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Abstract In recent years, JSON established itself as a

very popular data format for representing massive data

collections. JSON data collections are usually schema-

less. While this ensures several advantages, the absence

of schema information has important negative conse-

quences as well: data analysts and programmers cannot

exploit a schema for a reliable description of the struc-

ture of the dataset, the correctness of complex queries

and programs cannot be statically checked, and many

schema-based optimizations are not possible.

In this paper we deal with the problem of inferring a

schema from massive JSON datasets. We first identify

a JSON type language which is simple and, at the same

time, expressive enough to capture irregularities and to

give complete structural information about input data.

We then present our contributions, which are the design

of a parametric and parallelizable schema inference al-

gorithm, its theoretical study, and its implementation

based on Spark, enabling reasonable schema inference

time for massive collections. Our algorithm is paramet-

ric as the analyst can specify a parameter determining

the level of precision and conciseness of the inferred

schema. Finally, we report about an experimental anal-3.6
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ysis showing the effectiveness of our approach in terms

of execution time, conciseness of inferred schemas, and

scalability.
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1 Introduction

Big Data applications typically process and analyse very

large structured and semi-structured datasets. In many

of these applications, especially those relying on NoSQL

document stores, data are represented in JSON (Java

Script Object Notation) [15], a data format that is widely

used thanks to its flexibility and simplicity.

JSON data collections are usually schemaless. This

ensures several advantages: in particular it enables ap-

plications to be quickly deployed without waiting for

a schema to be specified, and makes them resilient to

data irregularity. Unfortunately, the lack of a schema

makes it impossible to statically detect any mismatch

between the actual structure of data and the structure

expected by complex queries and programs; further-

more, programmers cannot use a schema description to

ease the production of correct code, and schema-based

optimizations are not possible.

JSON datasets may be retrieved from remote, un-

controlled sources, with no schema information, but

they may also be generated by applications whose code

is known. In these cases some knowledge is available

about the structure of the program output, but, when

the code starts being complex, schema inference is still

quite useful. In some other cases, remote JSON sources

can be accessed by APIs (e.g., Twitter APIs) that some-

times are provided with some schema descriptions. Un-
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fortunately, these descriptions are often imprecise and

incomplete.

In this paper we deal with the problem of inferring a

schema from massive JSON datasets. Our main goal in

this work is to infer structural properties of JSON data,

that is, a description of the structure of JSON objects

and arrays that takes into account nested values, op-

tional keys, and any other kind of structural variations.

These are the main properties that characterize semi-

structured data, and having a tool that ensures fast,

precise, and concise inference is crucial in modern ap-

plications characterized by agile consumption of huge

amounts of data coming from multiple and disparate

sources.

It is worth stressing that, even if in some cases a

JSON dataset has a rather regular structure, the only

way for a user to be sure that all possible (optional)

fields are identified is to explore the entire dataset ei-

ther manually or by means of scripts that must be man-

ually adapted to each particular JSON source, with

weak guarantees of efficiency and soundness. Our ap-

proach, instead, applies to any JSON data collection,

and is shown to be sound and to be effective on mas-

sive datasets.

The approach we propose here is based on a JSON

schema language and on an efficient, parametric, infer-

ence algorithm. The schema language is able to cap-

ture detailed structural information about input data

despite the presence of any irregularity, and can express

that information at different levels of abstraction. This

language resembles and borrows mechanisms from ex-

isting proposals [31], but it has the advantage to be

simple yet very expressive.

The algorithm is designed for an optimized map-

reduce implementation, in order to be applicable to

massive datasets. It is based on the parallel extraction

of a schema for each data item and on the fusion of those

schemas that are equivalent during the reduce phase,

according to an equivalence relation, which is a param-

eter of the algorithm. The equivalence relation specifies3.11

which properties types must enjoy to be fused together,

e.g., one can decide to fuse record types having exactly

the same set of labels, or to fuse record types sharing

just a common core of fields; hence, a different equiva-

lence relation leads to a difference balance of precision

and compactness. We will prove that, whichever equiv-1.6

alence is chosen, the resulting fusion function enjoys the

commutative and associative properties, enabling local

aggregation in a map-reduce setting, which is crucial

for an efficient execution.

The parametrization is a central feature of our ap-

proach. In this paper we present some different equiv-

alence relations, to illustrate the flexibility of the ap-

proach, and focus on the two equivalences that have the

maximal practical interest. These equivalences differ in

the way record types are fused. While the first one fuses

any two record types, by marking as ‘optional’ those

fields that are not mandatory in both, the second one

only fuses record types that share the same set of la-

bels. So, while in the first case we obtain very compact

schemas, in the second case we obtain a schema that

is potentially much bigger, but where field correlation

information is preserved.

In a typical scenario, a programmer or data analyst

will first run the most compact version in order to gain

a general view of the data structure, and will later use

a less abstract version in order to get a more complete

knowledge of the structural variations. When the first

equivalence is used, the resulting schema has usually a

size that is small enough to enable a user to consult

it in a reasonable amount of time, in order to get a

global knowledge of the structural and type properties

of the JSON collection, while the second equivalence

may generate, depending on the regularity of the data,

a schema that is quite bigger.

The generated schema is in any case path-covering , 3.7

in the sense that each path that can be traversed in the

tree-structure of the input JSON value can be traversed

in the inferred schema as well. This property is crucial

to enable a series of query optimization tasks. For in-

stance, thanks to this property JSON queries [3, 12]

can be optimized at compile-time by means of schema-

based path rewriting and wildcard expansion [27] or

schema-based projection [8, 10]. These optimizations

are not possible if the schema hides some of the struc-

tural properties of the data, as happens in related ap-

proaches [35].

Even in its most compact version, our inferred schema

precisely captures the presence of optional and manda-

tory fields in a collection of JSON records, so that the

user has already a clear knowledge about i) all possi-

ble fields of records, ii) a distinction between optional

and mandatory ones. When the schema is expanded to

a more precise version, the user can also know which

sets of optional fields do, or do not, co-occur in some

records.

Our Contribution Our contribution is the design and

experimentation of a schema inference algorithm for

JSON values that is: parametric; based on a formal

specification; designed for efficient map-reduce imple-

mentation. 1.5

Our schema inference approach consists of two main

steps. In the first one, an input collection of JSON val-

ues is processed, in parallel, by a Map transformation in

order to infer a simple type for each value. The resulting
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output is processed by a type reduction phase, imple-

mented as a Reduce action, which fuses inferred types

that have a similar structure. This phase is guided by

an equivalence relation (an ER) that determines when

two types are similar enough to be fused, and when

they are too distant and should hence be kept sepa-

rated. Our type system is flexible enough to allow the

same data collection to be described at different lev-

els of abstraction, either by a precise description that

may be quite big or by more abstract descriptions, that

are smaller but less precise, and the choice of the ER

influences this size-precision tradeoff.

In this work we present some ERs and analyze two

of them: the first one fuses any two types of the same

kind (the kind of a type being record, array, integer,

etc.), while the second one is finer in the sense that

only record types sharing the same labels are fused.

We prove that the parametrized algorithm is always

sound, meaning that, for any ER, the inferred type is

always a correct type of the input collection.

We also prove that the Reduce phase enjoys com-

mutativity and associativity. Associativity is also im-

portant to enable incremental evolution of the inferred

schema under updates: when new values are added to

the collection, the type inferred for them can just be

combined with the type of the previous values, in order

to get the new result.

Our last contribution consists of an Apache Spark

[2] implementation of the proposed approach with an

experimental evaluation validating our claims of suc-

cinctness and efficiency, and a discussion about preci-

sion.

Remark 1 A preliminary version of this paper appeared1.7

in [7]. Compared to that conference version, here we

present the following four major additions:

– In [7] we only considered a fusion function driven by

the kind equivalence. Here, we present a parametric1.25

system that can exploit different ERs, and focus our

attention on two equivalences of practical interest.

– We provide in the Appendix the proofs for the theo-

rems of soundness, commutativity, and associativity

of fusion.

– We describe here several extensions that are of both

theoretical and practical interest, and outline how

our formal system should be modified in order to fit

these extensions (Section 8).

– In [7] we provided a very sketchy experimental eval-

uation. Here, we provide a wider evaluation involv-

ing more schema fusion algorithms and bigger data

sets.

Paper Outline The paper is organized as follows. In Sec-

tion 2 we give an overview of our approach. In Section

3 we survey existing related works. In Section 4, we

describe the data model and the schema language we

use here, while in Sections 5 and 6 we present our type

reduction and schema inference approaches, whose cor-

rectness, commutativity, and associativity are proved in

Appendix A. In Section 7 we present the results of our

experimental evaluation. In Sections 8 and 9, finally, we

discuss some possible extensions and draw our conclu-

sions.

2 Overview

In this section we illustrate our approach through an

example. To this end, we first briefly recall the general

syntax and semantics of JSON values. JSON values are

either atomic (or basic) values, which can be numbers

(e.g., 123), strings (e.g., “abc”), booleans (i.e., true/-

false), and null, or complex values, which can be either

unordered sets of key/value pairs called records or or-

dered lists of values called arrays. Complex values can

be arbitrarily nested and arrays can mix values of differ-

ent types. The only constraint that JSON values must

obey is key uniqueness within each record.

A sample JSON record is illustrated in Figure 1.

Syntactically, records use the conventional curly braces

symbols whereas arrays use square brackets; finally, string

values and keys are wrapped inside quotes in JSON, al-

though we will avoid quotes around keys in our types

and in our formal syntax for values.

{
person:

{
firstname: "John",

lastname: "Smith",

coordinates: [10, null, 40]

}
}

Fig. 1 A JSON record r1.

The type language we adopt is extremely simple

(see Section 4). Basic values are abstracted into basic 3.9

data types (String, Number, Boolean and Null), com-

plex values are abstracted by introducing record and

array type constructors, and a union type constructor

is used to add expressive power to the type language.

To illustrate the type language, observe in Figure 2 the

schema that corresponds to the record r1 given in Fig-

ure 1: the record structure is exactly described, while

the array type lists the possible types of the elements

and abstracts from their number and order.
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{
person:

{
firstname: Str,

lastname: Str,

coordinates: [Num + Null]

}
}

Fig. 2 A JSON record schema S1 for r1.

Our schema inference approach is composed by two

phases: individual type inference, that can be imple-

mented by a Map operation, and type reduction, that

can be implemented as a Reduce operation.

Individual type inference Individual type inference, dur-

ing the Map phase, infers a type for each item in the

input JSON collection, and yields a set of distinct types

to be combined during the Reduce phase.

As we will show, this is a quite simple and fast op-

eration: it consists of a simple traversal of the input

values that produces a type with the same shape of

the input data, with the only exception of array types.

The types of the elements of an array are combined ac-

cording to the same type reduction algorithm that is

employed during the second phase. So, instead of infer-

ring a precise type [Num, Null, Num] we infer a more

succinct version [ (Num + Null)* ] describing arrays

of arbitrary length where each value is either a number

or a null value (we will omit the Kleene star symbol

from our syntax).

Type reduction Type reduction is the second step of our

approach and consists of iteratively merging the types

produced during the Map phase. It is performed during

the Reduce phase in a distributed fashion, and it relies

on a binary operator that is associative and commuta-

tive. Binary reduction is invoked over two types T1 and

T2, and returns a supertype of the inputs. To do so,

types are first compared according to an Equivalence

Relation E, that is a parameter of the algorithm. If

they are similar enough, according to E, then they are

fused, through a synchronized top-down traversal that

identifies and combines the common parts, according to

the same similarity parameter E. If they are not simi-

lar, the result is just the union type T1 + T2. A coarser

relation will merge more pairs, hence producing a type

that is more compact but less precise, while a finer re-

lation will have the opposite effect.

The coarsest equivalence relation that we consider

is the kind equivalence, that fuses two types when they1.25

are equal basic types, or are both records, or are both

arrays, with no further condition. This yields the most

compact result, and reduces types as follows.

– Atomic types: identical atomic types are collapsed,

while different types are combined using the union

operator.

– Record types:

– keys without a match in the other record type

are just copied to the fused record type and are

marked as optional;

– matching keys from both types are collapsed and

their respective types are recursively fused.

As an example, consider the schema S1 for record

r1 (see Figures 1 and 2), and assume that one wants

to merge S1 with a new schema S2, shown in Figure

3, describing records that are similar to r1, but feature

a supplementary email field, a null lastname field, and

number only coordinates.

{
person:

{
firstname: Str,

lastname: Null,

coordinates: [Num],

email: Str

}
}

Fig. 3 A JSON record schema S2.

With kind equivalence, the schema obtained by merg- 1.25

ing S1 and S2 is the one shown in Figure 4, where the

question mark ‘?’ in the email field indicates its option-

ality.

The two schemas are fused since they are of the same

kind. Fusion recursively applies for the same reason to

the nested record schemas, but a union type is created

for lastname to capture the two possible types of this

field, while email is made optional. Furthermore, merg-

ing the two array types for coordinates yields a union

{
person:

{
firstname: Str,

lastname: Str + Null,

coordinates: [Num + Null],

email: Str?

}
}

Fig. 4 Reduction of schemas S1 and S2, according to kind-
equivalence.
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{
person:

{
firstname: Str,

lastname: Str,

coordinates: [Num + Null]

} +

{
firstname: Str,

lastname: Null,

coordinates: [Num],

email: Str

}
}

Fig. 5 Reduction of schemas S1 and S2, according to label
equivalence.

of all the distinct types in the body of the two array

types.

In the more general case where the array schemas to

be fused contain nested record and array types, the fu-

sion process recursively combines the types of the same

kind. For instance, the fusion of [ Str+{A:Str, B:Num} ]

and [ Num + {B:Str, C:Num} ] yields

[ Str + Num + {A:Str?, B:(Str + Num), C:Num?} ].

A finer equivalence is the label equivalence equiva-1.25

lence, which restricts kind equivalence by imposing that1.25

only record schemas having the same set of keys are

fused. If we go back to the previous example, fusion

according to label equivalence returns the schema in1.25

Figure 5, which is less succinct but more precise, as, for

example, it relates the Null type of the last-name with

the presence of an email key.

It is not possible in general to affirm that one equiv-
alence is better than the other one. For example, the ex-

periments we report in Section 7 show that label equiv-

alence may yield more precise schemas, describing in-

teresting correlation properties between different fields,

but it generates types that are bigger, and the growth

factor is significative.

