Skip to main content
Log in

A framework for efficient multi-attribute movement data analysis

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

In the first two decades of this century, the amount of movement and movement-related data has increased massively, predominantly due to the proliferation of positioning features in ubiquitous devices such as cellphones and automobiles. At the same time, there is a vast number of requirements for managing and analyzing these records for economic, administrative, and private purposes. Since the growth of data quantity outpaces the efficiency development of hardware components, it is necessary to explore innovative methods of extracting information from large sets of movement data. Hence, the management and analysis of such data, also called trajectories, have become a very active research field. In this context, the time-dependent geographic position is only one of arbitrarily many recorded attributes. For several applications processing trajectory (and related) data, it is helpful or even necessary to trace or generate additional time-dependent information, according to the purpose of the evaluation. For example, in the field of aircraft traffic analysis, besides the position of the monitored airplane, also its altitude, the remaining amount of fuel, the temperature, the name of the traversed country and many other parameters that change with time are relevant. Other application domains consider the names of streets, places of interest, or transportation modes which can be recorded during the movement of a person or another entity. In this paper, we present in detail a framework for analyzing large datasets having any number of time-dependent attributes of different types with the help of a pattern language based on regular expression structures. The corresponding matching algorithm uses a collection of different indexes and is divided into a filtering and an exact matching phase. Compared to the previous version of the framework, we have extended the flexibility and expressiveness of the language by changing its semantics. Due to storage adjustments concerning the applied index structures and further optimizations, the efficiency of the matching procedure has been significantly improved. In addition, the user is no longer required to have a deep knowledge of the temporal distribution of the available attributes of the dataset. The expressiveness and efficiency of the novel approach are demonstrated by querying real and synthetic datasets. Our approach has been fully implemented in a DBMS querying environment and is freely available open source software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Note that wgs is a database object of the type \({{{\underline{geoid}}}}\), required for precise computations on the earth’s surface.

  2. The spatial data type \({{{\underline{line}}}}\) represents (a linear approximation of) a continuous curve in the Euclidean plane.

  3. Let dortmund and center be database objects of the types \({{{\underline{region}}}}\) and \({{{\underline{point}}}}\) representing the shape and the city center of Dortmund, respectively.

  4. The leftclosed/rightclosed flags displayed here may vary: In the first case, the interval is lc/rc iff \(\pi _{j-1}\)/\(\pi _j\) is lc/rc; in the second case, the interval is rc iff \(\pi _1\) is not lc; in the third case, the interval is lc iff \(\pi _m\) is not rc.

  5. We assume that london is a database object representing the shape of the city of London.

  6. The spatial region object parc describes the shape of the Parc Naturel Régional de Lorraine.

  7. The script OrderedRelationGraphFromFullOSMImport.SEC is located in the directory secondo/bin/Scripts.

References

  1. Alvares, L.O., Bogorny, V., Kuijpers, B., de Macêdo, J.A.F., Moelans, B., Vaisman, A.: A model for enriching trajectories with semantic geographical information. In: ACM GIS, pp. 22:1–22:8 (2007)

  2. Andrienko, G.L., Andrienko, N.V., Heurich, M.: An event-based conceptual model for context-aware movement analysis. Int. J. Geograph. Inf. Sci. 25(9), 1347–1370 (2011)

    Article  Google Scholar 

  3. Bogorny, V., Renso, C., de Aquino, A.R., de Lucca Siqueira, F., Alvares, L.O.: Constant—a conceptual data model for semantic trajectories of moving objects. Trans. GIS 18(1), 66–88 (2014)

    Article  Google Scholar 

  4. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A.: Crawdad dataset roma/taxi. http://crawdad.org/roma/taxi/20140717 (2014). Accessed 23 Oct 2018

  5. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)

    Article  MATH  Google Scholar 

  6. Brinkhoff, T.: Network-based generator of moving objects. http://iapg.jade-hs.de/personen/brinkhoff/generator (2002). Accessed 23 Oct 2018

  7. Cai, G., Lee, K., Lee, I.: Discovering common semantic trajectories from geo-tagged social media. In: IEA/AIE, pp. 320–332 (2016)

  8. Camossi, E., Villa, P., Mazzola, L.: Semantic-based anomalous pattern discovery in moving object trajectories. CoRR arxiv:1305.1946 (2013)

