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Abstract Analytical workloads in data warehouses often
include heavy joinswhere queries involvemultiple fact tables
in addition to the typical star-patterns, dimensional grouping
and selections. In this paperwe propose a newprocessing and
storage framework called bitwise dimensional co-clustering
(BDCC) that avoids replication and thus keeps updates fast,
yet is able to accelerate all these foreign key joins, efficiently
support grouping and pushes down most dimensional selec-
tions. The core idea of BDCC is to cluster each table on
a mix of dimensions, each possibly derived from attributes
imported over an incoming foreign key and this way creating
foreign key connected tables with partially shared cluster-
ings. These are later used to accelerate any join between two
tables that have some dimension in common and additionally
permit to push down and propagate selections (reduce I/O)
and accelerate aggregation and ordering operations. Besides
the general framework, we describe an algorithm to derive
such a physical co-clustering database automatically and
describe query processing and query optimization techniques
that can easily be fitted into existing relational engines. We
present an experimental evaluation on the TPC-H benchmark
in the Vectorwise system, showing that co-clustering can sig-
nificantly enhance its already high performance and at the
same time significantly reduce the memory consumption of
the system.
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1 Introduction

Data warehouses keep on growing, pushing the limits of
machines and database technology, while analysts rely more
on interactive systems. This requires robust query perfor-
mance in terms of interactivity and quick response time for
a broad set of queries but also in the need for shorter update
cycles of the database. Also, analytical databases often go
beyond the form of star and snow flake schemas and contain
multiple large (fact) tables that are joined during the analy-
sis. For example, the TPC–DS benchmark models seven fact
tables connected only through dimension tables, and a com-
monuse-case inwarehousing is to analyzemultiple snapshots
of the same schema, joining fact tables with different ver-
sions of itself, in order to identify trends. This results in large
joins dominating query execution and complicates meeting
the above requirements.

In the area of physical data organization, datawarehousing
technology has come upwith many approaches. Most impor-
tant are indexing, clustering, partitioning andmaterialization.
While all these techniques have their advantages, the also
come with drawbacks: table partitioning works best only for
rather coarse-grained schemes, materialization/replication
requires additional storage overhead and increases update
costs, and clustering typically accelerates only scans and
selections.

In this work, we present a novel storage and processing
framework that avoids these drawbacks. The basic idea of our
bitwise dimensional co-clustering (short BDCC) approach
is to cluster each table on multiple dimensions which are
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derived from foreign key relationships. In this way, we cre-
ate foreign key connected tables (partially) sharing clustering
while allowing fine-grained granularities of up tomillions of
groups. This gives us the opportunity to optimize query exe-
cution to fit modern hardware architectures, with a particular
focus on the memory hierarchy. When processing joins and
aggregations in many small groups it is possible to maintain
hash tables in a L2 cache-friendly size, significantly acceler-
ating these operations.

In a nutshell, BDCCprovides benefits for database design,
data access and query processing.

(i) Replication-free clustering for millions of groups with
benefits that only multiple (up to 6) replicated, clustered
indices or sorted projections could provide.

(ii) Automated workload-agnostic schema design for fast
and robust query execution tailored to modern hardware
architectures.

(iii) Easy to implement query processing techniques for par-
titioned data that significantly save memory while at the
same time accelerate all relevant foreign key joins and
hash aggregations without the typical plan explosion.

The important design decisions to achieve this, are:

(i) The interpretation of partitioning or clustering as a tuple
ordering problem with a scan operator to retrieve differ-
ent orderings.

(ii) The creation of a co-clustered or co-ordered table layout
according to foreign key definitions.

(iii) The seamless integration of partitioned operator exe-
cution into the execution engine while fully re-using
existing operators and avoiding any operator duplica-
tion in query execution plans.

The remainder of the paper is as follows. Section 2 introduces
the concept of co-clustering. Section 3 discusses related
work. Section 4 provides a formal introduction of BDCC
including all relevant definitions. Section 5 explains the steps
to derive a physical BDCC schema. Section 6 introduces
algorithms for efficient query processing with BDCC. Sec-
tion 7 handles the updatability of BDCC. Section 8 discusses
the applicability to row stores and future work and Sect. 9
provides results of experiments with TPC-H and SSB.

2 Co-clustering: What and why?

Creating locality for data with common characteristics has
proven to be particularly beneficial for data warehouses.
Based on star- and snowflake-schemas as a basis for data
modeling, various solutions such as ADC clustering [13],
IBM’s MDC [29] or MDAM [22] have been proposed. The

common idea here is to index the fact table by multiple
dimension attributes and store tuples either sorted or clus-
tered by this index. While MDC and MDAM only cluster on
dimensions inside a table, ADC adjoins dimension columns
from foreign key connected dimension tables in order to clus-
ter the table.

These approaches show limitations when more complex
schemas with multiple interconnected fact tables are used.
In particular when not each fact table is directly connected
with all its relevant dimension tables and heavy joins between
the interconnected fact tables are required. Also, fact tables
may not directly be connected but may share a set of com-
mon dimensions and still be used together in the same query.
Applying the above methods results in optimizing each fact
table by itself, providing only the best possible access for
local or directly connected dimensions.

In a scenario of multiple different fact tables with a
shared (sub)set of dimensions this is not sufficient. Joins
and propagation of selection predicates between fact tables
are not supported. This becomes particularly evident when
selection predicates restrict attributes that are correlated to
one or more dimension attributes and I/O is reduced based
on more sophisticated algorithms executed on metadata of
the fact tables. In case of independently clustered tables,
it is impossible to automatically exploit this additionally
derived knowledge on another fact table. Also, standard
multi-dimensional clustering methods do not ensure that fact
tables with shared dimension share this circumstance in their
clustering to a point that can be exploited in query execution,
in particular during join processing.

Our approach of organizing tables tackles exactly these
situationswhile also providing the features of classicalmulti-
dimensional clustering approaches for standard star- and
snowflake-schemas. Creating a clustering we follow two
guidelines: First of all, a table clustering should always use
local dimensions and the dimensions the table is directly for-
eign key connect to. This covers star- and snowflake-schemas
and is typically provided by other multi-dimensional clus-
tering approaches. In addition, however, a table clustering
should also take into account dimensions from other fact
tables that are reachable over foreign keys. This ensures that
two tables that are foreign key connected share a part of
their clustering parameters. As a consequence, during query
optimization matching clusters in both tables can be detected
and techniques like selection propagation or partitioned joins
can be applied. Following these two guidelines throughout
the whole schema leads to a table layout that we call co-
clustered.

Figure 1 provides a simple, TPC-H-based example of two
fact tables ORDERS and LINEITEM and three-dimensional
tables D_CUSTOMER, D_DATE and D_PART. ORDERS is
foreign key connected to D_DATE (FK_O_D) and D_CUS-
TOMER (FK_O_C), LINEITEM is foreign key connected to
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Fig. 1 Table setup with two fact tables and three dimensions. a Plain data without clustering, b simple clustering and c schematic visualization of
a co-clustered table layout—same color means compatible clustering on that dimension (color figure online)

Fig. 2 Schematic illustration of one possible dimension interleaving
for ORDERS

D_PART and to the other fact table ORDERS. While Fig. 1a
shows the plain table layout, Fig. 1b sketches the idea of
clustering each fact table without the aspect of co-clustering
(i.e. ADC), and Fig. 1c schematically illustrates the clus-
tering including the co-clustering concept. As ORDERS is
foreign key connected to D_DATE with four distinct val-
ues (1997–2000), ORDERS is organized into four different
groups, illustrated by the red grid. ORDERS is also for-
eign key connected to D_CUSTOMER and, thus, in addition
grouped into four differentD_CUSTOMERgroups (bluegrid).
How these two groupings are realized at the same time is left
open here and will be explained shortly, so for the illustra-
tion they are just placed on top of each other. LINEITEM
is organized in a similar way using D_PART, leading to
a clustering following the ADC guidelines or in case of a
denormalized table layoutMDCorMDADMFig. 1b.LINE-
ITEM, however, is not only directly foreign key connected
to the D_PART dimension (FK_L_P), but also to ORDERS
(FK_L_O). Following the concept of co-clustering, LINE-
ITEM is additionally clustered according to all dimensions
of ORDERS, adding D_DATE and D_CUSTOMER to its clus-
tering. As the foreign key is only defined from LINEITEM
to ORDERS, ORDERS is not clustered using D_PART.

One possible way to use dimensions in a clustering is
to set one dimension as the major ordering of the table
and another as the minor ordering as suggested by all
approaches above. This is illustrated in Fig. 2. The red

(D_DATE) dimension is used asmajor ordering, forming four
groups in ORDERS and the blue (D_CUSTOMER) dimen-
sion is used as minor ordering forming an additional four
groups for each of the D_CUSTOMER groups, leading to a
total of 16 groups in ORDERS. Knowing about the struc-
ture of such a clustered table (with meta information), it
is fairly easy for a scan to generate all possible order-
ings, namely <D_DATE>, <D_DATE,D_CUSTOMER>,
<D_CUSTOMER>,<D_CUSTOMER,D_DATE>. However,
co-clusteringmultiple fact tables at a time requiresmore flex-
ibility as dimensions are needed at different granularities and
in different tables. Details follow in Sect. 5.

The concept of co-clustering provides advantages in
schema design, query execution and update handling.

(i) Schema design Due to the power of co-clustering, we
seeBDCCas a framework that is suitable for aworkload-
agnostic schema design process. In the end we expect
to be able to provide a single replication-free schema
that delivers very high and robust performance across
a wide range of queries. Following the two guidelines
above, we also expect to be able to derive such a schema
automatically based on few design hints given by the
DBA.

(ii) Query execution The goal of BDCC is to deliver fast
and robust query processing. Due to the co-clustered
table layout, we expect benefits to show for selection
pushdown as BDCC not only supports selections for
multiple dimensions as most other multi-dimensional
clusterings but also supports the propagation of selection
between multiple fact tables at the same time. Further,
we expect speedup of operators that typically benefit
from partitioning, e.g., HashJoin, Aggregation/
Grouping and Sort. But we expect not only speedup,
but also robustness in query execution, due to a lower
memory footprint of each query executed with BDCC.

(iii) Update handling The way we designed BDCC, we
included life cycle management, supporting not only
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the addition but also the removal of batch data. Also,
forward growing dimensions can be handled by BDCC
without data reorganization.

3 Related work

In order to meet requirements of efficient processing of
analytics workloads, database researchers and vendors have
come up with many solutions. Most of them agree that the
underlying data organization is of utmost importance and
needs to facilitate efficient query execution and update han-
dling. Research in this area covers a broad range of different
solutions to improve performance of data access which can
be classified into indexing, clustering, partitioning, andmate-
rialization.

One very important field to name here is certainly index-
ing. The B-tree [9] in all its variants, bitmaps [10] and other
structures, e.g., [23,32], mainly focus on efficient access to
the data and typically are used for different attributes but
on a single attribute (or dimension) at-a-time basis. As a
result systems require multiple indexes at a time, leading to
redundancy in storage and significant processing overhead
for updates. However, first of all it needs to be decided which
indexes to create. The index selection problem [11] has been
widely studied in the literature. In addition, before query exe-
cution an optimizer needs to decide on which indexes to use
for table access, leading to additional processing and imple-
mentation overhead for a database system.

Orthogonal to indexing, partitioning strategies have been
developed, e.g., [12,18]. Here, data are split into multiple
groups accruing to attribute ranges (range partitioning) or
hash-based functions (hash partitioning). Besides solving the
space problems on single machines, efficient data access and
query execution are a driving factor for developing these
strategies. Partitioning for one part helps to reduce the vol-
ume of data that needs to be accessed (although this is almost
exclusively relevant in range partitioning) but in addition is
also used for a more efficient query processing. The focus
here is mainly on join processing by exploiting the partition-
ing to only join matching partitions.

In table-partitioning schemes (Teradata [1] and many
others), tuples are partitioned across disk storage units,
allowing multiple processors to scan a relation in paral-
lel [15]. The problem of deriving good partitioning schemes
has been studied in physical database design tuning [4,35].
Other partitioning approaches perform dynamic techniques
on unpartitioned tables, e.g., based on conditions [14] or
selectivities [30]. A recent main memory system by IBM,
Blink [6] employs frequency binning to create balanced
multi-dimensional columnar table partitions, to aid its col-
umn encoding but also exploits these to push down selections
and distribute work for parallelism. Table partitioning leads

to the creation of some table object for each tuple group,
which carries overhead, limiting the granularity typically
to hundreds of partitions. Such coarse granularity leads to
less precision for selection pushdown (partition pruning)
and leads to partitions that are likely larger than the low-
est level CPU cache. Query optimization on partitioned
tables in addition may run into the problem of plan explo-
sion when separate operators are added to the query plan
for each partition, for which a solution is proposed in [18].
Optimizers of commercial systems implement partition prun-
ing, e.g., partition-wise joins for pairs of tables which are
co-partitioned [12,26]. Herodotou et al. [18] describes opti-
mization techniques for partitioning, partially treating it as
a logical property of a relation, where we start out with a
logical partitioning. This way they achieve optimizations
higher up in the query tree, something that is deeply inte-
grated in BDCC query optimization and execution. BDCC
avoids plan expansion (/explosion) altogether based on the
sandwich approach explained in Sect. 6.3 and in detail
in [7].