The precision/size tradeoff can be illustrated even

more clearly by the following small example. Consider

the fusion of three record schemas, each corresponding

to a different input value: {A:Str, B:Str}, {A:Str, B:Str},
and {C:Str, D:Str}. The fused type we obtain with

kind equivalence is1.25

{A:Str?, B:Str?, C:Str?, D:Str?}

This schema precisely describes what fields may be present,

but it is compatible with 24 possible different record

structures, while we had only two different structures

in the input data. Hence, we can observe that as soon as

irregularity starts appearing in the data, we may have

a big loss of precision in terms of which sets of keys

do actually appear. By means of the label equivalence, 1.25

instead, for the above three record schemas we obtain

the more precise, still rather succinct schema

{A:Str, B:Str}+ {C:Str, D:Str}

that specifies, among other information, that A and B

fields always co-occur. On the other hand, if we have

high heterogeneity of data, and most of the 24 subsets of

keys do actually appear in the data, then label equiva-

lence would yield a huge schema, while kind equivalence 1.25

would ensure a good level of succinctness with limited

loss of information. Hence, no equivalence is optimal

in general, and the higher information content of label

equivalence may, or may not, be worth its bigger size,

depending on the regularity of the data and, crucially,

on the subjective relevance of correlation information

for the person who uses the algorithm.

Apart from these two equivalences, two more equiv-

alences will be later presented, but their interest is es-

sentially theoretical, while we believe that kind equiva-

lence and label equivalence can both be quite useful in 1.25
1.25practice.

3 Related Work

The problem of inferring structural information from

JSON data collections has recently gained the atten-

tion of the database research community. The closest

work to ours is the very preliminary investigation that

we presented in [18] and the more complete treatment

we presented in [7]. Major additions of the present work

wrt [7] have already been outlined in the Introduction

(Remark 1). In addition, we recently presented pre-

liminary results that extend this work in the direction

of counting types [9], that are types that include fre-

quency indicators describing the number of times values

of a given type occur in the input dataset.

In [35], Wang et al. present a framework for effi-

ciently managing a schema repository for JSON docu-

ment stores. The proposed approach relies on a notion

of JSON schema called skeleton. In a nutshell, a skele-

ton is a collection of trees describing structures that

frequently appear in the objects of a JSON data col-

lection. In particular, the skeleton may totally miss in-

formation about paths that can be traversed in some of

the JSON objects. In contrast, our approach enables the

creation of a path-covering yet succinct schema descrip- 3.7

tion of the input JSON dataset. As already said, hav-

ing such a path-covering structural description is of vi- 3.7

tal importance for many tasks, like query optimisation,

defining and enforcing access-control security policies,
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and, importantly, giving the user a global structural vi-

sion of the database that can help her in querying and

exploring the data in an effective way. Another impor-

tant application of path-covering schema information is3.7

query type checking: as illustrated in [18], our inferred

schemas can be used to make type checking of Pig Latin

scripts much stronger.

In [31], motivated by the need of laying the formal

foundations for the JSON Schema language [5], Pezoa

et al. present the formal semantics of that language, as

well as a theoretical study of its expressive power and

validation problem. Along the lines of [31], Bourhis et

al. [14] have recently laid the foundations for a logical

characterization and formal study for both schema and

query languages for JSON. While these works do not

deal with the schema inference problem, our schema

language can be seen as a core part of the JSON Schema

language studied in these works, and shares union types

and repetition types with them. These constructors are

at the basis of our technique to collapse several schemas

into a more succinct one. An alternative proposal for

typing JSON data is JSound [4], whose language is quite

restrictive with respect to ours and JSON Schema, and

specifically it lacks union types.

In [19], Abadi and DiScala deal with the problem of1.11

automatically transforming denormalised, nested JSON

data into normalised relational data that can be stored

into a RDBMS; this is achieved by means of a schema

generation algorithm that learns the normalised, rela-

tional schema from data. Differently from that work,

we deal with schemas that are far from being relational,

and are closer to tree grammars [28]. Furthermore, the

approach proposed in [19] ignores the original struc-

ture of the JSON input dataset and, instead, depends

on patterns in the attribute data values (functional de-

pendencies) to guide its schema generation. So, that

approach is complementary to ours.

In [25], Liu et al. propose storage, querying, and in-

dexing principles enabling RDBMSs to manage JSON.

The paper does not deal with schema inference, but in-

dicates a possible optimisation of their framework based

on the identification of common attributes in JSON ob-

jects that can be captured by a relational schema for

optimization purposes. In [32], Scherzinger et al. pro-

pose a plugin to track changes in object-NoSQL map-

pings. The technique is currently limited to only detect

mismatches between base types (e.g., Boolean, Integer,

String), and the authors claim that a wider knowledge

of schema information is needed to enable the detection

of other kinds of changes, like, for instance, the removal

or renaming of attributes.

In a recent work [24], Li et al. present streaming

techniques for efficiently parsing and importing JSON

data for analytics tasks, as well as a JSON parser based

on those techniques (i.e., Mison). While this approach

does not primarily deal with schema inference, it infers

structural information of data on the fly in order to de-

tect and prune parts of the data that are not needed

by a given analytics task. Our approach can be consid-

ered as complementary to that described in [24], since

it could be used to improve the effectiveness of Mison.

In [13], Bonetta and Brantner present Fad.js, a

speculative, JIT-based JSON encoder and decoder de-

signed for the Oracle Graal.js JavaScript runtime. It

exploits data access patterns to optimize both encoding

and decoding: indeed, Fad.js relies on the assumption

that most applications never use all the fields of input

objects, and, for instance, skips unneeded object fields

during JSON object parsing. As for Mison, our schema

inference approach can be considered as complementary

to Fad.js.

In the context of NoSQL systems (e.g. MongoDB),

recent efforts have been dedicated to the problem of im-

plementing tools for JSON schema inference. A JavaScript

library for JSON, called mongodb-schema, is presented

in [33]. This tool analyzes JSON objects pulled from

MongoDB, and processes them in a streaming fashion.

Due to the lack of any formal specification and experi-

mental evaluation, we directly inspected the mongodb-

schema source code, and figured out that the tool as-

sociates types to paths found in JSON objects, and re-

turns schemas that seem to be equivalent to those pro-

duced by our approach under the kind equivalence. Dif- 1.25

ferently from our approach, this system processes data

in a centralized fashion, it does not provide a paramet-

ric approach, and, in particular, it is not able to infer

information describing field correlation. Studio 3T [23]

is a commercial front-end for MongoDB that offers a

very simple schema inference and analysis feature, but

it is not able to merge similar types, and the resulting

schemas can have a huge size, which is comparable to

that of the input data. In [34], a python-based tool is

described, called Skinfer, which infers JSON Schemas

from a collection of JSON objects. Skinfer exploits two

different functions for inferring a schema from an ob-

ject and for merging two schemas; schema merging is

limited to record types only, and cannot be recursively

applied to objects nested inside arrays.

In the context of Spark, the Spark Dataframe schema

extraction [6] is a very interesting tool for the auto-

mated extraction of a schema from JSON datasets. To

the best of our knowledge, Spark is the only tool that

supports a distributed schema inference technique for

input data; other systems, like Jaql [12], exploit schema

information for inferring the output schema of a query,

but still require an externally supplied schema for input
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data, and perform output schema inference only locally

on a single machine. This technique is, however, less1.9

precise than ours, since the type language lacks union

types, and the inference algorithm resorts to Str on

strongly heterogeneous collections of data. For instance,

an array [17, {name: "Bear"}] is typed as an array

of strings, as we observed by inspecting the results we

got on our datasets (described in Section 7).1.10

Another major difference of this technique wrt our

approach is the absence of parametricity, which would

make little sense in their approach, given the limited

expressivity of the type language. However, the system

has excellent scalability properties and is quite efficient,

and, for this reason, we choose it as a yardstick for our

performance experiments (Section 7).

It is important to state that the problem of schema

inference has already been addressed in the past in the

context of semi-structured and XML data models. A

typical XML data summary is in the form of a data-

guide [22], which abstracts away from important prop-

erties that our schemas describe, like optional/manda-

tory fields and correlation between them. In [29] and4.9

[30], Nestorov et al. describe an approach to extract

a schema from semistructured data. They propose an

object-oriented type system where nodes are captured

by classes built starting from nodes sharing the same

incoming and outgoing edges and where data edges are

generalized to relations between the classes. In [30],

the problem of building a type out of a collection of

semistructured documents is studied. The emphasis is

put on minimizing the size of the resulting type while

maximizing its precision. Although that work considers

a very general data model captured by graphs, it does

not suit our context. Firstly, we consider the JSON

model, that is tree-shaped and that features specific

constructs such as arrays that are not captured by the

semi-structured data model. Secondly, we aim at pro-

cessing potentially large datasets efficiently, a problem

that is not directly addressed in [29] and [30]. On the

other side, these papers address the important problem

of an optimal aggregation of different record types that

are similar in structure. We do not face this problem at

all, since we leave the choice of the equivalence relation

to the user, and we only work on the extreme cases of

either performing a full aggregation of all record types

or keeping them separated as soon one key is different.

In this sense, our work is orthogonal to theirs.

More recent efforts on XML schema inference (see

[20] and works cited therein) are also worth mentioning

since they are somewhat related to our approach. The

aim of these approaches is to infer restricted, yet expres-

sive enough forms of regular expressions starting from

a positive set of strings representing element contexts

of XML documents. While XML and JSON both allow

one to represent tree-shaped data, they have radical

differences that make existing XML related approaches

difficult to apply to the JSON setting. Namely, since

a regular language is the most natural tool to describe

the content model for an XML element type, inference

of regular expressions is a central issue in the XML

schema inference problem, while the same tool has a

limited utility in the field of JSON schema inference,

where a central role is played by the distinction between

array types and record types, that are both represented

as element types in the XML world.

Still in the context of XML schema inference, tech-

niques like [11] are based on the construction of an NFA

from strings, and on its transformation in order to build

regular expression validating input strings correspond-

ing to XML element content. In our framework, the co-

existence of (possibly nested) records and arrays with

their specific features (uniqueness of record keys, pos-

sible heterogeneity in the array content, etc.) make the

adoption of NFAs very difficult, even without consider-

ing distribution. 4.9

In [17] Ciucanu and Staworko discuss schema infer-

ence for unordered XML. Since they ignore order, they

do not rely on NFAs but rather on label-to-label rela-

tionships: which labels appear below a given label, and

which pairs of labels appear together in the same ele-

ment. In their work they study the learnability problem:

given a class of languages C, does a PTime algorithm

exists that, given a set of words D, infers a minimal lan-

guage in C that includes D? They study this problem

for two classes of languages, MS and DMS, and they

consider two situations where only positive samples are

given, and where both positive and negative samples

are given. They give interesting results on the theme of

language learnability, a theme that we decided to ignore

since the learnability of the schema language that we

study is quite obvious. However, they are not interested

in the Big Data setting, hence they work on PTime al-

gorithms designed for sequential execution, rather than

looking for linear and parallelizable algorithms as we

do. The expressive power of the language they consider

is considerably lower than ours, since they require that

no key appears twice in the schema. new

In [26], Lohrey et al. describe compression tech-

niques of XML trees under the assumption that the

data collection is either ordered (document-centric) or

unordered (data-centric). As in most compression tech-

niques, their approaches identifies common structural

information in the input data, and share with our ap-

proach the idea of merging sub-trees. However, Lohrey

et al. focus on giving lower-bounds in terms of the size

of compressed trees under the assumption that XML
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trees are unordered, and postpone the study of com-

pression of JSON data as future work, as JSON data

have, at once, ordered (arrays) and unordered compo-

nents (records). Furthermore, the main focus in [26]

is on centralized techniques for data compression only,

while our interest here is on schemas, that are usually

characterized by an abstraction level which is much

higher than that of compression, especially when the

chosen type equivalence is kind-based.4.9

In [16] Cebiric et al. study techniques for creating

summaries for RDF data. These summaries are essen-

tially DataGuides for RDF data and it is far from clear

how their technique can be adapted to JSON data. To

conclude, we would like to stress that none of these

XML/RDF related approaches is designed to deal with

massive datasets, which is one of the central points in

our work.4.9

4 Data Model and Type Language

JSON values are either basic values, records, or arrays.

Basic values B include the null value, booleans, num-

bers n, and strings s. Records represent sets of fields,

each field being a key-value pair (l,V), and arrays rep-

resent sequences of values. We will use J to range over

JSON expressions and V to range over the values de-

noted by such expressions, according to the semantics

defined below, but the two notions are so similar that

we will often ignore this distinction.

We will only consider here records without repeated

keys. Extending our approach to the case of records

with repeated keys is very simple, but we did not yet

find any practical example where this extension were

useful. We use Keys(R) to denote the set of the keys1.8

of a record R. In JSON syntax, a key is itself a string,

hence is surrounded by quotes; we avoid these quotes

in our notation, that is, we write { name : “John” }
rather than { “name” : “John” }.
Notation 1 Sets(S) is the set of all subsets of S.

FSets(S) is the set of all finite subsets of S.

Lists(S) is the set of all finite lists whose elements

are in S.

To reduce the confusion between JSON values and

mathematical objects, we denote a set as ⦃ a1, . . . , an ⦄
and a list as 〈〈a1, . . . , an〉〉.
Syntax

J ::= B | R | A JSON expressions

B ::= null | true | false | n | s
n ∈ Number, s ∈ String Basic values

R ::= {l1 : J1, . . . , ln : Jn}
n ≥ 0, i 6= j ⇒ li 6= lj Records

A ::= [J1, . . . , Jn] n ≥ 0 Arrays

Semantics of JSON expressions is described below.

For each kind of values we also report the domain, that

is, the set that contains the denotation of the corre-

sponding JSON values. For instance, BasicValues in-

cludes numbers, strings, etc., used to interpret JSON

basic values, while the semantics of a JSON record is

in the domain FSets(Keys×Values), where Keys is the

infinite set of all possible record keys, and V alues is the

set of all possible denotations of JSON values produced

by the semantic function J K. 3.10-5

Semantics

Basic Values

Domain : BasicValues

JB K M
= B

Records

Domain : FSets(Keys ×Values)

J {l1 : J1, . . . , ln : Jn} K M
= ⦃ (l1, J J1 K), . . . , (ln, J Jn K) ⦄

Arrays

Domain : Lists(Values)

J [J1, . . . , Jn] K M
= 〈〈J J1 K, . . . , J Jn K〉〉

Types in our type system obey the following gram-

mar. 3.9,3.10-1

Syntax of types

T ::= ∅ | T + T | S Types

S ::= B | R | A Struct. types

B ::= Null | Bool | Num | Str Basic types

R ::= {l1 : T1q1, . . . , ln : Tnqn} n ≥ 0 Record types

q ::= ! | ? Quantifiers

A ::= [ T ] Array types

A type describes a, possibly infinite, set of JSON

values. The empty type ∅ contains no value and is 3.10-2

the neutral element for the union operator + , which

is associative and commutative. Hence, any type T is

either equivalent to ∅ or to a finite union S1 + . . .+ Sn
of structural types Si, where a structural type is a type

that describes either a set of basic values (B), a set

of records (R) or a set of arrays (A). Basic types are

standard. A record is a set of pairs (l,V), and a record

type specifies which keys must appear or may appear

in a record, and the associated types. For example, a

type {l : Num?, m : (Str + Null)!} describes records

where l is optional and, if present, contains a number,

while the m field is mandatory and may contain either

null or a string, so that both ⦃ (l, 3), (m,null) ⦄ and

⦃ (m,′′abc′′) ⦄ belong to J {l : Num?, m : (Str+Null)!} K;
the semantics of this record type, hence, is a set of finite

sets of pairs. In our examples we will often omit the ‘!’
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for mandatory fields and only annotate optional fields

with ‘?’.

