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ABSTRACT

We propose a generalization of the classical database query
optimization problem: multi-objective parametric query op-
timization (MPQ). MPQ compares alternative processing
plans according to multiple execution cost metrics. It also
models missing pieces of information on which plan costs de-
pend upon as parameters. Both features are crucial to model
query processing on modern data processing platforms.

MPQ generalizes previously proposed query optimization
variants such as multi-objective query optimization, para-
metric query optimization, and traditional query optimiza-
tion. We show however that the MPQ problem has different
properties than prior variants and solving it requires novel
methods. We present an algorithm that solves the MPQ
problem and finds for a given query the set of all relevant
query plans. This set contains all plans that realize optimal
execution cost tradeoffs for any combination of parameter
values. Our algorithm is based on dynamic programming
and recursively constructs relevant query plans by combin-
ing relevant plans for query parts. We assume that all plan
execution cost functions are piecewise-linear in the param-
eters. We use linear programming to compare alternative
plans and to identify plans that are not relevant. We present
a complexity analysis of our algorithm and experimentally
evaluate its performance.

1. INTRODUCTION

Context. The goal of database query optimization is to
map a query (describing the data to generate) to the optimal
query plan (describing how to generate the data). Query
optimization is a classical optimization problem with first
work dating back to the seventies [14]. The original query
optimization problem model has been motivated by the ca-
pabilities of data processing systems at that time. However,
there have been fundamental advances in data processing
techniques and systems in the meantime. Hence the origi-
nal problem model is not sufficiently expressive to capture
all relevant aspects of modern data processing systems. In
this paper, we propose an extension of the classical query op-
timization problem model and a corresponding optimization
algorithm.

Query optimization variants can be classified according
to how they model the execution cost of a single query
plan. Traditional query optimization [14] models the cost
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of a query plan as scalar cost value ¢ € R. This implies
that query plans are compared according to one single cost
metric. It also implies that all information required to pro-
duce cost estimates is available to the query optimizer. The
goal in classical query optimization is to find a query plan
with minimal execution cost. Multi-objective query opti-
mization [1, 7, 11, 16, 17] generalizes the classical model and
associates each query plan with a cost vector ¢ € R™ instead
of a scalar value. This allows to model scenarios where mul-
tiple execution cost metrics are of interest. If data processing
takes place in the Cloud then we are for instance interested
in execution time but also in monetary execution fees. Dif-
ferent components of the plan cost vector represent cost ac-
cording to different cost metrics. The goal is to find the set
of Pareto-optimal query plans which are plans for which no
alternative plan offers better cost according to all metrics.
Parametric query optimization [3, 4, 6, 8, 10, 13] generalizes
the standard model in a different way. It associates each
query plan with a cost function ¢ € R™ — R, mapping from
a multi-dimensional parameter space to a one-dimensional
cost space. Parameters represent pieces of information that
are not yet available at optimization time but required to
estimate plan execution cost. Parametric query optimiza-
tion allows for instance to optimize query classes that are
defined via query templates in which some predicates are
unspecified. One parameter could then represent the selec-
tivity of one unspecified predicate. The goal in parametric
query optimization is typically to find a set of plans contain-
ing for each possible parameter value combination the plan
with minimal execution cost.

Problem. We propose multi-objective parametric query
optimization (MPQ), a query optimization variant that gen-
eralizes multi-objective query optimization, parametric query
optimization, and classical query optimization at the same
time. MPQ models the cost of a single query plan as a
cost function ¢ € R™ — R" that maps a multi-dimensional
parameter space to a multi-dimensional cost space. MPQ
assumes that query plans are compared according to mul-
tiple cost metrics and that cost estimates depend on pa-
rameters whose values are unknown at optimization time.
The goal in MPQ is to find the set of Pareto-optimal plans
for each possible parameter value combination. This prob-
lem model is required wherever the application scenarios of
multi-objective query optimization intersect with the ones
of parametric query optimization. The following example
describes a scenario in which MPQ is necessary.

EXAMPLE 1. Assume that we need to process the same
query in reqular time intervals. Query processing takes place
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Figure 1: Multi-objective parametric query opti-
mization pre-computes a set of relevant query plans.
The optimal plan is selected from that set according
to parameter values and user preferences.

in the Cloud and we would like to use Amazon EC2 Spot In-
stances. Here we care about two execution cost metrics which
is execution time and monetary execution fees. We can trade
between them by adapting type and number of the computa-
tional resources that we rent from Amazon. On the other
side, the processing cost of the query depends on parameters
that we cannot directly influence: the pricing of Amazon
Spot Instances. As we process the same query repeatedly, we
can determine the set of all potentially relevant query plans
in a pre-processing step. At run time, given concrete Spot
prices and execution cost bounds, we can efficiently select
the best query plan out of the pre-computed set. This avoids
expensive optimization at run time. The pre-processing step
requires however MPQ since multiple plan cost metrics and
parameters need to be considered.