As selections in analytical workloads are typically mul-
tidimensional, i.e. restrictions apply to multiple attributes at
the same time, simple forms of indexing have limitations and
multi-dimensional indexing became a focus of research, and
typically realized as a multi-dimensional clustering, i.e. the
tuples with common characteristics are stored together on
disk. The UB-tree, MDC or MDAM for B+-trees supports
access via multiple attributes, MDC and the UB-tree [25]
even balance dimensions and this way do not lose perfor-
mance for data access when the selections occur on minor
dimensions. Multi-dimensional clustering [29] (MDC) in
DB2 takes a physical approach by partitioning row-organized
data according to multiple dimensions into separate disk
pages. MDC supports several specialized operators such as
block index scans aswell asANDing/ORingbitmaps of block
identifiers. The use of physical pages as cell units inMDChas
the drawback that in skewed data distributions some pages
will bemostly empty. Adjoined dimension column clustering
(ADC) [13] was proposed in the context of column stores,
but assumes major–minor dimension ordering only. Also,
ADCunlikeBDCCdoes not support to flexibly determine the
access granularity depending on column density as described
in Sect. 6.1. ADC does propose clustering with dimensions
reachable over foreign keys, but ADC nor MDC co-cluster
tables for join processing.

MADM [22] describes the usage of a B-tree for multi-
dimensional indexing and clustering. All the advantages of
MDAM, e.g., range-predicate support on leading or interven-
ing access key columns, IN list support, access with missing
predicates on leading or intervening columns and so on, are
supported by BDCC. In addition, BDCC provides a flexi-
ble access granularity to the data and considers co-clustered
table setups.
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Clustering based on Z-order indexing, in contrast to table
partitioning, avoids the creation of separate table objects
per group and can handle millions of fine-grained groups.
Our automatic schema creation algorithms use the concept
of Z-ordering introduced in [28] and previously applied in
Mistral [25], which explores bit interleaving in Z-order for
multi-dimensional clustering. We add to this the insight that
Z-order addresses the density difference problem of column
stores, and study co-clustering ofmultiple tables and its query
optimization opportunities. The framework BDCC also goes
beyond Z-ordering as any desired bit interleaving is possible.
Another multi-dimensional ordering based on Hilbert curves
is used in Netezza [3] to cluster base tables, and “zone maps”
can restrict scans to specific table ranges; but this clustering
does not accelerate other query processing operators besides
selections.

A third research field in this area is materialization, i.e.
pre-calculation of (intermediate) results to accelerate query
execution.However, this results in additional storage require-
ments and significant overhead for updates, not to mention
the design problem of which views to materialize. Column
stores have taken a slightly different approach that is closer to
replication and is called ordered projections [16]. Different
(groups of) columns are stored in various orders, this way
providing efficient access to the data by different attributes.
But, ordered projections come with all downsides of replica-
tion.

4 Physical organization of BDCC

In BDCC we co-cluster relational tables in order to share (at
least partially) dimensional information between tables that
are connected over foreign key relationships. In addition,
we re-organize each relational table according to local and
foreign key connected dimensions. However, co-clustering
multiple fact tables by the various available dimensions
throughout a schema is not straightforward. Each table has a
maximum number of clusters that can be created before clus-
ters become too small to be read from disk efficiently. For
magnetic disks, this limit is about 2 MB and for solid state
drives about 32 KB [8]. This limits a clustering for a 32 GB
relation (or 32 GB column in case of columnar storage) to
one million groups/clusters. A limit that is easily reached.
For example sales fact data that are clustered by 100 months
× 100 product types × 25 customer nations × 25 supplier
nations leading to 6.25 million groups.

Additionally, as for each fact table the number of tuples
and the number of dimensions (and the dimensions them-
selves) vary, an optimal choice for a clustering may require
to either leave out dimensions or use the same dimension
at different granularities in two different tables. Choosing
dimensions becomes a gamble without the proper a-priory

Fig. 3 Example of a BDCC table ORDERS, according to the example
introduced earlier. An additional column _bdcc_ is added and ORDERS
is sorted after _bdcc_

knowledge, e.g., analysis of a representative query set. In
order to be able to vary a dimension’s granularity, it is not
suitable to simply adjoin dimension columns to a table as
proposed in ADC [13], as the hierarchy attribute with the
proper granularity may not exist. This is why it is necessary
to abstract from physical columns and create dimensions.

In BDCC each table T is replaced by a clustered table ver-
sion TBDCC , where clusters are formed by consecutive tuples
with the same dimensional characteristics. These characteris-
tics are summarized in one clustering key, TBDCC ._bdcc_, by
mapping the various dimensions onto it. The table is stored as
a sorted sequence1 on TBDCC ._bdcc_. This way tuples with
equal values in TBDCC ._bdcc_ are clustered on disk, mem-
ory pages and cache lines. All necessary technical details for
such a BDCC clustering follow in this section.

Figure 3 sketches how the example table ORDERS is mod-
ified until it becomes a BDCC table. A new column _bdcc_
is derived from the two dimension identifiers datekey and
custkey, by mapping datekey to bits 2 and 3 of _bdcc_
and custkey to bits 0 and 1. Table ORDERS is then sorted
after _bdcc_.

In order to define a BDCC table, we first

(i) define what exactly a dimension in BDCC is and
(ii) how such a dimension is used for clustering.

A BDCC dimension is an order-respecting surjective map-
ping from a subset of attributes K (the dimension key) of a
given relation onto a finite sequence of identifiers. In other
words, a single identifier (bin number) is assigned to each
value of the considered key K, an identifier may be assigned
to multiple key values, and smaller identifiers are assigned
to smaller key values.

Definition 1 (BDCC dimension) A BDCC dimension
D = 〈T, K, S〉 is defined over a dimension key K (D) =
K = 〈attr1, . . . , attrs〉, s ≥ 1, of table T (D) = T as a
sequence S(D) = S = 〈〈n1, V1〉, 〈n2, V2〉, . . . 〈nm, Vm〉〉 of
m(D) = m = |S| dimension entries. Each entry consists

1 In Sect. 7 we show that efficient updates can be accommodated by
relaxing BDCC storage from one sorted sequence to a limited set of
sorted runs.
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Fig. 4 Example dimensions D_DATE created on o_orderdate and
D_NATION created on {n_regionkey, n_name}

of a bin number ni and a bin (set) of values Vi such that
∪|S|
i=1Vi = {v|v ∈ T · K }. Further:

(i) dimension entries are in ascending order:
∀1 ≤ i < j ≤ |S| : ni < n j ∧ MAX(Vi ) < MIN(Vj ).

(ii) dimension entries never overlap:
∀1 ≤ i < j ≤ |S| : Vi ∩ Vj = ∅.

Based on this definition, we further introduce some naming
conventions and characterizing functions:

– a bin 〈ni , Vi 〉 is unique if Vi is a singleton (|Vi | = 1).
– binD(v) = ni is the bin number of value v ∈ Vi in
dimension D.

– bits(D) = �log2(|S|) is the dimension granularity, i.e.,
the number of bits needed to represent the bin numbers.

– a dimension D|g with the reduced granularity of g <

bits(D) bits is derived from dimension D if one chops
off the (bits(D)− g) least significant bits of all bin num-
bers from D and unites all bins that now have the same
number.

In our implementation, dimensions are represented by an
array of |D| triples 〈binnr,max_value,unq〉, where
max_value is an inclusive upper bound (empty for the last
bin) and unq is a boolean stating whether the bin is unique.
The bin boundaries are chosen such that the binning is as
frequency balanced as possible. We achieve this by combin-
ing histogram information with Hu–Tucker [19] encoding,
explained in detail in Sect. 5.1. Figure 4 shows two simplified
example dimensions for TPC-H. D_DATE has a granularity
of 3 bits with eight non-unique bins. D_NATIONwas created
on 〈n_regionkey, n_name〉 and has 10 bins of which
2 are not unique; e.g., the values Argentina and Brazil fall in
the Canada bin, but only the bin range boundary Canada is
stored. Note that only three regions are used for simplicity.
The values in D_NATION are combinations of a foreign key
to the REGION table (represented here by r_name for bet-
ter readability) and a nation name. To determine the order in
compound dimension keys, we use lexicographic ordering.

In many schemas, no matter whether star, snowflake or
galaxy, the dimension key is typically not found in the fact
table but is rather a key in a dimension table reachable over
foreign keys. As we propose to co-cluster multiple fact tables
and use the same dimensions, it becomes necessary to define
the relationship of each dimension and the fact table using a
dimension path P .

Definition 2 (Dimension path) A dimension path P is
defined as a (possibly empty) chain of foreign key traver-
sals P = FK_T1_T2,FK_T2_T3, . . . ,FK_Tn−1_Tn , from
the fact table T1 to table Tn hosting the dimension key. Here
we assume that foreign key relationships have been declared
using some identifiers FK_Ti_Ti+1 from table Ti to table
Ti+1.

In order to support different granularities for each dimension
for different BDCC clustered tables, we propose to use a bit
mask per dimension and fact table. In addition to choosing the
dimension granularity, this facilitates the choice of the exact
influence of the dimension in a table’s clustering bit by bit.
The number of set bits in this mask defines the granularity
for the dimension and the positions of set bits specify the
positions where the dimension’s bin number bits end up the
artificial _bdcc_ key used for sorting TBDCC . This way we
can prioritize the dimension by specifying the influence on
the ordering of TBDCC . Together with the dimension path,
this bit mask defines the concrete usage of the dimension in
a TBDCC’s clustering.

Definition 3 (Dimension use) To specify a clustering crite-
rion for table T , a dimension useU = 〈D, P, M〉 combines
a BDCC dimension D(U ) = D, a dimension path P(U ) =
P that leads from T to dimension key K (D) and a bit mask
M(U ) = M , that defines the granularity that is used for D
and the mapping of the dimension’s bits to TBDCC ._bdcc_.
The granularity for dimension D is the number of set bits in
M , short ones(M), and ones(M) ≤ bits(D) needs to hold.

In order to map/recover dimension keys, respectively their
bin numbers, to/from the artificial attribute _bdcc_, we intro-
duce two bitwise extraction functions: xtrM (v) that extracts
the ones(M) major bits from an integer v and shifts these to
the positions of ‘1’s in M , and xtrrevM (w) that extracts all bits
from integer w at positions of ‘1’s in M and condenses these
to the right. In the following we use the bitwise operators &
(and), | (or), � and � (shift left/right).

Definition 4 (Extraction functions) For a bit mask M , let pi ,
0 ≤ i < ones(M), be the positions of set bits (i.e. ‘1’s) in M
from minor to major and counted from 0 to the length of M
minus 1.
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Fig. 5 Creating BDCC table LINEITEM. First join LINEITEM with the dimensions, then extract bits from the dimension number and merge
these into a new cluster key _bdcc_. Finally, sort LINEITEM and create the count table

(i) Let v = vn−1 . . . v0 be an n bit wide integer, n ≥
ones(M) (including possible leading ‘0’s). We define:

xtrM(v) = (vn−1 � (pones(M)−1))| . . . |
(vn−ones(M) � (p0))

(ii) Let m be the number of bits in M , m = bits(M) and
let w = wm−1 · · ·w0 be an integer of m bits (including
possible leading ‘0’s). We define:

xtrrevM (w) = (wpones(M)−1 � (ones(M) − 1))|
(wpones(M)−2 � (ones(M) − 2))| . . . |wp0

For example, given Mask M = 1001001. Then p0 = 0,
p1 = 3, p2 = 6 as there are three set bits in M . Also
given a 5-bit number v = 20 (i.e. v4v3v2v1v0 = 10100),
then xtr1001001(20) = 65 as it extracts the three major bits
v4 = 1, v3 = 0, v2 = 1 of v (because of the three 1-
bits in M) and assembles bitwise v400v300v2, which is 65
(i.e. 1000001). Reverse we get xtrrev1001001(65) = 5, extract-
ing w6 = 1, w3 = 0, w0 = 1 at the positions where M has
set bits and assembling in extraction order (101).

The BDCC table definition is now straightforward:

Definition 5 (BDCC table) A BDCC table
TBDCC = 〈T,U1, . . . ,Ud, b〉 clustered on b bits is defined
over a source table T by specifying d dimension uses
U1, . . . ,Ud under the constraints

(i) all b bits are set:
M(U1)| . . . |M(Ud) = 2b − 1

(ii) no bits overlap:
∀i, j : 1 ≤ i < j ≤ d ∧ M(Ui )&M(Uj ) = 0

Each tuple tBDCC ∈ TBDCC is a copy of t ∈ T with an
additional attribute value

tBDCC ._bdcc_ = xtrM(U1)(n1)| . . . |xtrM(Ud )(nd),

where for each dimension use Ui , we look up bin number
ni = binD(t.P.K ) for the original tuple t ∈ T , with P =
P(Ui ), D = D(Ui ), K = K (D). This lookup is a join along
dimension path P , leading to dimension key K . The value
k of key K for tuple t is then looked up in the dimension
entries S(D) and mapped to tBDCC ._bdcc_. TBDCC is sorted
on _bdcc_ and replaces T .