Array types specify the type of elements that may

appear in the corresponding arrays. For example, a type

[ Str+{name : Str} ] describes arrays that may contain

any number of values 〈〈V1, . . . ,Vn〉〉 where each Vi is ei-

ther a string or a record with a name key associated

to a string. By this definition, the type [ ∅ ] contains ar-

rays that contain any number of values that belong to

the empty type; since no value belongs to ∅, the only

possible value for [ ∅ ] is the empty array.

Observe that types and structural types are defined

by mutual recursion: a type is the union of a set of

structural types and, vice versa, the content of a struc-

tural type (the fields of a record type and the content

type of an array type) is defined in terms of types.3.4

Semantics of types is formally specified as follows.
Basic types

Domain : Sets(BasicV alues)

J Null K M
= ⦃ null ⦄

J Bool K M
= ⦃ true, false ⦄

J Num K M
= Number

J Str K M
= String

Record types

Domain : Sets(FSets(Keys ×Values))

J { } K M
= ⦃ ∅ ⦄

J {l : T !} K M
= ⦃ ⦃ (l,V) ⦄ | V ∈ J T K ⦄

J {l : T ?} K M
= J {l : T !} K ∪ J { } K

J {l1 : T1q1, . . . , ln : Tnqn} K
M
= ⦃ R1 ∪ . . . ∪Rn

| R1 ∈ J {l1 : T1q1} K, . . . ,
Rn ∈ J {ln : Tnqn} K ⦄

Array types

Domain : Sets(Lists(Values))

J [T ] K M
= ⦃ 〈〈V1, . . . ,Vn〉〉 | n ≥ 0, Vi ∈ J T K ⦄

Union types

J ∅ K M
= ∅

J T + U K M
= J T K ∪ JU K

The basic idea behind the type reduction mechanism

that we are going to present is to merge types that have

the same kind, that is, records with records, arrays with

arrays, numbers with numbers, and so on, provided that

they are “similar enough”, as discussed later. The fol-

lowing kind() function, that maps each structural type

to its outermost constructor, is used to formalize the

notion of ‘types having the same kind’.

kind(Null) = Null kind(Bool) = Bool

kind(Num) = Num kind(Str) = Str

kind(R) = { } kind(A) = [ ]

Later on, in order to express the correctness of the

fusion process we rely on the usual notions of sub-typing

(type inclusion) and type equivalence, that we define

here.

Definition 1 (T ≤ U , T ' U) Let T and U be two

types.

– T is a sub-type of U , written as T ≤ U , if and only

if J T K ⊆ JU K;
– T is equivalent to U , written as T ' U , if and only

if J T K = JU K.

It is useful to ignore the order of fields in record

types, to consider union types modulo associativity and

commutativity of ‘+’, modulo repetition of the united

types, and to ignore ∅ inside a union. We formalize this

abstract view of types using the following equivalence

T1
.
= T2.

Definition 2 (T .
= U) We say that two types are syn-

tactically congruent (
.
=) when one can be transformed

into the other by repeated application of the following

rules, that can be applied in any direction and anywhere

inside the type. 4.2

Syntactic congruence rules

T1 + T2
.
= T2 + T1

T1 + (T2 + T3)
.
= (T1 + T2) + T3

T + ∅ .
= T

T + T .
= T

{l1 : T1q1, . . . , lk : Tkqk}
.
= {lσ(1) : Tσ(1)qσ(1), . . . , lσ(k) : Tσ(k)qσ(k)}

with σ bijective on {1, . . . , k}

Hence, two types T1 and T2 are syntactically con-

gruent if their congruence can be proved by reordering

the components of union types and record types, dis-

regarding duplicates and the presence of ∅ in a union 4.2

type.

Types that are syntactically congruent are equiva-

lent, that is, they have the same semantics. 3.13

Property 1 For any T1 and T2: T1
.
= T2 ⇒ T1 ' T2

Proof All the five rules of Definition 2 transform a type

into a type that has the same semantics. For the first

four rules, this follows immediately from the fact that

J T1 +T2 K = J T1 K∪ J T2 K . For the last rule, it descends

from the fact that the order of labels is irrelevant in the

definition of the semantics of record types. 3.13

Observe that the converse does not hold. For exam- 3.12

ple, we have that

[Num + Str] + [Str] ' [Num + Str]
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since [Str] denotes a subset of [Num+ Str], but the two

types are not syntactically congruent.

In the sequel, we will need to extract all structural

addends out of a union type, and to transform a set of

structural types into their union. To this aim we define

a pair of operators, ◦T for the extraction and ⊕M to

rebuild the original type, such that, for example:

◦((Num + Str) + (Num + ∅)) = ⦃ Num, Str ⦄

and

⊕(⦃ Num, Str ⦄)
.
= Num + Str.

3.9

Coherently with our notion of syntactic congruence,

the operator ◦(T ) ignores duplicates, empty types, and

the order of the addends. It is easy to see that3.9

⊕(◦(T ))
.
= T .

Definition 3 (◦T (addends of T ), ⊕M) For any

type T and for any setM of structural types, the oper-

ators ◦T and ⊕M are defined as follows. The elements

of ◦T are called the addends of T .

◦(T1 + T2)
M
= ◦T1 ∪ ◦T2

◦∅ M
= ∅

◦S M
= ⦃ S ⦄

⊕(∅) M
= ∅

⊕(⦃ S ⦄)
M
= S

⊕(⦃ S ⦄ ∪M)
M
= S + (⊕M) if M 6= ∅

We then define a similar pair of operators for the

record types: �R to extract the key-type-quantifier triples

out of R, and {M} to rebuild the original type, so that

{ �R} is equal to R, modulo the field order.

Definition 4 (�R, {S })

�{l1 : T1q1, . . . , lk : Tkqk}
M
= ⦃ (l1, T1, q1), . . . , (lk, Tk, qk) ⦄

{ ⦃ (l1, T1, q1), . . . , (lk, Tk, qk) ⦄ }
M
= {l1 : T1q1, . . . , lk : Tkqk}

5 Type Reduction

5.1 Parametric reduction

Our type-inference approach infers a type for each JSON

value and then merges all the inferred types using a

parametric Reduce operator, that is also used to merge

the types of the elements of each array found in a JSON

value. Reduction constitutes the core of our approach.3.1

The reduction process is sound as long as the merged

type is a supertype of its arguments, a property that

is not very restrictive, and can be satisfied by many

different definitions of the Reduce operator. As will be

soon exemplified, each different definition gives rise to a

different trade-off between precision and size of the pro-

duced type. The fundamental feature of our approach 3.1

is its parametricity, that is, the fact that it can be tuned

in order to reach a different precision-size trade-off. This

tuning is obtained by providing a parametric definition

for the Reduce operator. 4.4

In a nutshell, the E parameter of Reduce(T1, T2, E)

is an equivalence relation that governs its behavior: two

types are fused when they are E-equivalent, while they

are kept separated when they are not, so that the E

parameter provides an abstract specification of the pre-

cision of our type system.

In the next section we define the notions of reduction

and fusion and we exemplify some possible choices for

the E parameter.

5.2 Reduction and fusion
1.0,1.15

We introduce here the terms reduction and fusion,

that will be used with a precise technical meaning.

We use reduction to indicate the process of finding

a common supertype of two (or more) types T1 and T2,

which may be as big and precise as T1 + T2 or may be

more compact. We use fusion to indicate the process

of finding a common structural supertype of two (or

more) structural types S1 and S2. Reduction of two

types such as (S1 + S2 + S3) and (S4 + S5) is based

on the fusion of their structural addends, and fusion of

two structural types such as [T1] and [T2] is based on

the reduction of their internal types (and similarly for

record types). Reduction and fusion are, in general, not

uniquely defined, as we have discussed many times.

While every two types T1 and T2 always admit the

trivial reduction T1+T2, the type S1+S2 is not a fusion

of S1 and S2, since it is not structural, because of the

outermost +. It is easy to see that S1 +S2 ≤ S3 implies

that S1, S2, and S3 all have the same kind, since no

value belongs to two types of different kinds, hence S1
and S3 must have the same kind, and the same holds

for S2 and S3.1 It follows that S1 and S2 can only be

fused if they have the same kind.

We now briefly discuss how structural types with

the same kind can be fused.

1 We are here ignoring empty structural types, which are
record types where one mandatory field has type ∅, since they
are never inferred, and we could even forbid them in the syn-
tax.
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Fusing base types is easy, recalling that any base

type has its own kind: a union type Num + Num can be

rewritten as Num, obtaining size reduction with no loss

of information, and the same holds for Str, Bool and

Null. Two different record types can be fused by ex-

ploiting the presence of optional fields, so that

{a:Num, b:Num}+ {b:Num, c:Num}

can be rewritten as

{a:Num?, b:Num, c:Num?}

that is, the types of the shared keys are combined and

reduced, and keys that are not shared are marked as

optional, which makes the final type more compact but

(possibly) less precise, as in this case. Two array types1.14

can also be fused, by rewriting [T1]+ [T2] into its super-

type [T1 + T2] and by recursively reducing the internal

type T1 + T2.

Hence, when two structural types have the same

kind, they always admit a structural fusion. However,

such fusion may yield a loss of type information. For

example, if we rewrite

{a:Num, b:Num, c:Num}+ {a:Num, b:Num}

into

{a:Num, b:Num, c:Num?}

there is no information loss, as the new type, despite

being shorter, has the same semantics as the union type.

However, assume we rewrite

{a:Num, b:Num}+ {b:Str, c:Str, d:Str}

as

{a:Num?, b:(Num + Str), c:Str?, d:Str?}.

The original type specifies that keys a and c are mu-

tually exclusive, while c and d always appear together.

The original type specifies that b is a number if, and

only if, the a key is present. The reduced type correctly

reports which fields are always, or sometimes, present,

and the corresponding type information, but has lost all

the correlation information between the presence, and

the types, of the different fields.

The same is true for array types. Assume we rewrite

[T1]+[T2] into its supertype [T1 +T2]: while the original

type describes arrays that are either uniformly com-

posed by elements of T1 only, or by elements of T2 only,

the fused type also admits arrays with a mixed content.

While in some situations the information loss is per-

fectly acceptable, in the same way as, at the type level,

it is acceptable to abstract all different numbers into

just Num, in other cases the field correlation information

is quite important. There exists no “optimum trade-off”

between compactness and precision, since it depends on

the precision requirements of the specific task that the

programmer, or the data analyst, needs to perform.

Hence, we define a reduction operation that is para-

metrized over an equivalence relation (ER) E, and which 3.8

fuses two structural types if and only if they are E-

equivalent. In this way, a finer E will fuse less pairs,

yielding a result that is bigger but more informative. A

coarser equivalence will give a different tradeoff, since

it will fuse more pairs, hence producing a result that

is more compact but less informative. In the extreme

cases, the identity ER will only fuse identical types,

yielding a huge type with no information loss, while a

relation that relates every two types with the same kind

will return a much smaller type, with a higher informa-

tion loss. 3.8

5.3 Formal definition of reduction and fusion

We need a couple of preliminary definitions to formalize

the reduction operation. We first define the notion of a

kind-respecting ER. 3.8

Definition 5 (Kind-respecting ER, K equivalence)

A Kind-respecting ER (KER) is an equivalence re-

lation on structural types E such that 3.8

E(S1,S2) ⇒ kind(S1) = kind(S2)

K(S1,S2) is the maximal KER, defined by

K(S1,S2) ⇔ kind(S1) = kind(S2)

We must now give a name to the basic invariant

of our algorithm. Given a KER E, whenever two struc- 3.8

tural E-equivalent types are operands of a union, our al-

gorithm will fuse them, hence producing a union where

no pair of distinct addends are E-equivalent. We say

that such a type is E-reduced, as defined below (since

any structural type is a type, the definition below ap-

plies to structural types as well).

Definition 6 (E-reduced) Given any partial equiva-

lence relation E defined on structural types, a type T
is E-reduced iff, for any union type T1 that is found at

any nesting level inside T , no two distinct addends in

◦T1 are E-equivalent. A set M of structural types is

E-reduced iff the type ⊕M is E-reduced.

Example 1 Consider the following KERs: 3.8

– syntactic congruence
.
=;

– kind equivalence K. 1.25

Consider the following three types.

[Num + Str] + Str + [Str + Num] + Str + [Num + Bool]

[Num + Str] + Str + [Num + Bool]

[Num + Str + Bool] + Str
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The first type is not E-reduced, for any E, since

Str and [Num + Str] are repeated. The second type3.8

is syntactically congruent to the first (that is, is
.
=-

equivalent) and is
.
=-reduced, but is not K-reduced. Fi-3.8

nally, the third type is K-reduced (and hence, a fortiori,
.
=-reduced), is more compact than the first two types,

but is not semantically equivalent to them, since it is a

strict supertype.

We can finally define our Reduce(T1, T2, E) opera-

tor.

Definition 7 (q · q′) Quantifier conjunction q · q′ is

defined as follows.

q · q′ =

{
! if q =! and q′ =!

? otherwise

3.16

Definition 8 (Reduce(T1, T2, E)) For any KER E de-3.8

fined on structural types, for any E-reduced types T1
and T2, for any E-reduced structural types S1 and S2
having the same kind, the operators Reduce(T1, T2, E)

and Fuse(S1,S2, E), are defined as follows, by mutual

induction and by cases on the common kind of S1 and

S2.

Reduce(T1, T2, E)
M
=

⊕(⦃ Fuse(S1,S2, E) | S1 ∈ ◦T1, S2 ∈ ◦T2, E(S1,S2) ⦄
∪ ⦃ S1 | S1 ∈ ◦T1, 6 ∃S2 ∈ ◦T2. E(S1,S2) ⦄
∪ ⦃ S2 | S2 ∈ ◦T2, 6 ∃S1 ∈ ◦T1. E(S1,S2) ⦄ )

Fuse(B,B, E)
M
= B

Fuse(R1,R2, E)
M
=

{ ⦃ (l,Reduce(T1, T2, E), q1 · q2)

| (l, T1, q1) ∈ �R1, (l, T2, q2) ∈ �R2 ⦄
∪ ⦃ (l, T1, q1) | (l, T1, q1) ∈ �R1,

6 ∃T2, q2. (l, T2, q2) ∈ �R2 ⦄
∪ ⦃ (l, T2, q2) | (l, T2, q2) ∈ �R2,

6 ∃T1, q1. (l, T1, q1) ∈ �R1 ⦄
}

Fuse([T1], [T2], E)
M
= [ Reduce(T1, T2, E) ]

Reduction of T1 and T2 is performed by fusing each

addend S1 of T1 with any addend S2 of T2 that is E-

equivalent to S1. Observe that such equivalent addend

S2, if it exists, is unique: if we had two distinct addends

S2 and S ′2 of T2 that are both E-equivalent to S1, they

would be E-equivalent as well, by transitivity, and this

would contradict the hypothesis that S2 is E-reduced.