There are many other scenarios in which multiple process-
ing cost metrics are of interest. Techniques for approximate
query processing allow for instance to trade between execu-
tion time and result precision [1]. Different query plans can
realize different tradeoffs between energy consumption and
execution time for the same query [18]. If data is processed
by crowd workers then latency, execution fees, and result
precision are all relevant cost metrics [12]. If the queries we
want to process at run time correspond to query templates
that are known before run time then we can make query
optimization a pre-processing step. At pre-processing time,
plan cost estimates depend on parameters with unknown
values. Those parameters can represent query properties
which are not fully specified in the template or properties of
the query execution platform (e.g., the Spot Instance prices)
that will become known only at run time. MPQ is applica-
ble in such scenarios and allows to avoid query optimization
at run time.

The result of MPQ is the set of all potentially relevant
query plans for a given query or query template. It con-
tains all Pareto-optimal plans for each possible parameter
value combination. At run time, we can select the best
query plan out of that set based on the concrete parame-
ter values and based on user preferences. Users can specify
their preferences in advance (e.g., by specifying cost bounds
and priorities between different cost metrics [1, 16]) such
that the optimal plan according to those preferences can be
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selected automatically. As an alternative, we can use the
pre-computed plan set to visualize all Pareto-optimal cost
tradeoffs for given parameter values. This allows users to
select the preferred cost tradeoff directly [17]. Figure 1 il-
lustrates the context of MPQ.

So far we have introduced a very generic problem model
for MPQ. In order to make the problem tractable, we restrict
ourselves to a specific class of cost functions in this paper:
we consider piecewise-linear plan cost functions. Many ap-
proaches for parametric query optimization [6, 8] consider
only piecewise-linear plan cost functions as well since such
functions can approximate arbitrary functions [8]. The dif-
ference between our model and the one used in paramet-
ric query optimization is that we associate each plan with
multiple piecewise-linear cost functions representing cost ac-
cording to different metrics.

Algorithm. We present an algorithm that solves MPQ
for piecewise-linear plan cost functions. Our algorithm is
based on dynamic programming. It recursively decomposes
the input query for which we need to determine the set of
relevant query plans into sub-queries. In a bottom-up ap-
proach, it recursively calculates sets of relevant plans for a
query out of optimal plan sets for its sub-queries: it com-
bines plans that are relevant for the sub-queries to form new
plans that are potentially relevant for the decomposed query.
Dynamic programming is a classical approach for query op-
timization. The crucial difference between our algorithm
and prior algorithms is the implementation of the pruning
function, i.e. in how we compare alternative query plans and
prune out sub-optimal plans.

We conceptually associate each plan for a query or sub-
query with a region in the parameter space for which the
plan is Pareto-optimal. We call this region the Pareto re-
gion. The goal during pruning is to compare alternative
plans generating the same result in order to discard sub-
optimal plans. We compare plans pair-wise and determine
for each plan the parameter space region in which it is domi-
nated by another plan, i.e. in which the other plan has com-
parable or better cost according to each plan cost metric.
Then we reduce the Pareto region of the first plan by the
region in which it is dominated. If the Pareto region of a
plan becomes empty then it is not Pareto-optimal for any
parameter value combination. Then we can safely discard
that plan.

All Pareto regions that could ever occur during the execu-
tion of that algorithm can be represented using the follow-
ing formalism. We represent Pareto regions as a union of
convex polytopes in the parameter space from which other
convex polytopes have been subtracted. We prove that this
representation is closed under all operations that the algo-
rithm needs to perform on Pareto regions. Note that this
region shape is a consequence of the class of cost functions
(piecewise-linear functions) that we consider.

The algorithm needs to perform several elementary op-
erations on Pareto regions and cost functions. It must for
instance verify whether a Pareto region is empty or calcu-
late a parameter space region in which one plan is preferable
to a second one. We show how all those operations can be
implemented based on the aforementioned representation of
Pareto regions. We implement those operations using linear
programming.

We will formally analyze the complexity of this algorithm
and present experimental results in the following sections.
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Outline. The remainder of this paper is organized as
follows. We define the MP(Q problem and related concepts
more formally in Section 2. In Section 3, we describe our al-
gorithm for MPQ with piecewise-linear plan cost functions.
In Section 4, we analyze the MP(Q problem and the asymp-
totic complexity of our algorithm. We present experimental
results for an implementation of our algorithm in Section 5
and discuss related work in Section 6.