In addition, ametadata tableTCNT (_bdcc_,_count_) is cre-
ated, counting the frequencies in TBDCC ._bdcc_.

Example Before we explain how to design a BDCC schema,
recall the example table LINEITEM of Fig. 1. Its BDCC
creation is depicted in Fig. 5, clustering it on b = 6 bits
with dimension uses: D_DATE U1 = Ud , D_CUSTOMER
U2 = Uc and D_PART U3 = Up, which are based on the
dimension tables in Fig. 1:

Ud : using all 2 bits d2d1 of dimension D_DATE over dimen-
sion path FK_L_O.FK_O_D and bit mask 110000,

Uc: using the 2 major bits g2g1 of D_CUSTOMER, via
dimension path FK_L_O.FK_O_C and bit mask 1100,

Up: using bits p2p1 of D_PART, but now over dimension
path FK_L_P and bit mask 11.

Based on these three-dimensional uses,LINEITEM is joined
with the dimensions in an intermediate step. Then LINE-
ITEM is extended with the _bdcc_ column, which is the
bitwise OR of the bits extracted from the dimension bin
numbers that are looked up by the binD() functions. After the
_bdcc_ column is created,LINEITEM is sorted after this col-
umn, leading to its BDCC version. In addition to the BDCC
version, also a count table is created, storing the number of
tuples per _bdcc_ value.

To explain in detail, take for example the first tuple
t = (2, . . . , y) of table LINEITEM. According to dimension
uses U1,U2,U3, the tuple is joined with three dimen-
sions leading to t = (“2000”, “America”, “bolts”, 2, . . . , y).
Looking up each bin leads to binD(Ud )(“2000”) = 3,
binD(Uc)(“America”) = 1 and binD(Up)(“bolts”) = 2.

123



S. Baumann et al.

Applying the extraction functions to these bin numbers leads
to xtr110000(3) = 110000, xtr1100(1) = 100, xtr11(2) = 10.
The bit-wise OR of these results defines the bddc value of
this tuple, t._bdcc_ = 110110.

Note that in this example dimension bin numbers and
join keys are the same, as dimension tables and the abstract
dimensions are the same for simplicity. This is not necessar-
ily the case and requires to execute the join and to perform
the lookup on the dimension key.

5 Design of a BDCC schema

In Fig. 5 we have seen, how a BDCC table is derived from
a normal table based on given dimension uses. However,
designing a fully co-clustered BDCC schema is more com-
plex. First of all, dimensions need to be identified and created.
Here, it is critical to balance dimensions across the whole
schema, as they are typically used in different fact tables.
Second, the explicit use of each dimension per table needs to
be defined, which depends on the position in the schema, the
table size and the number of the applicable dimensions for
that table. Third, each table needs to be reorganized accord-
ing to the defined dimension uses. In addition, the count table
per BDCC table needs to be created.

WeseeBDCCaspowerful enough toprovide a replication-
free schema design with fast and robust query performance.
In order to achieve this robustness, we automated BDCC
design, based on few design hints given by the DBA. We
interpret CREATE INDEX statements as hints for interest-
ing clustering columns and take these into account during
our design process. In addition, we rely on existing foreign
key declarations.

5.1 Creating a BDCC dimension

In a data warehouse, one can typically obtain statistics on the
frequency distribution of dimension values; e.g., by creating
a histogram over dimension values occurring in a fact table.
To give BDCC predictable splitting power (ideally a factor of
2 per bit) and to avoid the “puff pastry” [25] effect, where one
dimension has a much lower splitting power than the other,
it is desirable to bin a fact table evenly. We provide two basic
methods to create a dimension and showhow combining both
leads to a robust algorithm to balance dimensions.

The histogram method to create dimension D of granu-
larity bits(D) relies on creating an equi-height histogram of
2bits(D) buckets. A bin b j corresponds to a bucket and fits our
implementation as follows: the bin number is binnr = j ,
the attribute value holds the inclusive upper bound of
bucket j and the unq property is false if upper and lower
bound differ.

Fig. 6 Modeling of Zipf and normal distribution by Huffman and Hu–
Tucker

In case of skew, however, we may get a bucket containing
a single value, where its frequency (far) exceeds the aver-
age bucket size. Using such a dimension at full granularity
is fine, it becomes critical, however, when the dimension is
used at lower granularity (as BDCC does very often), and
the lowest bit of the bin numbers is cut off. That means,
that the “over-size” (very frequent) bin gets combined with
a direct neighbor, and as a result any selection pushdown on
the direct neighbor will result in reading all tuples related
to the oversized bin, resulting in a very poor hit ratio for
this pushdown. In order to avoid such combinations of bins,
we use Hu–Tucker compression [19] during dimension cre-
ation, which encodes value v with a code c whose length |c|
inversely approximates the value frequency f (v) ≈ 2−|c|.
It can be thought of as the order-respecting variant of Huff-
man coding [20]. Figure 6 shows the frequencies for two
dimensions that are designed such that the values of its 50
bins exactly follow two typical skewed distributions: Zipf
(above) and Normal (below). For each dimension, we also
plot the “approximated frequencies” 2−|ci | produced by Hu–
Tucker and Huffman encoding, where |ci | is the code length
produced for the separator value of bin i . This shows that
even if value frequency is totally uncorrelated with value
order (a random permutation, lines rdm) Hu–Tucker code
length is clearly correlated with value frequency.

Our coded method for dimension construction uses the
Hu–Tucker algorithm [19]. It creates a binary tree, where the
values are the leaves, and the root-to-leaf path determines
the code (0 = left, 1 = right). An example tree is shown in
Fig. 7 for the D_NATION dimension from Fig. 4. Frequent
values, such as China and the USA, get a short code and are
high up in the tree; infrequent values end up in the lower part.
We cut this tree at height m = 4; each leaf of the resulting
tree becomes one bin, using the largest leaf value below it
as separator value. This way Canada becomes separator
for bin 0000. The binnr is equal to their Hu–Tucker code,
suffixed with 0’s if it is shorter than m bits. Nodes where
children have been cut off have unq = false.
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Fig. 7 Hu–Tucker tree for dimension D_NATION of Fig. 4

Hu–Tucker example The goal of the coded method is to
avoid a large “false hit” factor when a dimension is used at
a reduced granularity. Consider a skewed distribution where
the lowest value (e.g., NULL) occurs 69 % of the cases, and
the other 31 values occur just 1% of the cases. The histogram
approach would create D at bits(D) = 5 bit granularity with
bins 0 . . . 31, where bin 0 holds the frequent value. If this
dimension was used in its reduced form D|3, then 28 of the
31 infrequent bins would get combined into 7 bins, each
with frequency 0.04. The three “unlucky” bins 1, 2, 3 would
get combined with bin 0 into one bin with frequency 0.72.
If we now process a selection on such an unlucky value,
BDCCwould not be able to reduce the scan much, since bin-
reduction caused a false hit factor of 72 (.72/.01). For the
lucky bins, this false hit factor is 4, which is expected as the
dimension was reduced by 2 bits. Such random degradation
in unlucky cases is highly undesirable for users and is in
conflict with our goal of delivering robust query processing.

In this example, Hu–Tucker would create D with just 17
bins (not 32), the frequent first bin with bits 00000 and 16
more bins from 10000 to 11111. It would thus already have
an average false hit factor of 1.9375 (31 values mapped on
16 bins) for all bins but the first. In D|3 we would only get 5
bins: 000 and 100 . . . 111, so the maximal false hit factor is
7.75 rather than 72.

Dimension creation algorithm We require a dimension
D to be usable at different granularities D|g in a range g ∈
[e, bits(D)]. A typical minimum is e = 3; i.e. clustering with
less than 23 = 8 groups is not worth the effort. This leads to
our final algorithm:

Algorithm 1 (Dimension creation) A dimension D of m =
bits(D) bits is created from a set of key values V , by first
computing an equi-height histogram H(V ) of 2e buckets. For
all 1 ≤ j ≤ 2e each bucket H [ j] is then split again, by using
those values Vj falling in that bucket to create another equi-
height sub-histogram Hj (Vj ) of 2m−e buckets. If no skew is
detected in the resulting bins at granularity m (∀i : Hj [i] ≈
H [ j |
2m−e ), we are done for this bucket. Otherwise, the bucket is
split with the coded method instead—using the values and
frequencies in Hj as input for the Hu–Tucker algorithm. The
final bin list is the concatenation of all bins created for each
bucket j , where the final binnr has its major e bits set to j ,

while its minor m − e bits contain the computed bin number
when splitting the bucket.

DuringBDCCcreation all dimension uses need to be iden-
tified at first. Then dimensions are created one by one, using
some fixed maximal granularity (e.g., bits(D) ≤ 15). In
order to take into account the distribution of dimension val-
ues across all tables Ti , i > 0, where the dimension is used,
the set of key values V is the union of all dimension key
projections after joining the dimension key with each table
Ti according to the dimension path Pi . Note that a dimension
may be used more than once for the same table, then each
dimension use is treated as if it was a new table, adding keys
to V .

The skew-induced so-called “puff pastry” problem where
the splitting power of one dimension is much bigger than of
the other was addressed in related work by frequency bal-
ancing the dimensions with so-called “split point trees” in
VUB-Trees [25]. However, the VUB work did not discuss
how to achieve frequency balancing in case of highly skewed
values, this is solved here by using Hu–Tucker encoding.

That said, our approach cannot fully solve the problem
of eliminating skew, because of updates on the one hand
and when the frequency distribution used to create a dimen-
sion cannot fully match all uses of that dimension in a
particular schema on the other hand. For instance, consid-
ering D_DATE, which is used to cluster both example tables
ORDERS and LINEITEM, it might be that most tuples of
ORDERS relate to 1999, but most items in LINEITEM relate
to 2000. This is the case, when for 2000 an order has many
foreign key related items, where for 1999 an order only has
few items. In such a scenario, the correlated join hit ratio
introduces skew.

5.2 Creating a BDCC table

With BDCC we try to cluster into as many groups as possi-
ble. Themore the groups, the better the precision for selection
pushdown and the more efficient partitioned operator execu-
tion becomes. However, there is a limit whenmore groups do
not provide any more benefit while introducing more over-
head. With the way BDCC is designed, this limit is typically
reached, when clusters become smaller than block access
units. Because then, scanning BDCC organized data results
in repetitive random data access below the “efficient ran-
dom access” granularity. For further observations assume
that an efficient random access granularity AR can be found
for each I/O system. For magnetic disks, AR is typically
around 2 MB, for SSDs it can be around 32 KB and for main
memory, it is even more fine granular. With AR given by
the system, the total number of bits that can efficiently be
used for a table is already fixed and can simply be approxi-
mated by N = log (input_size/AR), where input_size is the
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total size of the largest/widest column of a table in bytes.
However, the way how these bits are assigned to dimensions
is still an open question. Before this, another question is of
importance.

Which dimension order to choose? Classical multi-
dimensional approaches like MDAM [22] or ADC [13]
require a DBA to order the dimensions from major to minor.
This favors access along major dimensions as the granularity
of I/O access for (selections on) minor dimensions is very
small (scattered). BDCC can use any bit interleaving, hence
also major–minor; For applications with clear major dimen-
sions, this approach is fine.

However, major–minor ordering has as disadvantages that
(i) dimension order is a knob that might get tuned wrongly,
(ii) major dimensions get a much better access pattern than
minor and (iii) the question of which dimensions to place
where complicates an automatic design process. Following
the UB-Tree work [25], we prefer round-robin bit interleav-
ing instead, storing tuples in Z-order. This eliminates the task
to order a table’s dimensions and provides fast access for all
dimensions.

From Definition 5 of a BDCC table, it follows that for
each table of the schema a number of dimension uses and
the clustering depth need to be specified. This boils down to
providing a dimension path to each dimension and an inter-
leaving pattern of all dimensions, expressed by the masks
of the dimension uses. Fixing the interleaving pattern to be
round-robin, we liberate a DBA from inferring about BDCC
bits. Assuming a given set of used dimensions for a table
T , we provide a self-tuned algorithm that automatically cre-
ates a round-robin clustered BDCC table TBDCC . The idea is
to bulk-load BDCC tables initially at a maximal granularity,
but then to only create metadata (the count-table) on a lower
granularity; exploiting statistics gathered during bulk-load.
This keeps the count-table small for offset calculations and
access to TBDCC efficient.

Algorithm 2 (Self-tuned BDCC table)
Input: Table T with the original data.

Dimension uses {U1, . . . ,Uk} with empty masks.
Output: BDCC clustered table TBDCC and TCNT .