  9. Chang, J.W., Song, M.S., Um, J.H.: TMN-tree: new trajectory index structure for moving objects in spatial networks. In: CIT, pp. 1633–1638 (2010)

  10. Damiani, M.L., Issa, H., Güting, R.H., Valdés, F.: Hybrid queries over symbolic and spatial trajectories: a usage scenario. In: MDM, pp. 341–344 (2014)

  11. Damiani, M.L., Issa, H., Güting, R.H., Valdés, F.: Symbolic trajectories and application challenges. SIGSPATIAL Spec. 7(1), 51–58 (2015)

    Article  Google Scholar 

  12. Database Systems for New Applications, Fernuniversität Hagen. http://dna.fernuni-hagen.de/Secondo.html. Accessed 23 Oct 2018

  13. de Almeida, V.T., Güting, R.H., Behr, T.: Querying moving objects in Secondo. In: MDM, pp. 47–51 (2006)

  14. du Mouza, C., Rigaux, P.: Multi-scale classification of moving objects trajectories. In: SSDBM, pp. 307–316 (2004)

  15. du Mouza, C., Rigaux, P.: Mobility patterns. GeoInformatica 9(4), 297–319 (2005)

    Article  Google Scholar 

  16. Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M.: Spatio-temporal data types: an approach to modeling and querying moving objects in databases. GeoInformatica 3(3), 269–296 (1999)

    Article  Google Scholar 

  17. Fileto, R., May, C., Renso, C., Pelekis, N., Klein, D., Theodoridis, Y.: The baquara\({}^{\text{2 }}\) knowledge-based framework for semantic enrichment and analysis of movement data. Data Knowl. Eng. 98, 104–122 (2015)

    Article  Google Scholar 

  18. Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A data model and data structures for moving objects databases. In: ACM SIGMOD, pp. 319–330 (2000)

  19. Geofabrik GmbH and OpenStreetMap Contributors: Openstreetmap data extracts. http://download.geofabrik.de (2007). Accessed 23 Oct 2018

  20. Gryllakis, F., Pelekis, N., Doulkeridis, C., Sideridis, S., Theodoridis, Y.: Searching for spatio-temporal-keyword patterns in semantic trajectories. In: Advances in Intelligent Data Analysis, pp. 112–124 (2017)

  21. Gryllakis, F., Pelekis, N., Doulkeridis, C., Sideridis, S., Theodoridis, Y.: Spatio-temporal-keyword pattern queries over semantic trajectories with hermes@neo4j. In: EDBT, pp. 678–681 (2018)

  22. Güting, R.H., Behr, T., Düntgen, C.: Secondo: a platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng. Bull. 33(2), 56–63 (2010)

    Google Scholar 

  23. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM TODS 25(1), 1–42 (2000)

    Article  Google Scholar 

  24. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, Los Altos (2005)

    MATH  Google Scholar 

  25. Güting, R.H., Valdés, F., Damiani, M.L.: Symbolic trajectories. ACM TSAS 1(2), 7:1–7:51 (2015)

    Google Scholar 

  26. Hadjieleftheriou, M., Kollios, G., Bakalov, P., Tsotras, V.J.: Complex spatio-temporal pattern queries. In: PVLDB, pp. 877–888 (2005)

  27. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley-Longman Publishing, Reading (2001)

    MATH  Google Scholar 

  28. Issa, H., Damiani, M.L.: Efficient access to temporally overlaying spatial and textual trajectories. In: MDM, pp. 262–271 (2016)

  29. Liu, H., Xu, J., Zheng, K., Liu, C., Du, L., Wu, X.: Semantic-aware query processing for activity trajectories. In: International Conference on Web Search and Data Mining, WSDM, pp. 283–292 (2017)

  30. NASA, NGA: Shuttle radar topography mission. https://lta.cr.usgs.gov/SRTM1Arc (2000). Accessed 23 Oct 2018

  31. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings—Practical On-Line Search Algorithms for Texts and Biological Sequences. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  32. Newson, P., Krumm, J.: Hidden markov map matching through noise and sparseness. In: ACM SIGSPATIAL, pp. 336–343. ACM (2009)

  33. Nguyen-Dinh, L., Aref, W.G., Mokbel, M.F.: Spatio-temporal access methods: part 2 (2003–2010). IEEE Data Eng. Bull. 33(2), 46–55 (2010)

