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ABSTRACT
Dependency Graph based Concurrency Control (DGCC) protocol
has been shown to achieve good performance on multi-core in-
memory system. DGCC separates contention resolution from the
transaction execution and employs dependency graphs to derive se-
rializable transaction schedules. However, distributed transactions
complicate the dependency resolution, and therefore, an effective
transaction partitioning strategy is essential to reduce expensive
multi-node distributed transactions. During failure recovery, log
must be examined from the last checkpoint onwards and the af-
fected transactions are re-executed based on the way they are par-
titioned and executed. Existing approaches treat both transaction
management and recovery as two separate problems, even though
recovery is dependent on the sequence in which transactions are
executed.

In this paper, we propose to treat the transaction management
and recovery problems as one. We first propose an efficient Distri-
buted Dependency Graph based Concurrency Control (DistDGCC)
protocol for handling transactions spanning multiple nodes, and
propose a new novel and efficient logging protocol called Depen-
dency Logging that also makes use of dependency graphs for effi-
cient logging and recovery. DistDGCC optimizes the average cost
for each distributed transaction by processing transactions in batch.
Moreover, it also reduces the effects of thread blocking caused
by distributed transactions and consequently improves the runtime
performance. Further, dependency logging exploits the same data
structure that is used by DistDGCC to reduce the logging overhead,
as well as the logical dependency information to improve the recov-
ery parallelism. Extensive experiments are conducted to evaluate
the performance of our proposed technique against state-of-the-art
techniques. Experimental results show that DistDGCC is efficient
and scalable, and dependency logging supports fast recovery with
marginal runtime overhead. Hence, the overall system performance
is significantly improved as a result.

1. INTRODUCTION
Database systems process transactions [11] to effect online up-

dates. They serve as the infrastructure of interactive applications

.

such as stock trading, banking, e-commerce and inventory man-
agement. Naturally, OnLine Transaction Processing (OLTP) plays
a key role in the database systems as well as applications built on
top of it. In-memory systems have been gaining tractions in re-
cent years due to factors such as the increased capacity of main
memory and its decreased price, and the widening gap in memory
bandwidth with respect to the disk storage. Consequently, the cost
of buffer management is further reduced or even eliminated [17],
and the performance of in-memory OLTP systems is now mainly
constrained by latching, locking and logging [13, 50]. Accord-
ingly, many recent research efforts for in-memory OLTP systems
have been focusing on the design and optimization of concurrency
control protocols [31, 36, 48] and logging techniques [28, 46, 51].

Most of the existing concurrency control protocols resolve con-
tentions by examining the conflicts among individual transactions.
As an optimization, various batching strategies may be employed.
However, batching is traditionally considered to be supplementary
in the design of concurrency control protocol. In contrast, to re-
duce frequent disk I/Os, database systems typically write logs in a
batch manner [12]. As a consequence, the tuple-oriented concur-
rency control and the batched transaction logging are a mismatch
that may counter each other’s optimizations.

To address the aforementioned issue, we advocate that batching
should be treated as a first-class citizen in the design of concur-
rency control for OLTP systems. It is a pragmatic consideration for
efficient in-memory OLTP in a distributed environment based on
the following key observations. First, batch-oriented strategies are
already widely adopted in transaction processing to optimize the
runtime performance. For instance, client usually sends a group
of requests to severs to optimize network throughput and reduce
latency [27]. Moreover, as frequent disk I/Os restrict system’s per-
formance especially for in-memory systems, group commit and
batch logging become a standard optimization [7, 41]. Second,
compared to standalone systems, the performance of a distributed
OLTP system is mainly affected by distributed transactions which
typically incur high coordination and communication cost and im-
pede exploitation of the computation resources, as illustrated in
Figure 1. With batch processing enabled, the available computa-
tion resources can be better utilized in anticipation.

It has been the practice that the concurrency control and logging
are treated as two independent tasks. This could have been the con-
sequence that data logging has been effective and has been regarded
as the de facto protocol for logging needed for recovery. Moreover,
distributed transaction management is more complex than single-
node transaction management, since the data are distributed and
a transaction may access data from multiple nodes. Transactions
are often partitioned based on the data locality so that the num-
ber of subtransactions accessing multiple nodes is kept low. Such

ar
X

iv
:1

70
3.

02
72

2v
1 

 [
cs

.D
B

] 
 8

 M
ar

 2
01

7



query to commit

vote yes or no

time

transaction begins

transaction ends

commit or rollback

acknowledge

write log records

query to commit

vote yes or no

transaction begins

transaction ends

commit or rollback

acknowledge

write log records

……

(a) Traditional two phase commit
with logging

dependency resolution for 
a batch of transactions

send aggregated messages

transaction execution

receive aggregated messages

dependency logging 
transformation

commit or rollback

acknowledge

time

(b) DistDGCC with depen-
dency logging

Figure 1: Life cycle of distributed transaction processing

information is useful for recovery in the distributed environment.
Therefore, we re-examine the transaction management and recov-
ery problems with the aim of achieving high throughput and fast
recovery.

Our overall idea is to exploit the same data structure, the de-
pendency graph, for both concurrency control and logging. We
first make use of the dependency graph to resolve transaction con-
tentions both within one node and among different nodes, and de-
rive a set of serializable transaction schedules. In particular, trans-
actions are executed in discrete temporal batches, each of which is
processed through a dependency resolution phase followed by an
execution phase. In the dependency resolution phase, each transac-
tion is parsed into a set of transaction pieces and the operation de-
pendency graphs are constructed in parallel. With the constructed
dependency graphs, a set of serializable transaction schedules can
be derived. In the execution phase, each transaction schedule is
processed by a single thread and thus the overhead due to locks
can be eliminated. While transactions in the same schedule are
processed sequentially, multiple schedules can be processed in par-
allel with multi-threading and distributed computing to maximize
system resource utilization. Moreover, the above two processing
phases can be conducted in a pipelined manner with respect to the
batched transactions.

We note that the dependency graphs derived during transaction
processing capture sufficient information for recovery as well. We
therefore propose a new type of logging strategy, namely depen-
dency logging. Dependency logging reduces the time of log con-
struction by reusing the dependency graphs and hence improves the
logging efficiency. Compared with traditional ARIES logging [29],
dependency logging captures the dependency information among
committed transactions. Instead of replaying log records in serial
order, parallel replaying is enabled by reconstructing the depen-
dency relations among log records. Consequently, a bigger degree
of parallelism can be exploited and on-demand recovery can be
supported when failures occur.

