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ABSTRACT
We present EntropyDB1, an interactive data exploration
system that uses a probabilistic approach to generate a
small, query-able summary of a dataset. Departing from
traditional summarization techniques, we use the Principle
of Maximum Entropy to generate a probabilistic representa-
tion of the data that can be used to give approximate query
answers. We develop the theoretical framework and formu-
lation of our probabilistic representation and show how to
use it to answer queries. We then present solving techniques,
give two critical optimizations to improve preprocessing time
and query execution time, and explore methods to reduce
query error. Lastly, we experimentally evaluate our work
using a 5 GB dataset of flights within the United States
and a 210 GB dataset from an astronomy particle simula-
tion. While our current work only supports linear queries,
we show that our technique can successfully answer queries
faster than sampling while introducing, on average, no more
error than sampling and can better distinguish between rare
and nonexistent values. We also discuss extensions that can
allow for data updates and linear queries over joins.
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1. INTRODUCTION
Interactive data exploration allows a data analyst to

browse, query, transform, and visualize data at “human
speed” [17]. It has been long recognized that general-
purpose DBMSs are ill suited for interactive exploration [36].
While users require interactive responses, they do not neces-
sarily require precise responses because either the response
is used in some visualization, which has limited resolution,
or an approximate result is sufficient and can be followed

1This is an extended version of the VLDB 2017 paper “Prob-
abilistic Database Summarization for Interactive Data Ex-
ploration” [38].
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up with a more accurate, costly query if needed. Approxi-
mate Query Processing (AQP) refers to a set of techniques
designed to allow fast but approximate answers to queries.
All successful AQP systems to date rely on sampling or a
combination of sampling and indices. The sample can ei-
ther be computed on-the-fly, e.g., in the highly influential
work on online aggregation [24] or systems like DBO [26]
and Quickr [29], or precomputed offline, like in BlinkDB [4]
or Sample+Seek [20]. Samples have the advantage that they
are easy to compute, can accurately estimate aggregate val-
ues, and are good at detecting heavy hitters. However, sam-
pling may fail to return estimates for small populations; tar-
geted stratified samples can alleviate this shortcoming, but
stratified samples need to be precomputed to target a spe-
cific query, defeating the original purpose of AQP.

In this paper, we propose an alternative approach to in-
teractive data exploration based on the Maximum Entropy
principle (MaxEnt). The MaxEnt model has been applied
in many settings beyond data exploration; e.g., the multi-
plicative weights mechanism [23] is a MaxEnt model for both
differentially private and, by [21], statistically valid answers
to queries, and it has been shown to be theoretically opti-
mal. In our setting of the MaxEnt model, the data is pre-
processed to compute a probabilistic model. Then, queries
are answered by doing probabilistic inference on this model.
The model is defined as the probabilistic space that obeys
some observed statistics on the data and makes no other
assumptions (Occam’s principle). The choice of statistics
boils down to a precision/memory tradeoff: the more statis-
tics one includes, the more precise the model and the more
space required. Once computed, the MaxEnt model defines
a probability distribution on possible worlds, and users can
interact with this model to obtain approximate query re-
sults. Unlike a sample, which may miss rare items, the
MaxEnt model can infer something about every query.

Despite its theoretical appeal, the computational chal-
lenges associated with the MaxEnt model make it difficult
to use in practice. In this paper, we develop the first scal-
able techniques to compute and use the MaxEnt model. As
an application, we illustrate it with interactive data explo-
ration. Our first contribution is to simplify the standard
MaxEnt model to a form that is appropriate for data sum-
marization (Sec. 3). We show how to simplify the MaxEnt
model to be a multi-linear polynomial that has one mono-
mial for each possible tuple (Sec. 3, Eq. 6) rather than its
näıve form that has one monomial for each possible world
(Sec. 2, Eq. 2). Even with this simplification, the MaxEnt
model starts by being larger than the data. For example,
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our smaller experimental dataset (introduced in Sec. 7) is 5
GB, but the number of possible tuples is approximately 1010,
which is 74 GB if each tuple is 8 bytes. Our first optimiza-
tion consists of a compression technique for the polynomial
of the MaxEnt model (Sec. 4.1); for example, for our smaller
experimental dataset, the summary is below 200MB, while
for our larger dataset of 210GB, it is less than 1GB. Our
second optimization consists of a new technique for query
evaluation on the MaxEnt model (Sec. 4.2) that only re-
quires setting some variables to 0; this reduces the runtime
to be on average below 500ms and always below 1 second.

As mentioned above, there is a precision/memory tradeoff
when choosing which statistics to use to define the model.
To alleviate this problem, our third optimization develops a
statistic selection technique based on K-D trees that groups
together individual statistics of similar value and uses the
single group statistic in the model rather than the individual
ones. We also explore optimal sorting techniques to encour-
age similar values to be clustered together before building
our K-D trees.

We find that the main bottleneck in using the MaxEnt
model is computing the model itself; in other words, com-
puting the values of the variables of the polynomial such that
it matches the existing statistics over the data. Solving the
MaxEnt model is difficult; prior work for multi-dimensional
histograms [35] uses an iterative scaling algorithm for this
purpose. To date, it is well understood that the MaxEnt
model can be solved by reducing it to a convex optimization
problem [47] of a dual function (Sec. 2), which can be solved
using Gradient Descent. However, even this is difficult given
the size of our model. We managed to adapt a variant of
Stochastic Gradient Descent called Mirror Descent [11], and
our optimized query evaluation technique can compute the
MaxEnt model for large datasets in under a day.

Lastly, to expand on how the MaxEnt model can be used
in a full-fledged database system, we discuss handing data
updates and answering join queries using the MaxEnt model.
We also elaborate on the connection between the MaxEnt
model and graphical models.

In summary, in this paper, we develop the following
new techniques (the asterisked items are new developments
from [38]):

• A closed-form representation of the probability space of
possible worlds using the Principle of Maximum Entropy,
and a method to use the representation to answer queries
in expectation (Sec. 3).

• A compression technique and optimized implementation∗

of the compression for the MaxEnt summary (Sec. 4.1,
Sec. 5.1).

• Optimized query processing techniques, including imple-
mentation details∗ (Sec. 4.2, Sec. 5.2).

• A new method for selecting 2-dimensional statistics based
on optimal matrix reorderings∗ and a modified K-D tree
(Sec. 6)

• Detailed experiments comparing the accuracy of the
MaxEnt summary versus various sampling techniques
(Sec. 7.3).

• Solving time∗ and query runtime evaluations showing our
interactive query speeds (Sec. 7.4.1, Sec. 7.4.2).

• A discussion on how the MaxEnt summary relates to
probabilistic databases and graphical models∗ (Sec. 8).

• A description on how the MaxEnt summary can be ex-
tended to handle data updates and joins∗ (Sec. 8.2).

We implement the above techniques in a prototype sys-
tem that we call EntropyDB and evaluate it on the flights
and astronomy datasets. We find that EntropyDB can an-
swer queries faster than sampling while introducing no more
error, on average, and does better at identifying small pop-
ulations.

2. BACKGROUND
We summarize data by fitting a probability distribution

over the active domain. The distribution assumes that the
domain values are distributed in a way that preserves given
statistics over the data but are otherwise uniform.

For example, consider a data scientist who analyzes a
dataset of flights in the United States for the month of De-
cember 2013. All she knows is that the dataset includes
all flights within the 50 possible states and that there are
500,000 flights in total. She wants to know how many of
those flights are from CA to NY. Without any extra infor-
mation, our approach would assume all flights are equally
likely and estimate that there are 500, 000/502 = 200 flights.

Now suppose the data scientist finds out that flights leav-
ing CA only go to NY, FL, or WA. This changes the estimate
because instead of there being 500, 000/50 = 10, 000 flights
leaving CA and uniformly going to all 50 states, those flights
are only going to 3 states. Therefore, the estimate becomes
10, 000/3 = 3, 333 flights.

This example demonstrates how our summarization tech-
nique takes into account these existing statistics over flights
going to and from specific states to answer queries, and the
rest of this section covers its theoretical foundation.

2.1 Possible World Semantics
To model a probabilistic database, we use a slotted pos-

sible world semantics where rows have an inherent unique
identifier, meaning the order of the tuples matters. Our set
of possible worlds is generated from the active domain and
size of each relation. Each database instance is one possible
world with an associated probability such that the probabil-
ities of all possible worlds sum to one.

In contrast to typical probabilistic databases where a rela-
tion is tuple-independent and the probability of a relation is
calculated from the product of the probability of each tuple,
we calculate a relation’s probability from a formula derived
from the MaxEnt principle and a set of constraints on the
overall distribution2. This approach captures the idea that
the distribution should be uniform except where otherwise
specified by the given constraints.

2.2 The Principle of Maximum Entropy
The Principle of Maximum Entropy (MaxEnt) states that

subject to prior data, the probability distribution which best
represents the state of knowledge is the one that has the
largest entropy. This means given our set of possible worlds,

2Using the MaxEnt principle will generate a probability dis-
tribution that is different from the tuple-independent distri-
bution because the MaxEnt principle does not guarantee
tuple independence.
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PWD, the probability distribution Pr(I) is one that agrees
with the prior information on the data and maximizes

−
∑

I∈PWD

Pr(I) log(Pr(I))

where I is a database instance, also called possible world.
The above probability must be normalized,

∑
I Pr(I) = 1,

and must satisfy the prior information represented by a set
of k expected value constraints:

sj = E[φj(I)], j = 1, k (1)

where sj is a known value and φj is a function on I that
returns a numerical value in R. One example constraint is
that the number of flights from CA to WI is 0.

Following prior work on the MaxEnt principle and solving
constrained optimization problems [10, 47, 42], the MaxEnt
probability distribution takes the form

Pr(I) =
1

Z
exp

(
k∑
j=1

θjφj(I)

)
(2)

where θj is a parameter and Z is the following normalization
constant:

Z
def
=

∑
I∈PWD

(
exp

(
k∑
j=1

θjφj(I)

))
.

To compute the k parameters θj , we must solve the non-
linear system of k equations, Eq. 1, which is computationally
difficult. However, it turns out [47] that Eq. 1 is equivalent
to ∂Ψ/∂θj = 0 where the dual Ψ is defined as:

Ψ
def
=

k∑
j=1

sjθj − ln (Z) .

Furthermore, Ψ is concave, which means solving for the k
parameters can be achieved by maximizing Ψ. We note that
Z is called the partition function, and its log, ln(Z), is called
the cumulant.

Lastly, we adopt a slightly different notation where in-
stead of eθ we use α. Eq. 2 now becomes

Pr(I) =
1

Z

k∏
j=1

α
φj(I)

j . (3)

3. EntropyDB APPROACH
This section explains how we use the MaxEnt model for

approximate query answering. We first show how we use the
MaxEnt framework to transform a single relation R into a
probability distribution represented by P . We then explain
how we use P to answer queries over R. For reference, Ta-
ble 1 lists common symbols and their definitions, and Ta-
ble 2 lists various assumptions we incrementally make on
our model and the section they are introduced.

3.1 Maximum Entropy Model of Data
We consider a single relation with m attributes and

schema R(A1, . . . , Am) where each attribute, Ai, has an
active domain Di, assumed to be discrete and ordered.3

Let Tup = D1 × D2 × · · · × Dm = {t1, . . . , td} be the

3We support continuous data types by bucketizing their ac-
tive domains.

m # attrs
k # statistics
Di domain of Ai
Ni |Di|
q linear query
cj jth statistic query
πj jth statistic predicate
θj (cj , sj)
sj jth statistic constraint
ρij projection πj onto Ai

Ji ⊆ [k] 1-dim statistic indices
I ⊆ [m] attr indices
JI ⊆ [k] multi-dimensional statistic indices
Ba # multi-dimensional attr sets
Bs # stats per multi-dimensional attr set

Table 1: Common notation.

Queries are limited to linear queries. Sec. 3.1
Continuous attributes are discretized. Sec. 3.1
Summary includes all 1-dimensional statistics. Sec. 3.1
Statistics are collections of range predicates. Sec. 4.1
Each set of 2D statistics is disjoint. Sec. 4.1
Summary adds only 2D high order statistics. Sec. 6.1

Table 2: Model assumptions, and the section they
are introduced.

set of all possible tuples. Denoting Ni = |Di|, we have
d = |Tup| =

∏m
i=1Ni.

An instance for R is an ordered bag of n tuples, denoted
I. For each I, we form a frequency vector which is a d-
dimensional vector4 nI = [nI1, . . . , n

I
d] ∈ Rd, where each

number nIi represents the count of the tuple ti ∈ Tup in
I (Fig. 1). The mapping from I to nI is not one-to-one
because the instance I is ordered, and two distinct instances
may have the same counts. Further, for any instance I of
cardinality n, ||nI ||1 =

∑
i n

I
i = n. The frequency vector

of an instance consisting of a single tuple {ti} is denoted
nti = [0, . . . , 0, 1, 0, . . . , 0] with a single value 1 in the ith
position; i.e., {nti : i = 1, d} forms a basis for Rd.