Observe that any addend of T1 is either fused with

an E-equivalent addend from T2, if it exists, or it is put

in the merged type as it is, if no equivalent addend in

found in T2, and the same for the addends of T2. Hence,

each addend contributes once to the reduced type. In

the same way, when two record types R1 and R2 are

fused, every field of each record contributes once to the

fused record type.

Our definition of fusion is commutative (modulo

syntactic congruence
.
= ) by construction, and is as-

sociative (Theorem 4) when the equivalence relation

enjoys the following property, that we call ‘stability’:

the E-fusion of two E-equivalent structural types yields

a third type that is still E-equivalent to the original

types.

Definition 9 (Stable KER, SKER) A KER E de- 3.8

3.8fined on structural types is stable iff, for any two struc-

tural types S1 and S2:

E(S1,S2) ⇒
E(S1,Fuse(S1,S2, E)) ∧ E(S2,Fuse(S1,S2, E))

We are now going to instantiate the parametric re-

duction operator with some different KERs, all of them 3.8

stable.

5.4 Lossless
.
= -driven reduction

Syntactic congruence T1
.
= T2 (Definition 2) is, es-

sentially, syntactic equality modulo some semantically-

irrelevant details. This is a very fine equivalence, hence

few types are fused, which results in an inferred type

that is potentially very big, but is very precise.

In general, Reduce(T1, T2, E) yields a supertype of

T1 + T2, which may result in a loss of precision. In this

case, since we only fuse structural types that are syntac-

tically congruent, we have a much stronger invariant:

Reduce(T1, T2,
.
= ) ' T1 + T2

Since Reduce(T1, T2,
.
= ) is not just a supertype of T1 +

T2 but is equivalent to the union, the
.
= -driven reduc-

tion does not entail any loss of type information.

Property 2 (Stability) For any
.
=-reduced types T1 and

T2 and any two
.
=-reduced structural types S1 and S2,

the following properties hold:

T1
.
= T2 ⇒ Reduce(T1, T2,

.
= )

.
= T1

.
= T2 (1)

S1
.
= S2 ⇒ Fuse(S1,S2,

.
= )

.
= S1

.
= S2 (2)

Proof By mutual induction and by cases on the com-

mon kind of S1 and S2. Property (1): here we observe

that every addend of ◦T1 has one
.
=-equivalent addend

in ◦T2, by definition of
.
=, and only one, because the two

types are
.
=-reduced. Hence, the result has one struc-

tural addend for each structural addend of ◦T1, and the

two addends are
.
=-equivalent by induction. The other



Parametric Schema Inference for Massive JSON Datasets 13

interesting case is the record type case of property (2).

Here, by definition of
.
=, two record types are only fused

when they have exactly the same keys and, for any key

k in Keys(R1), the types associated to k in R1 and R2

are
.
= equivalent, hence, by (1), the type associated in

the fused type is equivalent as well. The case for array

types is immediate by (1), and the cases for the base

types are immediate.

Corollary 1 (Lossless reduction)

For any
.
=-reduced types T1 and T2:

Reduce(T1, T2,
.
= ) ' T1 + T2

Proof The reduction process substitutes, inside T1+T2,

two equivalent addends S1
.
= S2 with Fuse(S1,S2,

.
= )

which is, by Property 2, syntactically congruent to each

of them, hence is '-equivalent to each of them, hence

is '-equivalent to their union.

Example 2 Consider the syntactic-congruence-driven re-

duction of the following two types: T1 = [ {l : Num +

Str,m : Num} ] and T2 = [ {l : Str+Num,m : Num} ]. The

two types are syntactically congruent, and hence all the

corresponding components are syntactically congruent

as well. Hence, the two types are explored in parallel

and, at each step, the components that correspond are

fused, so that the computation of Reduce(T1, T2,
.
= )

proceeds as follows.

Reduce(T1, T2,
.
= )

.
= Fuse(T1, T2,

.
= )

.
= [ Reduce({l : Num + Str,m : Num},

{l : Str + Num,m : Num}, .= ) ]
.
= [ Fuse({l : Num + Str,m : Num},

{l : Str + Num,m : Num}, .= ) ]
.
= [ {l : Reduce(Num + Str, Str + Num,

.
= ),

m : Reduce(Num, Num,
.
= )} ]

.
= [ {l : Fuse(Num, Num,

.
= ) + Fuse(Str, Str,

.
= ),

m : Fuse(Num, Num,
.
= )} ]

.
= [ {l : Num + Str,m : Num} ]

Consider now the following two types: T1 = [ {l :

Num + Str,m : Num} ] and T2 = [ {l : Str,m : Num} ].

They share the external structure, but they differ in

the type of l, hence they are not
.
= -equivalent. Hence,

the computation of Reduce(T1, T2,
.
= ) does not per-3.17

form any kind of fusion, but just proceeds as follows:

Reduce(T1, T2,
.
= )

.
= T1 + T2

Example 3 Consider a collection of records whose type

is either {a : Num, b : Num}, {a : Num, b : Str} or {a :

Num, c : Str}. The type of the collection is just {a :

Num, b : Num}+ {a : Num, b : Str}+ {a : Num, c : Str}.

Example 4 Assume a collection of numeric records rj ,

for j ∈ J , each characterized by a set of keys Kj =
⦃ aji ⦄. Assume that S collects the different sets of keys

that actually appear in the records of the collection,

that is, S = ⦃ Kj | j ∈ J ⦄. Then, using
.
=-reduction,

the final type of the collection is

⊕K∈S{ ai : Num | ai ∈ K }

If S contains very few different key-sets, then this type

is small and readable. If the collection is extremely 3.19

heterogeneous, so that, for any two records, they always 1.18

differ in the presence of at least one field, then the type

is as big as the collection.

To sum up, when collections are very regular,
.
=-

reduction yields types that are small and informative.

As soon as data becomes less regular, however, this ap-

proach, that keeps all non equivalent types separated,

produces types that are essentially unreadable. In this

case, kind-driven reduction, that we are going to present

next, may be better suited.

5.5 Kind-driven reduction

Kind-driven reduction is a reduction driven by the K-

equivalence that we defined above. When data are quite

irregular,
.
=-reduction yields types that are very big,

while the adoption of the coarser K-equivalence yields

a reasonable result, informative but compact, as shown

in Section 7. Stability of K-equivalence is immediate,

since the fusion of two types with the same kind yields

a type of the same kind by construction.

By definition ofK-equivalence, Reduce(T1, T2,K) fuses

every two record types, hence a collection of records al-

ways gets a single record type, where the keys that do

not appear in every record are marked as optional, and

the keys that appear with different types have just one

type, obtained by the kind-driven reduction of these

different types.

Example 5 Consider again a collection of records whose

type is either {a : Num, b : Num}, {a : Num, b : Str} or

{a : Num, c : Str} as in Example 3. With kind-driven 3.1

reduction, the inferred type for the collection is {a :

Num, b : (Num+Str)?, c : Str?}. The final type is smaller

than {a : Num, b : Num}+ {a : Num, b : Str}+ {a : Num, c :

Str} but is less informative, since it does not capture

the fact that one, and only one, of b and c is always

present.

Example 6 Consider again, as in Example 4, a collec-

tion of numeric records rj , for j ∈ J , each characterized

by a set of keys Kj = ⦃ aji ⦄.
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Using kind-driven reduction, the final type of the

collection is a single record type:

{ ai : Num qi | ai ∈
⋃
j∈J

Kj }

where qi = ! iff i ∈
⋂
j∈J Kj .

As we have already remarked, the type

{ ai : Num qi | ai ∈
⋃
j∈J

Kj }

owes its compactness to the fact that it treats all fields

as independent. In some datasets, the data analyst is

actually interested in the co-occurrence of the differ-

ent record fields, but the syntactic congruence-reduced

type is too big. In this case, the following label-driven

equivalence will be useful. It is the last one we are going

to present.

5.6 Label-driven reduction

When syntactic congruence is too fine but we still want

to preserve information about the different field combi-

nations that are present in a collection of records, the

following equivalence may be used, that refines K by

specifying that key-sets matter.

Definition 10 (L(S1,S2)) Label equivalence of two1.25

structural types S1 and S2, written L(S1,S2), is defined

as follows:

L(S1,S2) ⇔
kind(S1) = kind(S2)

∧ ( kind(S1) = { } ⇒ Keys(S1) = Keys(S2) )

Label-driven reduction (L-reduction) is not as ‘ag-

gressive’ as kind-driven reduction (K-reduction): two

record types are only merged if they have the same

key-sets, but it is not as ‘fine’ as syntactic congruence-

driven reduction: once the key-sets are the same, the

record types are merged even if some keys have differ-

ent types. In this case, the different types associated

to a key are recursively reduced. With respect to array

types, label-driven reduction always fuses them. More

precisely, it always fuses the outermost constructor, and

their contents are then actually fused iff they are label-

equivalent. In this sense, arrays are treated in the same

‘coarse’ way as with kind equivalence. Stability of this1.25

equivalence is immediate, since the fusion of two record

types with the same keys yields a record type with the

same keys.

Example 7 Consider again a collection of records whose

type is either {a : Num, b : Num}, {a : Num, b : Str} or

{a : Num, c : Str} (Examples 3 and 5). With label-driven3.1

reduction the final type is {a : Num, b : (Num+Str)}+{a :

Num, c : Str}.

Example 8 Consider again the two types of the second

part of Example 2: T1 = [ {l : Num + Str,m : Num} ]

and T2 = [ {l : Str,m : Num} ]. While
.
=-reduction keeps

them separated, L-reduction fuses the two types, and

we have the following result:

Reduce(T1, T2,L)
.
= T1

The type T1 + T2 is actually equivalent to T1, in the

sense that they have the same semantics, hence, in this

specific case, the size reduction does not entail any in-

formation loss.

L-reduction and
.
=-reduction may look very similar,

since the types of the elements in a collection tend to

differ mostly in the presence or absence of some record

fields: if we consider Example 4, L-reduction yields in

that case exactly the same type as
.
=-reduction. Actu-

ally, the two relations behave, in practice, very differ-

ently, due to the presence of nested records. The fol-

lowing example illustrates this fact through a realistic

situation.

Example 9 Consider a massive collection of records rj
with j ∈ J , each with the same set of top-level keys
⦃ a1, . . . , a10 ⦄, each rj containing ten nested records

rj1, . . . , r
j
10:

rj = {a1 : rj1, . . . , a10 : rj10}

Assume that, for each i in 1..10, the records in the col-

lection Ci = 〈〈rji | j ∈ J〉〉 choose their keys out of a

set of ten, eight mandatory and two optional, and as-

sume that each of these collections Ci exhibits all the

four possible combinations that derive from the two op-

tional fields. Using label-driven reduction, the resulting

type is

{a1 : T1, . . . , a10 : T10}

where each Ti is the union of four record types, having

10, 9, 9, 8 fields. Hence we can say that each Ti has a

total of 36 fields, hence the final type has a total of 10

top-level fields plus 36 ∗ 10 fields in the nested types:

370 fields. This is four times bigger than the 110 fields

(10+10*10) type that would be inferred byK-reduction.

If we consider
.
=-equivalence, then we observe that this

collection may exhibit 410 different types, since each

of the 10 top level fields has 4 different possibilities

for the associated nested type. Each of these different

types contains 10+10∗n fields, with 8 ≤ n ≤ 10, hence,
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the resulting type has around (410)∗ (10 + 10∗9) fields,

which is more than 108. If the fields are independent and

the collection is really massive, a big fraction of the 410

possibilities may actually be present in the data. We can

make the example more homogeneous by assuming that

we have two optional fields at the top level as well. In

this case, the sizes of both the L-reduced type and of the
.
=-reduced increase by four, hence we have a K-reduced

type of size 110, an L-reduced type of size almost 1500

and a
.
=-reduced type of size 4∗108. Hence, in presence

of nested records, the L-reduced type can be much more

compact than the
.
=-reduced type.

5.7 Discussion

We do not believe there is a way to objectively assess

the ‘best’ level of reduction in our applicative scenario,

where the type is used as a human-readable formal de-

scription of a dataset, since different phases of data ex-

ploration need different levels of abstraction. We have

applied our techniques to some datasets and our subjec-

tive experience is that kind-driven reduction and label-

driven reduction are the two forms that are more useful,

while the greater detail provided by syntactic congru-

ence seems a bit too fine on realistic datasets. Kind-

driven reduction seems best suited for a first look at the

data, especially when the dataset is big and not very

regular. Label-driven reduction is interesting in order

to drill down on label correlation, in a second phase,

although it runs the risk of producing types that are

too big to be human-readable.

In the experimental section we are going to be more

precise about this, producing a synthetic and numerical

analysis of our experience.

Many other equivalence relations are interesting, but

we believe that the analyst should not be presented with

too many options, since this risks to be more confus-

ing than helpful. We believe that the right direction to

further increase the flexibility is the definition of an in-

teractive workbench. Examples of different equivalences

and a short discussion of the interactive approach are

presented in Section 8.1.1

5.8 Properties

Our reduction operator enjoys three main properties:

inclusion, associativity, and commutativity. We formal-

ize them here, while their proofs are in the Appendix.4.4

Inclusion (Theorem 2) is the fundamental property

that specifies that the reduced type includes its two

arguments, and ensures, by Theorem 5, that the in-

ferred type is sound. Commutativity and associativity

enable an efficient distributed map-reduce implementa-

tion, hence ensuring massive scalability.

We start with a technical lemma.

Lemma 1 (Invariant) The following properties hold,

for any SKER E. 3.8

1. For any two E-reduced types T1, T2,

Reduce(T1, T2, E) is E-reduced

2. For any two E-reduced structural types S1, S2,

Fuse(S1,S2, E) is E-reduced

The essential property of the Reduce operator is the

fact that it returns a supertype of its arguments.

Theorem 2 For any SKER E and for any two E- 3.8

reduced types T1 and T2:

T1 + T2 ≤ Reduce(T1, T2, E)

For any two E-reduced structural types S1 and S2:

E(S1,S2) ⇒ S1 + S2 ≤ Fuse(S1,S2, E)

The two last fundamental properties of Reduce are

commutativity and associativity, that enable an effi-

cient distributed map-reduce implementation.

Theorem 3 (Commutativity) The following two prop-

erties hold, for any KER E.