The contributions of this paper are threefold:

• We propose Distributed Dependency Graph based Concur-
rency Control (DistDGCC) that makes use of dependency
graphs to do transaction management in distributed environ-
ment. With the use of the dependency graphs for concurrency
control, DistDGCC facilitates efficient transaction process-
ing and reduces transaction aborts due to conflicts by resolv-
ing transaction dependencies ahead of transaction execution.

• Based on the dependency graphs, we present a new type of
logging, dependency logging, which improves logging effi-
ciency and supports on-demand recovery when system fail-
ure occurs. The novel dependency logging reduces the log
construction time and speeds up the recovery process by reusing
the dependency graphs constructed during transaction pro-
cessing.

• We conduct extensive experiments to evaluate both DistDGCC
and dependency logging in distributed environment. The re-
sults show that DistDGCC is efficient and scalable, and de-
pendency logging is effective for fast recovery upon system
failure and even further improves the processing efficiency
during the runtime.

The rest of the paper is organized as follows. Section 2 describes
the mechanism of the original Dependency Graph based Concur-
rency Control (DGCC) protocol [45], as well as the corresponding
new design for a distributed in-memory OLTP system. The depen-
dency logging is elaborated on in Section 3. How to do the recovery
with dependency logging is discussed in Section 4. We conduct an
experimental study in Section 5 to evaluate both the effectiveness
and efficiency of our proposing techniques. We review the related
work in Section 6 and conclude the paper in Section 7.

2. BACKGROUND
With the DRAM price decreasing over the recent decade1, DRAM

is replacing disk as the primary storage. More and more systems
attempt to maintain the whole data in memory to support faster
data accesses. Consequently, buffer management is no longer a
main performance bottleneck for in-memory systems [17], and the
efficiency of concurrency control and logging becomes a critical
performance issue. Traditionally, concurrency control and logging
have been treated as two separate problems and designed indepen-
dently, which may restrict the computation resource utilization as a
consequence.
Concurrency Control: Fundamentally, concurrency control pro-
tocols can be broadly classified into two categories: two-phase
locking and timestamps ordering.

As a pessimistic protocol, two-phase locking (2PL) [9] assumes
transactions tend to conflict and thus it requires transactions to ac-
quire locks for a particular data record before they are allowed to
execute a read/write operation. By following the 2PL scheme, po-
tential conflicting data accesses can be prevented. However, the
pessimistic concurrency control scheme of 2PL suffers from high
overhead associated with synchronization on concurrency meta-
data (i.e., locks) [36]. Moreover, deadlock detection and resolution
are also expensive especially in a distributed setting. As a conse-
quence, optimistic concurrency control (OCC) protocols [22] based
on timestamp ordering are preferred by recent high-performance
OLTP systems [31]. The design of timestamp ordering concurrency
control schemes is based on the monotonically increasing times-
tamps, which are exploited to process conflicting read/write opera-
tions in a proper order. While OCC exhibits great success with low-
contended workloads, it performs poorly under high contention due
to excessive transaction aborts [10]. OCC usually aborts conflict-
ing transactions before the commit time and results in wasting pre-
cious CPU cycles spent on these transactions that are destined to
abort [2]. Moreover, a centralized timestamps assignment com-
ponent is usually required in the distributed environment, which
1http://www.anandtech.com/show/10512/price-
check-q3-2016-dram-prices-down-over-20-
since-early-2015

http://www.anandtech.com/show/10512/price-check-q3-2016-dram-prices-down-over-20-since-early-2015
http://www.anandtech.com/show/10512/price-check-q3-2016-dram-prices-down-over-20-since-early-2015
http://www.anandtech.com/show/10512/price-check-q3-2016-dram-prices-down-over-20-since-early-2015
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Figure 2: System architecture

also restricts the system performance and scalability. By taking
a batch of transactions rather a single transaction as the process-
ing unit, DGCC shows good performance on both low contention
and high contention workloads by reducing the transaction aborts
due to conflicts on multi-core system [45]. It is therefore a nat-
ural consideration to extend it to distributed settings. In Table 1,
we compare 2PL and OCC with DistDGCC on average latency of
distributed transaction and conflicts handling. As illustrated, both
2PL and OCC take 2 round-trip time (RTT) to commit (or abort) a
distributed transaction. By aggregating messages for a batch of dis-
tributed transactions, DistDGCC reduces the network latency sig-
nificantly.
Logging: A databases system should guarantee that all the changes
made by committed transactions are durable and changes from un-
committed transactions are invisible after system recovering from
failures [3]. To provide durability, a database system writes the
changes of a transaction to log files on durable storage before com-
mitting to the client. We compare ARIES logging, Command log-
ging and Dependency logging in Table 2. ARIES logging [29] is
the most widely used approach in which each log saves one up-
date information on one data record. Both data images before and
after the update are saved in the log. As a consequence, ARIES log-
ging usually generates large size logs and incurs substantial amount
of disk I/Os, which affect the runtime performance especially for
in-memory database systems. Command logging [28] is a coarse-
grained logging approach that tracks information about transactions
instead of data records and hence reduces the log size. However,
it incurs expensive recovery cost in distributed environment, since
the whole cluster needs to roll back to the latest checkpoint and
replays all the committed transactions in serial order even for a
single-node failure. While ARIES logging supports independent
recovery for failed nodes, it still needs to replay log record in com-
mitted order. Consequently, it is hard to achieve high parallelism in
recovery compared to its runtime.

2.1 DGCC Overview
By taking the batching technique as the first-class citizen in con-

currency control design, dependency graph based concurrency con-
trol (DGCC) [45] which facilitates lock-free transaction processing

and reduces transaction aborts caused by contention is proposed for
multi-core systems. By separating the contention resolution from
the transaction execution, DGCC processes transactions in discrete
temporary batches. Each batch is processed through a contention
resolution phase followed by an execution phase.