While the MaxEnt principle allows us, theoretically, to
answer any query probabilistically by averaging the query
over all possible instances; in this paper, we limit our main
analysis to linear queries but do discuss how to handle joins
in Sec. 8.2. A linear query is a d-dimensional vector q =
[q1, . . . , qd] in Rd. The answer to q on instance I is the dot

product 〈q,nI〉 =
∑d
i=1 qin

I
i . With some abuse of notation,

we will write I when referring to nI and ti when referring
to nti . Notice that 〈q, ti〉 = qi, and, for any instance I,
〈q, I〉 =

∑
i n

I
i 〈q, ti〉.

Fig. 1 illustrates the data and query model. Any counting
query is a vector q where all coordinates are 0 or 1 and can
be equivalently defined by a predicate π such that 〈q, I〉 =
|σπ(I)|; with more abuse, we will use π instead of q when
referring to a counting query. Other SQL queries can be
modeled using linear queries, too. For example,

SELECT A, COUNT(*)
FROM R GROUP BY A
ORDER BY COUNT(*) DESC LIMIT 10

corresponds to several linear queries, one for each group,
where the outputs are sorted and the top 10 returned.

Our goal is to compute a summary of the data that is
small yet allows us to approximatively compute the answer

4This is a standard data model in several applications, such
as differential privacy [31].
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Domains:

D1 = {a1, a2} N1 = 2

D2 = {b1, b2} N2 = 2

Tup = {(a1, b1), (a1, b2), (a2, b1), (a2, b2)} d = 4

Database Instance:
I: A B
1 a1 b1 Tup1
2 a1 b2 Tup2
3 a2 b2 Tup4
4 a1 b1 Tup1
5 a2 b2 Tup4

Query:

q: SELECT COUNT(*)
FROM R
WHERE A = a1

Modeling Data and Query: n = 5, m = 2

n
I

= (2, 1, 0, 2) q = (1, 1, 0, 0) 〈q,nI〉 = 3 also denoted 〈q, I〉

Figure 1: Illustration of the data and query model.

to any linear query. We assume that the cardinality n of
R is fixed and known. In addition, we know k statistics,
Φ = {(cj , sj) : j = 1, k}, where cj is a linear query and
sj ≥ 0 is a number. Intuitively, the statistic (cj , sj) asserts
that 〈cj , I〉 = sj . For example, we can write 1-dimensional
and 2-dimensional (2D) statistics like |σA1=63(I)| = 20 and
|σA1∈[50,99]∧A2∈[1,9](I)| = 300.

Next, we derive the MaxEnt distribution for the possible
instances I of a fixed size n. We replace the exponential
parameters θj with ln(αj) so that Eq. 3 becomes

Pr(I) =
1

Z

∏
j=1,k

α
〈cj ,I〉
j . (4)

We prove the following about the structure of the partition
function Z:

Lemma 3.1. The partition function is given by

Z = Pn (5)

where P is the multi-linear polynomial

P (α1, . . . , αk)
def
=
∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j . (6)

Proof. Fix any n = [n1, . . . , nd] such that ||n||1 =∑d
i=1 ni = n. The number of instances I of cardinality

n with I = n is n!/
∏
i ni!. Furthermore, for each such in-

stance, 〈cj , I〉 = 〈cj ,n〉 =
∑
i ni〈cj , ti〉. Therefore,

Z =
∑
I

Pr(I) =
∑

n:||n||1=n

n!∏
i ni!

∏
j=1,k

α
∑
i ni〈cj ,ti〉

j

=

∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j

n

= Pn.

This restructuring of the partition function is valid be-
cause we represent an instance as an ordered bag rather
than an unordered one.

The data summary, denoted (P, {αj},Φ), consists of the
polynomial P (Eq. 6), the values of its parameters αj , and
the statistics Φ. The statistics must be included as the poly-
nomial parameters are defined by the linear queries cj in the
statistics Φ.

Example 3.2. Consider a relation with three attributes
R(A,B,C), and assume that the domain of each attribute

has 2 distinct elements. Assume n = 10 and the only statis-
tics in Φ are the following 1-dimensional statistics:

(A = a1, 3) (B = b1, 8) (C = c1, 6)
(A = a2, 7) (B = b2, 2) (C = c2, 4).

The first statistic asserts that |σA=a1(I)| = 3, etc. The poly-
nomial P is

P =α1β1γ1 + α1β1γ2 + α1β2γ1 + α1β2γ2+

α2β1γ1 + α2β1γ2 + α2β2γ1 + α2β2γ2

where α1, α2 are variables associated with the statistics on
A, β1, β2 are for B5, and γ1, γ2 are for C.

Consider the concrete instance that satisfies the above
statistics

I = {(a1, b2, c2), (a1, b1, c2), (a1, b1, c2), (a2, b2, c1)

(a2, b1, c1), (a2, b1, c1), (a2, b1, c1), (a2, b1, c1), (a2, b1, c1)}.

Then, Pr(I) = α3
1α

7
2β

8
1β

2
2γ

6
1γ

4
2/P

10 where α3
1 represents α1

raised to the third power, α7
2 represents α2 to the seventh

power, and so on.

Example 3.3. Continuing the previous example, we add
the following multi-dimensional statistics to Φ:

(A = a1 ∧B = b1, 2) (B = b1 ∧ C = c1, 5)
(A = a2 ∧B = b2, 1) (B = b2 ∧ C = c1, 1).

P is now

P =α1β1γ1[αβ]1,1[βγ]1,1 + α1β1γ2[αβ]1,1+

α1β2γ1[βγ]2,1 + α1β2γ2+

α2β1γ1[βγ]1,1 + α2β1γ2+

α2β2γ1[αβ]2,2[βγ]2,1 + α2β2γ2[αβ]2,2. (7)

The red variables are the added 2-dimensional statistic vari-
ables; we use [αβ]1,1 to denote a single variable correspond-
ing to a 2-dimensional statistics on the attributes AB. No-
tice that each red variable only occurs with its related 1-
dimensional variables. [αβ]1,1, for example, is only in the
same term as α1 and β1.

Now consider the earlier instance
I. Its probability becomes Pr(I) =
α3
1α

7
2β

8
1β

2
2γ

6
1γ

4
2 [αβ]21,1[αβ]12,2[βγ]51,1[βγ]12,1/P

10.

To facilitate analytical queries, we choose the set of statis-
tics Φ as follows:

• Each statistic φj = (cj , sj) is associated with some pred-
icate πj such that 〈cj , I〉 = |σπj (I)|. It follows that for
every tuple ti, 〈cj , ti〉 is either 0 or 1; therefore, each
variable αj has degree 1 in the polynomial P in Eq. 6.

• For each domain Di, we include a complete set of 1-
dimensional statistics in our summary. In other words,
for each v ∈ Di, Φ contains one statistic with predi-
cate Ai = v. We denote Ji ⊆ [k] the set of indices of
the 1-dimensional statistics associated with Di; therefore,
|Ji| = |Di| = Ni.

• We allow multi-dimensional statistics to be given by arbi-
trary predicates. They may be overlapping and/or incom-
plete; e.g., one statistic may count the tuples satisfying
A1 ∈ [10, 30] ∧ A2 = 5 and another count the tuples sat-
isfying A2 ∈ [20, 40] ∧A4 = 20.

5We abuse notation here for readability. Technically, αi =
αai , βi = αbi , and γi = αci .
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• We assume the number of 1-dimensional statistics
dominates the number of attribute combinations; i.e.,∑m
i=1Ni � 2m.

• If some domain Di is large, it is beneficial to reduce the
size of the domain using equi-width buckets. In that case,
we assume the elements of Di represent buckets, and Ni
is the number of buckets.

• We enforce our MaxEnt distribution to be overcom-
plete [47, pp.40] (as opposed to minimal). More pre-
cisely, for any attribute Ai and any instance I, we have∑
j∈Ji〈cj , I〉 = n, which means that some statistics are

redundant since they can be computed from the others
and from the size of the instance n.

Note that as a consequence of overcompleteness, for any
attribute Ai, one can write P as a linear expression

P =
∑
j∈Ji

αjPj (8)

where each Pj , j ∈ Ji is a polynomial that does not contain
the variables (αj)j∈Ji . In Example 3.3, the 1-dimensional
variables for A are α1, α2, and indeed, each monomial
in Eq. 7 contains exactly one of these variables. One can
write P as P = α1P1 +α2P2 where α1P1 represents the first
two lines and α2P2 represents the last two lines in Eq. 7. P
is also linear in β1, β2 and in γ1, γ2.

3.2 Query Answering
In this section, we show how to use the data summary

to approximately answer a linear query q by returning its
expected value E[〈q, I〉]. The summary (P, {αj},Φ) defines
a probability space on the possible worlds as it parameterizes
Pr(I) (Eq. 4 and 6). We start with a well known result in
the MaxEnt model. If c` is the linear query associated with
the variable α`, then

E[〈c`, I〉] =
nα`
P

∂P

∂α`
. (9)

We review the proof here. The expected value of 〈c`, I〉 over
the probability space (Eq. 4) is

E[〈c`, I〉] =
1

Pn

∑
I

〈c`, I〉
∏
j

α
〈cj ,I〉
j =

1

Pn

∑
I

α`∂

∂α`

∏
j

α
〈cj ,I〉
j

=
1

Pn
α`∂

∂α`

∑
I

∏
j

α
〈cj ,I〉
j =

1

Pn
α`∂P

n

∂α`
=
n

P

α`∂P

∂α`
.

To compute a new linear query q, we add it to the sta-
tistical queries cj , associate it with a fresh variable β, and
denote Pq the extended polynomial:

Pq(α1, . . . , αk, β)
def
=
∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j β〈q,ti〉 (10)

Notice that Pq[β = 1] ≡ P ; therefore, the extended data
summary defines the same probability space as P . With
β = 1, we can apply Eq. 9 to the query q to derive:

E[〈q, I〉] =
n

P

∂Pq

∂β
. (11)

This leads to the following näıve strategy for computing
the expected value of q: extend P to obtain Pq and ap-
ply formula Eq. 11. One way to obtain Pq is to iterate

Algorithm 1 Solving for the αs

maxError = i n f i n i t y
whi le maxError >= thre sho ld do

maxError = −1
f o r each αj do

value =
sj(P−αjPαj )
(n−sj)Pαj

αj = value

e r r o r = value−
nαjPαj

P

maxError = max( er ror , maxError )

over all monomials in P and add β to the monomials corre-
sponding to tuples counted by q. As this iteration is ineffi-
cient, Sec. 4.2 describes how to avoid modifying the polyno-
mial altogether.

3.3 Probabilistic Model Computation
We now describe how to compute the parameters of the

summary. Given the statistics Φ = {(cj , sj) : j = 1, k}, we
need to find values of the variables {αj : j = 1, k} such that
E[〈cj , I〉] = sj for all j = 1, k. As explained in Sec. 2, this is
equivalent to maximizing the dual function Ψ:

Ψ
def
=

k∑
j=1

sj ln(αj)− n lnP. (12)

Indeed, maximizing P reduces to solving the equations
∂Ψ/∂αj = 0 for all j. Direct calculation gives us ∂Ψ/∂αj =
sj
αj
− n

P
∂P
∂αj

= 0, which is equivalent to sj − E[〈cj , I〉] by

Eq. 9. The dual function Ψ is concave, and hence it has
a single maximum value that can be obtained using convex
optimization techniques such as Gradient Descent.

In particular, we achieve fastest convergence rates using a
variant of Stochastic Gradient Descent (SGD) called Mirror
Descent [11], where each iteration chooses some j = 1, k and
updates αj by solving

nαj
P

∂P
∂αj

= sj while keeping all other

parameters fixed. In other words, the step of SGD is chosen

to solve ∂Ψ/∂αj = 0. Denoting Pαj
def
= ∂P

∂αj
and solving, we

obtain:

αj =
sj(P − αjPαj )

(n− sj)Pαj
. (13)

Since P is linear in each α, neither P−αjPαj nor Pαj contain
any αj variables.

We repeat this for all j, and continue this process until all

differences |sj−
nαjPαj

P
|, j = 1, k, are below some threshold.

Alg. 1 shows pseudocode for the solving process.

4. LOGICAL OPTIMIZATIONS
We now discuss two logical optimizations: (1) summary

compression in Sec. 4.1 and (2) optimized query processing
in Sec. 4.2. In Sec. 5, we discuss the implementation of these
optimizations.

4.1 Compression of the Data Summary
The summary consists of the polynomial P that, by def-

inition, has |Tup| monomials where |Tup| =
∏m
i=1Ni. We

describe a technique that compresses the summary by fac-
torizing the polynomial to a size closer to O(

∑
iNi) than

O(
∏
iNi).
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Before walking through a more complex example describ-
ing the factorization process, we show the factorized version
of the polynomial from Example 3.3.

