover in

a streaming environment [5, 6, 36, 47]. In this paper, as

shown in Section 3.1, we generalize the algorithm intro-

duced in [5] which is an improvement of the algorithm

introduced in [36]. In [47], an algorithm is designed in a

way that a new set is retained if it has the potential to

cover some new nodes in the graph, and an existing set

that does not cover any new nodes is removed. After

processing all sets, the k retained sets with largest size

are returned. In [6], the algorithm maintains multiple

lists of sets Dδ1 , Dδ2 , · · · for 1 < δ1 < δ2 < · · · . Sup-

pose di = (δi/2− |cov(Dδi)|)/(k − |Dδi |), for a new set

C, it is inserted into Dδi only if C can cover at least di
new nodes in Dδi . After processing all sets, the Dδi that

covers most nodes is returned. The approaches in [47]

and [6] have better approximation ratio than [5] and

[36] theoretically, however, neither of them can lead to

efficient pruning strategies for diversified top-k clique

search, thus they are not suitable to handle very large

graphs as confirmed in our experiments. Max k-cover

computation in MapReduce is studied in [17].

Diversified Top-k Search. Diversified top-k search,

which aims at computing the top-k answers that are

most relevant to a user query by taking diversity into

consideration, has been extensively studied. In the lit-

erature, many existing solutions focus on answering the

diversified top-k query for a specific problem. For ex-

ample, diversified top-k document retrieval is studied

by Agrawal et al. [2] and Angel and Koudas [4]. Lin et

al. [31] study the k most representative skyline prob-

lem. Demidova et al. [19] study the diversified keyword

query interpretation over structured databases. Diver-

sified top-k graph pattern matching is studied by Fan

et al. [24]. However, none of the above approaches can

be used to efficiently compute diversified top-k cliques.

A survey for different query result diversification ap-

proaches is provided by Drosou and Pitoura [21]. Some

other works focus on a general framework for top-k an-

swer diversification. For example, the general frame-

work to answer diversified top-k queries is studied by

Qin et al. [34] and Vieira et al. [41]. Top-k result diver-

sification on a dynamic environment is studied by Mi-

nack et al. [32] and Borodin et al. [10]. The complexity

of query result diversification is analyzed by Deng and

Fan [20]. Nevertheless, the diversity of all the above

frameworks is based on the pair-wise dissimilarity of

query results, which is not applicable to the diversified

top-k clique search problem studied in this paper.

I/O Efficient Graph Algorithms. Due to the rapid

increase of graph size, traditional (in-memory) graph

algorithms cannot be applied to handle large disk-
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Table 1 Datasets used in Experiments

Dataset G Type |V (G)| |E(G)| Avg Degree
Google Web 875,713 5,105,039 11.66
Skitter Physical 1,696,415 11,095,298 13.08
Youtube Social 3,223,589 12,223,774 7.58
Pokec Social 1,632,803 30,622,564 37.51
Wiki Reference 2,936,413 104,673,033 71.29

UK-2002 Web 18,520,486 298,113,762 32.19
UK-2005 Web 39,459,925 936,364,282 47.46
Webbase Web 118,142,155 1, 019, 903,190 17.27

resident graphs because of the I/O communication gen-

erated. Therefore, several graph algorithms focusing on

I/O efficiency have been proposed in the literature. In

[14], Cheng et al. devise a top-down approach for the

core decomposition problem in massive networks. Tri-

angle listing problem in massive graphs is studied in

[18, 27]. Cheng et al. also propose an I/O efficient al-

gorithm for maximal clique enumeration problem by

recursively extracting a core part of the input graph

[15, 16]. The I/O efficient algorithm for k-truss problem

is investigated in [42]. The authors propose a bottom-

up algorithm and a top-down algorithm to address k-

truss decomposition problem in different application

scenarios. Zhang et al. [50] study an I/O efficient semi-

external algorithm to find all strongly connected com-

ponents (SCC) in a graph and they extend the algo-

rithm in the external memory model when the nodes

of graph cannot be kept in memory in [49]. Recently,

an I/O efficient semi-external algorithm for depth first

search problem is studied in [51].

