Skip to main content
Log in

Distributed shortest path query processing on dynamic road networks

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

Shortest path query processing on dynamic road networks is a fundamental component for real-time navigation systems. In the face of an enormous volume of customer demand from Uber and similar apps, it is desirable to study distributed shortest path query processing that can be deployed on elastic and fault-tolerant cloud platforms. In this paper, we combine the merits of distributed streaming computing systems and lightweight indexing to build an efficient shortest path query processing engine on top of Yahoo S4. We propose two types of asynchronous communication algorithms for early termination. One is first-in-first-out message propagation with certain optimizations, and the other is prioritized message propagation with the help of navigational intelligence. Extensive experiments were conducted on large-scale real road networks, and the results show that the query efficiency of our methods can meet the real-time requirement and is superior to Pregel and Pregel+. The source code of our system is publicly available at https://github.com/yangdingyu/cands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.recode.net/2016/6/1/11835620/didi-booking-china-apple.

  2. http://incubator.apache.org/s4/.

  3. https://github.com/nathanmarz/storm/.

  4. http://www-01.ibm.com/software/data/infosphere/streams/.

  5. http://spark.incubator.apache.org/.

  6. http://giraph.apache.org/.

  7. Other edge-balanced graph partitioning methods can also be applied.

  8. http://www.dis.uniroma1.it/challenge9/download.shtml/.

References

  1. Abraham, I., Fiat, A., Goldberg, AV., Werneck, RF.: Highway dimension, shortest paths, and provably efficient algorithms. In: SODA, pp. 782–793 (2010)

  2. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In: SIGMOD, pp. 349–360 (2013)

  3. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit nodes. Science 316(5824), 566–566 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bast, H., Delling, D., Goldberg, AV., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, RF.: Route planning in transportation networks. arXiv:1504.05140v1 [cs.DS] (2015)

  5. Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A., Verscheure, O., Koutsopoulos, H., Moran, C.: Ibm infosphere streams for scalable, real-time, intelligent transportation services. In: SIGMOD, ACM, pp. 1093–1104 (2010)

  6. Cheng, J., Ke, Y., Chu, S., Cheng, C.: Efficient processing of distance queries in large graphs: a vertex cover approach. In: SIGMOD, pp. 457–468 (2012)

  7. Delling, D., Werneck, RF.: Faster customization of road networks. In: Experimental Algorithms, Springer, Berlin, pp. 30–42 (2013)

  8. Delling, D., Goldberg, AV., Pajor, T., Werneck, RF.: Customizable Route Planning. In: Pardalos, PM., Rebennack, S., (Eds.) Proceedings of the 10th International Symposium on Experimental Algorithms (SEA’11), Springer, Lecture Notes in Computer Science, vol. 6630, pp. 376–387 (2011)

  9. Delling, D., Goldberg, AV., Pajor, T., Werneck, RF.: Customizable route planning in road networks. Transportation Science (2015). doi:10.1287/trsc.2014.0579

  10. Fan, Q., Zhang, D., Wu, H., Tan, K.: A general and parallel platform for mining co-movement patterns over large-scale trajectories. PVLDB 10(4), 313–324 (2016)

    Google Scholar 

  11. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: Experimental Algorithms, pp. 319–333. Springer, Berlin (2008)

  12. Goldberg, AV., Harrelson, C.: Computing the shortest path: A search meets graph theory. In: SODA, pp. 156–165 (2005)

  13. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for a*: Efficient point-to-point shortest path algorithms. ALENEX 6, 129–143 (2006)

    Google Scholar 

  14. Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, JP.: Adaptive fastest path computation on a road network: a traffic mining approach. In: VLDB, VLDB Endowment, pp. 794–805 (2007)

  15. Gonzalez, JE., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Distributed graph-parallel computation on natural graphs. In: OSDI, pp. 17–30 (2012)

  16. Guerrero-Ibáñez, A., Flores-Cortés, C., Damián-Reyes, P., Andrade-Aréchiga, M., Pulido, J.: Emerging technologies for urban traffic management. Tech. rep. (2012)

  17. Hunter, T., Moldovan, TM., Zaharia, M., Merzgui, S., Ma, J., Franklin, MJ., Abbeel, P., Bayen, AM.: Scaling the mobile millennium system in the cloud. In: SOCC, p. 28 (2011)