Example 4.1. Recall that our relation has three at-
tributes A, B, and C with domain size of 2, and our sum-
mary has four multidimensional statistics. The factorization
of P is

P =(α1 + α2)(β1 + β2)(γ1 + γ2)+

(γ1 + γ2)(α1β1([αβ]1,1 − 1) + α2β2([αβ]2,2 − 1))+

(α1 + α2)(β1γ1([βγ]1,1 − 1) + β2γ1([βγ]2,1 − 1))+

α1β1γ1([αβ]1,1 − 1)([βγ]1,1 − 1)+

α2β2γ1([αβ]2,2 − 1)([βγ]2,1 − 1). (14)

As we will see, the factorization starts with a product of 1-
dimensional statistics and uses the inclusion/exclusion prin-
ciple to include the multi-dimensional statistics. Note that
for this particular example, because the active domain is so
small (eight possible tuples), the factorized polynomial is not
smaller than the expanded one. We explain the polynomial
size in Thm. 4.3.

We now walk through a more complex example with three
attributes, A, B, and C, each with an active domain of size
N1 = N2 = N3 = 1000. Suppose first that we have only
1D statistics. Then, instead of representing P as a sum of
10003 monomials, i.e. P =

∑
i,j,k∈[1000] αiβjγk, we factorize

it to P = (
∑
αi)(

∑
βj)(

∑
γk); the new representation has

size 3 · 1000.
Now, suppose we add a single 3D statistic on ABC: A =

3 ∧ B = 4 ∧ C = 5. The new variable, call it δ, occurs
in a single monomial of P , namely α3β4γ5δ. Thus, we can
compress P to (

∑
αi)(

∑
βj)(

∑
γk) + α3β4γ5(δ − 1).

Instead, suppose we add a single 2D range statistic on AB,
say A ∈ [101, 200] ∧ B ∈ [501, 600] and call its associated
variable δ1. This will affect 100 · 100 · 1000 monomials. We
can avoid enumerating them by noting that they, too, factor-
ize. The polynomial compresses to (

∑
αi)(

∑
βj)(

∑
γk) +

(
∑200
i=101 αi)(

∑600
j=501 βj)(

∑
γk)(δ1 − 1).

Finally, suppose we have three 2D statistics and one 3D
statistic: the previous one on AB plus the statistics B ∈
[551, 650]∧C ∈ [801, 900] and B ∈ [651, 700]∧C ∈ [701, 800]
on BC and A ∈ [101, 150] ∧ B ∈ [551, 600] ∧ C ∈ [801, 850]
on ABC. Their associated variables are δ1, δ2, δ3, and δ4
(Fig. 3 shows a table of the statistics). Now we need to
account for the fact that 100 · 50 · 100 monomials contain
both δ1 and δ2 and that 50 · 50 · 50 monomials contain δ1,
δ2, and δ4. Applying the inclusion/exclusion principle, P
compresses to the equation shown in Fig. 2 (the i, ii, and
iii labels are referenced later). The size, counting only the
αs, βs, and γs for simplicity, is 3000 + 1200 + 1350 + 150 +
250 + 150 + 150 + 150 = 6400� 10003.

Before proving the general formula for P , note that this
compression is related to standard algebraic factorization
techniques involving kernel extraction and rectangle cover-
ings [25]; both techniques reduce the size of a polynomial by
factoring out divisors. The standard techniques, however,
are unsuitable for our use because they require enumeration
of the product terms in the sum-of-product (SOP) polyno-
mial to extract kernels and form cube matrices. Our poly-
nomial in SOP form is too large to be materialized, mak-
ing these techniques infeasible. We leave it as future work
to investigate other factorization techniques geared towards
massive polynomials.

P =

(i)︷ ︸︸ ︷
(
∑

αi)(
∑

βj)(
∑

γk) +

(ii)︷ ︸︸ ︷
(
∑

γk)

(iii)︷ ︸︸ ︷
(
200∑
101

αi)(
600∑
501

βj)(δ1 − 1)

+

(ii)︷ ︸︸ ︷
(
∑

αi)

(iii)︷ ︸︸ ︷[
(

650∑
551

βj)(

900∑
801

γk)(δ2 − 1) + (

700∑
651

βj)(

800∑
701

γk)(δ3 − 1)

]

+

(iii)︷ ︸︸ ︷
(
150∑
101

αi)(
600∑
551

βj)(
850∑
801

γk)(δ4 − 1)

+

(iii)︷ ︸︸ ︷
(

200∑
101

αi)(

600∑
551

βj)(

900∑
801

γk)(δ1 − 1)(δ2 − 1)

+

(iii)︷ ︸︸ ︷
(

150∑
101

αi)(

600∑
551

βj)(

850∑
801

γk)(δ1 − 1)(δ4 − 1)

+

(iii)︷ ︸︸ ︷
(
150∑
101

αi)(
600∑
551

βj)(
850∑
801

γk)(δ2 − 1)(δ4 − 1)

+

(iii)︷ ︸︸ ︷
(

150∑
101

αi)(

600∑
551

βj)(

850∑
801

γk)(δ1 − 1)(δ2 − 1)(δ4 − 1) .

Figure 2: Example of a compressed polynomial P
after applying the inclusion/exclusion principle.

We now make the following three assumptions for the rest
of the paper.

• Each predicate has the form πj =
∧m
i=1 ρij where m is the

number of attributes, and ρij is the projection of πj onto
Ai. If j ∈ Ji (Ji is the set of indices of the 1-dimensional
statistics), then πj ≡ ρij . For any set of indices of multi-

dimensional statistics S ⊂ [k], we denote ρiS
def
=
∧
j∈S ρij ,

and πS
def
=
∧
i ρiS ; as usual, when S = ∅, then ρi∅ ≡ true.

• Each ρij is a range predicate Ai ∈ [u, v].

• For each I ⊆ [m], the multi-dimensional statistics whose
attributes are exactly those in I are disjoint; i.e., for j1,
j2 whose attributes are I, ρij1 , ρij2 6≡ true for i ∈ I (i.e.
there is a predicate on Ai), ρij1 , ρij2 ≡ true for i 6∈ I,
and πj1 ∧ πj2 ≡ false. Attributes for different I may
overlap, but for a particular I, there is no overlap.

Using this, define JI ⊆ [k] for I ⊆ [m] to be the set of
indices of multi-dimensional statistics whose attributes are
{Ai : i ∈ I}. This means for I such that |I| = 1, JI = ∅
because 1-dimensional statistics are not considered multi-
dimensional statistics. Further, let Ba = |{I : JI 6= ∅}|
be the number of unique multi-dimensional attributes we
have statistics on and BIs = |JI | be the number of multi-
dimensional statistics for the attribute set defined by I.
(These parameters are discussed further in Sec. 6).

Finally, define JI+ ⊆ P([k])6 for I+ ⊆ P([m]) to be

6P([k]) is the power set of {1, 2, . . . , k}
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the set of sets of the maximal number of multi-dimensional
statistic indices from

⋃
I∈I+ JI such that each set’s com-

bined attributes are {Ai : i ∈
⋃
I+} and each set’s inter-

section does not conflict (i.e., not false). In other words,
for each S ∈ JI+ , ρiS 6∈ {true,false} for i ∈

⋃
I+ and

ρiS ≡ true for i /∈
⋃
I+.

For example, suppose we have the three 2D statistics and
one 3D statistic from before: πj1 = A ∈ [101, 200] ∧ B ∈
[501, 600], πj2 = B ∈ [551, 650] ∧ C ∈ [801, 900], πj3 = B ∈
[651, 700] ∧ C ∈ [701, 800], and πj4 = A ∈ [101, 150] ∧ B ∈
[551, 600] ∧ C ∈ [801, 850]. Then, some example JI+ are:
J{{1,2}} = {{j1}}, J{{2,3}} = {{j2}, {j3}}, and J{{1,2,3}} =
{{j4}}. {{j2, j3}} /∈ J{{2,3}} because ρ2j2 ∧ ρ2j3 ≡ false.
Further, J{{1,2},{2,3}} = {{j1, j2}} because ρ2j1 ∧ ρ2j2 6≡
false. However, {j1, j3} /∈ J{{1,2},{2,3}} because ρ2j1 ∧
ρ2j3 ≡ false, and {j4} /∈ J{{1,2},{2,3}} because j4 /∈ J{1,2}
and j4 /∈ J{2,3}. Lastly, J{{1,2},{2,3},{1,2,3}} = {{j1, j2, j4}}

Using these definitions, we now get the compression shown
in Thm. 4.2.

Theorem 4.2. The polynomial P is equivalent to:

P =

(i)︷ ︸︸ ︷ ∏
i∈[m]

∑
j∈Ji

αj

+


∑
I⊆[m]

(ii)︷ ︸︸ ︷∏
i/∈I

∑
j∈Ji

αj


(iii)︷ ︸︸ ︷

Ba∑
`=1

∑
I+⊆P([m]),

|I+|=`,⋃
I+=I

∑
S∈JI+

 ∏
i∈
⋃
I+

∑
j∈Ji,

πj∧ρiS 6≡false

αj


∏
j∈S

(αj − 1)


︸ ︷︷ ︸

(iii)


The proof uses induction on the size of I.

To give intuition, the very first sum gives the sum over
the 1D statistics, (i). The next sum handles the multi-
dimensional statistics. When I is empty, (iii) will be zero.
When there is no I+ matching the criteria or JI+ is empty,
that portion of the summation will be zero. When there ex-
ists some S ∈ JI+ , the summand sums up all 1-dimensional
variables αj , j ∈ Ji that are in the ith projection of the
predicate πS (this is what the condition (πj ∧ ρiS) 6≡ false
checks) and multiplies with terms αj − 1 for j ∈ S.

Our algorithm to build the polynomial is non-trivial and
is described in Sec. 5.1. The algorithm can be used during
query answering to compute the compressed representation
of Pq from P (Sec. 3.2) by rebuilding iii for the new q.
However, as this is inefficient and may increase the size of
our polynomial, our system performs query answering dif-
ferently, as explained in Sec. 4.2.

We now analyze the size of the compressed polynomial
P . Since Ba < 2m and

∑m
i=1Ni � 2m, Ba is dominated

by
∑m
i=1Ni. For some I, part (ii) of the compression is

O(
∑m
i=1Ni). Part (iii) of the compression is more com-

plex. For some S ∈ JI+ , the innermost summand is of size
O(
∑m
i=1Ni + |S|). As |S| ≤ Ba �

∑m
i=1Ni, the summand

is only O(
∑m
i=1Ni). This innermost summand only occurs

when JI+ is nonempty, which happens once for all possi-
ble combinations of the Ba multi-dimensional attributes.
Therefore, letting R = maxI+ |JI+ | (we discuss this next),
part (iii) is of size O(2BaR

∑m
i=1Ni). Putting it together,

since we only are concerned with I such that
⋃
I+ = I

for some I+ and we have 2Ba relevant I+, the polynomial
is of size O(

∑m
i=1Ni + 2Ba(

∑m
i=1Ni + 2BaR

∑m
i=1Ni)) =

O(2BaR
∑m
i=1Ni).

Lastly, to discuss R. For a particular I+, |JI+ | is the
number of sets of multi-dimensional statistics whose com-
bined attributes are {Ai : i ∈

⋃
I+} and whose intersection

does not conflict. In the worse case, there are no conflicts
(e.g. if

⋂
I+ = ∅). Then, there will be at most

∏
I∈I+ B

I
s

statistics for a particular I+. Since the largest I+ has Ba el-
ements, an upper bound on R is B̂Bas where B̂s = maxI B

I
s .

We assume B̂s ≥ 2, and therefore we get the following the-
orem.

Theorem 4.3. The size of the polynomial is
O(B̂Bas

∑m
i=1Ni) where Ba is the number of unique

multi-dimensional attribute sets and B̂s is the largest
number of statistics over some I.

In the worst case, if one gathers all possible multi-
dimensional statistics, this compression will be worse than
the uncompressed polynomial, which is of size O(

∏m
i=1Ni),

approximately equal to O((maxiNi)
m). However, in prac-

tice, Ba < m and Bs ≤ maxiNi which results in a significant
reduction of polynomial size to one closer to O(

∑m
i=1Ni)

than O(
∏m
i=1Ni).

4.2 Optimized Query Answering
In this section, we assume that the query q is a counting

query defined by a conjunction of predicates, one over each
attribute Ai; i.e., q = |σπ(I)|, where

π = ρ1 ∧ · · · ∧ ρm (15)

and ρi is a predicate over the attribute Ai. If q ignores
Ai, then we simply set ρi ≡ true. Our goal is to compute
E[〈q, I〉]. In Sec. 3.2, we described a direct approach that
consists of constructing a new polynomial Pq and returning
Eq. 11. However, as described in Sec. 3.2 and Sec. 4.1, this
may be expensive.

We describe here an optimized approach to compute
E[〈q, I〉] directly from P . The advantage of this method
is that it does not require any restructuring or rebuilding
of the polynomial. Instead, it can use any optimized ora-
cle for evaluating P on given inputs. Our optimization has
two parts: a new formula E[〈q, I〉] and a new formula for
derivatives.