7 Performance Studies

In this section, we show our experimental results. All

of our experiments are conducted on a machine with

an Intel Xeon 3.4GHz CPU (8 cores) and 32GB main

memory (for I/O efficient algorithm testing, we set the

available memory as 1GB) running Linux (Red Had

Enterprise version 6.4, 64bit).

Datasets. We use eight real-world large graphs

with different types and graph properties (see Ta-

ble 1) for testing. Among them, Google, Skitter , and

Pokec are downloaded from SNAP (http://snap.

stanford.edu), Wiki and Youtube are downloaded

from KONECT (http://konect.uni-koblenz.de),

UK-2002 , UK-2005 and Webbase are downloaded

from WEB (http://law.di.unimi.it). Google was re-

leased in 2002 by Google as a part of Google Program-

ming Contest. Skitter is an Internet topology graph re-

leased in 2005. Pokec is the most popular on-line so-

cial network in Slovakia. Wiki is the edit network of

the Italian Wikipedia. Youtube is the social network

of Youtube users and their connections. UK-2002 and

UK-2005 are webpages crawled from .uk domain in

2002 and 2005 respectively, in which nodes represent

pages and edges represent hyperlinks between them.

Webbase is obtained from the 2001 crawl perform by

the WebBase crawler. We also evaluate the algorithms

on synthetic graphs. The graph generator used in the

tests is GTgraph (http://www.cse.psu.edu/~kxm85/

software/GTgraph/).

Algorithms. We implement and compare twelve al-

gorithms: the first ten are in-memory algorithms;

SeqEnumK and IOEnumK are I/O efficient algorithms.

– EnumAll: Algorithm 1 (Section 2.3).

– EnumSub: Algorithm 2 (Section 2.4).

– EnumK: Algorithm 4 (Section 3.2).

– Local: EnumK + local pruning (Section 4.3).

– Global: Local + global pruning (Section 4.2).

– EnumKOpt: Global + InitK (Section 4.4).

– SOPS: Candidate maintenance using the method in

[36].

– GOPS: Candidate maintenance using the method in

[47].

– SIEVE: Candidate maintenance using the method in

[6].

– MaxK: The algorithm based on maximum clique

computation algorithm in [38] (Section 6).

– SeqEnumK: Algorithm 7 (Section 5.1).

– IOEnumK: Algorithm 8 (Section 5.2).

All algorithms are implemented in C++. For EnumAll,
the source code is obtained from the author in [22]. For

EnumSub, we download the source code from the home-

page (http://appsrv.cse.cuhk.edu.hk/~jwang/) of

the first author of [43]. We use the randomized algo-

rithm RMCE in [43] for EnumSub and set τ as 0.8

which is the default setting in [43]. For SOPS, GOPS,

and SIEVE, we apply all optimization techniques in-

troduced in [36], [47], and [6] respectively, and also

apply the early termination techniques introduced in

Section 4 whenever possible. For SeqEnumK, we apply

local pruning technique introduced in Section 4. For

tests about in-memory algorithms on real graphs and

synthetic graphs, we report the total processing time

and the number of nodes covered by the top-k maxi-

mal cliques returned. For tests about I/O efficient al-

gorithms, we also report the number of I/Os during

the processing (as the number of covered nodes has the

similar trend to that of the in-memory algorithms, the

results are not shown in this part). We set the maxi-

mum running time for each test to be 10,000 seconds.

If a test does not stop in the time limit, or fails due to

out of memory exception, we denote the corresponding

processing time as INF. For GOPS, we find out that it

cannot terminate in the time limit for almost all tests
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due to its costly set update operation and low pruning

power. Thus, we omit the result for GOPS in the ex-

periments. Exp-(1-6) test the in-memory algorithms on

real graphs, Exp-(7-9) test the in-memory algorithms

on synthetic graphs and Exp-(10-11) test the I/O effi-

cient algorithms.