1. Given two E-reduced types T1, T2, we have:

Reduce(T1, T2, E)
.
= Reduce(T2, T1, E)

2. Given two structural E-reduced types S1 and S2 we

have:

E(S1,S2) ⇒ Fuse(S1,S2, E)
.
= Fuse(S2,S1, E)

Theorem 4 (Associativity) The following two prop-

erties hold, for any stable KER E. 3.8

1. Given three E-reduced types T1, T2 and T3, we have

Reduce(Reduce(T1, T2, E), T3, E)
.
= Reduce(T1,Reduce(T2, T3, E), E)

2. Given three E-reduced structural types S1, S2 and

S3 that are mutually E-equivalent, we have

Fuse(Fuse(S1,S2, E),S3, E)
.
= Fuse(S1,Fuse(S2,S3, E), E)
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6 Schema Inference

6.1 Schema Inference Rules

We can finally define our type-inference process. 3.1

In this paper we use schema and type as synonyms.

Schema inference is the process of inferring a schema (or

type) for a JSON collection, and is guided by the rules

described in Figure 6. The judgments are parametrized 1.13

over a KER E, which is used by the Reduce operator.

Each rule allows one to infer the type of the value indi-

cated in the conclusion (part below the line) in terms

of types recursively determined in the premises (part

above the line). Rules with no premises specify the ter-

minal case of the process. Judgment `E J : S states

that a JSON expression J has a structural type S, while

`E J1, . . . , Jn :c T states that T is a type for the col-

lection J1, . . . , Jn.

The type rules transform atomic values and records

into the corresponding types in the obvious way. Ele-

ments of an array are treated as a collection, and the

collection type becomes the internal type of the array.

The rule (TypeCollection) is the core of our ap-

proach. It requires the input collection to be split until

singletons are met. At that point rule (TypeSingle)

invokes elementary type inference, and then the results

are combined using the merging function Reduce. The1.15

rule is non-deterministic, but the final result does not

depend on the choice of the split point since Reduce is

associative.1.15

The following lemma states that every type that is

inferred is always E-reduced, which specifies a formal

relation between type inference and the E equivalence

upon which it depends.

Lemma 2 (Invariant) For any JSON expressions J ,

Ji, for any structural type S, type T , SKER E, the

following properties hold.

1. `E J : S ⇒ S is E-reduced

2. `E J1, . . . , Jn :c T ⇒ T is E-reduced

The following theorem states soundness of typing.

We would like to stress that, although we focus on a

specific Reduce function, soundness holds for any choice

of Reduce(T1, T2, E) that satisfies the inclusion property

of Theorem 2, while determinism of the result only de-

pends on associativity.1.15

Theorem 5 For any SKER E, for any JSON expres-

sions J, J1, . . . , Jn:

`E J : S ⇒ J J K ∈ JS K
`E J1, . . . , Jn :c T ⇒ ⦃ J J1 K, . . . , J Jn K ⦄ ⊆ J T K

Proof We prove it by mutual induction on the size of

the inference proof and by cases on the last applied

rule. The base rules are trivial. The cases for the record

and array rules are an immediate consequence of the

semantics of records and arrays. The empty collection

rule is trivial and the singleton rule follows immediately

by induction. For the crucial (TypeCollection) rule,

we know by induction that

⦃ J J1 K, . . . , J Ji K ⦄ ⊆ J T1 K
⦃ J Ji+1 K, . . . , J Jn K ⦄ ⊆ J T2 K

By Theorem 2,

T1 ≤ Reduce(T1, T2, E) and T2 ≤ Reduce(T1, T2, E)

Hence, by transitivity, we have that

⦃ J J1 K, . . . , J Ji K ⦄ ⊆ J Reduce(T1, T2, E) K
⦃ J Ji+1 K, . . . , J Jn K ⦄ ⊆ J Reduce(T1, T2, E) K

hence

⦃ J J1 K, . . . , J Jn K ⦄ ⊆ J Reduce(T1, T2, E) K.

It is worth noticing that schema inference does not di-

rectly exploit the full expressiveness of the schema lan-

guage: for example, optional types and union types do

not appear in the inference rules. These operators are

only introduced by the Reduce function.

7 Experimental Evaluation

This section presents the results of the experimental

evaluation that we performed to assess our claims on

precision, concision, and efficiency.

7.1 Implementation

Our implementation is based on Apache Spark, a well-

adopted framework for the parallel processing of large

datasets. One of the most appealing features of Spark

is its ability to keep large datasets into main memory,

which enables the fast processing of complex analytic

tasks. We implemented our tool by using the functional 1.21

programming language Scala, as it makes the definition

of inductive operators and the use of higher order func-

tions quite easy. Scala allowed us to implement both

the type inference and the type fusion algorithms in a

straightforward manner starting from their respective

formal specifications.

To run our inference technique on the Spark cluster,

we used a program consisting of a map transformation

that infers a type for each input JSON object; a reduce

action is then used to merge the resulting types.
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(TypeNull)

`E null : Null

(TypeBool)

`E true/false : Bool

(TypeNumber)
n ∈ Number

`E n : Num

(TypeString)
s ∈ String

`E s : Str

(TypeRec)
∀i. `E Ji : Si ∀i, j. i 6= j ⇒ li 6= lj

`E {l1 : J1, . . . , ln : Jn} : {l1 : S1!, . . . , ln : Sn!}

(TypeArray)
`E J1, . . . , Jn :c T
`E [J1, . . . , Jn] : [T ]

(TypeEmp)

`E ∅ :c ∅

(TypeSingle)
`E J : S
`E J :c S

(TypeCollection)
`E J1, . . . , Ji :c T1
`E Ji+1, . . . , Jn :c T2
n ≥ 2, 1 ≤ i ≤ n− 1

`E J1, . . . , Jn :c Reduce(T1, T2, E)

Fig. 6 Type inference rules.

7.2 Runtime environment

We performed our experiments on a (relatively small)

cluster, consisting of five slave nodes used for storing

and processing the datasets and an additional master

node to coordinate them. Each node is equipped with

two 2.2 GHz 64-bit Intel Xeon CPUs of 10-cores each,

64GB of main memory, and a 1TB RAID hard drive.

We used HDFS 2.7 for the distributed storage of our

datasets, and Spark 2.3.0 as the computation engine.1.3

To take full advantage of the cluster capacity, we used

all its cores, that is 5*2*10=100, and set the memory

to 60 GB per node in all our experiments.

7.3 Datasets

To evaluate our approach we used seven real life datasets:1.2
4.8 three datasets that have been already used in [7], a more

recent version of the Wikidata than the one initially

used in [7], and three new datasets that were obtained

from new sources; these datasets are listed below.

– The GitHub dataset [19] containing objects corre-

sponding to pull requests metadata generated upon

each call to the GitHub web service. This dataset

does not use arrays, but it represents a good testbed

for measuring the effect of the presence of different

sets of fields in different records.

– The Twitter’16 dataset [19] containing tweet records

describing metadata about tweets, as well as a few

delete records, which correspond to metadata gener-

ated upon delete requests. This dataset is interest-

ing because it mixes two kinds of objects, but also

because it uses arrays quite intensively.

– The NYTimes dataset, crawled using the NYTimes

articlesearch API call, containing metadata about

the NYTimes articles.2 An interesting feature of this

2 https://developer.nytimes.com

dataset is the variability of the structure attached

to the same field in different instances, which dis-

tinguishes it from the previous datasets.

– The Wikidata dataset, that comprises more than 43

million records (501GB total size), and was obtained

from the official repository by taking the 16/06/2018

snapshot.3 Being a JSON representation of the Wiki-

media knowledge base, the objects in this dataset

follow a rather regular structure and do not contain

many variations of the structure of the same field

as in the NYTimes dataset. However, the dataset

violates the basic principle of schema design, that

is, the distinction between data and structure. For

instance, in many fields the keys carry some infor-

mation about the instances they describe (like iden-

tifiers or language code) instead of encoding the in-

formation as the value of a specific field. This design

choice has a dramatic impact on the size of the in-

ferred schema (whether we use our technique or the

Spark one) which becomes very large as it is not

possible to rely on field keys to fuse similar types.

Hence, this dataset is quite interesting since it al-

lows us to study the limitations of our approach, for

example the limits of the size of the schemas that

we can manage.

– The Twitter’18 dataset, obtained from the Kaggle

repository, and containing tweet records collected

during the 2018 Russian election campaign.4 This

dataset uses a more recent API version than the

Twitter’16 one, and this is reflected by the increase

of the average number of fields in the records (39

versus 23 in Twitter’16). This dataset is interesting

due to the existence of many optional fields.

3 https://dumps.wikimedia.org/wikidatawiki/entities/
4 https://www.kaggle.com/borisch/

russian-election-2018-twitter
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– The VK dataset, also obtained from Kaggle and

related to the 2018 Russian election.5 It contains

records describing interactions of users in the VK so-

cial networking site and, like the NYTimes dataset,

features some structural variations that are not fully

described in the API Documentation.6

– The Core dataset, which is the largest one (508 GB),

obtained from the Core website, exposing informa-

tion about research articles aggregated from many

open repositories worldwide.7 The current dataset

corresponds to the dump of March 1st, 2018, which

describes more than 123 million articles. The records

in this dataset follow a fixed schema that is docu-

mented in the website8 quite precisely except in the

case of arrays containing records which are approx-

imated to arrays of strings; this shows that even in

very regular and well-documented datasets one can

still discover that the actual structure of data is dif-

ferent from what is documented. This dataset serves

mostly to study a situation with a very large dataset

having a very regular schema.

These datasets are further described in Table 1,

which reports basic statistics such as their size in GB,

the number of their objects, the average size of the tex-

tual representation of each of these objects in KB, the

average size of the corresponding abstract syntax tree

(AST), and the average height of the AST.

7.4 Spark Dataframe Type inference

Spark is endowed with a schema inference mechanism

that can be invoked on an object of the Dataframe

class. This mechanism is efficient and somehow precise

as it allows one to reveal, for each record, the set of

its fields with their associated types and, for each ar-

ray, a compact representation of its type; this compact

representation is obtained by a fusion mechanism that

bears many similarities with our kind equivalence ap-

proach. However, the lack of union types prevents Spark

from precisely representing the situation in which a field

uses a different structure in different instances, forcing

Spark inference to resort to over-approximations. An-

other major limitation of Spark is the impossibility to

distinguish between mandatory and optional fields, de-

spite the presence of a nullable flag. We observed that

the value of this flag is always set to true, and an in-

spection of the Spark source code allowed us to confirm

5 https://www.kaggle.com/borisch/

russian-election-2018-vkcom-user-activity/feed
6 https://vk.com/dev/streaming_api_docs_2
7 https://core.ac.uk
8 https://core.ac.uk/services#dump-structure

that this truth value is never updated. Due to the lack 1.10

of a clear documentation, we illustrate the main dif-

ference between our technique and the Spark inference

by using a sample dataset consisting of three records

sharing three fields: one of them (the coord field) has

a different structure in each record, and another one

(email) is present in one record only. 4.8

{first: "al", last: "jr", coord:[ ]}

{first:"al", last:"jr", coord: null}

{first: "li", last: null, coord: {long: 12,

lat: 45}, email: "abc@ef"}

Thanks to union types, the inferred K-type captures
the structure variability of coord as follows:

{first:Str, last:Str+Null, coord: [ ]+ Null +

{long:Num, lat:Num}, email?: Str}

Spark, instead, which does not use union types, co-

erces the type of coord to an array of Strings and raises

an error by dubbing the inferred record as corrupted, as

shown in the textual representation below:

root
|−− c o r r u p t r e c o r d : s t r i n g ( n u l l a b l e = true )
|−− coord : array ( n u l l a b l e = true )
| |−− element : s t r i n g ( conta in sNu l l = true )
|−− f i r s t : s t r i n g ( n u l l a b l e = true )
|−− l a s t : s t r i n g ( n u l l a b l e = true )

The containsNull flag, which in principle should pin-

point the presence of null values inside arrays, is always

set to true, hence it is almost useless.

Hence, the Spark inference engine cannot infer many

pieces of information that our technique recovers. To

measure the extent of this information loss, we report in

Table 2, for each dataset, the number of union types and

of optional fields that are inferred by the K-reduction

and which are missing in the types inferred by Spark.

For all the datasets, except Wikidata and Core, the

information loss is quite important. 1.4

While this loss of precision is the main difference be-

tween Spark approach and our K-reduction, we should

not forget that the main difference among our approach

and Spark approach is parametricity: we can choose the

precision level, while Spark is bound to one choice only.

7.5 Efficiency analysis

To evaluate the efficiency of our approach, we measured

the execution time of the inference algorithm for both

equivalences, and compared it with that of the Spark

Dataframe inference; the findings we collected are re-

ported in Table 1. The measured time is the total time

required to: i) load the data from HDFS, ii) run the in-

ference on each data partition in parallel and iii) send
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Dataset GitHub Twitter’16 NYTimes Wikidata VK Twitter’18 Core

Datasets description
Size 13.7 GB 21 GB 21.3 GB 501 GB 5.2 GB 10.7 GB 508.7 GB
# objects 1,000,001 9,901,087 1,184,943 49,013,568 3,036,654 1,945,365 123,986,577
average textual size 14.7 KB 2.2 KB 19.3 KB 11 KB 1.4 KB 5.5 KB 4.4 KB
average AST size 495.46 138.67 1,165.17 878.9 51.38 353.85 54
average AST height 5.0 3.77 5.97 8.4 4.63 5.84 4

Succinctness Results
K-reduction

Map: avg. type size 495.46 135.44 109.74 643.6 48.7 337.5 44.4
Red.: final type size 655 559 139 907,876 554 2,194 83
Red./Map size ratio 1.3 4.12 1.3 1,410 11.4 6.5 1.9

L-reduction
Map: avg. type size 495.46 135.44 128.54 646.7 49.2 338.5 44.4
Red.: final type size 2,979 2,438 384 failed 20,314 130,891 83
Red./Map size ratio 6 18 3 NA 412 387 1.9

Spark Dataframe Inference
inferred type size 627 513 94 908,471 549 2,142 67

Total execution time
K-reduction 60 sec 120 sec 111 sec 37.6 min 36 sec 43 sec 26.9 min
Throughput 234 MB/sec 179 MB/sec 197 MB/sec 227 MB/sec 148 MB/sec 255 MB/sec 322 MB/sec
L-reduction 65 sec 132 sec 123 sec failed 38 sec 50 sec 27.2 min
Spark Dataframe 46 sec 92.5 sec 84 sec 25.8 min 29 sec 27 sec 21.5 min
K-red. vs Spark DF 30 % 29.8 % 32 % 54.8 % 24 % 59 % 25 %

Table 1 Original dataset description, succinctness results, and total execution times.