(1) Generate masks M(Ui ) Set M(Ui ) so that dimensions
are round-robin interleaved in some arbitrary order,
assigning one bit at a time (major to minor) per for-
eign key or local dimension. If two dimensions are used
over the same foreign key, bits assigned over this for-
eign key are distributed round robin to each of these
dimensions. This assures that all foreign key joins of
the table are equally accelerated. Assign bits until all
B = ∑k

1 bits(D(Ui )) dimension bits are used: the num-
ber of 1-bits in all masks is maximal.

(2) Create the BDCC table TBDCC Compute the _bdcc_
column with derived masks M(Ui ), store TBDCC sorted
on _bdcc_ and analyze group sizes in a piggy-backed
aggregation. Discard source table T .

(3) Create the count table TCNT For the column—or group
of columns when PAX or row wise storage is used—
with the highest density (size on disk), choose the largest
granularity b ≤ B such that the size in bytes of most
_bdcc_ groups is above the efficient random access
size AR . Create TCNT with granularity b, in a single
ordered aggregation, counting tuples with equal value
_bdcc_ � (B − b) (TBDCC sorted on _bdcc_ at granu-
larity B is also clustered for b).

Note that in (1) other options are possible. One could simply
round robin interleave all dimensions without respecting the
foreign key, or each foreign key could be weighed according
to size/cost of the resulting join, detailed weights could be
calculated by workload/data analysis. As our goal is simplic-
ity and robustness for many workloads, we advocate looking
at foreign keys.

5.3 Creating a BDCC schema

The question remains, where dimensions for clustering a
table come from. In our schema design approach we infer
a co-clustered schema from design hints that identify for-
eign key joins and indicate that access to certain columns is
important, just like in classic DDL.

Algorithm 3 (Semi-automatic schema design)
Input: Existing database schema with tables and data.

CREATE INDEX (I1, . . . , IZ ) on T statements.
Foreign keys declarations.

Output: co-clustered BDCC database.

(1) Generate initial dimension uses Traverse the schema
DAG (projection) from the leaves, identifying relevant
dimensions and dimension uses. Observe for each table
T its index declarations. If {I1, . . . , IZ } equals a foreign
key, inductively add all dimension uses of the refer-
enced table T f k also to T , putting the FK-id in front of
the dimension paths (P = FK_T _T f k .Pf k). Otherwise,
identify a new dimension with key {I1, . . . , IZ }, and add
a dimension use to T .

(2) Create the dimensions one by one Use a fixed maximal
granularity derived from the usage and the number of
distinct values of a dimension and create each dimension
using Algorithm 1 from Sect. 5.1.

(3) BDCCcluster each table Cluster table by table at a self-
tuned granularity using Algorithm 2.
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Fig. 8 Example of a BDCC schema, according to the example intro-
duced earlier

We are aware of a limitation of Algorithm 3: on very large
schemata (much larger than TPC-H), with many tables, for-
eign keys and index declarations (=hints), it will identify too
many dimension uses per table. For example, in a table with
8G tuples (233) with a widest column of 64 bytes per tuple
(26), and an efficient random access size AR = 32 KB (215),
one can use in total 33 + 6 − 15 = 24 bits to cluster on,
as with 224 = 16 M groups, each group of values for that
widest column then takes AR = 32 KB, hence can be read
efficiently in scatter scans. One could cluster on 24 dimen-
sion uses of 1 bit each, but more realistically is limited to
5–8 dimension uses (3–5 bits each). This results in a max-
imum of 8× to 32× I/O reduction by selection pushdown
and already significant acceleration and memory reduction
for processing queries using BDCC (detailed explanations
follow in Sect. 6), even for only a single dimension involved.
Extending Algorithm 3 is beyond our scope here, directions
are (i) ignore dimension uses with less impact on a work-
load, or (ii) re-consider replication and createmultipleBDCC
replicas (a questionwill bewhichdimensions to use forwhich
replica).

Figure 8 illustrates, what these algorithms achieve, when
being applied to the example introduced in Fig. 1. With
CREATE INDEX statements on attributes D_DATE.year,
D_CUSTOMER.continent and D_PART.name our algo-
rithms cluster ORDERS by its two foreign key connected
dimensions D_DATE and D_CUSTOMER, and LINEITEM
by D_DATE, D_CUSTOMER and additionally by D_PART.
For LINEITEM D_DATE and D_CUSTOMER are used
because of the foreign key connection to ORDERS and the
use of these dimension there. Assuming enough tuples in the
tables, the algorithms use all possible bits.

In Sect. 9 we show detailed results of applying these algo-
rithms to the full TPC-H schema. There, the number of used
bits per dimension and per table is actually limited by the
random access size AR , showing all effects of the automatic
tuning approach.

6 Query processing

With BDCC we combine advantages from indexing and
partitioning with the goal of faster and more robust query
processing. Enhanced with ideas from the concept of co-
clustering, BDCC provides the following query optimization
strategies:

(i) Selection pushdown selection predicates on one or
more dimension keys can be pushed down to the scan
on a clustered fact table and the data volume is reduced
directly at the source.

(ii) Selection propagation a selection predicate is not only
pushed down to one fact table but also to other fact tables
that are foreign key connected.

(iii) Selection pushdown and propagation on correlated
attributes a selection predicate on an attribute that is
correlated to a dimension key is pushed down to the
fact table scan and is also propagated to foreign key
connected fact tables.

(iv) Join elimination a join to a dimension table is not exe-
cuted when the selection predicate can be pushed down
to the fact table and no additional attribute from the
dimension table is needed for further query processing.

(v) Join acceleration a foreign key join between two
fact tables is executed as a partitioned join while fully
reusing the join operator itself.

(vi) Sort, Group by, Aggregation acceleration if any one
of these operators is executed over an attribute that
determines a dimensionkey, it can be executed as a parti-
tionedoperator, again fully reusing the original operator.

(v) Scan adaption the BDCCscan access granularity is
automatically tuned according to the scanned columns
and their densities.

The different optimizations are realized by the interaction
of multiple parts of the system. In this section we will
focus on three parts, namely BDCCscan, a scan operator
suited to the requirements of BDCC, the Sandwich Opera-
tors, two operators PartitionSplit and PartitionRestart, that
very efficiently implement strategies of classical partitioning
for BDCC and the query optimizer that in addition to intro-
ducing BDCCscan and Sandwich Operators has to become
co-clustering aware in order to make BDCC fly. Especially
the Sandwich Operators contribute to the robustness of query
processing, as they, among accelerating queries, drastically
reduce memory consumption and, thus, permit a highly
improved concurrent query execution.

6.1 BDCC scan

Storing data as multi-dimensional co-clustered data is only
one part, efficient and flexible access is another. A scan not
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only needs to support selection pushdown but also needs
to serve out data in any desired dimensional order, which
is important for further query processing. When two co-
clustered tables are joined or a grouping, aggregation or sort
is performed over a clustered table it is possible to acceler-
ate these operators by applying query processing techniques
similar to what is found in table partitioning. However, these
techniques can only be applied when the tables are retrieved
in the right or in case of a join in a compatible ordering.
Depending on which co-clustered tables are involved in such
a join, the required orderings can vary from query to query,
imposing high flexibility on the scan.

In order to perform these tasks we introduce a special
scan operator, called BDCCscan, that can retrieve a BDCC
table in any dimensional order of the dimensions involved
in clustering this table. In order to perform this task with-
out the overhead of sorting the relation according to the
requested order, BDCCscan needs to hide this sort activ-
ity in the retrieval of data itself. That means a differently
requested order implies a different pattern for accessing the
data on disk. That is why, we based BDCCscan on a fetch
scan (sometimes also skip scan), a scan that reads (parts of) a
relation from disk based on a number of table ranges given as
an extra parameter. Each range consists of a start and an end
row identifier and defines a consecutive part of the relation
that needs to be retrieved. Following the order of the given
ranges, any skipping or fetching pattern on a relation can
be performed. In addition we added an extension to produce
an additional attribute that characterizes the current order-
ing of the retrieved relation. This attribute is a simple group
identifier, that is incremented, when the scan reaches the next
attribute value of a dimension, and that is later used to identify
(matching) groups when applying partitioning techniques on
join, grouping or sort operators.

In order to match BDCC we modified the fetch scan syn-
tax. In addition to input table T and a set of columns, it now
receives a list of dimension specifications defining the fetch
order, and performs three extra tasks. First, the translation of
the dimension specifications into fetch scan ranges in order to
re-use the standard fetch scan. Second, perform the selection
pushdown, i.e. drop all ranges that do not match the selec-
tion predicates. And third, extract bits from T ._bdcc_, create
a new group identifier attribute named _gid_ on which the
tuple stream is ordered, i.e. _gid_ represents the new dimen-
sion order. For _gid_ definition any desired interleaving of
the extracted bits can be used.

Definition 6 (Dimension specification) A dimension speci-
fication S = 〈U, M, l, h〉 is a quadruple, where U (S) = U
is a dimension use, M(S) = M is a bit mask that determines
where the bits of M(U ) in _bdcc_ will go to in _gid_, and
[l, h] is a range of bin numbers to filter on (l(S) = l and
h(S) = h), with 0 ≤ l ≤ h < 2ones(M).

Fig. 9 Different relation orderings produced by BDCCscan

Note masks M(S) and M(U (S)) are different. The first
defines a mapping of _bdcc_ bits to _gid_, the latter how
bin numbers are mapped to _bdcc_ at schema creation.

Definition 7 (BDCCscan) A BDCCscan (T,C, σ ) gets
three parameters: a table T , and a column sequence
C = 〈C1, . . . ,Cc〉, and a dimension specification list
σ = 〈S1, . . . , Sk〉. The extracted (partial) dimension num-
ber for each tuple t ∈ T per dimension Si is denoted
ni = xtrrevM(U (Si ))

(t._bdcc_). Computing

t._gid_ = xtrM(S1)(n1)| . . . |xtrM(Sk )(nk),

BDCCscan produces T sorted on _gid_, but only emits t if
it qualifies all range selections: ∀i : l(Si ) ≤ ni ≤ h(Si ).

Figure 9 illustrates some of the different orders a
BDCCscan can retrieve for LINEITEM fromFig. 8. For bet-
ter illustration we only focus on the original _bdcc_ column
and the resulting _gid_ column.σ1 extractsD_CUSTOMER as
major dimension, followed by D_PART and D_DATE, while
σ2 has D_PART as major dimension followed by D_CUS-
TOMER and D_DATE. σ3 ignores D_PART and only retrieves
data with major D_CUSTOMER and minor D_DATE order-
ing. σ4 in addition to σ3 performs a selection pushdown on
D_DATE only retrieving years 1999 and 2000.

ImplementationTheBDCCscan implementation requires no
operator extension—it maps to the sub-plan:

FetchScan (T , Sort(Select(Project(OrdAggr(Scan

(TCNT ))))))

(i) Observe that the TCNT table, created on some granularity
b, can be reduced to a smaller count-table at granular-
ity b′ = b − δ by throwing away the lowest δ bits of
the _bdcc_ column and summing the adjacent rows with
equal _bdcc_ � δ value (typically 2δ rows).BDCCscan
often does not access the table at maximum granularity
and thus as a first step reduces the granularity of TCNT
using ordered aggregation OrdAggr.

(ii) The second processing step is computing _gid_ from
_bdcc_, which uses a non-duplicate-eliminating
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Fig. 10 Different column densities of TPC-H LINEITEM

Project operator that performs bitwise and/or/shift
operations, and as an intermediate step computes the
original ni dimension numbers per tuple. Additionally, a
running sum is computed over the bin counts, so that
we get a row-id (RID) denoting the start and end of each
range.

(iii) The next step is applying the range selections [li ,hi ] on
the dimension numbers ni using a Select.

(iv) ThenweSort on _gid_.Only sorting filtered and aggre-
gated count values, this is no performance issue.

(v) Finally, the resulting stream 〈_gid_,RIDlo,RIDhi 〉 is
fed into a FetchScan, which is a Scan that, rather
than reading the entire table T , just reads certain ranges
〈RIDlo,RIDhi 〉 in their given order from T . Such an
operator is commonly found in relational database sys-
tems. Our FetchScan adds _gid_ to its result stream,
so consuming operators can easily detect group bound-
aries (where _gid_ changes).