By parsing the statements of a transaction, worker thread re-
solves the dependency relations within one single transaction and
decomposes it into a set of record actions. Record action is an ab-
straction of consecutive operations that are conducted on the same
data record within one transaction. In the contention resolution
phase, each worker thread maintains a constructor to resolve the
dependency relations as Logical Dependency or Temporal Depen-
dency among a batch of transactions and builds the dependency
graph accordingly. Logical dependency determines the logical exe-
cution order of record actions within one transactions and temporal
dependency determines the execution order of conflicting record
actions from different transactions. This process is fast and effi-
cient as all the work are done by the single-threaded model [17].
To better exploit the hardware parallelism, multiple dependency
graphs are constructed in parallel by different worker threads that
are bound to distinct CPUs. A synchronization operation is per-
formed to guarantee that all worker threads finish the dependency
graph construction before the execution phase is initiated. The de-
pendency graph partitions are evenly distributed to available worker
threads and the execution can therefore be conducted in parallel.

2.2 Distributed DGCC
While the aforementioned DGCC protocol fits the multi-core and

main-memory architecture well, it is nontrivial to apply to the dis-
tributed setting. The main challenges are twofold: (1) The original
DGCC constructs dependency graphs in parallel for several batches
of transactions. However, dependency graphs should be executed
in a serial order. When the cluster is large, the graphs executed lat-
ter may have to wait for a long time before being executed, which
may increase the latency dramatically. (2) While node failures are
infrequent in reality, an increasing number of nodes in distributed
environment probabilistically leads to more failures and results in
expensive recovery cost [35, 38, 39]. Thus, an efficient recovery
mechanism that supports DGCC is essential. Therefore, instead



Concurrency control How to resolve conflicts Distributed transaction’s Abort rateprotocols average commit latency in RTTs
2PL Lock (waiting) 2 Low
OCC Abort and retry 2 High for high contention workloads

DistDGCC Dependency graph 2/N No aborts due to conflicts

Table 1: Comparison between DistDGCC, 2PL and OCC.N in the table denotes the number of distributed transactions in one batch
for DistDGCC.

Logging approach Logging content Runtime cost Recovery
ARIES logging Data record images High Failed node rollback and serial replaying

Command logging Transaction information Low Cluster rollback and serial replaying
Dependency Logging Operation and dependency information Low Failed node rollback and parallel replaying

Table 2: Comparison among Dependency logging, ARIES logging and Command logging.

of treating both concurrency control and recovery as two distinct
problems, we make use of the information used in DGCC in log-
ging for supporting fast recovery. However, for ease of explana-
tion, we shall first describe our concurrency control protocol for
distributed transaction management, followed by recovery based
on dependency logging.

We therefore first propose DistDGCC, a transaction management
solution specifically designed for distributed environment. Dist-
DGCC introduces a coordination mechanism to adjust the execu-
tion order of distributed transactions, which not only guarantees
the serializability, but also facilitates high execution parallelism.
By aggregating network messages for one batch of transactions,
DistDGCC reduces the thread waiting time for network blocking
and thus optimizes the average latency. Since local transactions are
executed differently from distributed transactions, we distinguish
the two below.
Local Transaction: It accesses data accessed stored in a single
compute node. For a local transaction Tlocal running on one node,
we add Tlocal’s corresponding vertices and edges into the depen-
dency graph constructed in the node by directly following the pro-
tocol as described in 2.1. Note that both Tlocal’s intra-transaction
dependencies and inter-transaction dependencies related to Tlocal

are automatically resolved by the resulting dependency graph.
Distributed Transaction: it accesses data stored in multiple com-
pute nodes. For a distributed transaction Tdist whose execution
spans multiple compute nodes, we add Tdist’s corresponding ver-
tices and edges into the dependency graphs of the related nodes.
Although the inter-transaction dependencies related to Tdist are re-
solved by the resulting dependency graphs, Tdist’s intra-transaction
dependencies among its inter-node actions are not captured by the
dependency graphs due to the distribution. To address this issue,
we define an additional type of dependency, namely Node Depen-
dency, to track the dependencies among inter-node actions of the
same transaction.

DEFINITION 1. Node Dependency. A node dependency exists
between vertex vi and vertex vj , denoted as

vi �dist vj

if and only if vi �logical vj and vi, vj are executed in different
compute nodes.

In a distributed system, it is important to take advantage of data
locality to optimize system’s overall performance. The ideal case is
that each compute node works independently. Fortunately, batch-
ing is considered as a high priority in DistDGCC. It is easy to sep-
arate local transactions from distributed transactions during the de-
pendency graph construction. In our implementation, local transac-

tions in each batch are executed independently following the orig-
inal DGCC protocol [45] to achieve high parallelism both among
cluster and in a single node. For distributed transactions with node
dependency, DistDGCC distributes the vertices to relevant nodes
according to the data locality in a batch manner, which reduces the
number of network messages. As shown in Figure 2, we introduce a
Distributed Graph Coordinator in each node to help distribute and
receive vertices with dependency information to relevant compute
nodes. Along with this information, some meta-data (e.g., node ID)
are also sent to resolve temporal dependency among vertices from
different compute nodes. After receiving all vertices in one batch,
the Distributed Graph Coordinator is responsible for constructing a
new dependency graph for those vertices.

Figure 3(a) illustrates a running example on two compute nodes.
A batch of transactions t11, t12, t13, t14, t15 runs on the node 1. t11
and t12 are local transactions and the rest are distributed transac-
tions. During the contention resolution phase, each node constructs
the dependency graphs for local transactions and distributed trans-
action respectively. The dependency graph of all local transactions
contains logical dependency and temporal dependency. Nodes are
not required to communicate with each other for the execution of
local transactions. However, node dependency may exist in dis-
tributed transactions that cannot be executed locally. Taking t13 as
an example, it reads record B and updates records C and F . The
challenge is that t13 does not know any information about F , and
thus it is hard to resolve the conflicts among transactions from other
nodes. Therefore, before the transaction execution, the Distributed
Graph Coordinator partitions the original dependency graph along
the node dependency edges and distributes subgraphs to relevant
nodes. As shown in 3(b), node 1 sends the yellow vertices along
with their relevant edges to node 2. The Distributed Graph Coor-
dinator on node 2 collects the subgraph and detects the temporal
dependency relations between the local subgraphs. Then it builds
a global dependency graph for all distribute transactions that touch
data on node 2.