Data-sets GitHub Twitter’16 NYTimes Wikidata VK Twitter’18 Core
Number of union types 28 46 12 1 5 55 17
Number of optional fields 17 29 28 87,673 104 234 0
Total number of fields 325 278 70 528,027 293 1,179 36

Table 2 Quantification of the amount of structural information that is lost going from K-reduction to Spark Dataframe
inference.

the inferred types to the driver node where they are

merged. We managed to process all datasets except the

Wikidata for which the L-reduction raised an out-of-

memory exception due to the very large number of dif-

ferent key-sets that this dataset contains.

We noticed that the execution time is dominated

by the time to load and parse the data (steps i and

ii) whereas the time to merge the types (step iii) is

very small. This explains why our technique, imple-

mented in Scala with no special optimization, is not

very far in speed from the Spark inference, which is na-

tive. In detail, the average time increase of K-reduction

over Spark inference is 36%, and we infer more precise

schemas, as we discussed. The increase of time from K-

reduction to L-reduction is also quite limited, typically

around 10%.1.24
3.24

7.6 Succinctness analysis

Both tested equivalences produce types that are quite

succinct, and, of course, K-reduction produces more

compact types than L-reduction.94.3

9 The inferred types for each dataset are reported in [1].

We analyze succinctness by comparing the size of

the types that we obtain with the size of the objects.

Some form of size reduction is already obtained upon

the map phase, where each single object is analyzed,

by the fusion of equivalent types that are found inside

an array. The most prominent example of this is ob-

served for NYTimes: the AST size of the average type

is around 9% of the size of the AST of the average ob-

ject (using K-reduction). This is due to the presence of

arrays, which, in this dataset, typically contain 10 ob-

jects, whose type is represented by just one type. On

the other extreme, for the GitHub dataset, the average

AST size of the types is the same as the average AST

size of the records, since here we have no array.

The results after the reduction phase are more in-

teresting. If we ignore the Wikidata dataset, which fea-

tures a serious design issue, the size of the resulting type

for K-reduction is, in the worst case, 11.4 times bigger

than the average size of the single types inferred during

the map phase (VK dataset). For the other datasets,

this increase is even smaller, meaning that JSON value

types are very similar, and that the type that describes
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the entire collection is manageable, and hence can be

reasonably read and understood by the data analyst.

If we consider L-reduction, the size of the resulting

types for VK and Twitter’18 which feature the worst

case are respectively 412 and 387 times bigger than the

average size of the single map phase types. Hence, in

this case, the resulting type is not very easy to read,

because of its size, but it is very informative, as it con-

tains very precise information about the different field

combinations, and can be handled in main-memory. For

the other datasets, the increase remains smaller and the

resulting type is more manageable.

As already observed, it is in general impossible to

decide a priori whether the information gain of the L-

reduction is worth the size increase, since the informa-

tion about field correlations may be of great interest to

the user, hence worth the effort, or it may be totally

irrelevant, depending on his/her need.1.22

7.7 Precision analysis

Despite the unavoidable subjectivity of the ‘precision’

question, one can try and quantify the information gained

going from the K-reduced type to the L-reduced type,

as follows. A record type inferred by K-reduction with

10 different optional fields a,b,. . . ,i,j, may describe two

different extreme situations, one where we only have 2

different actual record shapes, that is two different key-

sets that actually appear in the data (say, ⦃ a ⦄ and

⦃ b, . . . , i, j ⦄), and another extreme situation where ev-

ery subset of ⦃ a, b, . . . , i, j ⦄ describes at least one ac-

tual record shape in the data, hence we have 210 differ-

ent shapes.

In the ‘2 shapes’ situation, the passage from the

K-reduced type to the L-reduced type is definitely in-

teresting. In this case, the L-reduced type would be a

union type with just two addends, and its total size

would be essentially the same as the size of the K-

reduced type, but the gained knowledge would be great:

in the L-reduced type we see how the fields are parti-

tioned in the two kinds of records. In this case we have

a very strong correlation between keys: given two keys,

either the presence of one implies the presence of the

other, or it excludes it.

In any situation that approximates the ‘210 shapes’

situation, on the contrary, the passage is hardly worth

the effort: the L-reduced type is (almost) three orders

of magnitudes bigger than the K-reduced type, which

makes it unreadable, and, moreover, the presence of

a huge number of different sets of labels implies that

label correlation is, generally, weak, and is difficult to

describe and understand.

This observation is obviously affected by the same

subjectivity problems that we previously described, but

is indeed related to a practical observation: a K-reduced

type with n optional fields indicates the possibility of

2n shapes, an L-reduced type with a union of k different

record types indicates the actual presence of k shapes,

hence the distance between 2n and k is an indication of

the information that is gained by going from the first

type to the second.10

To examine our types with respect to this notion of

precision, we compared, for each record type found in

each dataset, the total number of fields, the number of

optional fields computed from the K-reduced type, the

maximal number of its shapes according to this number,

and the actual number of such shapes obtained from the

L-reduced type. Some representative examples of these

numbers are reported in Table 3: every column in the

table describes one record type that is found in the K-

reduced type of the corresponding dataset, compared

with its expanded version in the L-reduced type. For

each dataset we have chosen some record types that

are representative of typical situations.

To better explain the meaning of these numbers,

consider the last column of the NYTimes dataset, which

describes the case of a record type containing 9 String

fields all of which are optional and whose K−type and

L−type are given below while omitting the basic type

of each field. 3.25

K−type

{thumbnailwidth ?, thumbnailheight ?,

thumbnail ?, widewidth ?, wideheight ?,

wide ?, xlargewidth ?, xlargeheight ?,

xlarge ?}

L−type

{thumbnailwidth, thumbnailheight, thumbnail} +

{widewidth, wideheight, wide } +

{xlargewidth, xlargeheight, xlarge}

The K-reduced type is compatible with 29 = 512

combinations of the fields in this record, while the L-

10 We may be more formal, as follows: consider n keys and
a space where every point is a set of shapes, that is, a set of
subsets of ⦃ 1, . . . , n ⦄. In this setting, every L-reduced type
exactly indicates one point of a space whose size is 22n

, hence
each L-reduced type brings exactly the same amount of in-
formation, 2n bits. On the other side, a K-reduced type is, in
general, compatible with many different points in this space,
hence it brings a lower number of bits, that depends on the
number of optional keys, and may be computed for each spe-
cific K-reduced type. We may compare this number with 2n

in order to mathematically quantify the information gain. We
do not pursue this avenue because this model embeds the un-
realistic idea that every distribution of shapes has the same
probability, and because we do not believe that this model,
although mathematically coherent, is a useful model of the
information needs of the data analyst.
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Github Twitter’16 NYTimes VK Twitter’18
number of optional
fields in the record

1 2 2 4 2 3 3 13 1 1 3 3 5 9 13 9 5 2 8 3 9 7 3 1 3 3

total number of fields
of the record

17 6 30 9 42 3 3 23 21 4 5 9 6 9 14 17 12 3 18 8 39 7 4 3 4 4

maximal
number of shapes

2 4 4 16 4 8 8 8192 2 2 8 8 32 512 8192 512 32 4 256 8 512 128 8 2 8 8

exact
number of shapes

2 3 3 2 3 4 5 5 2 2 4 5 10 3 13 13 32 4 56 4 40 102 3 2 2 4

Table 3 Comparison of the information obtained from K reduction and L reduction. Every column describes one record type
that is found in the dataset.

reduced type describes the actual shapes that appear,

that are just 3.

This example also shows the practical interest of the

extracted schemas. The first schema allows the user to

know which fields may be present in the data, which is

essential in order to know which kind of information can

be extracted and may also become the basis for some

well-known types of optimization. The second schema

gives a much richer information, showing that the differ-

ent fields are always grouped in a way that is extremely

regular and that may help the analyst understand their

meaning.4.6, 4.7

From Table 3 we notice that, in general, the two ex-

treme cases that we cited before (n >> 1 optional fields

with either 2n actual shapes, or 2 actual shapes only)

in practice never happen, hence there is no situation

where one choice clearly dominates the other one. We

observe that the percentage of optional fields has a lot

of variability, going from a 5% up to a 100%. We no-

tice that the number of different shapes for each record

type is generally low but not negligible: we have a lot of

situations with 4 or 5 different shapes, which indicates

a size expansion in the type that is not a priori unbear-

able but that has a cost that must be justified by the

needs of the data analyst. On the other side, there are

some situations with a high number of optional fields

and a low number of actual shapes, where the expan-

sion from the K-reduced type to the L-reduced type

may be quite informative, such as the NYTimes exam-

ple that we discussed before. Such situations occur in

almost every dataset.

We are aware of the existence of mathematical ap-

proaches to establish an ‘optimum’ balance between size

and precision for an inferred schema, such as the one

based on the Minimum Description Length used in [21]

for the DTD inference of an XML document, but our

inspection of these real-world datasets seems to indicate

that such a mathematical ‘optimum’ does not make

sense here: the optimal choice is typically not objec-

tive but depends on the current needs of the analyst.

We believe that, in a typical situation, a data analyst

may use the K-reduced type in order to gain a first un-

derstanding of data structure, and may then use the

L-reduced type to get a better understanding on some

specific record types.

7.8 Scalability analysis

To assess the scalability we need to use datasets of

increasing size. While the easiest way to build such

datasets is by concatenating the original ones several

times, this multiplication process increases the homo-

geneity of the datasets, which, in principle, may in-

fluence the result; this suggests the adoption of a di-

vision approach, where the testbed comprises bigger

and bigger fractions of the original dataset, such as

the 20%, 40%, 60%, 80%, 100%. As we wanted to ex-

tend the scale of our experiments up from the size of

our datasets, we favour a division+multiplication ap-

proach, where we used both the five fractions above and

the datasets obtained by copying the original datasets

from 2 up to 10 times.11 We do not include the Wiki-

data and the Core datasets in this analysis as they are

already large enough and suffice to show that our ap-

proach scales to 500 GB, at least with the K-reduction.

The execution times for the remaining datasets are

reported on Figure 7. We first observe that the graphs 1.23

are sub-linear in the division area and linear in the mul-

tiplication area, showing that the algorithm scales with

the size of the analyzed data. The sub-linearity in the

division area can be explained by the architectural de-

sign of Spark which is impacted by the data organiza-

tion in the HDFS storage: when the dataset to process

is small enough to fit in fewer blocks than the number of

available cores, Spark uses only one wave of execution

to process this dataset, which avoids any overhead due

to the synchronization between subsequent executions

waves. All the datasets we obtained using the division

approach have been processed within one wave of ex-

ecution, which explains the sub-linearity, as shown in

11 In the case of VK we multiplied the original datasets 4,
6, . . . , 20 times to reach a minimum size of 100 GB as the
largest size.
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Figure 7 (f), where we focused on the “division” zone

for the VK dataset.

We also notice that the overhead of our algorithm

with respect to the native Spark algorithm grows with

the size increase no matter the dataset at hand. This

growth is entirely due to the data loading phase which,

again, is better dealt with in the Spark native inference.

One final observation that we draw from an inspec-

tion of the execution log is that our algorithm uses

the full computational resources of the cluster (the 100

cores of all node) when processing our datasets, which

explains its excellent performance.

8 Extensions

In this work we have presented a general framework

for the distributed inference of type information about

JSON data. We kept the base type system as simple as

possible, but there are many extensions that would be

quite interesting in practice, such as:

– quantitative types;

– constraints over simple types;

– enumeration types;

– variant types;

– tuple types;

– keyset equivalence;1.1

– interactive summarization;

– difference types.

We give here a brief introduction for each of them.

Quantitative types A distributed process of type infer-

ence may collect quantitative information about each

variant of the data and about the average, minimum,

or maximum length of the arrays. This is the most in-

teresting extension of the mechanism that we present

here, and is presented in detail in [9].

Constraints over Simple Types JSON schema [5] allows

one to define some constraints on the values of simple

types, such as size bounds for numbers, being a multi-

ple of a specific integer for integers (it distinguishes be-

tween integers and numbers), length bounds for strings,

adherence to a specific format or to a regular expression

for strings. Each of this constraints is, in practice, quite

useful for somebody who needs to interpret a dataset,

and most of them are quite trivial to integrate in our

framework, with the notable exception of regular ex-

pressions.

For example, one may integrate most constraints

by, first of all, extending the syntax of base types with

constraints indicators, as follows.

B ::= Null | Bool | BN | BS Basic types

BN ::= Num(i:j) | Num(i:j,Factors(S)) Numeric types

BS ::= Str(i:j,Formats(S)) String types

Individual type inference would first associate a num-

ber n to the trivial bounds (n : n), and an integer i to

the set of its factors: i : Num(i:i,Factors(factorize(i))).

The fusion function, whenever two types of the nu-

meric kind are fused, would compute the minimal upper

bound, with respect to the subtype relation, that is, the

strongest constraint that is implied by both. Hence, the

upper bound between Num and Num is Num. The upper

bound between two size intervals is the smallest interval

that includes both of them. Finally, the factors multi-

sets would be intersected when two types are merged,

in order to only keep the common factors. This process

is commutative, associative, and sound (meaning that

it yields a supertype of the merged types), and very

efficient to implement.

Lengths of strings can be computed in the same way

and, if a fixed set of formats is provided, it is also simple

to compute in a distributed way the subset of formats

that a set of strings satisfies. The problem of the dis-

tributed inference of a useful regular expression is much

more difficult, and we leave it open for future research.

Enumeration Types In our exploration, we found that it

is quite common to have fields that only assume few dif-

ferent values, and this is a very valuable piece of infor-

mation. The formal description of an enumeration type

with atomic values is very simple – we would just ex-

tend the corresponding kind with an enumeration type.

B ::= Null | Bool | BN | BS Basic types

BN ::= Num | NumEnum{n1, . . . , nj} Numeric types

BS ::= Str | StrEnum{s1, . . . , sj} String types

Consider for example string types. We would con-

sider all string types as mutually equivalent, hence they

would always be fused. For any string s we would first

infer the type StrEnum{s}. Fusion would depend on a

threshold k: the fusion of two enumeration types would

produce their union if the size of the result is less than

k, while it would produce the generic type Str, possi-

bly enriched with constraints, when the size is above k.