6.2 Adaptive scan: a column-store optimization

Round-robin interleaving has a column-store specific advan-
tage, relating to the often huge density differences between
table columns. Some queries only access high-density
columns, some only access low-density columns, others a
mix. As a motivating example, Fig. 10 illustrates the den-
sity differences for a subset of the LINEITEM columns of
the TPC-H benchmark, where differences of up to a factor
120 occur. Disk access to columns with high density (e.g.,
comment) profits from access at a fine granularity (many
bits) as more precision results in less data to be scanned
and better utilization of the Sandwich Operators, whereas
access to low-density columns (e.g., returnflag) can
only exploit a few major _bdcc_ bits, as otherwise the access
pattern gets too fined-grained for the I/O device and multiple
reads will occur inside a block (i.e. thrashing). Each access
granularity leads to a different scatter scan order, and there-
fore a column-store scan faces the dilemma of choosing a
single granularity for all columns (as it needs values of dif-
ferent columns to appear in the same order). The ability to
adaptively choose the access granularity, given any dimen-

sion of interest, is the critical column-store advantage of
round-robin bit interleaving. For example, the scanof LINE-
ITEM in Fig. 14 uses 9 round robin assigned bits from three
dimensions. Another way of assigning the dimension bits
could be major–minor ordering (d3d2d1c3c2c1 p3 p2 p1, di :
D_DATE bits, ci : D_CUSTOMER bits, pi : D_PART bits).
Assume the densities of the columns require to limit disk
access to 6 bits for efficiency. Then a query selecting
on D_PART cannot exploit BDCC in case of major–
minor bit ordering, as there are no D_PART bits among
the major six (d3d2d1c3c2c1 p3 p2 p1). In contrast, round-
robin interleaving allows to exploit two D_PART bits
(d3c3p3d2c2p2 d1c1 p1), reducing I/O fourfold.

AnalysisWe provide bounds on RAM needs and the amount
of FetchScan ranges generated by BDCCscan, assuming
that bin sizes are evenly distributed. This analysis is needed
to find an efficient scan granularity for BDCCscan. Refining
the formulas using bin histogram information is omitted for
simplicity.

Corollary 1 (Number of ranges) In a BDCCscan of a table
clustered on b bits, _gid_ is computed by selecting a number
γ ≤ b of bits from _bdcc_. Let the bit-selection function
X : {1, . . . , γ } → {1, . . . , b} return the source position
X (dst) in _bdcc_ for each destination bit dst in _gid_. Com-
paring the bits of _bdcc_ and _gid_, some bits in _gid_ may
have retained their original major position (position from
the left). Other bits in _gid_ were shifted in from deeper
positions in _bdcc_. The deepest shifted bit from _bdcc_ is
ρ = MIN({b} ∪ {X (dst)|X (dst) �= dst + (b − γ )}). This
deepest bit determines the access granularity g = b − ρ. At
access granularity g there are maximal 2g different clusters,
so Irng = 2b−ρ is the maximum number of ranges.

A column Ci of N tuples with a data density of Δi

bytes/tuple and disk block size of AB gets stored in |Ci | =
�N · Δi/AB blocks. At ρ smaller than ωi = b − log2(N ·
Δi/AB), range sizes go below block sizes. Since data density
between columns commonly varies by two orders of magni-
tude, the ωi may differ by up to ≈ 7 bit positions. Scanning
with a granularity ρ ≤ ωi , causes BDCCscan to revisit each
block up to 2ωi+1−ρ times. Block sizes do not match range
sizes exactly so that at ρ = ωi each range is typically cov-
ered by two blocks; this causes the +1 in the above formula.
This repetitive access causes exploding I/O costwith decreas-
ing ρ, unless the system caches repeatedly accessed blocks.
The cache footprint for a too-deeply-accessed column Ci

(ρ ≤ ωi ) is the amount of accessed blocks times a reduction
factor due to the access pattern.

The selectivity of a BDCCscan (T,C, σ ), is the product
of selection range sizes divided by the total amount of bins:

sel =
∏

S j∈σ

(1 + h(S j ) − l(S j ))/2
ones(M(S j )).
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Fig. 11 BDCCscanmicro-benchmarks. X-axis: scatter scan granular-
ity (finer is lower ρ). Y-axis: I/O time (left legend), CPU time (right
legend)

The amount of accessed blocks after selection |Ci |sel is
sel · |Ci |, but at small sel, blocks are only read partly and it
becomes sel · Irng. As it cannot exceed column size |Ci |, we
get |Ci |sel = Min(|Ci |, sel · Max(|Ci |, Irng)).
Corollary 2 (BDCCscan memory requirements) To avoid
thrashing, a BDCCscan (T , C, σ ) needs at most

MEMT,C,σ = AB ·
∑

Ci∈C :ρ≤ωi
|Ci |sel · 2αi−γ+1.

αi is themajor bit in _gid_ that came from a too-deep posi-
tion in _bdcc_: αi = MAX({0} ∪ {dst|X (dst) ≤ ωi }). The
amount of buffering space needed for column Ci is reduced
by factor 2αi−γ , as every bit to the left of αi avoids repetition,
halving the required buffer space (αi ≤ γ ). Since ranges do
not align with blocks, twice the amount of blocks is needed
worst case, hence +1.

Micro-benchmarks Figure 11 shows BDCCscan micro-
benchmarks on a table of N = 2G tuples, round-robin
clustered on four dimensions of 6 bits, resulting in 224 bins
of even size: _bdcc_ = a6b6c6d6a5b5c5d5 . . . a1b1c1d1. The
x-axis determines a 1-dimensional BDCCscan where the
deepest moved bit ρ = x . For example at ρ = 8 we request
_gid_ a6a5a4a3a2, as bit a2 is at position 8 in _bdcc_.

The I/O cost lines are obtained on a fast solid state disk
(SSD raid, right) and a singlemagnetic hard disk drive (HDD,
left), as specified in Sect. 9 using block size AB = 32 KB.
While we focus here on results for a column C1 with Δ1 =
1 byte/tuple, we ran experiments on columns Cx with many
densities, finding similar outcomes; and the expected differ-
ences in ωx . The need for buffering appears in C1 once ρ

reaches ω1 = 24 − log2(2G · 1/32 K ) = 8, because then a
BDCCscan requests ranges equal or smaller than the block
size AB . We just access a single column without range selec-
tions here (sel = 1) soMEMT,C,σ = AB · |C1| · 2αi+1−γ . At
ρ = 8, i.e. _gid_ = a6a5a4a3a2, the too-deep part is just a2
so α1 = 1, hence we need 2G · 2α+1−γ = 231 · 21+1−5 =
256 MB memory to avoid I/O thrashing. These experiments
confirm our model: below 256 MB (i.e. 128 MB) I/O cost
explodes.

Figure 11 also shows the CPU cost of BDCCscan, plot-
ting the same values in both graphs, highlighting that CPU
overhead only becomes a bottleneck on fast I/O systems such

as SSDs. The exponential rise in the amount of ranges with
smaller ρ causes CPU overhead bottlenecks in various parts
of the system, e.g., in performing the RID-to-block lookup
for each range and in column decompression start-up at each
range. Our experiments show that CPU cost can become an
issue if ρ is pushed significantly below ωi . The practical
bound for a “proper” granularity limit ε < ωi − ρ that we
used is ε = 4, as this is the point where CPU overhead
exceeds I/O cost on a fast SSD system (Fig. 11, right).

Finding an efficient scan granularityWedefine an efficient
BDCCscan access granularity, taking into account multiple
columnsCi with varying data densitiesΔi , and give an algo-
rithm to find it:

Definition 8 (Efficient scan granularity) Given a
BDCCscan on a set of columns C = {C1, . . . ,Cc} of
a round-robin interleaved BDCC organized table T with
dimension uses U = U1, . . . ,Uk and a scan memory bud-
getMEMmax, the sequence of dimension specifications σ =
〈S1, . . . , Sk〉—with ∀i : U (Si ) = Ui—sets masks M(Si )
such that it achieves the efficient scan granularity ρσ , which
is the minimum ρσ satisfying constraints:

(1) MEMT,C,σ ≤ MEMmax: avoid I/O thrashing and
(2) ∀i :ωi − ρσ < ε: avoid CPU thrashing.

Algorithm 4 (BDCCscan granularity) We initially set σ

so that ∀1 ≤ i ≤ k : ones(M(Si )) = ones(M(U (Si ))) (all
bits are used). We then compute the resulting ρσ and check
the constraints. Until this succeeds, set the single lowest 1-bit
in the masks M(Si ) to 0 and retry.

Given a fixed (small) memory budgetMEMmax for scans,
theρσ of BDCCscan tends to bedeterminedby constraint (1)
to theωbig setting of the biggest column(s), such that these do
not need memory buffering (ρσ < ωbig). Columns Cbig with
high data density Δbig have a low ωbig, so we perform fine-
grained access. The columns Csmall with low data density
Δsmall are accessed with ρσ ≤ ωsmall, but since they fit in
the memory budget, repetitive I/O is avoided. Constraint (2)
protects against CPU thrashing on these small columns.

6.3 Query processing with sandwich operators

Being able to scan data from disk in any dimension order
with an identifier that explicitly marks each group with the
same characteristics, provides opportunities for partitioned
processing. However, these approaches are designed to fit
scenarios where data is grouped into tens, hundreds ormaybe
thousands of partitions. With BDCC we cluster data into up
to millions of small groups and want to benefit from small
groups to achieve better CPU cache locality. Also, the high
number of groups would push BDCC over the edge when
faced with typical partitioning problems like plan explosion.
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Fig. 12 Sandwich operators for Join and Aggr

On top, it would be nice to avoid re-implementing a parti-
tioned variant of each potential physical operator. Instead, we
focus on reusing all existing Aggregation/Grouping,
HashJoin and Sort operators.

Meeting the high demands of a million-group clustering
and avoiding reimplementation of operators unites in what
we named “Sandwich Operators”. We devise a split and
restart approach where the operator for partitioned execu-
tion is “sandwiched” in between, splitting the input stream at
a group boundary and holding back the rest of the input. This
way the operator is tricked into believing that end-of-group is
end-of-stream, but after performing its epilogue action (e.g.,
HashJoin produced all tuples), the operator is restarted on
the next group, reusing already allocated data structures.

For this purpose we added two new query operators
PartitionSplit (stream, _gid_) and Partition-
Restart (stream). Based on an iterator model for data
processing, the PartitionSplit operator becomes the
new root node of the to be partitioned operator’s input
stream(s) and the PartitionRestart operator receives
the to be partitioned operator as input stream. The basic
idea of these operators is illustrated in Fig. 12 for an unary
operator, HashAggr, and a binary operator, HashJoin.
PartitionSplit is used to detect the group boundaries
in the input stream based on attribute values of _gid_, a
changing value marks a new group, and stops producing data
when reaching such a boundary. PartitionRestart
controls the sandwiched operator’s restart after this one fin-
ished producing tuples for a group, simply passes through
the result tuples to the next operator and notifies its corre-
sponding PartitionSplit operator(s), to start produc-
ing the next group. Note that this communication between
PartitionRestart and PartitionSplit is a form
of sideways information passing, for which Partition-
Restart has to know the corresponding Partition-
Split operator(s). These are determined during query
initialization, and typically are its grandchildren.

In order to show the effects, we created a set of micro-
benchmarks. We created a co-clustering of LINEITEM and
ORDERS of TPC-H at SF100. We used two dimensions,
D_DATE and D_CUSTOMER with 10 bits each and clustered
first on D_DATE and then D_CUSTOMER, providing a total
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Fig. 13 Sandwiched HashAggr& HashJoin: Elapsed time, mem-
ory usage, DTLB and lowest level cache misses for counting the
frequency of columnl_orderkey and joining two tablesLINEITEM
and ORDERS using different number of groups

of 1 million groups. This setup is comparable to our run-
ning example, only with adapted dimensions. This way, the
access pattern generated by BDCCscan stays the same for
all experiments, not falsifying the observations for the Sand-
wich Operators.

In order to get the different numbers of groups, we split
groups from run to run by exploiting our BDCCscan, by
adding the next bit in line to the dimension specifications,
i.e. we started with a plain scan, then requested 1 bit for
D_DATE, 2 bits, . . ., 10 bits while ignoring D_CUSTOMER.
Then we also requested the first bit for D_CUSTOMER, the
second bit, . . ., the 10th bit, so that the last scan produced
1 million groups in total. For the micro-benchmark of an
unary operator (Aggregation/Grouping) we counted
the frequencies of l_orderkey of LINEITEM and for the
binary operator (HashJoin) we joined the two tables on the
foreign key orderkey.

Figure 13 shows the important results of these experi-
ments. Their behavior is nearly identical. The upper part of
Fig. 13 shows that with more bits, i.e. more groups, mem-
ory consumption goes down while speed goes up. This is
explained by the lower part: the hash table size decreases
with higher number of bits, causing the number of TLB and
lowest level cache (LL)misses to drop. At 128 (7 bits) groups
cachemisses reach aminimum, as the hash table then fits into
cache (15 M distinct values; 15M/128 × 32B ≈ 3.6MB).

6.4 An example

In Fig. 14 we demonstrate BDCC in the query:
SELECT o_orderdate, s_name, count(*)

FROM NATION, SUPPLIER, ORDERS, LINEITEM

WHERE n_nationkey=s_nationkey

AND s_suppkey=l_suppkey

AND l_orderkey=o_orderkey

AND n_name=’Germany’

GROUP BY o_orderdate, s_name
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Fig. 14 Running example: normal query (left), exploiting BDCC (right)

The query uses a TPC-H schema SF100, where ORDERS
is clustered on customer-nation and order-date, SUPPLIER
on supplier-nation, LINEITEM on customer-D_NATION
and order-D_DATE, but also on supplier-D_NATION and
D_PART. Full details on the clustering are given in Sect. 9.
BDCC provides the following optimizations:

– The Select operator filteringGermany can be dropped
and is pushed to BDCCscan on SUPPLIER reducing
I/O by a factor 25 as there are 25 nations. For dimension
D_NATION only bucket 16 is selected.