New formula for E[〈q, I〉]: Let πj be the predicate
associate to the jth statistical query. In other words,
〈cj , I〉 = |σπj (I)|. The next lemma applies to any query
q defined by some predicate π. Recall that β is the new
variable associated to q in Pq (Sec. 3.2).

Lemma 4.4. For any ` variables αj1 , . . . , αj` of Pq:
(1) If the logical implication πj1∧· · ·∧πj` ⇒ π holds, then

αj1 · · ·αj`∂
`Pq

∂αj1 · · · ∂αj`
=
αj1 · · ·αj`β∂

`+1Pq

∂αj1 · · · ∂αj`∂β
(16)
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(2) If the logical equivalence πj1∧· · ·∧πj` ⇔ π holds, then

αj1 · · ·αj`∂
`Pq

∂αj1 · · · ∂αj`
=
β∂Pq

∂β
(17)

Proof. (1) The proof is immediate by noting that every
monomial of Pq that contains all variables αj1 , . . . , αj` also
contains β; therefore, all monomials on the LHS of Eq. 16
contain β and thus remain unaffected by applying the oper-
ator β∂/∂β.

(2) From item (1), we derive Eq. 16; we prove now that

the RHS of Eq. 16 equals
β∂Pq

∂β
. We apply item (1) again to

the implication π ⇒ πj1 and obtain
β∂Pq

∂β
=

βαj1∂
2Pq

∂β∂αj1
(the

role of β in Eq. 16 is now played by αj1). As P is linear,
the order of partials does not matter, and this allows us to
remove the operator αj1∂/∂αj1 from the RHS of Eq. 16.
By repeating the argument for π ⇒ πj2 , π ⇒ πj3 , etc, we
remove αj2∂/∂αj2 , then αj3∂/∂αj3 , etc from the RHS.

Corollary 4.5. (1) Assume q is defined by a point pred-
icate π = (A1 = v1 ∧ · · · ∧ A` = v`) for some ` ≤ m. For
each i = 1, `, denote ji the index of the statistic associated to
the value vi. In other words, the predicate πji ≡ (Ai = vi).
Then,

E[〈q, I〉] =
n

P

αj1 · · ·αj`∂
`P

∂αj1 · · · ∂αj`
(18)

(2) Let q be the query defined by a predicate as in Eq. 15.
Then,

E[〈q, I〉] =
∑

j1∈J1:πj1⇒ρ1

· · ·
∑

jm∈Jm:πjm⇒ρm

n

P

αj1 · · ·αjm∂mP
∂αj1 · · · ∂αjm

(19)

Proof. (1) Eq. 18 follows from Eq. 11, Eq. 17, and the
fact that Pq[β = 1] ≡ P . (2) Follows from (1) by expanding
q as a sum of point queries as in Lemma. 4.4 (1).

In order to compute a query using Eq. 19, we would
have to examine all m-dimensional points that satisfy the
query’s predicate, convert each point into the corresponding
1D statistics, and use Eq. 18 to estimate the count of the
number of tuples at this point. Clearly, this is inefficient
when q contains any range predicate containing many point
queries.

New formula for derivatives Thus, to compute
E[〈q, I〉], one has to evaluate several partial derivatives of P .
Recall that P is stored in a highly compressed format, and
therefore, computing the derivative may involve nontrivial
manipulations. Instead, we use the fact that our polynomial
is overcomplete, meaning that P =

∑
j∈Ji αjPj , where Pj ,

j ∈ Ji does not depend on any variable in {αj : j ∈ Ji}
(Eq. 8). Let ρi be any predicate on the attribute Ai. Then,∑

ji∈Ji:πji⇒ρi

αji∂P

∂αji
=P [

∧
j∈Ji:πji 6⇒ρi

αj = 0] (20)

Thus, in order to compute the summation on the left, it
suffices to compute P after setting to 0 the values of all
variables αj , j ∈ Ji that do not satisfy the predicate ρi (this
is what the condition πji 6⇒ ρi checks).

Finally, we combine this with Eq. 19 and obtain the fol-
lowing, much simplified formula for answering a query q,
defined by a predicate of the form Eq. 15:

E[〈q, I〉] =
n

P
P [

∧
i=1,m

∧
j∈Ji:πji 6⇒ρi

αj = 0] (21)

In other words, we set to 0 all 1D variables αj that corre-
spond to values that do not satisfy the query, evaluate the
polynomial P , and multiply it by n

P
(which is a precom-

puted constant independent of the query). For example, if
the query ignores an attribute Ai, then we leave the 1D vari-
ables for that attribute, αj , j ∈ Ji, unchanged. If the query
checks a range predicate, Ai ∈ [u, v], then we set αj = 0
for all 1D variables αj corresponding to values of Ai outside
that range.

Example 4.6. Consider three attributes A, B, and C
each with domain 1000 and three multi-dimensional statis-
tics: one AB statistic A ∈ [101, 200] ∧ B ∈ [501, 600],
two BC statistics B ∈ [551, 650] ∧ C ∈ [801, 900] and
B ∈ [651, 700] ∧ C ∈ [701, 800], and one ABC statistic
A ∈ [101, 150]∧B ∈ [551, 600]∧C ∈ [801, 850]. The polyno-
mial P is shown in Fig. 2. Consider the query q:

SELECT COUNT(∗ ) FROM R
WHERE A in [ 36 , 150 ] AND C in [660 , 834 ]

We estimate q using our formula n
P
P [α1:35 = 0, α151:1000 =

0, γ1:659 = 0, γ835:1000 = 0]. There is no need to compute a
representation of a new polynomial.

5. SYSTEM OPTIMIZATIONS
In Sec. 4, we discussed two main optimizations: polyno-

mial compression and query answering by setting certain 1D
variables to zero. We now discuss how to implement these
optimizations efficiently and analyze the runtime.

5.1 Building the Polynomial
Recall from Thm. 4.2 that building our compressed poly-

nomial starts with the product of the sum of all 1D statistics
and then uses the inclusion/exclusion principle to modify
the terms to include the correct multi-dimensional statis-
tics. The terms that need to be modified are those that sat-
isfy the predicates associated with the sets of non-conflicting
multi-dimensional statistics. i.e., for some I+, the terms to
be modified are the 1D terms αj such that πj ∧πS 6≡ false
for S ∈ JI+ . The algorithmic challenge is how we find non-
conflicting statistics JI+ for some I+ and, once we know
JI+ , how we find the 1D statistics that need to be modified.

To solve the latter problem, assume we have some JI+ .
Since each multi-dimensional statistic is a range predicate
over the elements in our domain and we have complete 1D
statistics over the elements in our domain, once we know
the range predicate, πS for S ∈ JI+ , we can easily find the
associated 1D statistics.

Take the example in Fig. 2 which we will refer to through-
out this section. If we know that J{{1,2},{2,3},{1,2,3}} =
{{j1, j2, j4}}, then, by examining the range predicates asso-
ciated with those three multi-dimensional statistics, we can
determine that αi for i ∈ [101, 150], βj for j ∈ [551, 600],
and γk for k ∈ [801, 850] are the 1D statistics that need to
be modified to include δ1, δ2, and δ4.

The other problem is how we find the groups of multi-
dimensional statistics that do not conflict for some group

8



Algorithm 2 Unoptimized Building P

// add part i to P
P = 1DProdSum(1DStats)
f o r ( k in [ 1 :Ba ] ) do

f o r ( idx in combinations(k , Ba ) ) do
// add part ii to P
P. addTerms (1DProdSum(1DStats [ not idx ] ) )
satGrps = findNoConflictGrps(multiDStats [ idx ] )
// add part iii to P
f o r ( group in satGrps ) do

P. addTerms (buildTerm( group ) ) O(mN + B̂ks )

O((k − 1)(mN)2B̂ks )

O(mN)

of attribute sets (i.e. the JI+ 6= ∅). To solve this, we as-
sume we are given four inputs: a list of attributes, a list of
Ba multi-dimensional attribute sets (e.g. [AB, BC, ABC]
for Fig. 2), a dictionary of the 1D statistics with attributes
Ai as keys (denoted 1DStats), and a dictionary of multi-
dimensional statistics with indices into the list of Ba at-
tributes sets as keys (denoted multiDStats).

A straightforward algorithm to build the polynomial is
shown in Alg. 2 where the red notations indicate the time
complexity of each section of pseudo code. The func-
tion combinations(k, Ba) generates a list of all possible
length k index sets from [1, Ba]. Note that we abuse
the notation for dictionary selection slightly in that if
idx is {1, 2}, multiDStats[idx] would select both the
multi-dimensional stats of 1 and 2, e.g. AB and BC,
and 1DStats[not idx] would select no 1D stats since
all attributes are used in AB and BC. The function
buildTerm(group) builds the term shown in the last line
of Thm. 4.2. It generates a sum of the 1D statistics associ-
ated with the group and multiplies the sum by one minus
the multi-dimensional variables in the group.

The last function to discuss is findNoConflictGrps which
returns a dictionary with keys as sets of multi-dimensional
attribute indices and values of groups of conflict free statis-
tics. For example, for k = 2, a key would be {1, 2} with
value {δ1, δ2} indicating that δ1 and δ2 do not conflict. The
algorithm works by treating each multi-dimensional index
set in idx as a relation with rows of the statistics associ-
ated with that index set. It then computes a theta-join over
these relations with the join condition being if the statistics
are conflict free.

For example, δ1 and δ2 are conflict free but not δ1 and
δ3. Further, statistics over disjoint attributes sets are also
conflict free. If we had a relation R(A,B,C,D) and some
statistic over AB and another over CD, all of those multi-
dimensional statistics from AB would be satisfiable with all
other from CD.

To understand the runtime complexity of the algorithm,
start with the function buildTerm(group). For ease of no-
tation, we will denote N = maxiNi. Recall that mN is
the total number of distinct values across all attributes,
Ba is the number of attribute sets, and B̂s is the largest
number of statistics per attribute set. The runtime of
buildTerm(group) for a single satGrps of size k is O(mN+

B̂ks ) because a single satGrps will only add each 1D statis-

tic at most once and at most B̂ks correction terms. This run-
time also includes the time for 1DProdSum because the 1D
statistics that are not in satGrps will be added in 1DProd-
Sum.

The runtime of findNoConflictGrps involves computing
the cross product of the multi-dimensional statistics and

comparing the 1D statistics associated with each multi-
dimensional statistic to determine if there is a conflict.
Specifically, it computes a right deep join tree of the multi-
dimensional statistics, and at each step in the tree, iterates
over the 1D statistics in each right child conflict free group
to see if there is a conflict or not with one of the incoming
left child multi-dimensional statistics.

Fig. 3 shows the findNoConflictGrps join algorithm for the
attribute sets AB, BC, and ABC with one added statistic
δ5 on BC of B ∈ [401, 550] ∧ C ∈ [751, 850]. The function
to find and return a single conflict free group is CFG(δL,
{δ}S) (stands for conflict free group) where δL stands for
the left multi-dimensional statistic and {δ}S stands for the
right, current conflict free group. The S subscript is because
we are building a new set of multi-dimensional statistics to
add to some JI+ . We are abusing notation slightly because
in Sec. 4, S stood for the set of indices whereas here, it sands
for the set of statistic variables.

CFG first determines which attributes are shared by δL
and {δ}S . Then, for each such attribute, it iterates over δL’s
associated 1D statistics (at most mN of them) and checks if
at least one of these statistics also exists in the 1D statistics
associated with {δ}S (containment has runtime mN). This
ensures, for all attributes Ai, that ρiL ∧ ρiS 6≡ false. If Ai
is shared, then ρiL ∧ ρiS will contain the shared 1D statistic
found earlier, and if Ai is not shared, then ρiL ∧ ρiS ≡
true. Note that a conflict free group is not always found.
Therefore, the runtime of the join is O(2(mN)2B̂3

s ). For

joins of arbitrary size, the runtime is O((mN)2(k − 1)B̂ks ).
Putting it all together we get the runtime of

= mN +

Ba∑
k=1

(
Ba
k

)
[mN + (k − 1)(mN)2B̂ks + B̂ks ]

= mN + (2Ba − 1)mN + (B̂s + 1)Ba − 1+

(mN)2
[[

Ba∑
k=0

(
Ba
k

)
[kB̂ks − B̂ks ]

]
+ 1

]
= mN + (2Ba − 1)mN + (B̂s + 1)Ba − 1 + (mN)2+

(mN)2
[
Ba∑
k=0

(
Ba
k

)
kB̂ks

]
− (mN)2(B̂s + 1)Ba

= mN + (2Ba − 1)mN + (B̂s + 1)Ba − 1 + (mN)2+

(mN)2BaB̂s(B̂s + 1)Ba−1 − (mN)2(B̂s + 1)Ba

This algorithm, however, is suboptimal because it must
run findNoConflictGrps for all 2Ba attribute sets. It is better
to run findNoConflictGrps once for the all multi-dimensional
statistics (i.e. compute the full theta-join of all Ba attribute
sets) and reconstruct the smaller groups without paying the
cost of checking for conflicts (i.e. perform selections over the
full theta-join). Further, there are some statistics that will
not appear in any other term besides when k = 1 in the loop
above. Take δ3, for example. It is handled in line 2 of Fig. 2
but does not appear later on. These insights lead to a more
optimized algorithm in Alg. 3.