2. FORMAL PROBLEM STATEMENT

We define the MPQ problem and related concepts more
formally than in the introduction. A query describes data
to generate. The description of our algorithm for solving
MPQ problems, given in the next section, focuses on sim-
ple SQL join queries. An SQL join query is defined by a
set of tables to join. A sub-query joins a subset of tables.
Standard methods exist by which a query optimization al-
gorithm for this simple query language can be extended into
an algorithm supporting full SQL queries [14].

A query plan describes how to generate data. We say that
a query plan answers a query if it generates the data that
is described by the query. We assume in the following that
query plans consist of a sequence of scan operations and
binary join operations. For a query g, we denote by P(q)
the set of alternative plans that answer the query.

We compare query plans according to their execution cost.
The cost of a given plan depends on a set of real-valued pa-
rameters. The set of parameters is a property of the query.
All alternative plans in P(q) depend therefore on the same
parameters. A parameter value vector contains for each pa-
rameter a corresponding value. We do not know the param-
eter values at optimization time. The parameter space is
the set of all possible parameter value vectors. We assume
in the following that there are n parameters and denote by
X C R” the n-dimensional parameter space. A parameter
space region is a subset of the parameter space.

We compare query plans according to multiple execution
cost metrics. A cost vector contains for each cost met-
ric a non-negative cost value. We assume in the follow-
ing that there are m execution cost metrics and denote by
C = R™ the space of cost vectors. We associate each query
plan p with a cost function ¢, : X — C that maps the
n-dimensional parameter space to the m-dimensional cost
space. We can compare the cost of query plans for specific
parameter values. Denote by z € X a parameter value vec-
tor and by p1 and p2 two plans answering the same query.
We say that p; dominates p2 for z, written p1 <z p2, if p1
has lower or equivalent cost than p2 according to each met-
ric for parameter values x. In other words, p; dominates
p2 if ¢p, (z) contains for no component a higher value than
¢p, (z). Now we are ready to introduce the MPQ problem.

Definition 1. An MPQ problem is defined by a query g,
a parameter space X, and a cost space C'. A solution is a
subset S C P(q) of query plans such that for each possible
plan p € P(q) and for each possible parameter value vector
x € X there is a solution plan s € S such that s dominates
p for x, i.e. s <z p.

We focus on a sub-class of MPQ problems that restricts
the class of cost functions. In order to define the class of cost
functions that we consider, we must first introduce convex
polytopes. A convex polytope is defined by a set of linear
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inequalities. The convex polytope is the set of points in
the parameter space that satisfy all its inequalities. We use
the terms convex polytope and polytope as synonyms. A
linear cost function is defined by a constant b and an n-
dimensional weight vector w € R™ such that b + w” x x
is the associated cost value for each parameter vector x €
X. A scalar piecewise-linear cost function is a cost function
that allows to partition the parameter space into convex
polytopes such that the function is linear in each polytope.
A vector-valued piecewise-linear cost function consists of one
piecewise-linear cost function for each cost metric. We use
the terms vector-valued piecewise-linear cost function and
piecewise-linear cost function as synonyms. We restrict our
scope to MPQ with piecewise-linear cost functions.

3. ALGORITHM

Our algorithm produces a set of relevant plans for a given
query. A plan is relevant if its execution cost is Pareto-
optimal for some parameter value combination.

Overview. Our algorithm splits the input query recur-
sively into smaller and smaller parts until we obtain atomic
sub-queries. We start with atomic sub-queries and calculate
the set of relevant plans for each of them. After that, larger
sub-queries are treated. We treat sub-queries in an order
which makes sure that before treating a query, we have cal-
culated relevant plan sets for each of its sub-queries. The
reason for restricting the order is that we want to calculate
the set of relevant plans for a query out of the sets of relevant
plans for its sub-queries. More precisely, we can guarantee
that each relevant plan for a query can be obtained by split-
ting the query into two sub-queries and combining a relevant
plan for the first sub-query with a relevant plan for the sec-
ond sub-query, thereby generating a new query plan. Having
calculated the set of relevant plans for each sub-query, we
can therefore obtain a superset of relevant query plans by
iterating over all possible splits into sub-queries and over all
possible combinations of relevant sub-plans. In order to re-
duce the superset to the actual set of relevant query plans,
we must prune plans answering the same query. Pruning
them means to identify and to discard plans that are irrel-
evant. The input query is treated last. The set of relevant
plans for the input query is the desired algorithm output.
In summary, our algorithm can be written as follows:

e [terate over all sub-queries s of the input query in as-
cending order of query size:

— If sub-query s is an atomic sub-query then con-
sider all possible plans for s

— Otherwise, if s is not an atomic sub-query, then
iterate over all possibilities to decompose s into
two sub-queries s1 and sa2:

* For each split into two sub-queries s1 and sz,
consider all plans that are combinations of a
relevant plan for s; and a relevant plan for s

— Prune all considered plans to obtain the set of
relevant plans for s

As many query optimization algorithms [8, 14, 16], our al-
gorithm is based on dynamic programming. We can use dy-
namic programming since the principle of optimality holds
for query optimization [14]. Formulated in general terms,
the principle of optimality designates the problem property
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Figure 2: We subtract the area in which a plan is
dominated from its Pareto region.

that optimal solutions can be obtained by combining opti-
mal solutions to sub-problems. In the context of query opti-
mization, the principle of optimality means more specifically
that optimal query plans can be obtained by combining op-
timal plans for sub-queries. The principle of optimality has
been shown to hold for all common execution cost metrics
in multi-objective query optimization [16]. This means that
a Pareto-optimal query plan can be combined from Pareto-
optimal plans for sub-queries. A relevant plan is Pareto-
optimal for some points in the parameter space. It is there-
fore intuitive that a relevant query plan can be combined
from relevant plans for the sub-queries (we omit the formal
proof). In other words, the principle of optimality holds for
MPQ as well. It is the fundament of our MPQ algorithm.

Pruning. Many query optimization algorithms for classi-
cal query optimization [14], multi-objective query optimiza-
tion [16], or parametric query optimization [8] are based on
dynamic programming. The primary difference between all
those algorithms is the realization of the pruning function.
As we treat a novel problem variant, we must design a novel
pruning function. In the following, we describe how our al-
gorithm prunes query plans, i.e. how it compares plans for
the same query and identifies irrelevant plans.

Our pruning function is based on the key concept of the
Pareto region. Each query plan is associated with a Pareto
region. This is a parameter space region in which it real-
izes Pareto-optimal cost tradeoffs. A plan is irrelevant if its
Pareto region is empty. The goal of the pruning function
is to compare a set of plans answering the same query in
order to calculate their Pareto regions. The pruning func-
tion works as follows. At pruning start, we assume by de-
fault that each plan is Pareto-optimal in the entire parame-
ter space. This means that we assign the entire parameter
space as Pareto region to each query plan. During prun-
ing, we compare all query plans answering the same query
pair-wise in order to calculate their true Pareto regions. If
we compare two plans p; and p2 and we find that plan p;
has better cost than or equivalent cost to p2 according to
all cost metrics for the parameter space region X then we
reduce the Pareto region of p2 by subtracting X. Pareto re-
gions can only shrink during a pruning operation. Once the
region of one plan becomes empty, it is irrelevant and can
be safely discarded. We discard plans as soon as possible in
order to avoid unnecessary comparisons.

More precisely, the pruning function iterates over all plan
pairs and executes for each pair the following steps. First, it
identifies the region in which one plan dominates the other
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plan. Second, it updates the Pareto region of the domi-
nated plan by subtracting the region in which it is domi-
nated. Third, it checks whether the Pareto region of the
dominated plan becomes empty after the update. In that
case, the plan is discarded and does not participate in fur-
ther comparisons. Figure 2 illustrates how the Pareto region
of a plan is reduced after comparing it to another plan. The
example refers to a scenario where two parameters and two
cost metrics are considered (execution time and fees).

Note that two plans can mutually dominate each other in
different parameter space regions. Having determined that
a first plan dominates a second plan for some parameter
space region, we must therefore still verify if the second plan
dominates the first plan as well.

Data Structures. We describe the data structures by
which we represent plan cost functions and Pareto regions.
Our plan cost model is based on piecewise-linear functions.
A piecewise-linear function is linear in parameter space re-
gions that form convex polytopes. A linear function can be
represented by a constant and by weights capturing the slope
of the function for each parameter. Hence a piecewise-linear
function can be represented by a set of convex polytopes
where each convex polytope is associated with a constant
and weights. We consider multiple plan cost metrics. Each
query plan is therefore associated with one piecewise-linear
cost function per plan cost metric.