3. DEPENDENCY LOGGING
Fault tolerance and recovery are important to database system

which should guarantee the ACID (Atomicity, Consistency, Isola-
tion, Durability) properties. We adopt the log-based fault-tolerant
scheme, which is a tried-and-tested approach in database literature.
Operationally, it generates transaction logs at runtime and performs
recovery upon system failure based on the logs. Specifically, each
transaction saves the recovery-oriented information into logs along
its execution and then flushes the logs to persistent storage before
it commits. When system failure occurs and the recovery process



(a) Dependency relations in local node (b) Global dependency relations

Figure 3: A running example

Figure 4: Fine-grained dependency logging record structure

is launched, partially processed transactions need to be undone and
committed transactions need to be redone according to the materi-
alized logs. Generally, two aspects of performance are concerned in
the design of log-based fault tolerance: one is for runtime logging,
and the other is for failure recovery. On the one hand, transactions
that construct their logs at runtime definitely introduce performance
overhead, which affects the system throughput and processing la-
tency. Therefore, optimized designs aim to make runtime logging
as efficient as possible. On the other hand, undoing and redoing
transactions during failure recovery typically incur significant sys-
tem downtime. Towards better system utilization, the impact of
system downtime ought to be restricted in terms of the affected
nodes and the checkpointing interval.

While the high-level idea of log-based fault-tolerant scheme for
distributed OLTP systems is straightforward, efficiently supporting
low-overhead logging at runtime and fast recovery upon system
failure is non-trivial, especially with the traditional fault-tolerant
schemes, e.g., ARIES logging [29]. ARIES logging is widely adopted
and is considered a “heavy-weight” logging approach, as it gen-
erates fine-grained logs to describe how data records have been
changed by the transactions. Since all the recovery-oriented infor-
mation is stored in the log records, its log structure is complicated,
which usually takes more CPU cycles to generate. Also, more disk
I/Os are required to flush the logs to disk, further affecting the sys-
tem runtime performance. While ARIES logging supports inde-
pendent recovery when system failure happens, it is hard to exploit
parallelism during the recovery due to its sequential log processing.

To maximize the performance gain of DistDGCC and optimize
failure recovery process, a new type of dependency logging is pro-
posed based one dependency information generated during trans-
action processing. Dependency logging is a variant of write-ahead
logging. It not only logs how the data are changed, but also logs
the dependency information among the updated data. Our sys-
tem considers transaction management and fault-tolerance within
the same framework. Specifically, the dependency graphs that are
constructed during transaction processing can be reused and trans-
formed to the log records with little overhead. The dependency

graphs used for concurrency control is at record-level, which may
generate a large amount of log data. To further improve the log-
ging efficiency, we then propose a coarse-grained optimization. We
distinguish them as fine-grained dependency logging and coarse-
grained dependency logging, respectively, and detail them in sub-
sections that follow.

3.1 Fine-grained Dependency Logging
Traditional logging schemes usually generate log records during

the runtime that incurs additional cost to create and maintain log
data structures. In order to generate log records more efficiently,
fine-grained dependency logging reuses the dependency graphs de-
rived for concurrency control at the runtime. The data structure
of log record written for each record action is shown in Figure 4.
Most of the fields in the log structure are also maintained in the
dependency graphs, e.g. the incoming and outgoing edge list. As
a consequence, the fine-grained dependency logging saves many
CPU cycles for generating log records.
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…… Original A Updated A
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…… Original D Updated D
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Figure 5: Example of dependency logging

Fine-grained dependency logging writes a unique logical sequence
number (LSN) for each log record. An active transaction table is
maintained on each node to help track the LSN of the last flushed



log record for each transaction. Besides, each log record also con-
tains the operation function name and its relevant parameters, with
which system can restore the data record to a correct state. Each
fine-grained dependency logging record maintains the change in-
formation for one data record that can be uniquely referred by the
(table-name, primary-key) pair.

In each log record, fine-grained dependency logging also keeps
track of the dependency information, incoming and outgoing edges,
with which our system can support on-demand recovery and further
improve the recovery parallelism on the failed node. As shown in
Figure 5(a), when failure occurs, ARIES logging first loads the logs
from disk to memory and redoes log records generated by commit-
ted transaction in sequence. It is hard for ARIES logging to exploit
more parallelism in the redo process, since there is little informa-
tion that can be used to resolve the possible conflicts. In this ex-
ample, ARIES logging has to redo the six log records in order to
recover the database to the correct state. By saving the dependency
information in each log record, fine-grained dependency logging
first loads the log records from disk to memory and rebuilds the
dependency structures among log records. Then the redo process
can be executed in parallel. As the example shown in Figure 5(b),
four threads can work in parallel to finish the recovery. Moreover,
fine-grained dependency logging can further reduce the downtime
compared to other logging approaches. For example, system with
ARIES logging cannot start to execute new transactions before the
failed node is fully recovered. By rebuilding the dependency rela-
tions for the committed transactions in advance, system with fine-
grained dependency logging can execute newly arrived transaction
immediately. The newly arrived transaction first recovers all its de-
pendent data and then does the execution, which reduces the system
downtime.

The field Dist-Flag in fine-grained dependency logging’s record
structure indicates its locality attribute and it distinguishes the fine-
grained dependency logging records into two classes: local depen-
dency logging record and remote dependency logging record. The
log records produced by local transaction are all local dependency
logging records. For a distributed transaction that has a coordi-
nation node, the log records maintained on the coordination node
are local dependency logging records and the rest are remote de-
pendency logging records. Like ARIES logging, the remote de-
pendency logging record also stores the data images before and
after the change, with which the dependency relation among dif-
ferent nodes are resolved. While this design increases the size of
remote dependency logging record, it improves the recovery effi-
ciency. More details are discussed in Section 4.

3.2 Coarse-grained Dependency Logging
While fine-grained dependency logging increases parallelism and

improves the efficiency during the recovery, it generates record-
level log records that also increase the log size, and thus incurs a
substantial number of disk I/Os. Consequently, coarse-grained de-
pendency logging is proposed to reduce the log size and improve
the logging efficiency. Instead of tracking the dependency informa-
tion among updated data records, coarse-grained dependency log-
ging tracks dependency information among transactions by parsing
the record-level dependency graphs. Intuitively, it needs to traverse
the whole dependency graph to complete the transformation, which
restricts the performance, especially when the dependency graph
is large. Instead, our system does the transformation during the
dependency graph construction. Specifically, if a temporal depen-
dency edge is inserted between record actions αi and αj where
αi ∈ tp and αj ∈ tq , an edge should also added between tp and
tq in the transaction dependency graph. As shown in Figure 6, in

the dependency graph construction phase, there are three transac-
tions t1, t2 and t3. When t2 is parsed, a temporal dependency
edge should be inserted into the dependency graph. Similarly, there
should be an edge from t1 and t2 in the transaction dependency
graph.