– The Select operator filtering Germany can also be
propagated to BDCCscan on LINEITEM also reducing
I/O for by a factor 25. Again, for supplier-D_NATION
(Us) only bucket 16 is selected.

– The HashJoin between ORDERS and LINEITEM uses
Sandwich Operators, exploiting the two common dimen-
sions (customer-nation and order-date), leading to a
reduced memory consumption of 77 versus 1224 MB.
Note D_PART is ignored for sandwiched execution
by shifting gid five bits to the right. Also note that
customer-D_NATION plays no role in SQL, yet BDCC
exploits it for this join.

– The Aggregation/Grouping counting items per
distinct<o_orderdate,s_name> is also accelerated
by Sandwich Operators, exploiting the functional depen-
dency of o_orderdate and D_DATE, leading to a
reduced memory consumption of 186 versus 1065 MB.

In total the query is accelerated by 74 % (9 vs. 35 s) and
memory consumption is reduced from 2 GB to 258 MB.

6.5 Query optimization

As BDCCscan can produce compatible dimension orders
for co-clustered tables, the question arises, how this can be
exploited during query execution. In Fig. 14 we shows that

scans need to be replaced by BDCCscans and that Sandwich
Operators need to be introduced. Overall BDCC adds three
tasks to an optimizer:

(i) Selection pushdown and propagation of range selections
on columns that functionally determine a dimension or
correlate2 with it (also across joins),

(ii) Join elimination If a dimension table is only accessed
for a selection predicate that is pushed down in (i) with
equivalent results, the join can be removed—see the Ger-
many selection in Fig. 14.

(iii) Operator sandwiching Sort,Aggr and all (equi-, semi-
and anti-) variants of HashJoin are sandwiched, if
permitted by the clustering. The main challenge is to
determine the group orders delivered by BDCCscans.

Selection pushdown BDCCscans can push down equi- or
range selections on the dimension keys by translating the
selection predicate into bin numbers. This translation is a
simple lookup in the sequence S(D) that maps dimension
values to bin numbers. Once the bin numbers are found,
the dimension specifications as defined in Sect. 6.1 can be
used to restrict the scan. For Fig. 8, consider for example a
selection predicate where tuples are restricted to years 1999
and later. This predicate maps to bin numbers 2–3 and is
transformed to the dimension specification 〈Ud , 11, 2, 3〉 to
restrict a BDCCscan on ORDERS. In case of a foreign key
join to LINEITEM, we can propagate this selection to the
BDCCscan on LINEITEM by 〈Ud , 0011, 2, 3〉 (comp. σ4
in Fig. 9). In order to realize selection propagation, a for-
eign key join analysis of the query needs to be performed
and in case of different bit masks, the dimension specifica-
tions need to be translated. Using less bits, simply requires
to shift low and high values to the right by the bit dif-
ference, using more bits requires to left shift low while

2 Vectorwise exploits MinMax indices [21] to determine that, e.g., a
n_name restriction determines a n_nationkey.
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Fig. 15 Example of a possibleMinMax index for ORDERS from Fig. 3
with major–minor bit interleaving

highnew = ((highold + 1) � bit_diff) − 1. Generally speak-
ing, if there is anymetadata that proves that a certain attribute
combination functionally determines a dimension key, then
equi-predicates on that attribute combination may also be
pushed down. For this to be exploited, the optimizer needs
a way to quickly look up dimension keys based on such an
attribute combination, which can, e.g., be realized if there is
a B+-tree with that attribute combination as index key.

In order to push down selection predicates to scans, many
systems use some form of lightweight index. In case of Vec-
torwise, this lightweight index is called MinMax index [21]
and is a small (a few thousand entries) summary structures
that divides a table into a small number of sections, and for
each section keeps the starting row-id (RID) and the mini-
mum and maximum value for each column (Netezza [3] has
a similar concept known as “zone maps”, Infobright [2] calls
this “Knowledge Grid”). Figure 15 shows an partial exam-
ple of a MinMax index for ORDERS with 8 entries for two
columns x and y. The first row for example states that column
y only has values between 1 and 6 in the first 124 rows of
ORDERS. In the case of small (dimension) tables which have
just fewer tuples than the size of a MinMax index, each tuple
refers to a section, and theMinMax analysis performed in the
query rewrite phase can, e.g., conclude that an equi-predicate
on one attribute is also an equi-predicate on the dimension
key in case of a functional dependency. Even without func-
tional dependency information, and even in the case of just
correlated behavior of attributes rather than full functional
dependency, theMinMax index can be used to translate equi-
or range-predicates on one attribute to range-predicates on
the dimension key. This information can be used to enable
BDCC selection push down. The benefit in this case is not
so much the selection pushdown to the BDCC table the cor-
relation is found in—as typically this is done by restricting
the scan via the MinMax mechanisms itself—but as soon as
we identify a range restriction on a dimension key this way,
we can propagate this restriction to all foreign key connected
BDCC tables in the query that use the same dimension, pos-
sibly restricting other fact tables.

In order to translate selection predicates on arbitrary
attributes to dimension selections, it is necessary to maintain
the MinMax index on decomposed parts of the _bdcc_ key.
This is illustrated in Fig. 15 for the D_DATE and D_CUS-

TOMER dimensions. This way a functional dependency of
attribute shipdate andD_DATE can be detected and for exam-
ple the predicate shipdate = 1999 can be translated to
D_DATE bin 0. Also correlations as found between attribute
vol, the order volume, and D_CUSTOMER can be found and
in many cases, e.g., vol = 6 or vol > 7 can be translated
in a range for D_CUSTOMER, i.e. range (2, 3). Note that
in the example the MinMax index is _bdcc_ aligned, which
enhances the lookup results. However, this alignment is not
strictly necessary. In the absence of a structure like MinMax,
the count table itself can be extended to hold such minimum
and maximum information per _bdcc_ block. However, for
large count tables, the lookup overhead becomes noticeable
and a summarized count table with MinMax information is
the better choice.

Typically, the granularity of the MinMax index is lower
than the granularity of BDCC clustering, as this is an
index that is kept per column and not per table. In case of
major–minor bit interleaving of the dimensions, this mech-
anism can only exploit correlations on the major columns.
Thanks to round-robin interleaving, correlation detection
works for any dimension; yielding a reduction factor of
MIN(|MinMax|/d, 2ones(M)), with d dimension uses and
mask M, of the original I/O volume for perfectly correlated
equi-selections that produce a small result set. In major–
minor clustering, the gain for the major dimension is of
course greater, i.e. MIN(|MinMax|, 2ones(M)), but for the
minor dimensions, there is no gain at all. Concluding, round-
robin interleaving adds to robust performance without the
need forDBA-tuning, both, in terms of I/Operformance inde-
pendent of requested dimension order, and the ability to push
down correlated selection predicates.

Join elimination In order to drop a join from a BDCC table
to a table holding a dimension key, the dimension use of the
BDCC table must use all bits of the dimension and no addi-
tional column of the dimension table can be present above
the join. Also, the equi-selection predicate must be expressed
over unique bins or the range-predicate must match exact bin
boundaries of the dimension. Multiple joins along a dimen-
sion path can be dropped, if no attribute of the join path tables
is used above the join to the BDCC table and no other tuple
selections are performed along the path.

Operator sandwiching We now describe how Sandwich
Operators can be integrated by bottom-up query optimizers
working with “interesting orders” [31], assuming that join
elimination was already performed.

Algorithm 9 (Interesting dimension uses) We collect the
interesting dimension uses IDU(T ) of each table T on which
each operator O depends. Each idu ∈ IDU(T ) is a subset of
the dimension uses of T , holding thoseUi functionally deter-
mined by the (i) any group by keys if O = Aggr, (ii) major
sort keys if O = Sort, or (iii) join keys if O = Join.
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In case (iii), there must be matching dimension uses in both
tables Tl and Tr (where the dimension path of one is a suffix
to the other). These are added to IDU(Tl) resp. IDU(Tr ).

This algorithm applied to the query plan from our example
in Fig. 14 yields

IDU(SUPPLIER) = {{Us}},
IDU(LINEITEM) = {{Us}, {Uc,Ud}},
IDU(ORDERS) = {{Uc,Ud}, {Ud}}.

{Ud} follows from the aggregate, the others from the joins,
as LINEITEM and ORDERS in our TPC-H setup are co-
clustered on order-date (Ud ) and customer-nation (Uc), while
LINEITEM and SUPPLIER are co-clustered on supplier-
nation (Us).

Algorithm 10 (IDUpropagation) We traverse the query
DAG formed by FK-joins (as edges) bottom-up, pointing
from referring to referred table (as nodes). In each table T ,
we intersect all idui ∈ IDU(T ) with the idu created for each
incoming FK-edge. If this intersection is non-empty, it is
added to IDU of the referring table. Then a similar top-down
traversal is performed, adding non-empty intersections to the
referred table.

This step ensures that IDU annotations reflect all rel-
evant order opportunities in the query plan. The example

DAG is ORDERS
FK_L_O←−−−− LINEITEM

FK_L_S−−−−→SUPPLIER.
When checking {Ud} ∈ IDU(ORDERS) during the bottom-
up traversal, we add {Ud} to IDU(LINEITEM), as this is its
intersection with the idu from FK_L_O({Uc,Ud}).
Algorithm 11 (Interesting dimension orders) For each table
T , the set IDO(T ) is generated by creating all permutations
of each idui ∈ IDU(T ) as lists that contain dimension uses
in some order. Lists are denoted 〈. . .〉.

The interesting dimension orders algorithm applied to our
example yields

IDO(ORDERS) = {〈Ud〉, 〈Uc,Ud〉, 〈Ud ,Uc〉},
IDO(LINEITEM) = {〈Us〉, 〈Ud〉, 〈Uc,Ud〉, 〈Ud ,Uc〉},
IDO(SUPPLIER) = {〈Us〉}.

Since the amount of interesting orders strongly affects the
search space and memory requirements of optimization, we
describe a strategy that only generates maximal orders. This
strategy is still guaranteed to find the best query plans and is
based on two observations:

(i) BDCCscan (T,C, σ ) for any σ as generated by Algo-
rithm 4 costs roughly the same as a normal scan.

BDCCscan cost is hence a non-issue in query optimiza-
tion, e.g., scanning LINEITEM with 〈Uc,Ud〉 costs the
same as with 〈Ud〉.

(ii) The cost of sandwichedoperatorsmonotonically decreas-
es with more bits [7], so using more bits is better.

Thus, we can compare the relative benefit that different ido ∈
IDO(T ) offer for an operator using the length of the prefix
covered in themby each idu ∈ IDU(T ). So, theFK_L_O join
profits less from 〈Ud〉 than from 〈Ud ,Uc〉 since its idu =
{Uc,Ud} covers a prefix of length one in the former and
two in the latter. Hence, we can prune 〈Ud〉 and 〈Uc,Ud〉
from both IDO(LINEITEM) and IDO(ORDERS), because
〈Ud ,Uc〉 is superior to them. For the query that means that
some operators (i.e. the FK_L_O join resp. the aggregation)
profit more from it, and no operator profits less.

Definition 9 (Order superiority) An interesting dimension
order idoi ∈ IDO(T ) is superior to another ido j ∈ IDO(T )

if it benefits all idux ∈ IDU(T ) to an equal or higher degree.
The degree to which idoi benefits an idux is the length of the
prefix of idoi covered by idux (which may be 0).

Note that the benefit is defined in terms of members idu ∈
IDU(T ) rather than per operator generated idu-s, because
Algorithm 10 adds extra idu-s for operators that indirectly
(over FK-joins) profit from an ordering.

Order superiority straightforwardly leads to a pruning
algorithm that keeps only maximal orders:

Algorithm 12 (Order pruning) For each idoi ∈ IDO(T ), we
iteratively checkwhether there exists another ido j ∈ IDO(T )

that is superior to it, and if so prune idoi . This is repeated until
no more idoi can be pruned. The result is called MDO(T ),
i.e. maximal dimension orders.

As a result of the order pruning, our example has the fol-
lowing maximal dimension orders:

MDO(LINEITEM) = {〈Us〉, 〈Ud ,Uc〉},
MDO(ORDERS) = {〈Ud ,Uc〉},
MDO(SUPPLIER) = {〈Us〉}.

Note that the addition of {Ud} to IDU (LINEITEM) by
Algorithm 10 is what made 〈Ud ,Uc〉 superior to 〈Uc,Ud〉
in IDO(LINEITEM).

The optimizer thus has to choose between sandwiching
the join of LINEITEM with SUPPLIER (using 〈Us〉) ver-
sus the join of LINEITEM with ORDERS (using 〈Ud ,Uc〉),
which also benefits the aggregation. The cost model should
determine the best strategy.