We consider the class of piecewise-linear cost functions to
represent plan cost. We decided to use that class of functions
since it allows to approximate arbitrary functions up to an
arbitrary degree of precision (using more pieces increases
precision). In contrast to that, we cannot freely decide which
class of shapes we consider for representing Pareto regions.
The algorithm must be able to represent each shape that
could potentially occur during pruning. Our decision to use
piecewise-linear cost functions implies the class of shapes
that we need to consider as Pareto regions.

We describe our representation of Pareto regions. We mo-
tivate this representation in an informal way. It is however
relatively easy to prove that the proposed representation
covers all possible cases.

We start by considering the special case of linear cost func-
tions. Parametric query optimization is a special case of
MPQ. It has been shown in the domain of parametric query
optimization that the parameter space region in which one
plan is better than another plan according to one cost met-
ric is a convex polytope if both plans have linear cost func-
tions [6]. In a setting with multiple cost metrics, a plan is
strictly better than another plan if it is better according to
each cost metric. The region in which a plan is better than
another one is therefore an intersection of multiple convex
polytopes. An intersection of convex polytopes is a convex
polytope again. The region in which all other plans are bet-
ter than a given plan is hence a union of convex polytopes.

Now let us generalize that reasoning from linear cost func-
tions to piecewise-linear cost functions. The generalization is
straight-forward. Given two piecewise-linear cost functions,
we can always partition the parameter space into convex
polytopes such that both cost functions are linear in each
polytope. Thereby we reduce the case of piecewise-linear
cost functions to the case of linear cost functions. In sum-
mary, we can represent the Pareto region of a plan as a union
of convex polytopes from which we subtract another union
of convex polytopes.
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Figure 3: To compare two piecewise-linear cost func-
tions, we intersect the parameter space partitions in
which each function is linear. We compare the func-
tions separately in each of the resulting partitions.

Elementary Operations. Having described the data
structures used to represent cost functions and Pareto re-
gions, we outline now how to implement elementary oper-
ations on those data structures. We require the following
elementary operations to realize the pruning function as de-
scribed before. First, given the cost functions of two plans,
we must determine the parameter space region in which one
plan dominates the other one. Second, given a Pareto re-
gion of a plan and a region in which it is dominated, we
must reduce the Pareto region by that region. Third, given
a Pareto region, we must determine whether it is empty.

Convex polytopes are described by a set of linear inequal-
ities and we consider linear cost functions. All elementary
operations that we describe in the following can hence be
realized by solving systems of linear inequalities. Executing
the elementary operations therefore requires a linear solver.

We describe how to determine the parameter space region
in which one plan dominates another one. Assume first that
we have only one cost metric and that cost functions are lin-
ear. Then we can directly use the linear solver to determine
the parameter space region in which one function has lower
values than the other one. Now we generalize from linear
cost functions to piecewise-linear functions. Each piecewise-
linear function partitions the parameter space into convex
polytopes in which the function is linear. If we compare
two piecewise-linear functions then we can partition the pa-
rameter space such that both functions are linear in each
partition. More precisely, we obtain the aforementioned par-
titioning by intersecting the partitions associated with the
first cost function with the partitions associated with the
second function. Figure 3 illustrates how we intersect two
parameter space partitionings in a two-dimensional param-
eter space. Having this partitioning, we apply the method
for linear cost functions separately in each partition. If we
have the sub-region in which a first plan dominates a sec-
ond one for each parameter space region then the union of
those sub-regions is the total area in which the first plan
dominates. If we have multiple cost metrics instead of only
one, then we can apply the method described before for each
cost metric separately. If we have for each cost metric the
parameter space region in which the first plan dominates
the second one then the intersection of those areas (over all
cost metrics) yields the area in which the first plan is better
according to all cost metrics.

Given the area in which a plan is dominated, we must sub-
tract it from that plan’s Pareto region. The implementation
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of this operation is straight-forward: as discussed before, we
represent Pareto regions as a union of convex polytopes from
which other convex polytopes have been subtracted. The re-
gion in which one plan dominates another one must consist
of convex polytopes. In order to subtract such a region from
the Pareto region, we simply add the corresponding poly-
topes to the list of subtracted polytopes.

We must determine whether a given Pareto region is empty.
A Pareto region is a set of polytopes from which other poly-
topes have been subtracted. We consider first the special
case of one polytope PT from which another set of polytopes
{P;} have been subtracted. We want to verify whether
the given polytope becomes empty after the subtractions.
We can verify that as follows. Assume that all subtracted
polytopes P, are contained within P*. Then the region
remaining after subtraction becomes empty if and only if
U;P7 = Pt. We can use the algorithm by Bemporad [2]
to check the latter condition. The algorithm by Bemporad
verifies whether the union of a given set of convex poly-
topes forms a convex polytope again. If this is the case
then the algorithm constructs that polytope. The condition
Ui P = PT can only be verified if U;P;” forms a convex
polytope. In that case, the algorithm by Bemporad con-
structs the polytope P~ = U; P, and a linear solver can
verify whether P~ and PT are equivalent.