The function conflictReduce is like a semi-join reduction.
It removes multi-dimensional statistics that do not appear in
any conflict free group later on. For example, redMDStats
would only contain δ1, δ2, and δ4. The function findNoCon-
flictGrps* acts just as findNoConflictGrps except instead
of computing an inner theta join, it computes a full outer

9



ABBC

ABC
eliminated by 
conflictReduce

CFG (𝛿", {𝛿$})

CFG (𝛿&, {𝛿}')

𝛿&

conflictFreeGrp (CFG) 
runs in 𝑶( 𝒎𝑵 𝟐)

A B C

𝛿$ [100, 200] [501,600]

𝛿. [551, 650] [801, 900]

𝛿/ [651, 700] [701, 800]

𝛿& [100, 150] [551, 600] [801, 850]

𝛿0 [401, 550] [751, 850] 𝛿$
𝛿.

𝛿/
𝛿0

{𝛿$, 𝛿0}

only in 
findNoConflictGrps*

findNoConflictGrps { 𝛿$, 𝛿., 𝛿& }

findNoConflictGrps* { 𝛿$, 𝛿., 𝛿& , { 𝛿$, 𝛿0 }

{𝛿$, 𝛿.}

Figure 3: Figure of findNoConflictGrps and findNo-
ConflictGrps* join algorithm for the three attribute
sets AB, BC, and ABC. The highlighted statistics of
δ3 and {δ1, δ5} are the difference between the unop-
timized and optimized algorithms.

Algorithm 3 Optimized Building P

// add part i to P
P = 1DProdSum(1DStats)
// add terms when k = 1
f o r ( idx in [ 1 :Ba ] ) do

// add part ii to P
P. addTerms (1DProdSum(1DStats [ not idx ] ) )
// add part iii to P
f o r ( group in multiDStats [ idx ] ) do

P. addTerms (buildTerm( group ) )
redMDStats = conflictReduce(multiDStats)
satGrps = findNoConflictGrps*( redMDStats )

f o r ( k in [ 2 :Ba ] ) do
f o r ( idx in combinations(k , Ba ) ) do

// add part ii to P
P. addTerms (1DProdSum(1DStats [ not idx ] ) )
// add part iii to P
f o r ( group in satGrps ) do

P. addTerms (buildTerm( group [ idx ] ) )

O
((

2
B
a
−
B
a
−

1
)∗

(m
N

+
B̂
B
a

s
))

O(mNBa+

BaB̂s)

O((Ba − 1)(mN)2B̂Bas )

O(
(Ba

2

)
(BaB̂s)

2)

O(mN)

theta join. The reason being that satGrps needs to keep
track of all conflict free groups even if they contain less that
Ba statistics. For example, take the δ5 statistic of BC as
shown in Fig. 3. δ1 and δ5 are conflict free, but δ1, δ5, and
δ4 are not conflict free because δ5 conflicts with δ4 in at-
tribute B. In this case, findNoConflictGrps* would return
a dictionary with the keys {1, 2, 3} and {1, 2} and values
{δ1, δ2, δ4} and {δ1, δ5}, respectively. The outer join ensures
{δ1, δ5} is not lost. Note the time complexity of findNoCon-
flictGrps and findNoConflictGrps* is the same because they
must compute the full cross product and then filter. Lastly,
the group[idx] index selection selects the statistics asso-
ciated with the attribute sets in idx.

We will now show that this algorithm’s time complexity is
more optimal than Alg. 2 because although it loops through
satGrps, selecting out a subterm is faster than rebuild-
ing one, especially after semi-join reduction. Note that if
group[idx] is has already been added to the polynomial
from a previous group, it is just ignored when addTerms is
called. As the red notation indicates, the runtime of the first
for loop is O(mNBa + BaB̂s) because for each idx, there

are B̂s multi-dimensional statistics and mN 1D statistics to
add the term.

The runtime of conflictReduce involves comparing pairs
of multi-dimensional statistics to see if they will partici-
pate in any conflict free groups of size two or more. For
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Figure 4: Algorithmic complexity improvement of
the unoptimized algorithm over the optimized al-
gorithm (complexity difference) for mN = 5000 and

varying Ba, B̂s, and p. A positive number indicates
the optimized algorithm is faster.

each
(
Ba
2

)
B̂2
s possible pairs of multi-dimensional statistics,

the conflict checking requires examining the 1D statistics
of the pair, just like in CFG(δL, {δ}S). The next function,
findNoConflictGrps*, has the same runtime as before except
instead of being run for all k, it is run only once for k = Ba.

The last part to analyze is the for loop that iterates over
all satGrps. In our runtime analysis, we add a percentage
p ∈ [0, 1] to indicate that only a fraction of the possible B̂Bas
groups are used in the last loop. This decrease is because of
conflictReduce and because, in practice, there are drastically
fewer than B̂Bas resulting conflict free groups. In practice,
p ≤ 0.1. As the inner most for loop is that same as in Alg. 2
except for k = Ba, the runtime is O(B̂Bas + mN). As this
happens for all combinations from k = 2, Ba, the overall
runtime is O((2Ba −Ba−1)(pB̂Bas +mN)) where the minus
is because k starts at two instead of zero.

Adding up the different runtime components, we get the
overall runtime of Alg. 3 is

= mN +Ba(mN + B̂s) +

(
Ba
2

)
(mNB̂s)

2+

(Ba − 1)(mN)2B̂Bas + (2Ba −Ba − 1)(mN + pB̂Bas )

To show the improvement of the optimized algo-
rithm, Fig. 4 shows the runtime difference between Alg. 2
and Alg. 3 (i.e. Alg. 2 - Alg. 3) when mN = 5000 (the trends
are similar for other values of mN). The three columns are
for Ba = 2, 3, 4, the colors represents the different values of
p, and B̂s varies from 100 to 2000. Note that the y-axis of
the three columns are on a different scale in order to show
the variation between the different values of p.

We see that p matters for Ba = 3, and when p falls be-
tween 0.3 and 0.1, the optimized version is faster. As, in
practice, p ≤ 0.1, the optimized version is best for Ba > 2.
The trend shown in Ba = 4 is the same for Ba > 4 and thus
not included in the plot. This shows that asymptotically,
Alg. 3 is optimal.

5.2 Polynomial Evaluation
Recall from Sec. 4.2 and Example 4.6 that for a linear

query q defined by some predicate π, we can answer the
query in expectation (i.e. E[〈q, I〉) by setting all 1D variables
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αj that correspond to values that do not satisfy π to zero.
This is more efficient than taking multiple derivatives, but
simply looping over all variables can still be too slow as the
compressed polynomial can, at worst, have exponentially
many variables (see Thm. 4.2).

To improve performance, we implement four main opti-
mizations: (1) storing the compressed polynomial in mem-
ory, (2) parallelizing the computation, (3) fast containment
check using bit vectors, (4) caching of subexpression eval-
uation. The first and second, storing in memory and par-
allelization, are straightforward, standard techniques that
improve looping computations. Note, we can parallelize the
computation because each polynomial term can be evaluated
independently.

The next optimization, using bit vectors, is to optimize
both findNoConflictGrps and determining if a variable needs
to be set to zero or not during query evaluation. It is im-
portant to understand that the polynomial is hierarchical
with nested levels of sums of products of sums. For each
subterm (i.e. sum or product term in our polynomial), we
store (a) a map with variable keys and values of the nested
subterms containing that variable, (b) a bit vector of which
attributes are contained in the subterm, and (c) a bit vector
of which multi-dimensional attribute sets are contained in
the subterm.

Take Example 4.6 which references Fig. 2. Take the sub-
term referenced by i. This subterm has a map of all variables
pointing to one of three nested sum subterms. The attribute
bit vector has a 1 in all places, representing it contains all
possible attributes, and the multi-dimensional bit vector is
all 0s. Now take the subterm (

∑650
551 βj)(

∑900
801 γk)(δ2 − 1).

It has a map of only β variables from [551, 650], γ variables
from [801, 900], and δ2 all pointing to one of three nested
subterms. The attribute bit vector would only have 1 in the
B and C dimensions, and the multi-dimensional bit vector
would have a 1 in the dimension representing the attribute
set BC.

These objects allow us to quickly check if some 1-
dimensional or multi-dimensional statistic is contained in
the term or if there are any variables that need to be set to
zero (by using the attribute bit vectors) and which subterms
those variables are in. To further see the benefit of this op-
timization, recall the runtime analysis from Sec. 5.1 where
findNoConflictGrps required (mN)2 steps to check if two
statistics were conflict free as it iterates over all 1D statis-
tics. Using maps with variable keys allows us to quickly
check if a 1D statistic is contained in another, bringing the
runtime down to mN for a single pair. The attribute bit
vectors can also allow us to skip iterating over subsets of 1D
statistics by quickly checking which attributes two statistics
share. If some attribute is not shared between two statistics,
then that attribute can cause no conflicts and does not need
to be iterated over.

This leads to the last technique of caching. Caching is
used to avoid recomputing subterms and takes advantage of
the attribute bit vectors and variable hash maps described
above. Since we solve for all the variables αj of our model
once and they remained fixed throughout query answering,
if there is a subterm of our model that does not contain
any variable the needs to be set to zero, we can reuse that
subterm’s value. We store this value along with the map
and bit vectors.

By utilizing these techniques, we reduced the time to learn

the model (solver runtime) from 3 months to 1 day and saw
a decrease in query answering runtime from around 10 sec to
500 ms (95% decrease). More runtime results are in Sec. 7.

6. STATISTIC SELECTION
In this section, we discuss how we choose the multi-

dimensional statistics. We investigate different heuristic
techniques for both finding optimal statistic ranges and re-
ordering the data prior to statistic collection optimally. Re-
call that our summary always includes all 1D statistics of
the form Ai = v for all attributes Ai and all values v in the
active domain Di. We describe here how to tradeoff the size
of the summary for the precision of the MaxEnt model.

6.1 Optimal Ranges
The first choice we make is to include only 2D statistics. It

has been shown that restricting to pairwise correlations of-
fers a reasonable compromise between the number of statis-
tics needed and the summary’s accuracy [46]. This means
each multi-dimensional statistic predicate πj is equivalent to
a range predicate over two attributes Ai1 ∈ [u1, v1] ∧ Ai2 ∈
[u2, v2]. If Ai1 and Ai2 are two dimensions of a rectangle, πj
defines a sub-rectangle in this space. As the 2D predicates
are disjoint, if πj1 and πj2 both define rectangles over Ai1
and Ai2 , then these rectangles do not overlap.

As mentioned in Sec. 4.1, we have two parameters to con-
sider: Ba, the number of distinct attribute pairs we gather
statistics on, and Bs, the number of statistics to gather per
each attribute pair. We choose to make Bs be the same for
all multi-dimensional statistics. The problem is as follows:
given Ba and Bs, which Ba attribute pairs Ai1Ai2 do we
collect statistics on and which Bs statistics do we collect
for each attribute pair? This is a complex problem, and we
make the simplifying assumption that Bs, the number of
statistics, is given, but we explore different choices of Ba in
Sec. 7. We leave it to future work to investigate automatic
techniques for determining the total budget, Ba ∗Bs.

GivenBa, we consider two different approaches when pick-
ing pairs: attribute correlation and attribute cover. The
first focuses only on correlation by picking the set of at-
tribute pairs that have the highest combined correlation7

such that every pair has at least one attribute not included in
any previously chosen, more correlated pair. This is similar
to computing a Chow-Liu tree which is a maximum weight
spanning tree over a graph where attributes are nodes and
edge weights are the mutual information between pairs of at-
tributes [15]. The difference is that we use the chi-squared
metric rather than the mutual information as chi-squared is
a common independence test for categorical data. We leave
it to future work to evaluate different correlation metrics.

The second approach focuses on attribute cover by pick-
ing the set of pairs that cover the most attributes with the
highest combined correlation. For example, if Ba = 2 and
we have the attribute pairs BC, AB, CD, and AD in order
of most to least correlated, if we only consider correlation,
we would choose AB and BC. However, if we consider at-
tribute cover, we would choose AB and CD. We experiment
with both of these choices in Sec. 7.