The fusion of Str and an enumeration type would yield

Str. Once again, the process is clearly commutative,

associative, and sound.
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Table 1

Size (GB) K-Based L-Based Spark Dataframe

2.7 9.635 10.401 17.04
5.4 12.671 12.322 27.875
8.2 18.364 34.702 39.584

11.1 19.563 30.987 42.211
13.70 59.964 65.556 45.88
27.50 111.737 114.858 77.887
41.20 168.413 168.781 111.668
55.00 212.926 224.876 144.981
68.70 270.703 277.603 180.921
82.40 319.214 333.192 207.309
96.20 383.011 386.493 235.746
109.90 422.035 448.613 268.548
123.60 471.871 501.596 306.228
137.40 552.789 558.95 329.721
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Table 1

Size (GB) K-Based L-Based Spark Dataframe

4.2 10.538 29.331 10.62
8.4 22.831 43.927 13.108

12.6 24.616 83.774 15.376
16.8 29.41 94.751 17.446
21.0 132.451 120.065 92.49
41.9 224.126 228.262 156.055
62.9 347.743 342.251 239.831
83.8 458.984 458.384 308.243

104.8 565.96 567.861 394.523
125.8 671.253 683.194 459.881
146.7 801.207 807.56 550.455
167.7 923.422 930.28 603.322
188.6 1037.46 1066.29 682.343
209.6 1170.16 1173.7 738.968
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(a) Github (b) Twitter

Table 1

Size (GB) K-Based L-Based Spark Dataframe

4.4 15.009 32.893 10.84
8.7 17.28 53.479 13.051

12.8 22.74 75.935 14.848
16.9 28.628 96.276 17.256
21.3 111.365 123.752 83.877
42.7 213.081 228.437 141.831

64 325.337 337.183 197.818
85.4 439.221 447.299 267.89

106.7 557.199 557.256 327.323
128.1 655.958 680.42 395.361
149.4 754.458 799.345 447.478
170.8 861.844 890.338 520.92
192.1 1000.32 1019.75 576.068
213.5 1086.53 1156.53 634.164
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VK18

Size (GB) Size (GB) K-Based L-Based Spark Dataframe

1.20 7.433 8.0815 5.589
2.30 7.172 12.769 6.4805
3.40 9.7695 18.8055 8.176
4.30 11.8765 23.0355 8.7415

5.20 5.20 35.967 37.963 29.043
10.4 10.4 76.705 73.765 54.659

20.80 20.80 96.565 96.759 76.358
31.20 31.20 131.051 139.435 104.319
41.60 41.60 174.247 189.756 134.548
52.00 52.00 215.641 241.485 168.193
62.40 62.40 266.733 304.722 187.256
72.80 72.80 307.82 343.08 217.855
83.20 83.20 343.336 386.064 248.487
93.60 93.60 396.729 431.749 279.841

104 104 436.219 481.72 313.074
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(c) NYTimes (d) VK 2018

Size (GB) K-Based L-Based Spark Dataframe

2.2 7.99 12.765 10.58
4.4 16.8 17.428 11.959
6.5 18.4 19.961 13.022
7.8 19.64 22.261 14.471

10.7 79.202 79.567 49.425
21.5 123.447 127.009 88.816
32.2 183.253 174.354 132.512

43 229.493 226.491 156.89
53.7 292.176 287.732 195.295
64.4 353.195 350.977 228.373
75.2 409.832 401.112 277.375
85.9 469.902 456.043 309.049
96.7 527.608 516.829 346.368

107.4 592.452 571.492 380.523
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(e) Twitter 2018 (f) VK 2018 close-up for the “division” experiment

Fig. 7 Scalability results.
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Variant Types Variant types are a common jargon where,

in a record, the value of a discriminator field dictates

the structure of the rest of the record. We can easily ex-

press this fact using enumerated types and union types,

as in the following example.

{Type : StrEnum{′′person′′},Name : Str,Age : Num}
+ {Type : StrEnum{′′org′′},Name : Str,Address : Str}

Our algorithm, extended with enumeration types,

would indeed infer that type if we used L-equivalence

or
.
=-equivalence. If we use K-equivalence, hence declar-

ing that we are not interested in distinguishing different

label combinations, our algorithm would infer the fol-

lowing type instead.

{Type : StrEnum{′′person′′,′′org′′},Name : Str,

Age : Num?,Address : Str?}

Hence, enumeration types seem to provide an inter-

esting approach to the problem of variant types.

Tuple Types In type theory, tuple denotes an ordered

structure where the meaning of the components, hence

their type, is not indicated by a label but by their po-

sition.

In JSON, there are data sets where records such as

{Name : ′′John′′,Age : 23} are systematically encoded

as arrays [′′John′′, 23]: such an array is used as a tuple:

the size is fixed, and the position encodes the mean-

ing of the field. This is for example the case for a list

of coordinates stored as [[1, 1], [1, 2], [2, 3]], rather than

[{x : 1, y : 1}, {x : 1, y : 2}, {x : 2, y : 3}].
In order to capture tuple types, we could consider,

as in JSON schema, two different classes of array types,

as in the following syntax.

A ::= [T ∗] | [T1, . . . , Tn] Array Types

Here, a type [T ∗] is our current array type, that al-

lows arbitrary repetitions of T , while [T1, . . . , Tn] only

allows exactly those types in exactly that order, hence

being a subtype of the weaker type [(T1 + . . . + Tn)∗],
that imposes no order, and allows each Ti to appear an

arbitrary number of types. The distributed inference is

not very difficult, but we will not illustrate it here for

reasons of space.

Keyset Equivalence The L-equivalence is often too ver-

bose while the K-equivalence hides any correlation in-

formation. It is often the case that one is interested in

the correlation of two or three keys only, and would

not like to go to the full size of L-equivalence. In this

case, we may define a notion of Keyset-equivalence,

parametrized over a set of keys K , such that two record

types are identified iff they coincide with respect to the

presence of the keys in K : 1.1, 3.26

Definition 11 (KSK (S1,S2)) Keyset-equivalence of two

structural types S1 and S2, with respect to a set of keys

K , written KSK (S1,S2), is defined as follows:

KSK (S1,S2) ⇔
kind(S1) = kind(S2)

∧ ( kind(S1) = { } ⇒
(Keys(S1) ∩K ) = (Keys(S2) ∩K ) )

Hence, the analysis of a collection of records with

respect to KS⦃ a,b ⦄ would show the correlation between

a and b: it would create four different groups if all the

combinations of (a, b) are present, just two groups {a :

. . . , . . .} + {b : . . . , . . .} if they are alternative, and so

on. 1.1

The amount of intermediate relations between K
and L is infinite. One may also consider, for example,

a refinement of KSK where all keys of K must also be

associated to types with the same set of kinds, and this

may be iterated for a fixed number of levels. 1.1

While we believe that the practical interest of schemas

that are intermediate in size between the two extremes

that we studied is absolutely real, and we believe that

field correlation is a crucial piece of information, we

think that managing two relations is the maximum level

of complexity that should be inflicted upon the ana-

lyst. For this reason, rather than pursuing the avenue

of looking for more equivalences, we think that the most

promising direction for giving the analyst more choice

is interactive summarization, that we introduce below. 1.1

Interactive Summarization Since no level of summa-

rization is ideal, it would be useful to implement an

interactive workbench where types are first presented

in their most summarized form, while the data analyst

has the possibility of interactively expanding some in-

ternal node. For example, she/he may ask the system

to expand a record node collapsed under K-equivalence

into a union of many record types, union that is ob-

tained by analyzing the corresponding records accord-

ing to a finer equivalence. This raises questions about

the exact meaning of this request, since our reduction

uses the same equivalence all over the dataset, and it

is not obvious how to extend it to deal with different

equivalences. This also raises questions about the best

implementation of this interactive exploration.

Difference Types While Reduce(T,U,E) is a summa-

tion operation, there are situations where a difference

operation between types would be useful. For example,
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in order to compare two different versions of the same

dataset, or two different datasets. This is an open re-

search issue.

9 Conclusions

We presented an approach to the problem of the au-

tomatic inference of a type for a massive collection of

JSON data. The main features of our approach are:

– it can be implemented in a distributed way, hence

it can scale over massive data collections;

– it is parametric, hence it can be tuned for different

needs;

– it is based on a rigorous formal definition, which en-

ables formal proof of its properties, easy comparison

with other approaches, and the design of extensions

and variations.

The approach lends itself to different extensions,

which we sketched in the paper. As future work we

plan to design, study and experimentally analyze some

of these extensions.
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A Proofs of the properties of Reduce

We present here the proofs of the main theorems.
We first introduce a bit of notation that will be used in

all the proofs.

Notation A.1 For any SKER E, and any two E-reduced sets 3.8
4.2of structural types M1 and M2, and for any two sets F1, F2 of

triples (ki, Ti, qi), where each Ti is an E-reduced type, we define

the following notation.

M1 \EM2
M
= ⦃ S1 ∈M1 |6 ∃S2 ∈M2. E(S1,S2) ⦄

M1 ∩EM2
M
= ⦃ S1 ∈M1 | ∃S2 ∈M2. E(S1,S2) ⦄

M1 ./EM2
M
= ⦃ Fuse(S1,S2, E)

| S1 ∈M1,S2 ∈M2, E(S1,S2) ⦄

F1 \:: F2
M
= ⦃ (k1, T1, q1) ∈ F1

|6 ∃(k2, T2, q2) ∈ F2. k1 = k2 ⦄
F1 ∩:: F2

M
= ⦃ (k1, T1, q1) ∈ F1

| ∃(k2, T2, q2) ∈ F2. k1 = k2 ⦄
?(F)

M
= ⦃ (k, T , ?) | (k, T , q) ∈ F ⦄

F1 ./:: F2
M
= ⦃ (k1,Reduce(T1, T2, E), q1 · q2)

| (k1, T1, q1) ∈ F1, (k1, T2, q2) ∈ F2 ⦄

These operators allow us to rewrite the definition of Reduce

and Fuse as follows.

Lemma A.1

Reduce(T1, T2, E)
.
= ⊕( ◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1 )

Fuse(R1,R2, E)
.
= { �R1 ./:: �R2 ∪ ?(�R1 \:: �R2) ∪ ?(�R2 \:: �R1) }

Lemma A.2 For any SKER E, and any two E-reduced types T1 3.8
and T2, the sets ◦T1 ∩E ◦T2, ◦T2 ∩E ◦T1, and ◦T1 ./E ◦T2, are 4.2
all E-distinct, and, for each pair of them, the E relation defines

a bijective function between the two.

Proof The sets ◦T1 ∩E ◦T2 and ◦T2 ∩E ◦T1 are E-distinct since
each is a subset of a set that is E-distinct. The relation E

defines an isomorphism between these two sets: every ele-
ment of ◦T1 ∩E ◦T2 E-corresponds to at least one element
of ◦T2 ∩E ◦T1 by construction, and it cannot E-correspond
to two of them because, by transitivity, they would be E-
equivalent, and the type T2 would then not be E-reduced.
The same holds in the other direction, hence E defines a bi-
jection, and it also defines a bijection between ◦T1 ∩E ◦T2 and
the following set of pairs, mapping every S1 to the only pair
(S1,S2) where E(S1,S2):

⦃ (S1,S2) | S1 ∈ ◦T1,S2 ∈ ◦T2, E(S1,S2) ⦄

To every pair of this set, the element Fuse(S1,S2, E) of ◦T1 ./E ◦T2
corresponds and vice versa. By stability, Fuse(S1,S2, E) is
E-equivalent to both S1 and S2, hence we can reason as
in the previous case to prove, by transitivity, that no two
distinct elements of ◦T1 ./E ◦T2 may be equivalent, hence it
is E-reduced, and E is a bijection between it and both of
◦T1 ∩E ◦T2 and ◦T2 ∩E ◦T1.

Proof of Lemmas 1 and 2 The following properties hold.

1. For any two E-reduced types T1, T2,
Reduce(T1, T2, E) is E-reduced

2. For any two E-reduced structural types S1, S2,

Fuse(S1,S2, E) is E-reduced
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3. For any J, S,
`E J : S ⇒ S is E-reduced

4. For any J1, . . . , Jn, T ,
`E J1, . . . , Jn :c T ⇒ T is E-reduced

Proof The first two items are proved my mutual induction.
The only interesting case is

Reduce(T1, T2, E)
.
= ⊕( ◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1 )

The set ◦T1 ./E ◦T2 is E-reduced by Lemma A.2, and ◦T1 \E ◦T2
and ◦T2 \E ◦T1 are included in ◦T1 and ◦T2, which are E-
reduced by hypothesis. We have hence just to prove that
two structural types coming from two different sets among4.2
◦T1 ./E ◦T2, ◦T1 \E ◦T2 and ◦T2 \E ◦T1 cannot be E-equivalent.
If one of them comes from ◦T1 ./E ◦T2 and the other from
◦T1 \E ◦T2, they cannot be equivalent since the first is E-
isomorphic to ◦T1 ∩E ◦T2, and elements from ◦T1 \E ◦T2 can-
not be equivalent to any element of ◦T2. The same holds for
◦T1 ./E ◦T2 and ◦T2 \E ◦T1. Finally, no element of ◦T1 \E ◦T2
may be equivalent to one element of ◦T2 \E ◦T1 since ◦T1 \E ◦T2
only contains types that are not equivalent to any element of
◦T2.

Properties (3) and (4) follow immediately, since all the
union types that are produced by the judgments for `E J : S
and `E J :c T are actually produced by a Reduce(T1, T2, E)
operation applied to arguments that are E-reduced by induc-
tion hypothesis.

We can now prove the inclusion theorem.

Theorem 3 (Inclusion)

For any SKER E and for any two E-reduced types T1 and3.8
T2:

T1 + T2 ≤ Reduce(T1, T2, E)

For any two E-reduced structural types S1 and S2:

E(S1,S2) ⇒ S1 + S2 ≤ Fuse(S1,S2, E)

Proof By mutual induction.
We want to prove that:

T1 + T2
≤ ⊕( ◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1 )

That is:

⊕(◦(T1 + T2))

≤ ⊕( ◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1 )

That is:

S ∈ (◦(T1 + T2))⇒
JS K ⊆

⋃
S′∈(◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1)

JS′ K

The set ◦(T1 + T2) can be decomposed as follows.4.2

◦(T1 + T2) = (◦T1 ∩E ◦T2) ∪ (◦T1 \E ◦T2)

∪ (◦T2 ∩E ◦T1) ∪ (◦T2 \E ◦T1)

If S ∈ ◦T1 ∩E ◦T2, then there exists S2 ∈ ◦T2 with E(S,S2)
such that Fuse(S,S2, E) belongs to ◦T1 ./E ◦T2, and, by induc-
tion, we know that:

E(S,S2) ⇒ JS K ⊆ JS + S2 K ⊆ J Fuse(S,S2, E) K

The case for S ∈ ◦T2 ∩E ◦T1 is analogous. The other two cases,
S ∈ ◦T1 \E ◦T2 and S ∈ ◦T2 \E ◦T1, are trivial.

We move now to the proof of

E(S1,S2) ⇒ S1 + S2 ≤ Fuse(S1,S2, E)

by cases on the common kind of S1 and S2.
If they belong to an atomic kind, the thesis is immediate.
If they are of array type, then we have S1 = [T1] and

S2 = [T2]. We want to prove:

J [T1] K ∪ J [T2] K ⊆ J Fuse([T1], [T2], E) K
= J [Reduce(T1, T2, E)] K

That is,
J [T1] K ⊆ J [Reduce(T1, T2, E)] K

and
J [T2] K ⊆ J [Reduce(T1, T2, E)] K.

Let us prove the first. Assume that 〈〈V1, . . . , Vn〉〉 ∈ J [T1] K.
This implies that, for any i, we have that Vi ∈ J T1 K.