4. ANALYSIS

We analyze the formal properties of the freshly introduced
MPQ problem in this section. We also analyze the complex-
ity of the algorithm described in the last section.

Problem Analysis. MPQ generalizes parametric query
optimization since it allows to consider multiple plan cost
metrics instead of only one. We compare the formal proper-
ties of MPQ to the properties of parametric query optimiza-
tion in the following.

The parametric query optimization problem with linear
cost functions has the following property: if the same query
plan is optimal at all vertices of a convex polytope in the
parameter space then that plan must be optimal inside the
polytope as well [6]. This property is commonly known as
one of the “guiding principle of parametric query optimiza-
tion” [5]. Many algorithms for parametric query optimiza-
tion exploit this property as follows [6, 9]: they recursively
decompose the parameter space into convex polytopes and
calculate optimal query plans at the vertices. Due to the
guiding principle, the decomposition of the parameter space
can be stopped once the same plan is optimal at all ver-
tices of a polytope. Such algorithms transform the para-
metric query optimization problem into a series of tradi-
tional query optimization problems (calculating the optimal
plan at a polytope vertex is a traditional query optimization
problem). This has the advantage that traditional query op-
timizers can be used for parametric query optimization with
minimal changes. It is therefore interesting to verify whether
an analogue property holds for MPQ.

Unfortunately this is not the case as we show next. The
following property for MPQ would be analogue to the guid-
ing principle of parametric query optimization: if the same
set of plans is Pareto-optimal at all vertices of a polytope in
the parameter space then that set of plans must be Pareto-
optimal inside the polytope as well. Figure 4 illustrates a
counter example showing that this property does not hold.
The figure refers to a scenario in which two cost metrics,
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Figure 4: The guiding principle of parametric query
optimization does not hold for multi-objective para-
metric query optimization.

namely execution time and execution fees, are of interest.
Cost functions depend on a single parameter, called “Pa-
rameter 1”7 in the figure, that could refer to unspecified
predicates in the input query template. We see the cost
functions of three plans. For parameter value 0, plan 1 is
Pareto-optimal since it has lowest execution fees. Plan 3
is Pareto-optimal since it has lower execution time than all
other plans. Plan 2 is however dominated by plan 1 since
plan 1 has equivalent execution time and lower execution
cost. This means that plan 2 is not Pareto-optimal for pa-
rameter value 0. For parameter value 2, the situation is
similar and plans 1 and 3 are Pareto-optimal while plan 2
is not. For parameter values between 0.5 and 1.5, plan 2 is
however Pareto-optimal. Even though the same set of plans
is Pareto-optimal at the borders of the parameter value in-
terval [0, 2], additional plans can be Pareto-optimal for val-
ues at the interior of that interval. All plan cost functions
are linear in the example and an interval is a special case
of a convex polytope. The example is minimal for MPQ:
having less than two cost metrics would lead to parametric
query optimization. Having less than one parameter would
lead to multi-objective query optimization. Hence we can
conclude from this example that the guiding principles do
not apply for MPQ in general.

Algorithm Analysis. The space and time complexity of
dynamic programming based query optimization algorithms
depends on the number of plans stored per sub-query. In
traditional query optimization, plans are compared accord-
ing to one cost metric and cost functions do not depend on
parameters. If we assume that alternative query plans are
compared based on their cost values alone then exactly one
plan, a plan with minimal cost, remains after pruning an ar-
bitrary set of plans. In parametric query optimization, plans
are compared according to one cost metric but cost functions
depend on parameters. This means that different plans can
be optimal for different parameter values. In multi-objective
query optimization, we compare plans according to different
cost metrics. Hence multiple plans can be Pareto-optimal
for each sub-query. As a result, we generally need to store
multiple plans per sub-query in parametric and in multi-
objective query optimization. The number of plans to store
depends on many factors. Research in parametric query op-
timization has focused on analyzing how the number of plans
per sub-query depends on the number of parameters. Re-
search in multi-objective query optimization has focused on
the dependency between the number of plans and the num-
ber of cost metrics. Such analysis is necessarily based on
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simplifying assumptions. Traditionally, the weights that de-
fine the cost functions of different query plans are assumed
to follow independent random distributions [7, 6]. Based on
that assumption, the number of remaining plans after prun-
ing can be considered a random variable as well and we can
calculate its expected value. This reasoning led for instance
to an asymptotic upper bound of 2", where m designates
the number of cost metrics, on the expected number of plans
per sub-query in multi-objective query optimization [7].