Figure 6: Dependency graph transformation

The coarse-grained dependency logging simply tracks how trans-
action works and all its dependency relations. Besides the transac-
tion information, each coarse-grained dependency logging record
also contains the dependency information among other transactions.
Each log record that is written out for each transaction has the
structure as shown in 7. Like the fine-grained dependency logging
record, there is also a Dist-Flag field here that indicates whether
the transaction is distributed transaction or not. For all local trans-
actions, the fields “Before Image of Updated Columns” and “After
Image of Updated Columns” are empty. Otherwise, the changed
data image should be saved in the log record. Unlike traditional
Command logging that only stores a single log entry for distributed
transaction (usually on its coordination node), coarse-grained de-
pendency logging creates log entries on all its participating nodes.
Instead of recording all the changes of the distributed transaction,
each log record only saves recovery-oriented information where
it locates. By doing this, dependencies among nodes can be re-
solved and independent recovery can be achieved. Compared to
fine-grained dependency logging, coarse-grained dependency log-
ging not only keeps all its strengths but also reduces the log size,
e.g., the number of log record in Figure 5 can be reduced to 2.

3.3 Dependency Log Recording
As discussed in Section 2.2, our system executes local transac-

tions and distributed transactions separately even in one batch of
transactions. It is simple to write the dependency log records for lo-
cal transactions, since each node does the execution independently.
When all the local transactions are processed, system writes all the
dependency log records to the disk at one time to maximize the per-
formance. As all data can be fetched locally, each dependency log-
ging record mainly saves dependency information, specifically the
incoming and outgoing edges either among log records or transac-
tions. For distributed transaction, the stored information differs for
local dependency logging records from remote dependency logging
records. Both local and remote log records write incoming and out-
going edges. For remote dependency logging record, it also writes
the data images before and after the change.

To further improve the performance of our proposed dependency
logging, some optimizations are adopted.

3.3.1 Log Compression
Since the dependency graphs constructed during the runtime are

directed graphs, it is sufficient to store such edge information in one
column instead of two columns. Like the example shown in Fig-
ure 5(b), the dependency logging record 0 contains the information
that its outgoing edge is to record 3. Record 3 also knows that its
incoming edge is from record 0. Hence, dependency logging can
remove the field “Incoming edge list” from the log structure to re-
duce the log size.



Figure 7: Coarse-grained dependency logging record structure

To further improve the recovery efficiency, the remote depen-
dency logging record contains the data images before and after the
change. For tables with wide rows, it wastes a huge amount of
log space to save the data images of the whole record, especially
when the transaction only changes a small set of columns. Thus,
the log size can be further reduced by indicating which columns are
changed by the transaction. Then only those changed columns are
saved in the log record instead of the whole row.

3.3.2 Batch-Oriented Optimizations
Group-commit that groups multiple log records and flushes to

disk at one time is already widely adopted. It reduces the number
of disk writes and thus improves the logging performance. How-
ever, systems that execute transactions individually usually write
log data to a shared log file, simplifying the recovery at the expense
of higher logging overhead. In DistDGCC, transactions are exe-
cuted in a batch manner and both fine-grained and coarse-grained
dependency logging rely on dependency information rather than
commit sequence to perform the recovery. Hence, each worker
thread maintains an individual log buffer to avoid lock contention.

4. RECOVERY
When a system performs failure recovery, system consistency

and availability are the two main concerns. While traditional log-
ging approaches (e.g., ARIES logging) have proven guarantee of
durability, systems using such logging approaches inevitably incurs
longer system downtime during recovery, which significantly de-
grades the system availability (even replication-based approaches
provide higher availability in database cluster, they still suffer for
whole cluster failure). In contrast, the proposed dependency log-
ging not only guarantees the durability, but also provides a better
availability during recovery. We justify the above claim by first
looking into how single-node failure is handled under the depen-
dency logging scheme, and then extending the discussion to the
case of cascading failure.

4.1 Recovery of Single-Node Failure
The recovery for the dependency logging starts by reloading the

latest database snapshot from the disk. After which, the system
reloads log files and restores necessary data structures (e.g., in-
dexes). Since the dependencies among committed transactions are
tracked by the dependency logging, redoing these transactions can
be performed by replaying their execution based on the correspond-
ing rebuilt dependency graphs. Compared to coarse-grained depen-
dency logging in which each committed transaction has only one
log record, fine-grained dependency logging records of a transac-
tion may not be fully written to the disk. Thus, system needs to
first remove the log records from the incomplete transaction before
starting the recovery process, which is like the undo operation for
ARIES logging. As such recovery process is equivalent to the nor-
mal execution phase, system can still accept new transactions dur-
ing recovery. That is, the redoing transactions form a batch which
is processed first, and the newly arrived transactions form more
batches which will be processed subsequently. However, this does
not lead to any improvement on system availability, since newly

arrived transactions cannot be executed before all committed trans-
actions are totally redone. Instead, the system executes newly ar-
rived transactions sequentially (i.e., enforcing batch size to be 1).
In order to guarantee a consistency, the new arrived transaction ex-
ecutes only after all its dependent data are recovered. As shown in
Figure 8, node 1 encounters a failure after t1 and t2 commit. By
recovering data record A and B to the correct state, the newly ar-
rived transaction t3 can be executed without waiting for the whole
database to be fully recovered. This on-demand recovery mecha-
nism enables normal transaction processing and recovery work in
parallel, which reduces the downtime for failure and improves the
system availability. When the failed node is fully recovered, The
system increases the batch size that optimizes the overall perfor-
mance.
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Figure 8: Single-node recovery from dependency logging

The example in Figure 8 illustrates the trade-off between fine-
grained and coarse-grained dependency logging. While coarse-
grained dependency logging usually achieves better runtime per-
formance due to smaller log size, it sacrifices some degree of par-
allelism for the recovery and usually leads to a higher latency for
transaction that is processed during the recovery.

4.2 Recovery of Cascading Failure
In distributed environment, it is common for cascading failure

to occur. There are two different cases for cascading failure in a
cluster. One is that new failure happens on the failed node be-
fore the completion of its recovery. In this case, if there are no
newly arrived transactions, the system can handle such cascading
failure by simply restarting the recovery on the failed node. Other-
wise, the next recovery should also consider those new generated
log records. The second case is that system failure happens on an-
other node during the recovery. Although dependency logging is
a form of logical logging approach, the dependency relations be-
tween different nodes are already resolved by saving data images
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(b) YCSB workload with high contention
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Figure 9: Throughput evaluation
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(a) YCSB workload with low contention
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(b) YCSB workload with high contention
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Figure 10: Latency evaluation

in remote logging records, and hence, it facilitates independent re-
covery of failed nodes; cascading failure is therefore also handled
as a result.