7This can be found by calculating, for all attribute pairs,
the chi-squared value on the contingency table of Ai1 and
Ai2 and sorting from highest to lowest chi-squared value.
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Next, we assume for each attribute Ai, its domain Di is
ordered and viewed as an array such that Di[1] ≤ Di[2] ≤ ....
This allows us to define a Di1×Di2 space (a Ni1×Ni2 matrix
denotedM) representing the frequency of attribute pairs. In
particular, for some x ∈ [1, Ni1 ] and y ∈ [1, Ni2 ], M[x, y] =
|σAi1=Di1 [x]∧Ai2=Di2 [y](I)|. Our goal is to choose the best

Bs 2D range predicates [lx, ux]× [ly, uy] where lx and ux are
lower and upper index bounds on the x axis (likewise for the
y axis). We consider three heuristics and show experimental
results to determine which technique yields, on average, the
lowest error on query results.

LARGE SINGLE CELL In this heuristic, the range
predicates are single point predicates, Ai1 = Di1 [x]∧Ai2 =
Di2 [y], and we choose the points (x, y) as the Bs most pop-
ular values in the two dimensional space; i.e., the Bs largest
values of |σAi1=Di1 [x]∧Ai2=Di2 [y](I)|.

ZERO SINGLE CELL In this heuristic, we select
the empty/zero/nonexistent cells; i.e., we choose Bs points
(x, y) s.t. σAi1=Di1 [x]∧Ai2=Di2 [y](I) = ∅. If there are fewer
than Bs such points, we choose the remaining points as in
LARGE SINGLE CELL. The justification for this heuris-
tic is that, given only the 1D statistics, the MaxEnt model
will produce false positives (“phantom” tuples) in empty
cells; this is the opposite problem encountered by sampling
techniques, which return false negatives. This heuristic has
another advantage because the value of αj in P is always 0
and does not need to be updated during solving.

COMPOSITE This method partitions M into a set of
Bs disjoint rectangles and associates one statistic with each
rectangle. For example if πj1 is Ai1 ∈ [u1, v1]∧Ai2 ∈ [u2, v2]
and πj2 is Ai1 ∈ [u3, v3]∧Ai2 ∈ [u4, v4], then the composite
statistic of πj1 and πj2 is Ai1 ∈ ([u1, v1] ∨ [u3, v3]) ∧ Ai2 ∈
([u2, v2] ∨ [u4, v4]). We choose to combine the statistics by
an attribute-wise union because our factorization algorithm
requires it. Part (iii) of Thm. 4.2 multiplies the multi-
dimensional statistic correction term (i.e. (δ− 1)) by a sum
of the 1D statistics associated with it. In our example, we
would multiply the composite statistic correction term by
(αu1 +. . .+αv1 +αu3 +. . .+αv3)(αu2 +. . .+αv2 +αu4 +. . .+
αv4), which can be represented by a rectangle or bounding
box. As we must maintain that the composite statistics can
be represented by disjoint rectangles, we use an adaptation
of K-D trees to partition the data.

Recall that a K-D tree partitions a k-dimensional space
by iterating over each axis i and splitting the space at the
median of the ith axis. Each child is then partitioned on
the i + 1 axis. The only difference between our K-D tree
algorithm and the traditional one is our splitting condition.
Instead of splitting on the median, we split on the value that
has the lowest sum squared average value difference.

For a child partition with boundary [lx, ux]× [ly, uy], the
split condition for the x axis is shown in Eq. 22 where s̄l is
the average value of the left partition candidate; i.e.,

s̄l =

∑
(x,y)∈[lx,mx]×[ly,uy ] (M[x, y])

(mx − lx + 1)(uy − ly + 1)
.

s̄r is for the right partition candidate which uses [mx +
1, ux] instead of [lx,mx].

u1 u2 u3 u4

u1’ 2 10 10 10

u2’ 1 10 10 10

u3’ 1 12 10 10

Best	split	for
traditional	KD-tree

Best	split	for	data	summary
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Figure 5: (a) Example K-D tree showing the tradi-
tional split on the median versus our split minimiz-
ing average error. (b) Comparison of not sorting,
using SUGI sort, or using 2D sort before running
the K-D tree algorithm.

arg min
mx

 ∑
(x,y)∈[lx,mx]×[ly,uy ]

(M[x, y]− s̄l)2

+
∑

(x,y)∈[mx+1,ux]×[ly,uy ]

(M[x, y]− s̄r)2
1/2

.

(22)

An equivalent expression is used for the y axis.
We choose this split because we want our K-D tree to best

represent the true values. Suppose we have cell counts on
dimensions A and A′ as shown in Fig. 5a. For the next ver-
tical split, if we followed the standard K-D tree algorithm,
we would choose the second split. Instead, our method
chooses the first split. Using the first split minimizes the
sum squared error.

Our COMPOSITE method repeatedly splits the at-
tribute domains Di1 and Di2 (alternating) by choosing the
split value following Eq. 22 until it exhausts the budget Bs.
Then, for each rectangle [lxj , u

x
j ] × [lyj , u

y
j ] in the resulting

K-D tree, it creates a 2D statistic (cj , sj), where the query
cj is associated with the number of tuples satisfying the 2D
range predicate and the numerical value

sj
def
= |σAi1∈[Di1 [lxj ],Di1 [uxj ]]∧Ai2∈[Di2 [l

y
j ],Di2 [u

y
j ]]

(I)|.

In Sec. 7.5.1 we evaluate the three different heuristic se-
lection techniques.

6.2 Optimal Ordering
Here we describe how to improve the COMPOSITE

method by reordering the domains of the attributes, i.e.
the values in the matrix M, because the split condition
(Eq. 22) depends on the similarity of values within the
bounds [lx, ux] × [ly, uy]. Since our K-D tree relies on the
sort order of the underlying matrix, we can permute the
rows and columns before building the K-D tree to achieve a
lower error.

To show how data ordering can improve the average sum
squared error across the leaves, take the K-D tree plots
in Fig. 6. The K-D tree splits are shown in black lines on
top of frequency heatmaps. The average error is printed be-
low the x-axis. The trees are built on 12 by 12 data with
individual cell frequencies ranging from 0 to 4,000,000. The
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No Sort

Avg Err 430.19

2D Sort
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Figure 6: Plots showing the frequency heatmaps and
the K-D trees built on data that is unsorted (left)
and sorted using the 2D sort algorithm (right). The
average K-D tree leaf error is shown below.

data is constructed such that there is an optimal ordering
that achieves 0 average sum squared error. The left plot
is unordered while the right plot more optimally sorts the
data (we describe the sorting in Sec. 6.3). It can be seen that
(b) has grouped together similar values which means leaves
have lower error. To formalize the problem, let the matrix
M = Di1 ×Di2 of size Ni1 ×Ni2 be the frequency of values
in the domains of attributes Ai1 and Ai2 . For some index
point (x, y), M[x, y] = |σAi1=Di1 [x]∧Ai2=Di2 [y](I)|. Denote
the set of K-D tree leaves generated from running the K-D
tree algorithm as KD(M) = {[lxj , uxj ]× [lyj , u

y
j ] : j = 1, Bs}.

The K-D tree error is

err(KD(M))
def
=

1

Bs

 ∑
(x,y)∈[lxj ,u

x
j ]×[l

y
j ,u

y
j ]

(M[x, y]− s̄j)2


1/2

(23)
where s̄j is the average value per cell; i.e., s̄j = sj/(u

x
j −

lxj + 1)(uyj − l
y
j + 1).

Our goal is to solve

arg min
πx,πy

err(KD(πxMπy)) (24)

where πx and πy are row and column permutation matrices,
respectively.

To solve this, we rely on heuristic techniques.

6.3 Heuristic Sorts
Inspired by the work in finding optimal matrix reorderings

for data visualization and Rectangle Rule List minimiza-
tion [34, 8, 5], we experiment with two different heuristic
sort algorithms described in [34] to more optimally order
M and reduce Eq. 23. At a high level, these heuristic tech-
niques aim to permute a matrix to group together similar
values. In doing so, this helps to mimimize our K-D tree er-
ror because a rectangle around these values will have lower
error.

Both of the sort heuristic algorithms alternate between
reordering the rows and columns until either a maximum it-
eration has been reached or there is no change to the sort or-
der. The first sort algorithm, Sugiyama sort (SUGI), is tra-
ditionally used on binary data and sorts the rows (columns)
by the average index of the one-valued columns (rows). We
modify the sort to sort by the average index of zero-valued

1 2 3 4

1 10 18 4 0

2 0 0 35 11

3 30 0 0 23

indices

2D Sort

1*10 + 2*18 + 3*4 + 4*0 = 58

1*0 + 2*0 + 3*35 + 4*11 = 149

1*30 + 2*0 + 3*0 + 4*23 = 122

1 2 3 4

1 10 18 4 0

2 30 0 0 23

3 0 0 35 11

1 2 3 4

1 10 18 4 0

2 0 0 35 11

3 30 0 0 23

Sugi Sort

(4)/1 = 4

(1 + 2)/2 = 1.5

(2 + 3)/2 = 2.5

1 2 3 4

1 0 0 35 11

2 30 0 0 23

3 10 18 4 0

Figure 7: Sorting a matrix’s rows by 2D sort (top)
and SUGI sort (bottom).

columns (rows) instead to encourage more zero-valued rect-
angles and lower the likelihood of having a zero-valued cell
in a non-zero rectangle. The second sort, 2D sort, sorts the
rows (columns) by the sum of index times the values in the
columns (rows); i.e., a weighted column (row) sum weighted
by the index value. Note that the index starts at one, not
zero.

For example, Fig. 7 shows a matrix with index values in
blue next to the rows and columns. The top diagram shows
how SUGI sort reorders the rows of the matrix by the av-
erage index value of the zeros. As the rows are sorted in
ascending order, the middle row moves to the top, the third
row to the middle, and the first row to the bottom.

The second diagram shows how 2D sort reorders the rows
of the matrix by the index weighted sum of the values. In
this case, the result is that the second and third rows switch.
The sorts would then continue by reordering the columns by
the same techniques and so on.

To evaluate the two different sort heuristics, we first gen-
erate a 12 x 12 matrix M that has an optimal permutation
order such that err(KD(M)) = 0 when using 12 K-D tree
leaves. We randomly permute the rows and columns of M
ten times and compare running the K-D tree algorithm di-
rectly on the unsorted matrix versus first doing SUGI or 2D
sort with various values for the number of K-D tree leaves.

Fig. 5b shows the difference in average K-D tree error
(Eq. 23) and standard deviation for the three methods across
ten trials with the number of leaves varying from 6 to 30.
You can see that 2D sort greatly outperforms SUGI sort
and has no standard deviation because it always reaches the
same sort order. It also very quickly converges to having
zero error, but it does not learn the optimal order because
it does not get zero error with 12 leaves. 2D sort’s success
is due to the fact that it takes values into account as well
as the index position, therefore grouping together cells with
similar frequencies. SUGI sort, on the other hand, merely
tries to group together the zeros. We do see, however, that
SUGI sort is better than no sort.

We show in Sec. 7.5.2 how using 2D sort impacts the
overall query error of our MaxEnt technique.

7. EVALUATION
In this section, we evaluate the performance of EntropyDB

in terms of query accuracy and query execution time. We
compare our approach to uniform sampling and stratified
sampling.

7.1 Implementation
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We implemented our polynomial solver and query eval-
uator in Java 1.8, in a prototype system that we call En-
tropyDB. We created our own polynomial class and vari-
able types to implement our factorization. We parallelized
our polynomial evaluator (see Sec. 5.2) using Java’s parallel
streaming library. We also used Java to store the polynomial
factorization in memory.

Lastly, we stored the polynomial variables in a Postgres
9.5.5 database and stored the polynomial factorization in
a text file. We perform all experiments on a 64bit Linux
machine running Ubuntu 5.4.0. The machine has 120 CPUs
and 1 TB of memory8. For the timing results, the Postgres
database, which stores all the samples, also resides on this
machine and has a shared buffer size of 250 GB.

7.2 Experimental Setup
For all our summaries, we ran our solver for 30 iterations

or until the error was below 1 × 10−6 using the method
presented in Sec. 3.3. Our summaries took under 1 day to
compute with the majority of the time spent building the
polynomial and solving for the parameters.

We evaluate EntropyDB on two real datasets as opposed
to benchmark data to measure query accuracy in the pres-
ence of naturally occurring attribute correlations. The first
dataset comprises information on flights in the United States
from January 1990 to July 2015 [1]. We load the data into
PostgreSQL, remove null values, and bin all real-valued at-
tributes into equi-width buckets. We further reduce the size
of the active domain to decrease memory usage and solver
execution time by binning cities such that the two most
popular cities in each state are separated and the remaining
less popular cities are grouped into a city called ‘Other’.
We use equi-width buckets to facilitate transforming a
user’s query into our domain and to avoid hiding outliers,
but it is future work to try different bucketization strate-
gies. The resulting relation, FlightsFine(fl_date,
origin_city, dest_city, fl_time, distance), is
5 GB in size.

To vary the size of our active domain, we also cre-
ate FlightsCoarse(fl_date, origin_state,
dest_state, fl_time, distance), where we use
the origin state and destination state as flight locations.
The left table in Fig. 8 shows the resulting active domain
sizes.