We perform a similar analysis to determine the expected
number of plans per sub-query in MPQ. We consider linear
cost functions. We denote the number of parameters by n.
A linear function is therefore defined by a vector consist-
ing of n + 1 components, specifying the function slope for
each parameter and a constant. We still denote the num-
ber of considered plan cost metrics by m. Each query plan
is therefore associated with m linear functions. The multi-
dimensional cost function of each query plan can therefore
be described by a matrix containing m - (n+ 1) components,
specifying for each cost metric the cost slopes and a con-
stant. Assume that we have two cost functions and that all
constants and slopes describing the first function are lower
than the corresponding entries for the second cost function.
Then the first cost functions has for each cost metric a lower
constant cost component and a lower slope in each parame-
ter. In other words, the first cost function has lower values
than the second one for arbitrary parameter values and cost
metrics. If both cost functions are associated with query
plans then the plan associated with the second function is
clearly irrelevant.

We can exploit this fact as follows. Assume that we
choose an arbitrary number of D-dimensional vectors ran-
domly with independent identical distribution. Then the
expected number of vectors such that no other vector has a
lower or equivalent value in each component is bounded by
2P [7]. We assume that vectors describing the cost functions
of different query plans are chosen randomly with indepen-
dent and identical distribution. Setting D = m - (n + 1),
we infer that the expected number of vectors such that no
other vector has lower or equal values in all components is
bounded by 27 ("1 As outlined before, this is at the same
time an upper bound on the expected number of relevant
query plans per sub-query.

In order to obtain an upper bound on the asymptotic
space complexity, we multiply the aforementioned bound
by the number of sub-queries. We generate new plans by
combining two relevant plans. The number of generated
plans grows therefore as the square of the number of relevant
plans. All generated plans for the same sub-query are com-
pared pair-wise during pruning. The number of plan com-
parisons grows therefore as the fourth power of the number
of relevant plans. Multiplying by the number of sub-query
splits yields the time complexity measured by the number
of plan comparisons.

S. EXPERIMENTS

Experimental Setup. We evaluate our MP(Q algorithm
experimentally. More precisely, we study how optimization
time depends on the input query size and on the number
of considered parameters. Our experiments are based on an
example scenario in which SQL queries are processed in the
Cloud. Hence we compare alternative query plans according
to two cost metrics: execution time and monetary execution
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Figure 5: Optimization time, number of generated
plans, and number of solved linear programs.

fees. We consider a restricted class of SQL queries: each
query is described by a set of tables to join, by predicates
defined on single tables, and by binary join predicates de-
fined on table pairs. We assume that our MP(Q algorithm is
applied to query templates which are not fully specified: the
predicates defined on single tables are placeholders. The se-
lectivity of such a predicate, meaning the average fraction of
tuples satisfying the predicate, is unknown to our MPQ al-
gorithm. Hence the selectivity of each predicate placeholder
must be represented by a parameter. Our algorithm finds
all plans realizing optimal cost tradeoffs for each possible
parameter value combination.

We generate the queries for our benchmark randomly. We
use the method described by Steinbrunn et al. [15] to pro-
duce random queries that join a given number of tables.
The number of rows in each table and the selectivity of each
predicate is chosen randomly according to that method. We
distinguish two classes of queries: chain queries and star
queries. For chain queries, the binary join predicates con-
nect query tables in a chain. For star queries, the binary
join predicates connect one table (the middle of the “star”)
to all other query tables. The number of predicates is for
both query classes one less than the number of tables.

We describe the plan search space that our algorithm con-
siders. Our algorithm considers all possible orders in which
tables can be joined with only one restriction: whenever we
have the choice between joining two relations that are con-
nected via a binary join predicate and joining two relations
where this is not the case then only joins of the first cat-
egory are considered. This restriction on the join order is
often used in query optimization [14, 15]. In addition to
the join orders, our algorithm considers different scan and
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join operators. For scanning single tables on which a pred-
icate is defined, we consider a full scan and an index-based
scan. Which of the two operators is preferable depends on
the selectivity of the predicate. If the selectivity is low (few
tuples will satisfy the predicate) then the index scan is often
preferable. If the predicate is satisfied for most tuples then
the full scan is more efficient. We model the selectivity of
a predicate defined on a single table by a parameter. The
optimal choice for the scan operator therefore depends on
the value of that parameter. We consider two join opera-
tors: a distributed join and a single-node hash join. For
sufficiently large amounts of input data, the distributed join
saves execution time. On the other side, the distributed
join requires to rent more computational resources from the
Cloud provider and is therefore more expensive. Hence we
can realize different tradeoffs between execution time and
execution fees by selecting between alternative join opera-
tors. We implemented our MPQ algorithm in Java 1.7. We
used Gurobi 5.6 as linear solver. All experiments were exe-
cuted on an iMac equipped with an i5-3470S processor with
2.9 GhZ and 16 GB of RAM.