5. EVALUATION
In this section, we first evaluate the performance of DistDGCC

against 2PL and OCC. Then we evaluate the performance of depen-
dency logging in both runtime and recovery phase.

5.1 Experimental Setup
Testbed: We run DistDGCC and all logging experiments with our
system which is implemented with 18,151 lines of C++. To eval-
uate the performance of DistDGCC, we compare it with 2PL and
OCC which are originally implemented in an open source DBMS [47].
To enable a fair comparison, we modified the codes to use the same
storage and network system as our implementation. The perfor-
mance of dependency logging is evaluated against ARIES logging
both in runtime and recovery. System failure is simulated by killing
the daemon process on a node and the recovery process is then in-
voked immediately. All the experiments are conducted on an in-
house cluster of 8 nodes. Each node has an Intel(R) Xeon(R) 1.8
GHz 4-core CPU, 8GB RAM and 500GB HHD.

Benchmarks: We adopt two popular benchmarks, namely YCSB [6]
and TPC-C [1] to conduct the evaluations. YCSB transaction per-
forms 10 mixed read/write operations and the key access follows
the Zipfian distribution. To generate both low contention and high
contention workloads, we set the Zipfian parameter to 0.6 and 0.8,
respectively. TPC-C is adopted to simulate a real and complete
order-entry environment. TPC-C workload mixes five kinds of
transactions: New-Order (44%), Payment (45%), Delivery (4%),
Order-Status (4%) and Stock-Level (3%).

5.2 DistDGCC Evaluation
In this section, we evaluate the performance of DistDGCC against

2PL and OCC on both single node and cluster.
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Figure 11: YCSB workloads
on 8 nodes cluster
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Figure 12: TPC-C workloads
on 8 nodes cluster

Evaluation on a single node: Figure 9(a) and Figure 9(b) show
the throughputs of the three protocols on a single node with YCSB
workload. In summary, DistDGCC shows the best performance
in both low contention and high contention settings. The perfor-
mance gain mainly comes from the separation of contention reso-
lution and transaction execution, which reduces the time on thread
blocking. Moreover, the acyclicity of the dependency graph elimi-
nates transaction aborts due to contentions and further improves the
computation efficiency. 2PL also shows good scalability in the low
contention setting. However, its performance drops with increas-
ing contentions due to the higher cost of lock acquisition and dead-
lock resolution. Compared to DistDGCC and 2PL, OCC performs
the worst, since it resolves conflicts during a validation phase using



timestamps, which are usually assigned by a centralized component
and may result in a performance bottleneck. Moreover, the aborted
transactions waste the computation resources and also incur higher
penalty. Figure 9(c) shows the results with TPC-C workload that
contains 1 warehouse. In this scenario, the contention rate is high,
since all the NewOrder and Payment transactions need to update
the data record in the warehouse table. Hence, DistDGCC also ex-
hibits superiority over 2PL and OCC.

In Figure 10, we compare the latency of the three protocols run-
ning on a single node. When the contention rate is low, the latency
of the three methods varies within a small range. However, the
latency of 2PL and OCC increases with increasing contentions, be-
cause 2PL needs to spend more time on acquiring the locks, while
high contention workload leads to more transaction aborts in OCC.
In contrast, DistDGCCshows its robustness with respect to latency,
as it is mainly affected by the batch size.
Evaluation on a cluster: Figure 11 and Figure 12 show the per-
formances of the three protocols on an 8-node cluster by varying
the percentage of distributed transaction. As shown in Figure 11(a)
and Figure 12(a), the throughput of 2PL and OCC are affected sig-
nificantly by distributed transactions. Even a small portion of dis-
tributed transactions leads to a dramatical performance loss. Com-
pared to a local transaction, a distributed transaction accesses data
records in multiple nodes and incurs extra network cost. More im-
portantly, the worker thread has to be blocked until the distributed
transaction commits or aborts, which degrades the computation uti-
lization and hence leads to the performance loss. Since DistDGCC
processes transactions in a batch manner, network messages for
one batch of transactions are aggregated, which leads to an im-
proved network performance. Moreover, worker threads will not be
blocked during the processing. Instead, they construct the depen-
dency graphs for the next batch of transactions, and the computa-
tion utilization is improved as a result. Hence, DistDGCC exhibits
good performance superiority over 2PL and OCC in the distributed
setting. While DistDGCC shows good robustness to the percentage
of distributed transactions, its performance also drops as more dis-
tributed transactions are involved due to the fact that more network
messages are generated.

In Figure 11(b) and Figure 12(b), we show the latency variations.
The latency of both 2PL and OCC increases significantly when
there are more distributed transactions. The reason are twofold.
First, a distributed transaction is more expensive and always in-
curs higher latency. Second, a worker thread has to wait until the
distributed transaction commits or aborts and thus increases the la-
tency for those blocked transactions. DistDGCC reduces the net-
work overheads by aggregating network messages and also avoids
long waiting time caused by thread blocking. Consequently, its
latency increases only slightly with the increasing percentage of
distributed transactions.
Effects of batch size: The effects of batch size on the throughput
and latency for DistDGCC are shown in Figure 13 . We fix the
number of threads on each node to 8. As shown in Figure 13(a)
and Figure 13(c), the throughput of DistDGCC first increases with
the batch size due to better exploitation of computation resources.
It subsequently becomes plateauing since computation resources
on each node are limited. For the same reason, as illustrated in
Figure 13(b) and Figure 13(d), the latency increases almost linearly
with the batch size.

5.3 Dependency Logging Evaluation
In this subsection, we shall study the efficiency of dependency

logging by comparing with ARIES logging. For ease of explana-
tion, we shall use the following representative names.
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Figure 13: Effects of batch size on an 8 nodes cluster

• No Logging - disable the logging during the runtime.

• DPLogging-F - fine-grained dependency logging approach
proposed in Section 3.1.

• DPLogging-C - coarse-grained dependency logging approach
proposed in Section 3.2.

• Aries Logging - ARIES logging approach with memory op-
timizations described in Section 3.3.1 and Section 3.3.2.