By induction, J T1 K ⊆ J Reduce(T1, T2, E) K, hence, for any
i, we have that Vi ∈ J Reduce(T1, T2, E) K, hence 〈〈V1, . . . , Vn〉〉 ∈
J [Reduce(T1, T2, E)] K.

The inclusion J [T2] K ⊆ J [Reduce(T1, T2, E)] K can be proved
in the same way.

The last case is that of record types, that is, S1 = { �S1 }
and S2 = { �S2 }.

We want to prove:

J { �S1 } K ∪ J { �S2 } K ⊆ J Fuse({ �S1 }, { �S2 }, E) K

We prove the case for S1, the one for S2 being analogous.

J { �S1 } K ⊆ J Fuse({ �S1 }, { �S2 }, E) K

We rewrite it as follows:

J { S1 } K

⊆ J { (�S1 ./:: �S2) ∪ ?(�S1 \:: ◦S2) ∪ ?(�S2 \:: ◦S1) } K

Consider a record V ∈ J { S1 } K. By definition,

V = ⦃ (k1,V1), . . . , (kn,Vn) ⦄

such that:

1. for any i ∈ 1...n, ∃Ti, qi such that (ki, Ti, qi) belongs to
�S1, and Vi ∈ J Ti K

2. for any (kj , Tj , !) ∈ �S1, a pair (kj ,Vj) is in V.

We want to prove the same properties for V with respect to

{ (�S1 ./:: �S2) ∪ ?(�S1 \:: ◦S2) ∪ ?(�S2 \:: ◦S1) }

We first prove the first property. Assume that the pair 1.19
(ki,Vi) belongs to V. By (1) above, we have a triple (ki, Ti, qi)
in �S1 with Vi ∈ J Ti K. If a matching k exists in S2, then we
have a triple (ki,Reduce(Ti, T2, E), ) in �S1 ./:: �S2. By induc-
tion, J Ti K ⊆ J Reduce(Ti, T2, E) K, hence Vi ∈ J Reduce(Ti, T2, E) K,
as required. If no matching k exists in S2, then we have a triple
(ki, Ti, ?) in �S1 \:: �S2, and Vi ∈ J Ti K holds by hypothesis.

For the second property, every triple (kj , Tj , !) in

(�S1 ./:: �S2) ∪ ?(�S1 \:: ◦S2) ∪ ?(�S2 \:: ◦S1)

comes from the �S1 ./:: �S2 component and, by definition of
q1 · q2, it corresponds to a triple (kj , , !) in �S1, hence V
contains a field with the key kj by hypothesis.

We can now prove that the Reduce(T1, T2, E) operator en-
joys the commutativity and associativity properties that en-
able an efficient distributed map-reduce implementation.

Theorem 4 (Commutativity)



28 Mohamed-Amine Baazizi et al.

1. Given two E-reduced types T1, T2, we have:

Reduce(T1, T2, E)
.
= Reduce(T2, T1, E)

2. Given two structural E-reduced types S1 and S2 we have:

E(S1,S2) ⇒ Fuse(S1,S2, E)
.
= Fuse(S2,S1, E)

Proof Immediate, since the definition is symmetric, modulo
order, and E enjoys symmetry.

We need a simple lemma before proving the main theo-
rem.3.22

Lemma A.3 (Distributivity of join over set union) For

any SKER E, for any E-reduced sets of structural types M1,
M2, M, and for any sets F1, F2, F of triples (ki, Ti, qi), where

each Ti is an E-reduced type, the following equalities hold.

(M1 ∪M2) ./E M = (M1 ./E M) ∪ (M2 ./E M)
(F1 ∪ F2) ./:: F = (F1 ./:: F) ∪ (F2 ./:: F)
M ./E (M1 ∪M2) = (M ./E M1) ∪ (M ./E M2)
F ./:: (F1 ∪ F2) = (F ./:: F1) ∪ (F ./:: F2)

3.22

Proof By definition of ./E :

(M1 ∪M2) ./E M
= ⦃ Fuse(S,S′, E) | S ∈ M1 ∪M2, S′ ∈M, E(S,S′) ⦄
= ⦃ Fuse(S,S′, E) | S ∈ M1, S′ ∈M, E(S,S′) ⦄
∪⦃ Fuse(S,S′, E) | S ∈ M2, S′ ∈M, E(S,S′) ⦄

= (M1 ./E M) ∪ (M2 ./E M)

By definition of ./:::

(F1 ∪ F2) ./:: F
= ⦃ (k,Reduce(T , T ′, E), q · q′)

| (k, T , q) ∈ (F1 ∪ F2), (k, T ′, q′) ∈ F ⦄
= ⦃ (k,Reduce(T , T ′, E), q · q′)

| (k, T , q) ∈ F1, (k, T ′, q′) ∈ F ⦄
∪ ⦃ (k,Reduce(T , T ′, E), q · q′)

| (k, T , q) ∈ ∪F2, (k, T ′, q′) ∈ F ⦄
= (F1 ./:: F) ∪ (F2 ./:: F)

The last two cases are analogous.
3.22

Theorem 4 (Associativity)

The following two properties hold, for any stable KER E.3.8
1. Given three E-reduced types T1, T2 and T3, we have

Reduce(Reduce(T1, T2, E), T3, E)
.
= Reduce(T1,Reduce(T2, T3, E), E)

2. Given three E-reduced structural types S1, S2 and S3 that

are mutually E-equivalent, we have

Fuse(Fuse(S1,S2, E),S3, E)
.
= Fuse(S1,Fuse(S2,S3, E), E)

Proof We proof (1) and (2) by mutual induction.
We first partition each of ◦T1, ◦T2 and ◦T3 in four parts,

that correspond to four possible combinations of ∩E and
\E , as follows.

M23
1 = ⦃ S1 ∈ ◦T1 | ∃S2 ∈ ◦T2. E(S1,S2),

∃S3 ∈ ◦T3. E(S1,S3) ⦄
M23

1 = ⦃ S1 ∈ ◦T1 | ∃S2 ∈ ◦T2. E(S1,S2),
6 ∃S3 ∈ ◦T3. E(S1,S3) ⦄

M23
1 = ⦃ S1 ∈ ◦T1 | 6 ∃S2 ∈ ◦T2. E(S1,S2),

∃S3 ∈ ◦T3. E(S1,S3) ⦄
M23

1 = ⦃ S1 ∈ ◦T1 | 6 ∃S2 ∈ ◦T2. E(S1,S2),
6 ∃S3 ∈ ◦T3. E(S1,S3) ⦄

The partitions ⦃ M13
2 ,M13

2 ,M13
2 ,M13

2 ⦄ of ◦T2 and
⦃ M12

3 ,M12
3 ,M12

3 ,M12
3 ⦄ of ◦T3 are defined in the same way.

Now we can decompose ◦Reduce(T1, T2, E) as follows. In all
of our computations we will make use of distributivity of join
over set union (Lemma A.3).

◦Reduce(T1, T2, E) = ((M23
1 ∪M23

1 ) ./E (M13
2 ∪M13

2 ))
∪M23

1 ∪M23
1 ∪M13

2 ∪M13
2

= ((M23
1 ./E M13

2 ) ∪ (M23
1 ./E M13

2 ))
∪M23

1 ∪M23
1 ∪M13

2 ∪M13
2

Now we compute ◦Reduce(Reduce(T1, T2, E), T3, E). The first
two lines join the components of ◦Reduce(T1, T2, E) that match
some component of ◦T3 with the corresponding component of
◦T3, while the last line lists all the non-matching components
of ◦Reduce(T1, T2, E) and ◦T3.

◦Reduce(Reduce(T1, T2, E), T3, E) =
((M23

1 ./E M13
2 ) ./E M12

3 )
∪ (M23

1 ./E M12
3 ) ∪ (M13

2 ./E M12
3 )

∪ (M23
1 ./E M13

2 ) ∪M23
1 ∪M13

2 ∪ M12
3

By reordering the components, we have the following equation
for ◦Reduce(Reduce(T1, T2, E), T3, E).

◦Reduce(Reduce(T1, T2, E), T3, E) =
((M23

1 ./E M13
2 ) ./E M12

3 )
∪(M23

1 ./E M13
2 ) ∪ (M23

1 ./E M12
3 ) ∪ (M13

2 ./E M12
3 )

∪M23
1 ∪M13

2 ∪M12
3

The same computation for ◦Reduce(T1,Reduce(T2, T3, E), E)
yields the same result with the only exception of the first
term.

◦Reduce(T1,Reduce(T2, T3, E), E) =
(M23

1 ./E (M13
2 ./E M12

3 ))
∪(M23

1 ./E M13
2 ) ∪ (M23

1 ./E M12
3 ) ∪ (M13

2 ./E M12
3 )

∪M23
1 ∪M13

2 ∪M12
3

Hence, we only have to prove that

((M23
1 ./E M13

2 ) ./E M12
3 ) = (M23

1 ./E (M13
2 ./E M12

3 ))

By definition, we have the following equalities.

((M23
1 ./E M13

2 ) ./E M12
3 )

= ⦃ Fuse(S1,S2, E)
| S1 ∈M23

1 ,S2 ∈M13
2 , E(S1,S2) ⦄ ./E M12

3

= ⦃ Fuse(Fuse(S1,S2, E),S3, E)
| S1 ∈M23

1 ,S2 ∈M13
2 ,S3 ∈M12

3 ,

E(S1,S2), E(Fuse(S1,S2, E),S3) ⦄
(M23

1 ./E (M13
2 ./E M12

3 ))

= ⦃ Fuse(S1,Fuse(S2,S3, E), E)
| S1 ∈M23

1 ,S2 ∈M13
2 ,S3 ∈M12

3 ,
E(S2,S3), E(S1,Fuse(S2,S3, E)) ⦄

By stability, both

E(S1,S2) ∧ E(Fuse(S1,S2, E),S3)

and
E(S2,S3) ∧ E(S1,Fuse(S2,S3, E))

can be rewritten as

E(S1,S2) ∧ E(S2,S3),

while Fuse(Fuse(S1,S2, E),S3, E) is equivalent to

Fuse(S1,Fuse(S2,S3, E), E)
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by induction, hence we conclude.

(2) Observe that S1, S2, and S3 have the same kind, by
the hypothesis that they are mutually E-equivalent. We prove
(2) by cases on their kind.

If they have an atomic kind, the thesis follows by defini-
tion of Reduce.

If they are of array type, then we have S1 = [T1], S2 =
[T2], and S3 = [T3], for some T1, T2, and T3, and we have:

Fuse(Fuse([T1], [T2], E), [T3], E)
.
= Fuse([Reduce(T1, T2, E)], [T3], E)
.
= [Reduce(Reduce(T1, T2, E), T3, E)]

Fuse([T1],Fuse([T2], [T3], E), E)
.
= Fuse([T1], [Reduce(T2, T3, E)], E)
.
= [Reduce(T1,Reduce(T2, T3, E), E)]

The thesis follows by case (1) and mutual induction.
The last case is that of record types, that is, S1 = { �S1 },

S2 = { �S2 }, and S3 = { �S3 }.
We will follow the same structure as in the proof of the

first case, that of Reduce(Reduce(T1, T2, E), T3, E).
As in the first case, we partition �S1 in four parts F23

1 ,
F23
1 , F23

1 , F23
1 , according to the existence of a matching field

in �S2 and of a matching field in �S3.

F23
1 = (�S1 ∩:: �S2)∩:: �S3

F23
1 = (�S1 ∩:: �S2) \:: �S3

F23
1 = (�S1 \:: �S2)∩:: �S3

F23
1 = (�S1 \:: �S2) \:: �S3

Now we can decompose �Fuse(S1,S2, E) as follows.3.4

�Fuse(S1,S2, E) = ((M23
1 ∪M23

1 ) ./E (M13
2 ∪M13

2 ))
∪M23

1 ∪M23
1 ∪M13

2 ∪M13
2

= ((M23
1 ./E M13

2 ) ∪ (M23
1 ./E M13

2 ))
∪M23

1 ∪M23
1 ∪M13

2 ∪M13
2

Now we compute �Fuse(Fuse(S1,S2, E),S3, E). The first two
lines join the components of �Fuse(S1,S2, E) that match some
component of �S3 with the corresponding component of �S3,
while the last line lists all the non-matching components of
�Fuse(S1,S2, E) and �S3.

�Fuse(Fuse(S1,S2, E),S3, E) =
((F23

1 ./:: F13
2 ) ./:: F12

3 )
∪ (F23

1 ./:: F12
3 ) ∪ (F13

2 ./:: F12
3 )

∪ (F23
1 ./:: F13

2 ) ∪ F23
1 ∪ F13

2 ∪ F12
3

By reordering the components, we have the following equation
for �Fuse(Fuse(S1,S2, E),S3, E).

�Fuse(Fuse(S1,S2, E),S3, E) =
((F23

1 ./:: F13
2 ) ./:: F12

3 )
∪(F23

1 ./:: F13
2 ) ∪ (F23

1 ./:: F12
3 ) ∪ (F13

2 ./:: F12
3 )

∪F23
1 ∪ F13

2 ∪ F12
3

The same computation for �Fuse(S1,Fuse(S2,S3, E), E) yields3.4
the same result with the only exception of the first term.

�Fuse(S1,Fuse(S2,S3, E), E) =
(F23

1 ./:: (F13
2 ./:: F12

3 ))
∪(F23

1 ./:: F13
2 ) ∪ (F23

1 ./:: F12
3 ) ∪ (F13

2 ./:: F12
3 )

∪F23
1 ∪ F13

2 ∪ F12
3

Hence, we only have to prove that

((F23
1 ./:: F

13
2 ) ./:: F

12
3 ) = (F23

1 ./:: (F13
2 ./:: F

12
3 ))

By definition, we have the following equalities.

((F23
1 ./:: F13

2 ) ./:: F12
3 )

= ⦃ (k,Reduce(T1, T2, E), q1 · q2)
| (k, T1, q1) ∈ F23

1 , (k, T2, q2) ∈ F13
2 ⦄ ./:: F12

3

= ⦃ (k,Reduce(Reduce(T1, T2, E), T3, E), (q1 · q2) · q3)
| (k, T1, q1) ∈ F23

1 , (k, T2, q2) ∈ F13
2 ,

(k, T3, q3) ∈ F12
3 ⦄

(F23
1 ./:: (F13

2 ./:: F12
3 ))

= ⦃ (k,Reduce(T1,Reduce(T2, T3, E), E), q1 · (q2 · q3))
| (k, T1, q1) ∈ F23

1 , (k, T2, q2) ∈ F13
2 ,

(k, T3, q3) ∈ F12
3 ⦄

By induction Reduce(Reduce(T1, T2, E), T3, E) is equivalent to
Reduce(T1,Reduce(T2, T3, E), E), associativity of q′ · q′′ is im-
mediate, hence we conclude.