Experimental Results. Figure 5 shows our experimen-
tal results. Each data point in that figure corresponds to
the median value of 25 randomly generated test cases. We
report optimization time, the number of generated query
plans (counting plans for the input query and plans for sub-
queries), and the number of solved linear programs. We
generated query templates joining between two and 12 ta-
bles and having between one and two parameters.

Optimization time increases in the number of tables. As
predicted by our formal analysis in the previous section, op-
timization time also increases in the number of parameters.
Optimization time grows faster in the number of query tables
for star queries than for chain queries. The reason is that the
number of admissible join orders grows faster in the number
of query tables for star queries. Speaking of admissible join
orders, we mean join orders that comply with the restriction
mentioned before. Optimization time, the number of gen-
erated plans, and the number of solved linear programs are
all correlated. This is intuitive as the number of generated
plans relates to the number of plan comparisons that are
required during pruning. The number of linear programs is
related to the number of plan comparisons since plan com-
parisons are realized by solving linear programs. The time
required for generating plans and for solving linear programs
adds to optimization time.

The query sizes that we consider in our benchmark are
typical for query sizes as they appear in standard bench-
marks: the queries in the popular TPC-H benchmark join
for instance at most eight tables. MP(Q takes longer than
traditional query optimization. In contrast to traditional
query optimization, MPQ takes however place before run
time. This makes higher optimization times acceptable.

6. RELATED WORK

Figure 6 shows how multi-objective parametric query op-
timization relates to prior query optimization variants. The
figure shows for each variant the type of cost function c that
is associated with each query plan. Arrows point from a
more restricted to a more general query optimization vari-

http://www.gurobi.com/
http://www.tpc.org/tpch/
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Figure 6: Multi-objective parametric query op-
timization generalizes the cost models of multi-
objective and of parametric query optimization.

ant. Multi-objective query optimization [1, 7, 11, 16, 17] and
parametric query optimization [3, 4, 6, 8, 10, 13] both gen-
eralize the traditional query optimization model [14]. Multi-
objective parametric query optimization generalizes both of
the aforementioned variants.

The algorithm that we propose in this paper allows to
solve query optimization problems that prior algorithms can-
not solve. Algorithms for parametric query optimization are
not applicable to MPQ since they cannot handle multiple
cost metrics. Algorithms for mult-objective query optimiza-
tion are not applicable to MPQ since they cannot handle
parameters. Note that parameters and cost metrics have a
different semantic such that it is not possible to model pa-
rameters as cost metrics or vice versa. Intuitively, we want
to “cover” the entire parameter space (by finding plans for
each possible parameter value combination) while we do not
want to cover the entire cost space (plans with higher cost
values than necessary are not part of the result plan set).

The algorithm that we describe in this article is based
on dynamic programming. It calculates optimal plans for a
query by combining optimal plans for its sub-queries. Many
query optimization algorithms for traditional query opti-
mization [14], multi-objective query optimization [16, 17],
and parametric query optimization [8] use the same dynamic
programming scheme. The difference between our algorithm
and all prior algorithms lies in the implementation of the
pruning function. We use linear programming in the prun-
ing function. Our algorithm shares this property with prior
algorithms for parametric query optimization [8]. We sup-
port however multiple cost metrics and hence the definition
of the pruning function, the type of the used data structures,
and the implementation of elementary operations on those
data structures differ.

Many algorithms for parametric query optimization are
based on the guiding principles of parametric query opti-
mization [5]. They partition the parameter space in a more
and more fine-grained manner until a single query plan is
optimal in each partition [6, 9]. The condition that allows
to verify whether a single query plan is optimal in a given
partition is based on the guiding principles. We have shown
in Section 4 that the multi-objective analogue of the guid-
ing principles does not hold for MPQ. Hence we cannot use
generalizations of the aforementioned decomposition meth-
ods for MPQ.
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7. CONCLUSION

The traditional query optimization model is outdated. We
proposed a generalized problem model that allows to rep-
resent multiple plan cost metrics and multiple parameters.
We described and analyzed a first algorithm that solves the
novel optimization problem.
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