Runtime Evaluation: We shall first evaluate the overhead of the
proposed dependency logging approach during the runtime. Two
kinds of workloads are used: one workload only contains local
transactions, while the other workload contains both local and dis-
tributed transactions.

Figure 14(a) and Figure 14(c) show the throughputs of the four
logging approaches for the workload that only local transactions are
involved. When the number of worker threads is small, all these
logging approaches achieve similar throughputs, since disk I/Os
caused by logging do not cause the performance bottleneck. As
more worker threads are adopted, Aries Logging generates more
disk I/Os and its throughput grows slower than the other three ap-
proaches. Compared to the ideal case that is represented as the
No Logging approach, dependency logging achieves comparative
performances. Unlike Aries Logging that generates one log record
for each updated data record, DPLogging-C creates one log record
for each transaction. Moreover, each log record only tracks the
transaction information instead of the updated data records. Thus,
DPLogging-C generates much less log data and reduces the num-
ber of disk I/Os. While DPLogging-F adopts a fine-grained log-
ging strategy like the Aries Logging, it reduces the number of log
records using the dependency information during the runtime. If
DPLogging-F saves data image for one update in its log record,
there is no need to generate log records for the previous updates on
the same record.

Figure 15(a) and Figure 15(c) show the results for the workload
when distributed transactions are involved. In this set of exper-
iments, we fix the number of worker threads on each node to 8
while we vary the percentage of distributed transaction from 0%
to 100%, to study the effects of logging and network communica-
tion on the system performance. DPLogging-C and DPLogging-F



0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

T
h
r
o
u
g
h
p
u
t	
(K
	t
x
n
/
s
)

Number	of	threads

No Logging DPLogging‐C DPLogging‐F Aries Logging

(a) Throughput on YCSB

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8

L
a
te
n
c
y
	(
m
s
)

Number	of	threads

No Logging DPLogging‐C DPLogging‐F Aries Logging

(b) Latency on YCSB

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

T
h
r
o
u
g
h
p
u
t	
(K
	t
x
n
/
s
)

Number	of	threads

No Logging DPLogging‐C DPLogging‐F Aries Logging

(c) Throughput on TPC-C

0

50

100

150

200

250

1 2 3 4 5 6 7 8

L
a
te
n
c
y
	(
m
s
)

Number	of	threads

No Logging DPLogging‐C DPLogging‐F Aries Logging

(d) Latency on TPC-C

Figure 14: Effects of logging using only local transactions
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Figure 15: Effects of logging using mixture of local and distributed transactions

show comparative performance as the No Logging approach. The
gaps between Aries Logging and the other approaches become nar-
rower as more distributed transactions are involved, since the extra
network cost lightens the effect of logging. Even when all transac-
tions are distributed transactions, DPLogging-C and DPLogging-F
still achieve 1.4X and 1.8X higher runtime performance than that
of Aries Logging with YCSB workload and TPC-C workload, re-
spectively.

Figure 14(b), Figure 14(d), Figure 15(b) and Figure 15(d) show
the effects of logging approaches on latency. While the average
latency of DPLogging-C and DPLogging-F is slightly higher than
that of No Logging, they are much lower than that of Aries Log-
ging in both local and distributed settings. In pure local transaction
processing, the latency of all approaches changes within a small
range. In the distributed setting, the latency of DPLogging-C and
DPLogging-F increase with the percentage of distributed transac-
tions, since they are mainly dominated by the network communi-
cation cost. However, the latency of Aries Logging appears fairly
stable irrespective of the percentage of distributed transactions, be-
cause Aries Logging incurs a lot of disk I/Os that dominates its
latency.

Recovery evaluation: We now evaluate the recovery performance
with different logging approaches. We simulate the failure by killing
the daemon process of one node after the system runs for 60 sec-
onds, and then we measure the time span for recovering the failed
node. Before the failed node starts to replay log records, it must first
load the latest database snapshot into memory. Thus, the recovery
time mainly consists of three parts: data loading, log loading and
replaying. As shown in Figure 16 and Figure 17, the time for data
loading is almost the same for all logging approaches. Compared to
DPLogging-C and DPLogging-F, Aries Logging spends more time
to load the logs into memory, since the log size of Aries Logging is
much larger.

When only one worker thread is enabled, Aries Logging per-
forms slightly better than DPLogging-C and DPLogging-F. With
only one worker thread available, all the three approaches replay
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Figure 16: Recovery time for single node on YCSB
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Figure 17: Recovery time for single node on TPC-C

their log records sequentially. However, both DPLogging-C and
DPLogging-F need to re-execute functions instead of updating the
database directly. As Aries Logging saves data images before and
after each update, read operations and transaction logics are not re-
quired to be redone during the recovery. Thus, the recovery time
with Aries Logging is smaller than DPLogging-F and DPLogging-
C. When 8 worker threads are enabled, the recovery performance
of Aries Logging drops significantly. In the runtime, each worker
thread maintains a log buffer to avoid contention. However, in the
recovery phase, all the log records in these log files have to replayed
one by one, since no dependency information can be used. Both
DPLogging-C and DPLogging-F can achieve higher parallelism
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Figure 18: Throughput during the recovery

during the recovery by resolving the dependency relations among
log records. DPLogging-F achieves the best recovery performance
which is almost 5X faster than that of Aries Logging. As shown in
Figure 16(b), DPLogging-C achieves a comparative performance
to DPLogging-F on YCSB workload. However, as shown in Fig-
ure 17(b), DPLogging-F is 2X faster than that of DPLogging-C on
TPC-C workload. This is because each log record in DPLogging-
C represents a transaction and most transactions update the data
record in the warehouse table, restricting the re-execution paral-
lelism as a result.

5.4 Overall Performance Evaluation
In this section, we evaluate the overall performance of our pro-

posed DistDGCC and dependency logging. We run both YCSB
and TPC-C workloads with 10% distributed transactions for 500
seconds on the 8-node cluster. After the systems run for 60 sec-
onds, we kill the daemon process on a node randomly and invoke
the recovery process.