Parameters. For tests on real graphs, we vary

four parameters in our experiments, namely, k (the

top-k value), α (the parameter used in procedure

CandMaintain (refer to Algorithm 4)), η (the param-

eter used in procedure InitK (refer to Algorithm 6)),

and |V | (the graph size). k is selected from 10, 20, 30,

40, 50 with a default value of 40. α is selected from 0.1,

0.2, · · · , 1 with a default value of 0.3. η is selected from

0, 1, 2, 3, 4, 5 with a default value of 3, where η = 0

means that no initial candidates are computed. For |V |,
we generate subgraphs with 20%, 40%, 60%, 80%, and

100% nodes of the original graph for each dataset, with

a default value of 100%. For tests on synthetic graphs,

we vary |V |, k and the maximum clique size. |V | is se-

lected from 1M , 1.5M , 2M , 2.5M , 3M with a default

vale of 2M . The maximum clique (Cmax) size is selected

from 0.5�, 0.75�, 1�, 1.25�, 1.5� of |V | with

default value of 1�. For I/O efficient algorithms, we

vary k and α. Unless specified otherwise, when varying

a certain parameter, the values of the other parameters

are set to their default values.

7.1 In-Memory Algorithms on Real Graphs

Exp-1: Vary k (Efficiency). In this experiment, we

vary k from 10 to 50. The curves of processing time for

all the algorithms in the six datasets are shown in Fig. 6

(a) to Fig. 6 (f) respectively. For all algorithms, when

k increases, the processing time increases. EnumAll and

EnumSub perform worse than all the other algorithms in

all datasets. This is because both EnumAll and EnumSub
need to generate a large number of maximal cliques

which is costly, and processing the greedy max k-cover

algorithm on such a large number of maximal cliques

is also costly. EnumAll outperforms EnumSub on Google

(Fig. 6(a)) and Youtube (Fig. 6 (c)), this is because

EnumSub may spend extra cost to compute the sam-

pling probability to obtain the summary. For Pokec

(Fig. 6 (d)) and Skitter (Fig. 6 (b)), the efficiency of

EnumSub is similar to or better than EnumAll when

k ≥ 40. SOPS is slower than other algorithms except

for EnumAll and EnumSub in all datasets, because the

maximal clique swapping operation in SOPS is costly,

and early pruning has no large effect on SOPS. Among

the other five algorithms, SIEVE is better than EnumK
in all datasets, because some early pruning techniques
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are applied on SIEVE, while EnumK has to enumerate all

maximal cliques. However, after applying local pruning,

the algorithm Local performs better than SIEVE in all

datasets, which shows the high pruning power of the lo-

cal pruning strategy used in Local. After applying global

pruning, our algorithm Global improves Local by 30%

to 300% in terms of efficiency. And with initial candi-

date computation, EnumKOpt further improves that of

Global. The pruning power of our three pruning strate-

gies varies for different datasets. For Google (Fig. 6

(a)), the global pruning strategy has the best prun-

ing power. For Wiki (Fig. 6 (e)), the pruning power of
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the local pruning strategy is more evident. For Youtube

(Fig. 6 (c)), the pruning power of three pruning strate-

gies is similar. In Fig. 6 (a) to (d), when the size of

the dataset is small, the advantage of EnumKOpt is not

obvious. However, in Fig. 6 (e) and (f), when the size

of the dataset is large, EnumKOpt is much faster than

all other algorithms. For example, in Wiki (Fig. 6 (e)),

EnumKOpt is an order of magnitude faster than SIEVE,

and in UK-2002 (Fig. 6 (f)), when k > 20, SIEVE can-

not terminate in the time limit, while EnumKOpt can

finish in one minute for all k values. The results of MaxK
on Pokec and UK-2002 are shown in Fig. 7. When we

vary k, the processing time of EnumKOpt keeps stable

while that of MaxK increases linearly to k. This is be-

cause MaxK needs to search the graph k times and each

time only one maximum clique is generated, whereas

EnumKOpt only needs to search the graph once to ob-

tain k cliques.
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Exp-2: Vary k (Effectiveness). In this experiment,

we compare the number of nodes covered by the result

returned from different algorithms. The results for the

six datasets when varying k from 10 to 50 are shown in

Fig. 8 (a) to Fig. 8 (f) respectively. Since the results for

EnumK, Local, and Global are the same, we only show

the result for Global in Fig. 8. For MaxK, the results are

the same as EnumAll. In general, when k increases, the

number of covered nodes for all algorithms increases.