The second dataset is 210 GB in size. It comprises N-body
particle simulation data [27], which captures the state of as-
tronomy simulation particles at different moments in time
(snapshots). The relation Particles(density, mass,
x, y, z, grp, type, snapshot) contains attributes
that capture particle properties and a binary attribute, grp,
indicating if a particle is in a cluster or not. We bucketize
the continuous attributes (density, mass, and position co-
ordinates) into equi-width bins. The right table in Fig. 8
shows the resulting domain sizes.

7.3 Query Accuracy
We first compare EntropyDB using our best statis-

tic selection techniques of COMPOSITE and 2D sort
(see Sec. 7.5) to uniform and stratified sampling on the
flights dataset. We use one percent samples, which require

8The maximum amount of memory used in experiments was
approximately 40 GB, meaning a system this large is not
required.

Flights
Coarse

Flights
Fine

fl_date
(FD)

307 307

origin
(OS/OC)

54 147

dest
(DS/DC)

54 147

fl_time
(ET)

62 62

distance
(DT)

81 81

# possible
tuples

4.5× 109 3.3×1010

Particles
density 58
mass 52
x 21
y 21
z 21

grp 2
type 3

snapshot 3
# possible

tuples 5.0× 108

Figure 8: Active domain sizes. Each cell shows the
number of distinct values after binning. Abbrevia-
tions shown in brackets are used in figures to refer
to attribute names: e.g., OS stands for origin_state.

approximately 100 MB of space when stored in PostgreSQL.
To approximately match the sample size, our largest sum-
mary requires only 600 KB of space in PostgreSQL to store
the polynomial variables and approximately 200 MB of
space in a text file to store the polynomial factorization.
This, however, could be improved and compressed further
beyond what we did in our prototype implementation.

We compute correlations on FlightsCoarse across all
attribute pairs and identify the following pairs as having
the largest correlations (C stands for “coarse”): 1C = (ori-
gin_state, distance), 2C = (destination_state, distance),
3CF = (fl_time, distance)9, and 4C = (origin_state, desti-
nation_state). We use the corresponding attributes, which
are also the most correlated, for the finer-grained relation
and refer to those attribute pairs as 1F, 2F, and 4F.

Following the discussion in Sec. 6, we have two parame-
ters to vary: Ba (“breadth”) and Bs (“depth”). In order to
keep the total number of statistics constant, we require that
Ba ∗ Bs = 3000. This threshold allows for the polynomial
to be built and solved in under a day. Using this threshold,
we build four summaries to show the difference in choos-
ing statistics based solely on correlation (choosing statistics
in order of most to least correlated) versus attribute cover
(choosing statistics that cover the attributes with the high-
est combined correlation). The first summary, No2D, con-
tains only 1D statistics. The next two, Ent1&2 and Ent3&4,
use 1,500 statistics across the attribute pairs (1, 2) and (3,
4), respectively. The final one, Ent1&2&3, uses 1,000 statis-
tics for the three attribute pairs (1, 2, 3). We do not include
2D statistics related to the flight date attribute because this
attribute is relatively uniformly distributed and does not
need a 2D statistic to correct for the MaxEnt’s underlying
uniformity assumption. Fig. 9 summarizes the summaries.

For sampling, we choose to compare with a uniform sam-
ple and four different stratified samples. We choose the
stratified samples to be along the same attribute pairs as
the 2D statistics in our summaries; i.e., pair 1 through pair
4.

To test query accuracy, we use the following query tem-
plate:

SELECT A1 , . . . , Am, COUNT(∗ )
FROM R WHERE A1=‘v1 ’ AND . . . AND Am=‘vm’
GROUP BY A1 , . . . , Am

We test the approaches on 400 unique (A1,.., Am) val-
ues. We choose the attributes for the queries in a way that

9Pair 3 is the same for FlightsCoarse and FlightsFine
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MaxEnt Method No2D 1&2 3&4 1&2&3
Pair 1 (origin, distance) X X
Pair 2 (dest, distance) X X
Pair 3 (time, distance) X X
Pair 4 (origin, dest) X

Figure 9: MaxEnt 2D statistics including in the
summaries. The top row is the label of the Max-
Ent method used in the graphs.
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Figure 10: Query error difference between all meth-
ods and Ent1&2&3 over FlightsCoarse. The pair in
parenthesis in the column header corresponds to the
2D statistic pair(s) used in the query template. For
reference, pair 1 is (origin/OB, distance/DT), pair
2 is (dest/DB, distance/DT), pair 3 is (time/ET,
distance/DT), and pair 4 is (origin/OB, dest/DB).

illustrates the strengths and weaknesses of EntropyDB. For
the selected attributes, 100 of the values used in the ex-
periments have the largest count (heavy hitters), 100 have
the smallest count (light hitters), and 200 (to match the 200
existing values) have a zero true count (nonexistent/null val-
ues). To evaluate the accuracy of EntropyDB, we compute
a |true− est|/(true+ est) (a measure of relative difference)
on the heavy and light hitters. To evaluate how well En-
tropyDB distinguishes between rare and nonexistent values,
we compute the F measure,

2 ∗ precision ∗ recall/(precision + recall)

with

precision =
|{estt > 0 : t ∈ light hitters}|

|{estt > 0 : t ∈ (light hitters ∪ null values)}|
and

recall =
|{estt > 0 : t ∈ light hitters}|

100
.

We do not compare the execution time of EntropyDB to
sampling for the flights data because the dataset is small,
and the execution time of EntropyDB is, on average, below
0.5 seconds and at most 1 sec. Sec. 7.4.1 reports execution
time for the larger data.

Fig. 10 (top) shows query error differences between all
methods and Ent1&2&3 (i.e., average error for method X

minus average error for Ent1&2&3) for three different heavy
hitter queries over FlightsCoarse. Hence, bars above
zero indicate that Ent1&2&3 performs better and vice versa.
Each of the three query templates uses a different set of at-
tributes that we manually select to illustrate different sce-
narios. The attributes of the query are shown in the column
header in the figure, and any 2D statistic attribute-pair con-
tained in the query attributes is in parentheses. Each bar
shows the average of 100 query instances selecting different
values for each template.

As the figure shows, Ent1&2&3 is comparable or better
than sampling on two of the three queries and does worse
than sampling on query 1. The reason it does worse on
query 1 is that it does not have any 2D statistics over 4C,
the attribute-pair used in the query, and 4C is fairly corre-
lated. Our lack of a 2D statistic over 4C means we cannot
correct for the MaxEnt’s uniformity assumption. On the
other hand, all samples are able to capture the correlation
because the 100 heavy hitters for query 1 are responsible
for approximately 25% of the data. This is further shown
by Ent3&4, which has 4C as one of its 2D statistics, doing
better than Ent1&2&3 on query 1.

Ent1&2&3 is comparable to sampling on query 2 because
two of its 2D statistics cover the three attributes in the
query. It is better than both Ent1&2 and Ent3&4 because
each of those methods has only one 2D statistic over the
attributes in the query. Finally, Ent1&2&3 is better than
stratified sampling on query 3 because it not only contains
a 2D statistic over 2C but also correctly captures the uni-
formity of flight date. This uniformity is also why Ent1&2
and a uniform sample do well on query 3. Another reason
stratified sampling performs poorly on query 3 is because
the result is highly skewed in the attributes of destination
state and distance but remains uniform in flight date. The
top 100 heavy hitter tuples all have the destination of ‘CA’
with a distance of 300. This means even a stratified sample
over destination state and distance will likely not be able to
capture the uniformity of flight date within the strata for
‘CA’ and 300 miles.

Fig. 10 (bottom) shows results for three different light hit-
ter queries over FlightsCoarse. In this case, EntropyDB
always does better than uniform sampling. Our performance
compared to stratified sampling depends on the stratifica-
tion and query. Stratified sampling outperforms Ent1&2&3
when the stratification is exactly along the attributes in-
volved in the query. For example, for query 1, the sample
stratified on pair 3 outperforms EntropyDB by a significant
amount because pair 3CF is computed along the attributes
in query 1. Interestingly, Ent3&4 and Ent1&2 do better
than Ent1&2&3 on query 1 and query 2, respectively. Even
though both of the query attributes for query 1 and query 2
are statistics in Ent1&2&3, Ent1&2 and Ent3&4 have more
statistics and are thus able to capture more zero elements.
Lastly, we see that for query 3, we are comparable to strat-
ified sampling because we have a 2D statistic over pair 2C,
and the other attribute, flight date, is relatively uniformly
distributed in the query result.

We ran the same queries over the FlightsFine dataset
and found identical trends in error difference. We therefore
omit the graph.

An important advantage of our approach is that it more
accurately distinguishes between rare values and nonexistent
values compared with stratified sampling, which often does
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Figure 11: F measure for light hitters and null values
over FlightsCoarse (left) and FlightsFine (right).

not have samples for rare values when the stratification does
not match the query attributes. To assess how well our
approach works on those rare values, Fig. 11 shows the
average F measure over fifteen 2- and 3-dimensional queries
selecting light hitters and null values.

We see that Ent1&2 and 3&4 have F measures close
to 0.72, beating all stratified samples and also beating
Ent1&2&3. The key reason why they beat Ent1&2&3 is
that these summaries have the largest numbers of statistics,
which ensures they have more fine grained information and
can more easily identify regions without tuples. Ent1&2&3
has an F measure close to 0.69, which is slightly lower than
the stratified sample over pair 3CF but better than all other
samples. The reason the sample stratified over pair 3CF
performs well is that the flight time attribute has a more
skewed distribution and has more rare values than other di-
mensions. A stratified sample over that dimensions will be
able to capture this. On the other hand, Ent1&2&3 will
estimate a small count for any tuple containing a rare flight
time value and will be rounded to 0.

7.4 Execution Times

7.4.1 Scalability
To measure the performance of EntropyDB on large-scale

datasets, we use three subsets of the 210 GB Particles
table. We select data for one, two, or all three snapshots
(each snapshot is approximately 70 GB in size). We build a
1 GB uniform sample for each subset of the table as well as
a stratified sample over the pair density and group with the
same sampling percentage as the uniform sample. We then
build two MaxEnt summaries; EntNo2D uses no 2D statis-
tics, and EntAll contains 5 2D statistics with 100 statistics
over each of the most correlated attributes, not including
snapshot. We do not use any presorting method for this
experiment. We run a variety of 4D selection queries such
as the ones from Sec. 7.3, split into heavy hitters and light
hitters. We record the query accuracy and execution time.

Fig. 12 shows the query accuracy and execution time for
three different selection queries as the number of snapshots
increases. We see that EntropyDB consistently does better
than sampling on query execution time, although both En-
tropyDB and stratified sampling execute queries in under
one second. Stratified sampling outperforms uniform sam-
pling because the stratified samples are generally smaller
than their equally selective uniform sample.

In terms of query accuracy, sampling always does bet-
ter than EntropyDB for the heavy hitter queries. This is
expected because the bucketization of Particles is rela-

Figure 12: Query average error and execution time
for three 4D selection queries on the Particles ta-
ble. The stratified sample (orange) is stratified on
(den, grp).
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Figure 13: EntropyDB log scale execution times for
loading the data, building the polynomial, and solv-
ing for the parameters for various configurations of
Ba and Bs on FlightsFine.

tively coarse grained, and a 1 GB sample is sufficiently large
to capture the heavy hitters. We do see that EntAll does sig-
nificantly better than EntNo2D for query 1 because three of
its five statistics are over the attributes of query 1 while only
1 statistic is over the attributes of queries 2 and 3. However,
the query results of query 3 are more uniform, which is why
EntNo2D and EntAll do well.

For the light hitter queries, none of the methods do well
except for the stratified sample in query 1 because the query
is over the attributes used in the stratification. EntAll does
slightly better than stratified sampling on queries 2 and 3.

7.4.2 Solving Time
To show the data loading and model solving time of En-

tropyDB, we use FlightsFine and measure the time it
takes for EntropyDB to read in a dataset from Postgres to
collect statistics, to build the polynomial, and to solve for
the model parameters for various Ba and Bs (see Fig. 13).
When Ba = 2, we gather statistics over pair 1 and pair 2
(MaxEnt1&2), and when Ba = 3, we gather statistics over
pair 1, 2, and 3 (MaxEnt3).)

We see that the overall polynomial building and solving
execution time grows exponentially as Ba and Bs increase
while the data loading time remains constant. The smallest
model has a execution time of 10.5 minutes while largest
model (MaxEnt3) has a execution time of 15.4 hours. The
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Figure 14: Log scale query execution times for 2-
and 3-dimensional group-by queries versus size of
query’s active domain on FlightsFine for various
configurations of Ba and Bs. The dashed line demar-
cates queries with fl_date as a group-by attribute
and those that do not.

experiment further demonstrates that Ba impacts execution
time more than Bs. The method with Ba = 2, Bs = 750 has
a faster execution time than the method with Ba = 3, Bs =
500 even though the total number of statistics, 1,500 in both,
is the same.