In a bottom-up BDCC-aware query optimizer, the set
of interesting orders for each sub-plan are those result
orders that follow the order of some BDCCscan in the sub-
plan, where that BDCCscan on T produces an order from
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MDO(T ). An order is propagated through the query plan
according to [34]. Further, this order only remains interest-
ing if some operator not yet part of the sub-plan benefits from
it. For each interesting order, the best scoring plan is kept, in
addition to the best plan without order (if faster).

For scans, the optimizer instantiates for each ido ∈
MDO(T ) a BDCCscan plan that produces _gid_ in that
order. The granularity for each BDCCscan is initially set
by Algorithm 4, which results in some σ = 〈S1, . . . , Sk〉.
For dimension uses Ui involved in joins, we reduce the bit
number ones(M(Si )) to the minimum of the inputs.

BDCC adds very little need to extend an existing
cost model. Costs of the newly introduced operators
PartitionSplit and PartitionRestart are essen-
tially zero [7]. BDCCscan achieves performance compa-
rable to a normal scan, so standard cost estimation can be
used. However, selection pushdown should be taken into
account when estimating the number of scan tuples. With
BDCC statistics from the count tables and dimension speci-
fications Si , these estimations become very precise. The costs
of a sandwiched operator are adjusted using the cumula-
tive granularity γop = ∑

Ui
ones(M(Si )) of those dimension

uses Uk exploited in it. Sort costs decrease by factor γop
from O(N · log(N )) to O(N · log(N/2γop)). For hash-based
aggregation and join, one simply reduces the hash table size
fed into any existing cost model (e.g., [24]) by factor 2γop .

We implementedBDCCoptimization in the query rewriter
of Vectorwise [21]. This rewriter is a post processing step
after the main optimizer and does not change join order—
this may affect BDCC plan quality.

7 Handling updates

Warehousing systems in very many cases have load cycles
duringwhich data are regularly appended, and regularly older
data are phased out. Increasingly they have to support a less
voluminous, but continuous, trickle ofmore arbitrary updates
(insert, delete, modify). For BDCC we have to differenti-
ate between updating BDCC clustered tables and updating
dimensions.

UpdatingBDCC tablesUpdating ordered tables is normally
not possiblewithout data re-organization.BDCCcanbe com-
bined with physical table partitioning, as one can bulk-load
by simply appending newBDCCclustered data, both, to table
T and TCNT —even if updates are scattered across the whole
table according to its clustered organization. So a batch of
inserts simply results in a new (logical) partition in TBDCC
and TCNT by creating autonomous TU

BDCC and TU
CNT for the

update batch and appending these as logical partition the
original TBDCC and TCNT . Note that each partition on the
inside is ordered according to the _bdcc_ key and partitions

Fig. 16 Illustration of update behavior of BDCC tables. Left side log-
ical structure of BDCC table under multi level update partitions. Right
side merge step to create next level

are totally independent of each other. This way, the mecha-
nisms to access a batch updated BDCC table are the same as
described in Sect. 6.1 are not affected by update partitions. In
order to avoid scanning the _bdcc_ column of a table when
searching for a partition, e.g., formerging or phasing out data,
a small summary structure of start and end row IDs is used.
This structure can also hold additional information such as
for example the append date.

Logical partitioning is useful in data life cycle manage-
ment, where new data are regularly appended (e.g., each day)
and old data gets phased out, because awarehouse keeps, e.g.,
only the last 3months. Appending new data to a new partition
is fast but may lead to many small partitions; with too small
access granularity as the BDCC clustering depth is based
on the number of tuples in the initial data set. This leads to
reading a disk block many times on order generate a scan
order and should be avoided in order to keep BDCCscan a
no extra cost operation. Therefore, multiple small partitions
should be merged periodically to form larger ones and after
enough larger partitions are created these again are merged
into even larger partitions and so on; leading to a scheme
where a table is stored as a set of partitions of exponentially
increasing size; amortizing update cost to the logarithm of
table size, similar to log-structured merge trees [27]. How-
ever, in order to avoid a large number of writes as explained
in [5], it is critical to merge all partitions of one level in the
tree into a single partition of the next level when the thresh-
old for partitions for a level is reached. Figure 16 illustrates
this. This way a 1TBBDCC table can be created from 16MB
update sets by only writing the data five times when using
16 update sets per level.

Note that BDCC clustering depth as chosen by Algo-
rithm 2 is adapted as the amount of data grows, always
guaranteeing optimal data access. The adaption process con-
sists of a count of the bin frequencies based on the new
clustering depth and an update of TCNT . The ability to phase
out batches efficiently limits the size of merged batches and
thus the clustering depth.

Trickle or scattered updates, where only very small
amounts of tuples are inserted, deleted, or modified, should
in column stores best be handled using differential tech-
niques, such as a Write–Store [33] or, in case of Vectorwise,
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PDTs [17]. For inserts and deletes, not only the PDTs of the
BDCC organized table T get modified, but the group counts
in TCNT need to be updated, also using e.g., PDTs. While a
set of trickle inserts can be collected into a batch update, the
trickle deletes can be integrated during the merge step of the
update batches.

Updating BDCC dimensions The appearance of new val-
ues in BDCC tables through updates and inserts entails
the need to maintain BDCC dimensions under updates. But
the immediate need to reorganize existing BDCC organized
tables should be avoided.However, update patterns that insert
always into the same bin will cause domain skew (“puff pas-
try” [25]) induced loss of efficiency in the I/O access patterns.
In general, removing skew in the face of hammer updates
can only be achieved by periodically recreating the dimen-
sion and fully re-organizing all existing BDCC tables that
use it, e.g., during a checkpointing operation typically found
in systems with differential updates [17,33].

In any other case immediate reorganization of BDCC
tables is avoided, however, depending on the kind of change
and dimension, different actions are necessary.

For insertsno immediate action becomes necessary. Either
the inserted dimension value falls into a non-unique bin
or a unique bin becomes non-unique. In the second case,
some query optimization techniques such as join elimination
will not be available anymore for this particular bin. How-
ever, dealing with a forward growing domain (e.g., date-time
related) we provide an additional mechanism. Appending
new bins to the dimension will potentially cause the num-
ber of bits of the dimension to grow. When a dimension D
expands by one bit, it is sufficient to only modify metadata
of all dimension uses Ui of all BDCC organized tables that
use D (D(Ui ) = D), by adding a ‘1’ at position m + 1 (at
the front) in its bit mask M(Ui ). In effect, we declare these
BDCC tables to be already clustered on one more bit; as
this bit is ‘0’ for all existing groups, existing _bdcc_ col-
umn values are not affected and no table reorganization is
required.

For deletes it can be assumed that the matching tuples in
the BDCC tables are already deleted, so differential tech-
niques are sufficient.

For updates we have to observe different cases to explain
all opportunities of BDCC dimensions under updates. While
an update of a dimension value that does not move this value
from one bin to another naturally requires no action, a bin
change results in varying actions depending on the kind of
bin. For a non-unique bin, this is best treated as delete and
update operation. However, in this case all tuples in the
BDCC organized tables have not previously been deleted
and, thus, also need to be deleted and re-inserted accord-
ing to standard BDCC table update mechanisms. For unique
bins, only actions on the metadata are required and BDCC

organized tables are left untouched. The bin numbers need
to be re-assigned using differential techniques and this way
the _bdcc_ key in TCNT needs to be updated before the
Project() step when generating the _gid_ and RID ranges
that are fed into FetchScan. Note that tuples in the TCNT
must not be reordered in order to not lose the offset mapping
to the TBDCC . If for generating the scan ranges in BDCCscan
the structures are used, the right _gid_ order is produced by
the scan. However, if a BDCC table is further updated with
bulk appends, the original dimension excluding these updates
needs to be used. This way tuples in the new partitions are
stored in the same order as in previous partitions and the
mapping provided by the differential structure is sufficient
for query processing. Note that in step (i) in the BDCCscan
implementation nothing changes, as for adjacent rows the
right shifted _bdcc_ value may not be equal anymore—thus,
count values for these rows are not aggregated and result
in more scan ranges.

8 Discussion

Transferring to row stores Working with Vectorwise, our
work is based on a column store, but we believe the general
framework is also transferrable to row stores. For BDCC
creation, a row can simply be viewed as an extra wide col-
umn. This, of course, requires more bits for clustering in
order to meet the I/O parameter requirements for efficient
scatter scans. Update mechanisms as described for batch
updates also work in a row store, however, row stores typi-
cally favor in place updates that are not supported by BDCC.
All query optimization techniques like selection pushdown
or join elimination can also be transferred; however, sum-
mary data structures as minmax indexes may not be present,
and thus, correlation detection would not be available. In
case, such summary structures exist, a row store would need
to provide separate summaries for the decomposed _bdcc_
column in order to keep this optimization fast. Query execu-
tion techniques like SandwichOperators and BDCCscan are
also easily transferrable; however, the adaptive scan becomes
unnecessary in a row store. With the absence of the adaptive
scan and correlation detection, being two main reasons for
round-robin interleaving, other bit interleaving patterns may
become more interesting again.

Future work aims at investigating parallelization of sand-
wich processing. First implementations have shown a high
potential of scaling BDCC execution across a large number
of cores. Also, additional clustering of _bdcc_ groups will
be investigated to further exploit modern CPU technology.
Providing a robust BDCC schema as a starting point also
opens the question whether workload driven approaches can
fine tune a setup.
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9 Evaluation

To show the effectiveness of BDCC, we use the SF100 and
SF1000 TPC-H and SF100 SSB benchmarks:

PLAIN This scheme simply holds the data without any key
or index definitions.

PK As a baseline for indexing, we store data clustered
on the primary keys.

OP This is an optimized Vectorwise indexing. Vector-
wise does not support C-Store style [33] ordered
join projections, but approximates this by stor-
ing tables ordered on an extended key, adjoining
dimension keys reachable over a foreign key to the
table.

BDCC This scheme is created with our design algorithms
with fully automated query processing.

ADC As a multi-dimensional clustering version, we pro-
vide ADC [13]. To keep comparisons fair we use
similar dimensions in ADC and BDCC. For ADC
we re-wrote all queries by hand exploiting selec-
tions.

All schemes use automatic compression and are imple-
mented end-to-end in the same system (Vectorwise), so the
comparison is apples-to-apples. We also provide a micro-
benchmark to compare BDCC with partitioning based on
query Q03 of TPC-H as an example and provide insight on
update performance for TPC-H.

System setup We evaluated on an Intel Xeon E5560 with
32 GB RAM and 32 KB L1, 256 KB L2 and 8MB L3 cache.
The OS is a 64 bit Debian, kernel 2.6.32. Databases were
stored on a RAID0 of 4 Intel X25MSSDswith stripe 128 KB
and max. bandwidth of 1 GB/s. As BDCC does not yet sup-
port parallelization, queries are only executed on a single
core. We used 4 GB buffer space and 28 GB query memory.
The page size was 32 KB.

TPC-H benchmark The PK setup turns LINEITEM-OR-
DERS and PARTSUPP-PART joins into merge joins. How-
ever, the important dimensions (e.g., date for the largest table
LINEITEM) cannot be recognized by this scheme.

OP can recognize these dimensions. We add the
orderdate column to LINEITEM, and store it with a
CLUSTERED INDEX on orderdate,orderkey,
linenumber, with the latter two being the original pri-
mary key. In SUPPLIER and CUSTOMER the sort key is

(r_regionkey,n_nationkey) plus primary key. Here,
columns are adjoined to other tables for the purpose of
ordering, which enables this scheme to recognize important
dimensions.

For ADC andBDCC,we recognize four dimensions: date,
customer, supplier and part. In ADC we extract year and
month from o_orderdate and adjoin it to ORDERS and
LINEITEM. In addition we adjoin r_name and n_name
to CUSTOMER, SUPPLIER, ORDERS and PARTSUPP and
twice, once for customers and once for suppliers to LINE-
ITEM. And finally we adjoin p_brand and p_size to
PARTSUPP and LINEITEM and keep all tables ordered on
these attributes following the order of presentation.

For BDCC we used Algorithm 3 to semi-automatically
design the physical schema given as input DDL the usual for-
eign keys for TPC-H, plus CREATE INDEX DDL
on o_orderdate, (n_regionkey, n_nationkey)
and p_partkey. The latter compound key allows the query
rewriter to detect that a region equi-selection determines a
consecutive D_NATION bin range.

Using this DDL, Algorithm 3, which treats CREATE
INDEX as hints for BDCC, creates the dimensions:

BDCC dimension (D) bits(D) Table T (D) Key K (D)

D_NATION 5 NATION n_regionkey,
n_nationkey

D_PART 13 PART p_partkey
D_DATE 13 ORDERS o_orderdate

We also declare indices on the foreign key references
l_orderkey, o_custkey, c_nationkey, l_supp-
key, l_partkey, ps_partkey, ps_suppkey and
s_nationkey.