For the four small datasets Google, Skitter , Youtube,

and Pokec in Fig. 8 (a) to (d) respectively, EnumAll
performs best, followed by EnumSub and EnumKOpt.
However, the number of covered nodes in EnumKOpt is

very close to that in EnumAll, i.e., no less than 90%

of the number of covered nodes in EnumAll in most

cases. The other three algorithms Global, SOPS, and

SIEVE have similar performance which is worse than

EnumKOpt in most cases. Such a result indicates that a

good initial candidate set generated in EnumKOpt can

improve both efficiency and effectiveness. For the large

dataset Wiki (Fig. 8 (e)), EnumSub and EnumAll cannot

stop in the limited time, and among the other four algo-

rithms, our algorithm EnumKOpt performs best for all

k values. For the dataset UK-2002 (Fig. 8 (f)) only our

algorithms Global and EnumKOpt can terminate for all

k values, SIEVE can only finish when k ≤ 20. EnumKOpt
performs best in all cases. In the following, for our pro-

posed algorithms EnumK, Local, Global, and EnumKOpt,
we only show the results for EnumKOpt, since their rel-

ative performances are similar to those shown in Fig. 6

and Fig. 8.
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Exp-3: Vary α. We vary α from 0.1 to 1.0 and test

both the efficiency and effectiveness of our algorithm

EnumKOpt. The results for Youtube, Pokec, and UK-

2002 are shown in Fig. 9. In general, when α is smaller,

the algorithm spends more time, but the correspond-

ing result covers more nodes. For the small datasets

Youtube (Fig. 9 (a) and (b)) and Pokec (Fig. 9 (c) and

(d)), the efficiency is not as sensitive to α as the effec-

tiveness. For the large dataset UK-2002 (Fig. 9 (e) and

(f)), both efficiency and effectiveness are sensitive to α

when α is small (≤ 0.5), and not sensitive to α when α

is large (> 0.5). The results on the other three datasets

are similar thus are omitted.
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Exp-4: Vary η. We vary η from 0 to 5 and test the

procedure InitK in EnumKOpt, where η = 0 indicates

that no InitK is used. The results for efficiency and ef-

fectiveness are shown in Fig. 10 (a) and Fig. 10 (b)

respectively. In general, when η increases from 0 to 3,

the processing time on all datasets tends to decrease,

while the number of covered nodes tends to increase.

This is because that the pruning power of the global

and local pruning strategies increases when η increases

from 0 to 3. However, when η further increases, the pro-

cessing time on all datasets tends to increase, while the

number of covered nodes keeps unchanged. The reason

is that when η further increases, the procedure InitK
takes more time to compute the initial candidate set,

while the pruning power of global and local pruning

does not increase significantly.

Exp-5: Vary |V |. We vary |V | from 20% to 100% of

the original graph and test the scalability of the algo-

rithms on the two large datasets Wiki and UK-2002 .

The results are shown in Fig. 11. In general, when |V |
increases, both the processing time and the number of

covered nodes increase for all algorithms. EnumKOpt
performs best in terms of both efficiency and effec-

tiveness in all tests. Remarkably, in the Wiki dataset

(Fig. 11 (a) and (b)), the efficiency of EnumKOpt is

much better than all other algorithms and the effective-
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Fig. 11 Vary |V | (Scalability)

ness of EnumKOpt is even better than that of EnumAll.
For UK-2002 (Fig. 11 (c) and (d)), when |V | increases,

the processing time for EnumKOpt increases very stably

while that for the other algorithms increases sharply.

When |V | > 60%, only EnumKOpt can finish in the

time limit. Thus, EnumKOpt has high scalability.