Figure 18(a) and Figure 18(b) summarize the throughputs of the
whole cluster. When a failure occurs, system with Aries Logging
cannot process transactions that access data on the failed node,
and therefore abort them. After the failed node is fully recov-
ered, the throughput of the system returns to a normal level. Com-
pared to 2PL with Aries Logging and OCC with Aries Logging,
we observe that DistDGCC with Aries Logging takes more time
to complete the recovery process. This is because DistDGCC is
more robust to distributed transactions and has a higher runtime
throughput. Running for the same amount of time (60 seconds in
the experiment), DistDGCC commits more transactions before the
failure. Thus, it requires more time to replay the committed log
records. For systems with dependency logging (both DPLogging-
C and DPLogging-F), the failed node can be recovered according
to the dependency graphs and process new incoming transactions
at the same time. Thus, the throughput gradually increases as the
failed node is being recovered. As discussed above, transactions in

TPC-C workload contend on a small set of data records. Hence,
system with DPLogging-C takes more time to recover than system
with DPLogging-F.

As shown in Figure 18, DistDGCC is efficient in distributed
environment and dependency logging supports fast recovery with
marginal runtime overhead. As a consequence, DistDGCC with de-
pendency logging exhibits superior overall performance compared
to the state-of-the-art techniques.

6. RELATED WORK
Concurrency Control Protocols. High efficient concurrency con-
trol protocol that ensures correct execution of concurrent transac-
tions is vital for in-memory database systems. Two-phase lock-
ing (2PL) [9] and Optimistic Concurrency Control (OCC) [22] are
most widely adopted. As a pessimistic protocol, 2PL needs to ac-
quire the lock before accessing a tuple and release it after transac-
tion commits or aborts. With 2PL, conflict operations are resolved
in advance and are executed in sequence. On the contrary, OCC
assumes that conflicts are rare and does not check the conflicts dur-
ing the transaction execution. Each transaction maintains read and
write sets and conducts a conflict validation. Transaction commits
only when the validation phase is passed, otherwise it restarts or di-
rectly aborts. With the advancement of new hardware techniques,
many research efforts have been devoted to improve the efficiency
of concurrency control protocols.

In Multi-Version Concurrency Control (MVCC) [5, 30], read op-
eration does not block write operations. Hekaton [8, 23] makes use
of MVCC together with a lock-free hash table to improve it per-
formance. Hyper [18, 32] and BOHM [10] extends MVCC to en-
force serializability and avoid shared memory writes for read track-
ing, respectively. For lock-based concurrency control protocols,
the lock manager is typically very complex and incurs performance
bottleneck. Light-weight Intent Lock (LIL) [21] introduces light-
weight counter in a global lock table to ease the management. Very
Lightweight Lock (VLL) [37] maintains a lock state with each tu-
ple and removes centralized lock manager. However, LIL has to
block transaction that cannot obtain all the locks and the perfor-
mance of VLL is seriously affected by workloads that cannot be
well partitioned. Silo [42] optimizes OCC by adopting a batched
timestamp allocation. [44, 48, 19, 20, 49] show that OCC suf-
fers for high contention workloads. They identify the bottlenecks
and propose new approaches to improve its performance. However,
all these optimizations mainly focus on multi-core systems rather
than distributed systems. H-Store [17] and Hyper [18] adopt single-
threaded model on partitioned databases to eliminate the overhead
caused by concurrency control. However, their performance may
suffer for workloads with more cross-partition transactions.

Fault-Tolerant Schemes. ARIES [29] is the most widely used log-
ging approach in traditional database systems. By maintaining data
in memory, new recovery techniques [15, 14, 24, 51] have been
put forward, most of which inherits the idea from ARIES. Logi-
cal logging techniques [28, 26] are proposed recently that aim to
reduce the log size. While they improve the runtime performance
by reducing the number of disk I/Os to an extent, they usually in-
cur expensive cost for recovery, especially in distributed environ-
ment [46]. Many optimizations are also proposed to increase the
efficiency of logging and recovery. [25] makes use of shadow pages
to reduce the log size during the runtime. [16] reduces the lock
contention on the log buffers and the effects of context switching
to improve the logging performance.

Recently, many research efforts have also been devoted to com-
bine logging techniques with Non-Volatile Memory (NVM). [34]



attempts to reduce the number of writes on NVM and [43] in-
troduces a distributed logging protocol on NVM by making use
of group commit approaches. Write-Behind Logging [4] flushes
changes of databases before flushing the logs by tracking where
the databases are changed instead of how they are changed. Since
our design only considers on a general commodity machines, we
do not apply these techniques.

Replication-based techniques [33, 40] provide fast recovery and
high availability. However, these techniques incur expensive co-
ordination cost during the runtime to achieve strong consistency.
Moreover, given a limited amount of memory, it is expensive to
maintain replicas, especially for very large databases. In most cases,
replication-based approaches do not work for the whole cluster
failure. Further, logging techniques are usually are orthogonal to
replication-based techniques.

7. CONCLUSION
In this paper, we designed transaction management and logging

within the same framework. We proposed a distributed graph based
concurrency control protocol that reduces the cost for distributed
transactions by aggregating network messages for a batch of trans-
actions. Subsequently, we also proposed a new dependency log-
ging technique, and associated fine-grained dependency logging
and coarse-grained dependency logging approaches. By tracking
the dependency relations among the transactions, dependency log-
ging enables parallel recovery that helps to speed up the recovery
and reduce the system downtime. Extensive experiments on both
YCSB and TPC-C workloads confirm that our system with depen-
dency based partitioning distributed transaction management and
logging exhibits superiority in both runtime throughout and recov-
ery performance.
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[23] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling.
High-performance concurrency control mechanisms for main-memory
databases. PVLDB, 5(4):298–309, 2011.

[24] T. J. Lehman and M. J. Carey. A concurrency control algorithm for
memory-resident database systems. In FOFO, pages 489–504. Springer, 1989.

[25] X. Li and M. H. Eich. Post-crash log processing for fuzzy checkpointing main
memory databases. In ICDE, pages 117–124. IEEE, 1993.

[26] D. Lomet, K. Tzoumas, and M. Zwilling. Implementing performance
competitive logical recovery. PVLDB, 4(7):430–439, 2011.

[27] R. H. Louie, Y. Li, and B. Vucetic. Practical physical layer network coding for
two-way relay channels: performance analysis and comparison. TWC,
9(2):764–777, 2010.

[28] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main
memory oltp recovery. In ICDE, pages 604–615. IEEE, 2014.

[29] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: a
transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. TODS, 17(1):94–162, 1992.

[30] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and flexible methods for
transient versioning of records to avoid locking by read-only transactions. In
SIGMOD, volume 21. ACM, 1992.

[31] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more concurrency
from distributed transactions. In OSDI 14, pages 479–494, 2014.
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