    Google Scholar 

  34. Nogueira, T.P., Braga, R.B., de Oliveira, C.T., Martin, H.: Framestep: a framework for annotating semantic trajectories based on episodes. Expert Syst. Appl. 92, 533–545 (2018)

    Article  Google Scholar 

  35. Openclipart: https://openclipart.org/ (2018). Accessed 23 Oct 2018

  36. OpenStreetMap Foundation: Openstreetmap. http://www.openstreetmap.org (2004). Accessed 23 Oct 2018

  37. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G.L., Andrienko, N.V., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., de Macêdo, J.A.F., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic trajectories modeling and analysis. ACM Comput. Surv. 45(4), 42 (2013)

    Article  Google Scholar 

  38. Pelekis, N., Frentzos, E., Giatrakos, N., Theodoridis, Y.: HERMES: a trajectory DB engine for mobility-centric applications. IJKBO 5(2), 19–41 (2015)

    Google Scholar 

  39. Pelekis, N., Theodoridis, Y.: Mobility Data Management and Exploration. Springer, Berlin (2014)

    Book  Google Scholar 

  40. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: VLDB, pp. 395–406 (2000)

  41. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transp. Res. Part C Emerg. Technol. 15(5), 312–328 (2007)

    Article  Google Scholar 

  42. Sistemi Territoriali: Roma capitale, mappa dei municipi. http://www.datiopen.it/en/opendata/Municipi_di_Roma_Capitale (2012). Accessed 23 Oct 2018

  43. Spaccapietra, S., Parent, C., Damiani, M.L., de Macêdo, J.A.F., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146 (2008)

    Article  Google Scholar 

  44. Valdés, F., Damiani, M.L., Güting, R.H.: Symbolic trajectories in SECONDO: pattern matching and rewriting. DASFAA 2, 450–453 (2013)

    Google Scholar 

  45. Valdés, F., Güting, R.H.: Index-supported pattern matching on symbolic trajectories. In: ACM SIGSPATIAL, pp. 53–62 (2014)

  46. Valdés, F., Güting, R.H.: Efficient multi-attribute analysis for trajectories: a case study for aircraft. In: ACM SIGSPATIAL, pp. 88:1–88:4 (2017)

  47. Valdés, F., Güting, R.H.: Index-supported pattern matching on tuples of time-dependent values. GeoInformatica 21(3), 429–458 (2017)

    Article  Google Scholar 

  48. Valdés, F., Güting, R.H., Ossi, F.: Efficient trajectory analysis for several time-dependent attributes: a case study for roe deer. In: MDM, pp. 337–340 (2016)

  49. Vazirgiannis, M., Theodoridis, Y., Sellis, T.K.: Spatio-temporal composition and indexing for large multimedia applications. ACM Multimed. Syst. 6(4), 284–298 (1998)

    Article  Google Scholar 

  50. Vieira, M.R., Bakalov, P., Tsotras, V.J.: Querying trajectories using flexible patterns. In: EDBT, pp. 406–417 (2010)

  51. Vieira, M.R., Bakalov, P., Tsotras, V.J.: Flextrack: a system for querying flexible patterns in trajectory databases. In: SSTD, pp. 475–480 (2011)

  52. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE, pp. 673–684 (2002)

  53. Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: Semantic trajectories: mobility data computation and annotation. ACM TIST 4(3), 49 (2013)

    Google Scholar 

  54. Zhang, C., Han, J., Shou, L., Lu, J., La Porta, T.F.: Splitter: mining fine-grained sequential patterns in semantic trajectories. PVLDB 7(9), 769–780 (2014)

    Google Scholar 

  55. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In: ICDE, pp. 230–241 (2013)

  56. Zheng, K., Zheng, B., Xu, J., Liu, G., Liu, A., Li, Z.: Popularity-aware spatial keyword search on activity trajectories. World Wide Web 20(4), 749–773 (2017)

    Article  Google Scholar 

  57. Zheng, Y., Xie, X., Ma, W.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

  58. Zheng, Y., Zhou, X. (eds.): Computing with Spatial Trajectories. Springer, Berlin (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Valdés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdés, F., Güting, R.H. A framework for efficient multi-attribute movement data analysis. The VLDB Journal 28, 427–449 (2019). https://doi.org/10.1007/s00778-018-0525-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-018-0525-6

Keywords

Navigation