Table 2 PNP-Index Size

Dataset Google Skitter Youtube Pokec Wiki UK-2002

Index Size(MB) 7.99 15.48 42.31 14.89 38.90 168.69
Index/Graph 19.56% 17.44% 43.27% 6.07% 4.60% 7.07%

Exp-6: PNP-Index Test . In this experiment, we test

the PNP-Index size and the maintenance cost in dif-

ferent real datasets. All the parameters are set as the

default values and the results are shown in Table 2.

For the PNP-Index size, as the size of the graph in-

creases, the index size also increases. But the size of

PNP-Index is small compared with the size of the input

graph. This is because only the top-k promising maxi-

mal cliques and five additional components are stored in

the PNP-Index. Remarkably, for the large datasets Wiki

and UK-2002 , the size of PNP-Index is only 4.60% and

7.07% of the size of the input graph respectively. As

the maintenance cost is always less than 0.01% of the

total processing time for all datasets, the results are not

shown in Table 2.
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Fig. 12 Vary |V | (Synthetic Graph)
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7.2 In-memory Algorithms on Synthetic Graphs

Exp-7: Vary |V |. We vary |V | from 1M to 3M and

test both the efficiency and effectiveness of the algo-

rithms. The results are shown in Fig. 12. In general,

when |V | increases, both the processing time and the

number of covered nodes increase for all algorithms.

EnumKOpt performs best in terms of both efficiency

and effectiveness in all tests. Remarkably, EnumSub per-

forms well on synthetic graphs. It consumes less time

than EnumAll, SOPS and SIEVE (Fig. 12(a)) while the

number of covered nodes of it is the same as that

of EnumKOpt (Fig. 12(b)). SOPS performs worst in

terms of effectiveness in all tests (Fig. 12 (b)). When

|V | ≥ 2.0M , EnumAll can not finish the test. This is be-

cause too many maximal cliques are stored in memory

for EnumAll during processing.

Exp-8: Vary k. We vary k from 10 to 50 and test

both the efficiency and effectiveness of the algorithms.

The results are shown in Fig. 13. Generally, when k in-

creases, the number of covered nodes increases for all

algorithms. Different from the results on real graphs,

the processing time of all the algorithms keeps sta-

ble as k increases. EnumKOpt performs best, followed

by EnumSub, in terms of both efficiency and effective-

ness in all tests. SIEVE consumes less time than SOPS
(Fig. 13(a)) and performs better than SOPS in terms of

effectiveness (Fig. 13(b)). SOPS has the least number of

covered nodes in all tests (Fig. 13(b)). EnumAll cannot

finish within the resource limit in all tests. The reason

is that maintaining all the generated cliques consumes

too much memory for EnumAll.

Exp-9: Vary |Cmax|. We vary |Cmax| from 0.5� to

1.5� of the default value of |V | and test both the

efficiency and effectiveness of algorithms. The results

are shown in Fig. 14 (The scale of x axis is �).

In general, when |Cmax| increases, both the process-

ing time and the number of covered nodes increase for

all algorithms. EnumKOpt performs best, followed by

EnumSub, in terms of both efficiency and effectiveness

in all tests. SIEVE consumes similar time to EnumSub
(Fig. 14(a)) for all tests but its number of covered nodes

is less than that of EnumSub (Fig. 14(b)). SOPS per-

forms worst in terms of effectiveness in all tests (Fig. 14

(b)). When |Cmax| ≥ 1�, EnumAll can not finish the

test.
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7.3 I/O Efficient Algorithms

Exp-10: Vary k. In this experiment, we compare the

number of I/Os and the processing time for SeqEnumK
and IOEnumK on two massive datasets UK-2005 and

Webbase when we vary k from 10 to 50. The results

are shown in Fig. 15. For SeqEnumK, it cannot termi-

nate in time limit for all k values on these two datasets.