Algorithm 3 clusters NATION on D_NATION and PART
on D_PART. Dimension uses also get included in the ref-
erencing tables, over the foreign keys with a declared
index (treated as a hint). Thus, SUPPLIER and CUSTO-
MER are clustered on D_NATION, and ORDERS is clustered
on D_NATION (via CUSTOMER), as well as on D_DATE.
PARTSUPP gets clustered on D_PART, and on D_NATION
via SUPPLIER. LINEITEM gets clustered on all dimen-
sions. In fact, as in the TPC-H schema graph two different
join paths exist between LINEITEM and NATION, it gets
clustered twice on D_NATION: both for customer and sup-
plier nations. This yields the dimension uses:
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BDCC Table D(Ui ) P(Ui ) M(Ui )

NATION D_NATION – 11111
SUPPLIER D_NATION FK_S_N 11111
CUSTOMER D_NATION FK_C_N 11111
PART D_PART – 1111111111111
PARTSUPP D_PART FK_PS_P 101010101011111111

D_NATION FK_PS_S.
FK_S_N

10101010100000000

ORDERS D_DATE – 101010101011111111
D_NATION FK_O_C.

FK_C_N
10101010100000000

LINEITEM D_DATE FK_L_O 10001000100010001000
D_NATION FK_L_O.

FK_O_C.
FK_C_N

1000100010001000100

D_NATION FK_L_S.
FK_S_N

100010001000100010

D_PART FK_L_P 10001000100010001

Given that the highest density column l_comment has
550,000 pages (i.e. AB = 32 KB) for SF 100, Algorithm 2
clustered LINEITEM at granularity �log2 550000 = 20
bits. For SF1000 we dropped l_comment for space rea-
sons and since it is never used, now, l_orderkey dictates
the number of bits �log2 971819 = 20.

In comparison to PK and OP, ADC and BDCC lose the
efficient merge joins between LINEITEM and ORDERS and
PARTSUPP and PART respectively, but gain selection push-
down on all dimensions across the whole schema. BDCC,
however, provides sandwiched execution.

Storage Storage for the various systems is as follows:

in GB SF PLAIN PK OP ADC BDCC

Total 100 54.59 59.79 59.23 67.58 59.12
Index 100 0 1.27 1.27 7.06 0.06
Total 1000 280.04 339.29 336.35 415.52 303.57
Index 1000 0 12.69 12.69 46.14 0.58

While PLAIN has no overhead, OP and PK create a
join index to support the merge joins. ADC, even with
compression, requires significant storage overhead for the
adjoined columns, where BDCC in combination with RLE
compression only requires minimal overhead. However, as
comparison to PLAIN shows, a table’s ordering also has
influence on compression rates that can be more signif-
icant than indexing overhead. For SF1000 the dropped
l_comment is the reason for reduced space.

Execution time Figure 17 (top) shows cold execution times
for all 22 SF100 TPC-H queries. The dark-shaded parts show
time spent in scans. The PK setup gains 146 s compared to
PLAIN, mostly via the LINEITEM-ORDERS merge join.
ADC profiting from selection pushdown, but loosing the
merge joins, has a similar total execution time compared

to PK (303 s); however, the power score is 55 % higher.
OP outperforms both as it covers the important dimensions
and provides merge joins. BDCC however is always close,
often better because co-clustering across multiple dimen-
sions permits to push down these and more selections to
all tables affected. Vectorwise’s MinMax indices allow both
schemes to push down selections correlated with acceler-
ated dimensions (e.g., shipdate selection push down, as tables
have orderdate locality). However, BDCC accelerates more
joins—this way compensating for loosing the merge join
between LINEITEM and ORDERS. In the end BDCC clearly
has the upper hand: its inverse geometric mean—the Power
score3—is 24 % higher (90877 vs. 69145) and elapsed time
is 16 s less.

For SF1000 as shown in Fig. 18 (top), the picture is sim-
ilar. In general all setups perform not quite as well as for
SF100 according to the power score. While BDCC perfor-
mancedrops by18%,PK looses 26%,OP28%,PLAIN32%
and ADC 39 %. Some of the additional performance loss for
the non BDCC systems can be explained because of spilling
joins and aggregations, but most of the other queries still
loose proportionally more time when compared to BDCC.
Only for queries that exploit merge joins and ordered aggre-
gation PK and OP scale better than BDCC.

Memory consumption Figure 17 (bottom) shows that for
SF100 on average BDCC needs much less memory than
PLAIN (0.07 vs. 1.10 GB), and peak memory usage drops
from 6.76 GB to 283 MB. ADC has comparable memory
consumption to PLAIN due to no optimization for joins.
Compared to PK and OP, BDCC is a factor 5 (peak 13×)
more efficient, even with the “big” join gone, as BDCC
reduces memory for all significant joins due to its co-
clustering approach across the whole schema.We configured
query memory such that hash-operators would never spill for
SF100; Fig. 19 shows execution times for the three queries
with the highest memory consumption (Q10, Q13, Q14) for
PK, OP and BDCC for varying query memory. While BDCC
execution times stay constant (compare to 4 GB bars), PK
and OP times shoot up with lower memory limits, as opera-
tors start to spill. At 1 GB query memory, OP is an additional
82 s slower than BDCC and PK even 235 s.

For SF1000 as shown in Fig. 18 (bottom), again, the pic-
ture is similar. However, all systems but BDCC spill joins
or aggregations to disk, even with query memory at 28 GB,
which results in sublinear scaling for memory consumption
but significantly lower execution times. At 10× larger SF and
the same number of bits, the adaptive scan does not trigger as
often. This way, e.g., Q14 and Q15 preserve more memory
compared to SF100 as Sandwich operators benefit from the
extra bits.

3 These results are reported for academic interest only, are not available
in any product, have not been audited and are not official TPC-H scores.
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Fig. 17 TPC-H SF100 execution and scan times (top) and memory consumption (bottom) for PLAIN, PK, ADC, OP, BDCC
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Fig. 18 TPC-H SF1000 execution and scan times (top) and memory consumption (bottom) for PLAIN, PK, ADC, OP, BDCC

Detailed analysis For PK and OP queries, Q2–Q6, Q7–
Q12, Q16, Q18, Q20, Q21 benefit from merge joins instead
of hash joins. In addition OP Queries Q3, Q4, Q5, Q8 and
Q10 are accelerated by selection pushdown and Q3, Q6, Q7,
Q12, Q14, Q15, Q20 and Q21 benefit from the correlation
of o_orderdate and l_shipdate, allowing MinMax
indices to identify pushdown ranges. These selections are
also recognized by ADC and BDCC but in addition and
due to their multi-dimensional nature, these schemes addi-
tionally push down nation and region selections in queries
Q2, Q5, Q7–Q11, Q20 and Q21. For BDCC sandwiching
is applied throughout the whole schema, supporting more
joins than just LINEITEM-ORDERS andPARTSUPP-PART.
In Q13, the ORDERS-CUSTOMER join is sandwiched for

customer D_NATION, although NATION is not involved in
the query, but the join key c_custkey implies the nation
of a customer. Sandwiching largely reduces memory usage
compared to the others, where a full materialization of the
CUSTOMER columns is required. Same holds for Q10 and
Q18. In Q14 the join LINEITEM-PART is reduced. In Q16
the count of the distincts_suppkeys is sandwiched, shrink-
ing the hash table by a factor of 25. Q18 performs a full
aggregation of LINEITEM on l_orderkey; sandwiching
helps with respect to PLAIN and ADC, but the streaming
aggregate in PK and OP cannot be beaten.

Star schema benchmark The PK setup in contrast to
PLAIN results in slightly different query plans and for-
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Fig. 19 TPC-H SF100 execution times for varying memory

eign key joins instead of standard M to N hash joins.
OP orders LINEORDER after l_orderdate and, thus,
can push date selections to LINEORDER. For ADC we
adjoined d_year, c_region, c_nation, s_region,
s_nation and p_mfgr and p_category to LINE-
ORDER and sorted in the respective order. For BDCCweused
Algorithm 3 to semi-automatically design the schema based
on foreign keys and CREATE INDEX on d_datekey,
(s_region, s_nation), (c_region, c_nation) and
(p_mfgr, p_category), leading to four dimensions and
a round robin clustered LINEORDER with 5 bits per dimen-
sion.

Storage Storage for the various systems is as follows:

in GB PLAIN PK OP ADC BDCC

Total 15.37 16.05 15.79 27.77 21.20
Index 0 0 0 6.70 0.04

Here, PLAIN, OP and PK have no overhead, OP’s index
is a single page. ADC, again, has significant overhead, while
BDCC only has minimal. However, compression differences
show, leading to extra storage overhead for the multidimen-
sional approaches.

Execution time Figure 20 shows the results of all 13 SSB
queries. PLAIN and PK are comparable and show the lowest
performance. OP has good performance where a query has
date selections and otherwise performs as bad as PLAIN and
PK. ADC and BDCC are both by far superior to the other

setups, which is expected as in PLAIN and PK LINEORDER
is always fully scanned and in OP only the date dimension
is really recognized. When comparing ADC and BDCC it
shows that BDCC is 28 % faster, a result from more precise
selection propagation as minor dimensions cannot be recog-
nized by Vectorwise’s scan pre-selection. For a few queries,
the Sandwich Operators add additional benefit. Looking at
queries that are tailored to ADC, e.g., Q3.1 to Q3.4, we see
that both approaches perform similar. However, with better
recognition of deeper dimensions, it is to be expected that
ADC performance is comparable to BDCC—but this cannot
simply be achieved by adjoining dimensions columns and
re-writing SQL queries.

Memory consumption All schemes need about the same
amount of memory, on average 22 MB (OP) to 32M B
(PLAIN), as all joins and aggregations use small hash tables
and neither merge joins nor sandwiched execution provides
a significant benefit.

Updates Figure 21 provides execution times for updates
on TPC-H (RF1 and RF2). For a single insert set PLAIN and
BDCC updates are handled as bulk appends, which are faster
than PDTs for PK, OP and ADC. BDCC only sorts the insert
batch (which makes it slightly slower than PLAIN) and then
appends to the BDCC- and count-table. We also show amor-
tized insert costs, as PDTmemory consumption (110MB for
one batch) and maintaining the logarithmic update structure
for BDCC come with overhead not shown in the single run.
We set the PDT reorganization limit to 4 GB, triggering with
the 38th batch,which leads to a full table re-organization. The
amortized overhead for a run is 118 s, where for BDCC’s log-
arithmic update structure, it is only 18 s. Deletes (del) are in
all cases handled by PDTs, but as they require less memory
(4.5 MB per batch), the amortized overhead is lower (5 s per
run).

Executing all 22 TPC-H queries after loading 10 insert
batches (RF1) results in a slight slowdown for all systems.
In PK, OP and ADC the PDTs need to be processed, in
BDCC the appended partitions. However, BDCC needs 30–
90 % less extra time than the other setups, i.e. processing the
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extra partitions is faster than processing the PDTs. BDCC
needs 41 MB extra query memory, while PK and OP need
an additional 1.08 GB memory for holding the PDTs (per
query).

Adaptive scan granularity The best indicator of a cor-
rectly chosen scan granularity is the number of disk blocks
transferred to memory. The 4 GB buffer pool in the SF100
TPC-H experiments does not require an adaptively chosen
granularity. However, a limited 1 GB buffer pool, e.g., by
concurrent queries, causes thrashing for large scans as in
Q09: Requesting all 5 bits of both dimensions (D_DATE,
D_NATION) from LINEITEM leads to 1 M requests with
540 K transfers for 270 K blocks, i.e. blocks are read twice.
The adaptive BDCCscan reduces both dimensions to 4 bits
per dimension, only transferring 300 K blocks, close to
270 K as with 4 GB buffer space. Similar behaviors show
in Q18, Q19 for 512 MB buffer and Q06, Q08, Q12, Q21 for
256 MB.

Partitioning As partitioning is not yet supported by Vec-
torwise, we simulated it, partitioning CUSTOMER by the
25 nations and ORDERS and LINEITEM by 32 equally
distributed o_orderdate partitions and the 25 nations
from the customer dimension, a total of 800 partitions. We
executed Q03 as an example, where only these tables are
involved. With selection pushdown Q03 only requires two
of the 32 o_orderdate partitions. No partitions can be
pruned by nation.We generated two plans, (a) joiningmatch-
ing ORDERS and LINEITEM partitions first, before joining
with the matching customer partition and (b) union each
of the two LINEITEM and ORDERS partitions and joining
to customer on a per nation partition basis. For OP, plan
(a) executed in 4.9 s and plan (b) in 3 s, which is similar
to the execution without sandwiched joins but with selec-
tion pushdown. Both are much faster than PK and PLAIN,
but 100 % (a) and 25 % (b) slower than BDCC. Plus,
memory consumption is much worse, BDCC needs only
16.3 MB, where (a) needs 937 MB and (b) needs 494 MB,
mostly because of the exploding number of HashJoins.
Similar plan explosion is expected for the other TPC-H
queries.

10 Conclusions

We introduced bitwise dimension co-clustering, an elegant
and powerful framework formulti-dimensional clustering for
analytical workloads. We provided algorithms for database
design, query optimization and query execution as well as
updating the database. Experiments with TPC-H and SSB in
the Vectorwise system show the high potential of the frame-
work.
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