  18. Jin, R., Ruan, N., Xiang, Y., Lee, VE.: A highway-centric labeling approach for answering distance queries on large sparse graphs. In: SIGMOD, pp. 445–456 (2012)

  19. Jin, R., Ruan, N., You, B., Wang, H.: Hub-accelerator: Fast and exact shortest path computation in large social networks. arXiv:1305.0507v1 [cs.SI] (2013)

  20. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent contraction hierarchies. ISEA, LNCS 6049, 83–93 (2010)

    Google Scholar 

  22. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed graphlab: a framework for machine learning in the cloud. PVLDB 5(8), 716–727 (2012)

    Google Scholar 

  23. Malewicz, G., Austern, MH., Bik, AJ., Dehnert, JC., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD, ACM, pp. 135–146 (2010)

  24. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using precomputed cluster distances. ACM J. Exp. Algorithmics (2007)

  25. Rice, M., Tsotras, V.J.: Graph indexing of road networks for shortest path queries with label restrictions. VLDB 4(2), 69–80 (2010)

    Google Scholar 

  26. Salihoglu, S., Widom, J.: GPS: a graph processing system. In: SSDBM, pp. 22:1–22:12 (2013)

  27. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: ESA, pp. 568–579, Springer, Berlin (2005)

  28. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S., Eriksson, J.: Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones. In: SenSys, pp. 85–98, ACM (2009)

  29. Thomsen, JR., Yiu, ML., Jensen, CS.: Effective caching of shortest paths for location-based services. In: SIGMOD, pp. 313–324 (2012)

  30. Wang, Y., Zhang, D., Hu, L., Yang, Y., Lee, LH.: A data-driven and optimal bus scheduling model with time-dependent traffic and demand. IEEE Trans. Intell. Transp. Syst. (99):1–10, (2017) doi:10.1109/TITS.2016.2644725

  31. Wei, H., Wang, Y., Forman, G., Zhu, Y., Guan, H.: Fast Viterbi map matching with tunable weight functions. In: SIGSPATIAL GIS, pp. 613–616, ACM (2012)

  32. Wu, L., Xiao, X., Deng, D., Cong, G., Zhu, A.D., Zhou, S.: Shortest path and distance queries on road networks: an experimental evaluation. PVLDB 5(5), 406–417 (2012)

    Google Scholar 

  33. Yan, D., Cheng, J., Lu, Y., Ng, W.: Blogel: a block-centric framework for distributed computation on real-world graphs. PVLDB 7(14), 1981–1992 (2014)

    Google Scholar 

  34. Yan, D., Cheng, J., Xing, K., Lu, Y., Ng, W., Bu, Y.: Pregel algorithms for graph connectivity problems with performance guarantees. PVLDB 7(14), 1821–1832 (2014)

    Google Scholar 

  35. Yan, D., Cheng, J., Lu, Y., Ng, W.: Effective techniques for message reduction and load balancing in distributed graph computation. In: WWW, pp. 1307–1317 (2015)

  36. Yan, D., Cheng, J., Özsu, MT., Yang, F., Lu, Y., Lui, JCS., Zhang, Q., Ng, W.: Quegel: A general-purpose query-centric framework for querying big graphs. arXiv:1601.06497v1 [cs.DC] (2016)

  37. Yang, D., Zhang, D., Tan, K., Cao, J., Mouël, F.L.: CANDS: continuous optimal navigation via distributed stream processing. PVLDB 8(2), 137–148 (2014)

    Google Scholar 

  38. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: SIGSPATIAL GIS, pp. 99–108 , ACM (2010)

  39. Zheng, Y., Liu, Y., Yuan, J., Xie, X.: Urban computing with taxicabs. In: Ubicomp, pp. 89–98 (2011)

  40. Zhu, AD., Ma, H., Xiao, X., Luo, S., Tang, Y., Zhou, S.: Shortest path and distance queries on road networks: towards bridging theory and practice. In: SIGMOD, pp. 857–868 (2013)

Download references

Acknowledgements

This work is supported in part by the National Nature Science Foundation of China under grants No. 61602087, No. 61632007 and No.61472253. It is supported by Academic Discipline Project of Shanghai Dianji University, Project Number: 16YSXK04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingyu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Yang, D., Wang, Y. et al. Distributed shortest path query processing on dynamic road networks. The VLDB Journal 26, 399–419 (2017). https://doi.org/10.1007/s00778-017-0457-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-017-0457-6

Keywords

Navigation