For IOEnumK, when k increases, the number of I/Os on

UK-2005 has little fluctuation (Fig. 15 (a)) while the

number of I/Os on Webbase increases as k increases

(Fig. 15 (b)). This is because as k increases, the prun-
ing power of our optimization strategies decreases, then

the size of G′ returned by IOInitK in IOEnumK increases,

thus more I/Os are needed to scan G′ during the pro-

cessing. Therefore the number of I/Os increases as k

increases. The processing time of IOEnumK has similar

trends as the number of I/Os in most cases (Fig. 15 (c)

and (d)). An interesting observation is that in Fig. 15

(d), when k increase from 40 to 50, the processing time

decreases, which violates the intuition. The reason for

this phenomenon is as follows: the processing time is

determined by two factors: the I/Os and the number

of enumerated cliques during processing. For I/Os, as

explained above, the number of I/Os increases as k in-

creases. However, for the number of enumerated cliques

during processing, there is no such certain rule as I/Os.

As stated in Section 1, the number of cliques highly de-

pends on the input graph. Since the pruning power of

our optimization strategies fluctuates as k changes, G′

returned by IOInitK in IOEnumK are also quite different

as k changes. Thus the numbers of enumerated cliques

are quite different as k varies. In consequence, for the

processing time, no certain rule exists when k changes.

This explains the interesting turning point on the curve

of processing time while there is no such point on the

curve of I/Os.

Exp-11: Vary α. In this experiment, we vary α from

0.1 to 0.5 and report the number of I/Os and the

processing time for SeqEnumK and IOEnumK on UK-

2005 and Webbase. The results are shown in Fig. 16.

SeqEnumK still cannot finish in the time limit on both

datasets. For IOEnumK, the number of I/Os decreases

when we vary α from 0.1 to 0.2 and keep stable as α

increases on UK-2005 (Fig. 16 (a)) and the number of

I/Os decreases when α increases on Webbase (Fig. 16

(b)). This is because as α increases, the pruning power

of our optimization strategies increases, then the size

of G′ return by IOInitK decreases, thus less I/Os are

needed to scan G′ during the processing. For the pro-

cessing time, it generally decreases as α increases on

both datasets (Fig. 16 (c) and (d)). However, turning

points still exist on the curves, such as the point when

α = 0.4 in Fig. 16 (d). The reason for this phenomenon

is similar to that when we vary k in Exp-10. The pro-

cessing time is determined by the I/Os and the number

of enumerated cliques during processing. As explained

above, the number of I/Os decreases when α increases.

However, the number of enumerated cliques is depen-

dent on the input graph. Since the pruning power of our

optimization strategies fluctuates as α changes, G′ re-

turned by IOInitK are also quite different as k changes.

Thus the numbers of enumerated cliques are quite dif-

ferent as α varies. In consequence, there exists no cer-

tain rules on the processing time when α changes and it

is reasonable that the turning points exist on the curve

of processing time.

8 Conclusion

In this paper, we study the diversified top-k clique

search problem, which is to find k cliques that can cover

most number of nodes in a graph. We show that it is

impractical to keep all maximal cliques in memory be-

fore computing the diversified top-k cliques. Therefore,

we devise a new algorithm to maintain k candidates

during maximal clique enumeration. Our algorithm has

limited memory footprint and can achieve a guaranteed

approximation ratio. We introduce a novel PNP-Index
based on which an optimal candidate maintenance al-

gorithm is designed. We further explore three optimiza-

tion strategies to avoid enumerating all maximal cliques

and thus largely reduce the computational cost. Finally,

we propose an I/O efficient algorithm to handle the sce-
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nario when the input graph is too large to fit into main

memory. We conduct extensive performance studies on

large real graphs and synthetic graphs to demonstrate

the efficiency and effectiveness of our approach.
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33. P. R. Österg̊ard. A fast algorithm for the maximum clique
problem. Discrete Applied Mathematics, 120(1):197–207,
2002.

34. L. Qin, J. X. Yu, and L. Chang. Diversifying top-k re-
sults. PVLDB, 5(11):1124–1135, 2012.

35. J. Robson. Finding a maximum independent set in time
O(2n/4). Technical report, 1251-01, LaBRI, Université
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