Note that the data loading time (yellow) will increase as
the dataset gets larger, but once all the histograms and
statistics are computed, the time to build the polynomial
and solver time are independent of the original data size;
they only depend on the model complexity.

7.4.3 Group By Queries
To further expand on execution time results, we mea-

sure the execution time to compute eight various 2- and 3-
dimensional group-by queries instead of single point queries
(sixteen group-by queries in total) to show how the execu-
tion time depends on the active domain. As EntropyDB can
only issue a single point query at a time (the query evalu-
ation is already parallelized), the group-by queries are run
as sequences of point queries over the domain of the query
attributes.

Fig. 14 shows a scatter plot of the query domain size versus
the execution time for 2- and 3-dimensional group-by queries
for the same models as used in Sec. 7.4.2 (i.e. Ba = 0, 2, 3
and Bs varying form 333 to 1500). If a model takes longer
than 10 minutes to compute a group-by query, we terminate
its execution. Each color represents a different combination
of Ba and Bs. Note that running a 3-dimensional group-by
query on Postgres on the full FlightsFine can take up to
17 minutes.

The overall trend we see is that models with a larger Ba
are slower to execute, and for models with the same Ba,
larger Bs is slower. For example, the average execution for
2-dimensional group-by queries for Ba = 2 is 8 seconds while
it is 87 seconds for Ba = 3. This is not surprising and
matches the results from Fig. 13. We again see that Ba =

2, Bs = 750 is faster than Ba = 3, Bs = 500 even though
the total number of statistics is the same.

Some of the large models had an execution time of longer
than 10 minutes for some of the 3-dimensional queries, which
is why their scatter point is not shown on all queries. Even
though their execution time was more than 10 minutes, each
individual point query still ran in under a second.

The results also show a surprising trend in that the exe-
cution time dips after the black dashed line and then starts
slowing increasing again. This dashed black line demarcates
queries containing the fl_date attribute, the one attribute
not included in any 2-dimensional statistic. Note that be-
cause the active domain of FD is small, the smaller domain
queries happen to contain FD, but the size of the domain is
independent of the dip in the execution time.

This unintuitive result is explained by the optimizations
in Sec. 5.2. By using bit vectors and maps to indicate which
attributes and variables are contained in a polynomial sub-
term, we can quickly decide if that subterm needs to be set
to zero or not for query evaluation. This mainly improves
evaluation of correction subterms (i.e. (δ−1) times 1D sums)
because the 1D sums contain subsets of the active domain
and are more likely overlap with the variables that can be
set to zero. The more quickly we can decide if a subterm is
zero, the faster the evaluation.

For example, take the polynomial in Fig. 2. If we are
evaluating a query for A = 155∧B = 700∧C = 700, then all
other α, β, and γ variables need to be set to zero except α155,
β700, and γ700. This means the polynomial sums on lines 3,
5, 6, and 7 can all be set to zero without having to evaluate
each individual subterm on those lines because α155, β700,
and γ700 are not contained in any of those subterms and A,
B, and C attributes are meant to be zero.

The FD attribute being one of the group-by attributes
indicates that all variables representing FD except for the
one being selected can be set to zero. However, as FD is
not part of a statistic, there are no correction terms being
multiplied by subsets of the FD active domain. Therefore,
there are fewer chances to set a subterm to zero, meaning
the overall query execution is slower.

This evaluation presents and interesting tradeoff between
model size, statistic attributes, and query execution. One
the one hand, a larger model will take longer to run, in
general. On the other hand, more statistics allow for more
zero setting optimizations in query evaluation. We also see
that while EntropyDB can handle 2-dimensional group-by
queries, especially if Ba = 2, it struggles to perform for 3-
dimensional ones. However, as the strength of EntropyDB
is in querying for light hitters, EntropyDB will miss fewer
groups than sampling techniques which are more impacted
by heavy hitters. We leave it as future work further optimize
large domain group-by queries.

7.5 Statistic Selection

7.5.1 Selection Technique
We evaluate the three different statistic selection heuris-

tics, described in Sec. 6.1, on FlightsCoarse restricted
to the attributes (date, time, distance). We gather statis-
tics using the three different techniques and using differ-
ent budgets on the attribute pair (time, distance). There
are 5,022 possible 2D statistics, 1,334 of which exist in
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Figure 15: Illustration of query accuracy versus bud-
get for the three different heuristics and three differ-
ent selections: (i) selecting 100 heavy hitter values,
(ii) selecting 200 nonexistent values, and (iii) select-
ing 100 light hitter values.

FlightsCoarse. We evaluate the accuracy of the resul-
tant count of the query

SELECT time , d i s t , COUNT(∗ )
FROM F l i g h t s WHERE time = x AND d i s t = y
GROUP BY time , d i s t

for 100 heavy hitter (x, y) values, 100 light hitter (x, y)
values, and 200 random (x, y) nonexistent/zero values. We
choose 200 zero values to match the 100+100 heavy and
light hitters.

Fig. 15 (i) plots the query accuracy versus method and
budget for 100 heavy hitter values. Both LARGE and
COMPOSITE achieve almost zero error for the larger bud-
gets while ZERO gets around 60 percent error no matter
the budget.

(ii) plots the same for nonexistent values, and clearly
ZERO does best because it captures the zero values first.
COMPOSITE, however, gets a low error with a budget
of 1,000 and outperforms LARGE. Interestingly, LARGE
does slightly worse with a budget of 1,000 than 500. This
is a result of the final value of P being larger with a larger
budget, and this makes our estimates slightly higher than
0.5, which we round up to 1. With a budget of 500, our
estimates are slightly lower than 0.5, which we round down
to 0.

Lastly, (iii) plots the same for 100 light hitter values,
and while LARGE eventually outperforms COMPOS-
ITE, COMPOSITE gets similar error for all budgets. In
fact, COMPOSITE outperforms LARGE for a budget of
1,000 because LARGE predicts that more of the light hit-
ter values are nonexistent than it does with a smaller budget
as less weight is distributed to the light hitter values.

Unsurprisingly, we see that COMPOSITE is the best
method to use across all queries. However, the COMPOS-
ITE method is more complex and takes more time to com-
pute. We do learn that if heavy hitter queries are the only
relevant queries in a particular workload, it is unnecessary
to use the COMPOSITE method as LARGE does just
as well. Also, ZERO is the best if existence queries are
the most important (e.g. if determining set containment).
So while COMPOSITE is best for a handling a variety of
queries, it may not be necessary, depending on the query
workload.
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Figure 16: (a, b) Error over 2D heavy hitter
queries, (c, d) error over 2D light hitter queries,
and (e, f) F measure over 2D light hitter and null
value queries across different MaxEnt methods over
FlightsCoarse and FlightsFine using no sort (left
side) and 2D sort (right side).

7.5.2 Statistic Accuracy
We now investigate, in more detail, how the different 2D

statistic attribute choices and how presorting the matrix im-
pacts query accuracy. We look at the query accuracy of the
four different MaxEnt methods used in Fig. 10 using both
2D sort and no sort. We also include the MaxEnt method
No2D for comparison although it does not use any sorting.
The no sort technique maintains the natural ordering of the
domains. We use FlightsCoarse and FlightsFine and
the query templates from Sec. 7.3. We run six different
two-attribute selection queries over all possible pairs of the
attributes covered by pair 1 through 4; i.e., origin, destina-
tion, time, and distance. We select 100 heavy hitters, 100
light hitters, and 200 null values.

Fig. 16 shows the average error for the heavy hitters and
the light hitters and shows the average F measure across
the six queries. The left side shows the error when no pre-
sorting is used, and the right side shows the error when 2D
sort is used. We first consider the different attribute selec-
tions. We see that the summary with more attribute pairs
but fewer buckets (more “breadth”), Ent1&2&3, does best
on the heavy hitters. On the other hand, for the light hit-
ters, we see that the summary with fewer attribute pairs but
more buckets (more “depth”) and still covers the attributes,
Ent3&4, does best. Ent3&4 doing better than Ent1&2 im-
plies that choosing the attribute pairs that cover the at-
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tributes yields better accuracy than choosing the most cor-
related pairs because even though Ent1&2 has the most cor-
related attribute pairs, it does not have a statistic containing
flight time. Lastly, Ent1&2&3 does best on the heavy hitter
queries yet slightly worse on the light hitter queries because
it does not have as many buckets as Ent1&2 and Ent3&4
and can thus not capture as many regions in the active do-
mains with no tuples.

When considering presorting the data, we see that 2D
sort does not have any significant impact on heavy hitter
accuracy, with an improvement on the order of 0.001. For
light hitters, we see a slight average error improvement using
2D sort, and for the F measure, we see a slight decrease
in measure. Ent2&3 has the largest improvement in light
hitter query error because of the improvement in resorting
pair 3 (distance and time) along with its large K-D tree leaf
budget. Ent2&3 has 1,500 K-D tree leaves which is enough
to capture the 1,334 nonzero values of pair 3.

The decrease in F measure and limited improvement for
query accuracy is best explained by looking at the sorted
and unsorted frequency heatmaps and K-D trees of the pair
2C for Ent1&2&3 on FlightsCoarse, shown in Fig. 17.
We see that the average K-D tree error does, in fact, de-
crease, which should indicate an improvement in accuracy
and F measure. However, upon closer inspection of the K-
D tree leaves, we see that the sorted tree actually has put
more zeros in leaves with some small, nonzero values. This,
in turn, causes MaxEnt1&2&3 to believe those zeros actu-
ally exist, therefore decreasing the F measure. This result
implies that improving K-D tree error is not always enough
to guarantee a high F measure because every zero that is
in a leaf with some nonzero value will be misclassified as
existing.

8. DISCUSSION

8.1 Future Work
The above evaluation shows that EntropyDB is compet-

itive with stratified sampling overall and better at distin-
guishing between infrequent and absent values. Importantly,
unlike stratified sampling, EntropyDB’s summaries permit
multiple 2D statistics. Further, as EntropyDB is based on
modeling the data, it does not actually need access to the
original, underlying data. If a data scientist only has access
to, for example, various 2-dimensional histogram queries of
the entire dataset, EntropyDB would still be able to build
a model of the data and answer queries. Sampling would
only be able to handle queries that are directly over one of
the histograms. The main limitations of EntropyDB are the
dependence on the size of the active domain, correlation-
based 2D statistic selection, manual bucketization, and lim-
ited query support.

To address the first problem, our future work is to in-
vestigate using standard algebraic factorization techniques
on non-materializable polynomials. By further reducing the
polynomial size, we will be able to handle larger domain
sizes. We also will explore using statistical model techniques
to more effectively decompose the attributes into 2D pairs,
similar to [19]. To no longer require bucketizing categorical
variables (like city), we will research hierarchical polynomi-
als. These polynomials will start with coarse buckets (like
states), and build separate polynomials for buckets that re-
quire more detail. This may require the user to wait while a
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No Sort (Ent1&3&4 Pair 2)

Avg Err 5621.54

2D Sort (Ent1&3&4 Pair 2)

100

101
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Figure 17: Plots showing the frequency heatmap
of the pair 2 attributes of MaxEnt1&3&4 of
FlightsCoarse that is unsorted (left) and sorted us-
ing the 2D sort algorithm (right). The average K-D
tree error is shown below.

new polynomial is being loaded but would allow for different
levels of query accuracy without sacrificing polynomial size.

Addressing our queries not reporting error is non-trivial
and requires combining the errors in the statistics with the
errors in the model parameters with the errors in making
the uniformity assumption for the attributes not covered by
a statistic. Our future work will be to understand how the
error depends on the each of these facets and developing an
error equation that propagates these errors through polyno-
mial evaluation.

8.2 Handling Joins and Data Updates
When building our MaxEnt summary, we assume there

was only a single relation being summarized and the under-
lying data is not updated. We now discuss two extensions
of our summarization technique to address both of these
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assumptions.

8.2.1 Joins
In Sec. 3, we introduce the MaxEnt model over a sin-

gle, universal (pre-joined) relation R and an instance I of
R. Now, suppose the data we want to summarize consists
of r relations, R1, . . . , Rr, each with an associated instance
I1, . . . , Ir. To describe our approach, we assume each Ri
joins with Ri+1 by an equi-join on attribute Aji,i+1 ; i.e.
R = R1 ./R1.Aj1,2=R2.Aj1,2

R2 ./ . . . ./ Rr. Our tech-

nique can easily be extended to work for multiple equi-join
attributes, but for simplicity, we describe the approach for
a single join attribute. Let R(A1, . . . , Am) be the global
schema of R1 ./ R2 ./ . . . ./ Rr with active domains as
described in Sec. 3.

The simplest approach to handle joins is to join all rela-
tions and build a summary over the universal relation. Once
the summary is built, the universal relation can be removed.
While this summary can now handle queries over R, it re-
quires R to be computed once, which can be an expensive
procedure.

Our approach is to build a separate
MaxEnt data summary for each instance:
{(P1, {αj}1,Φ1), . . . , (Pr, {αj}r,Φr)}. A linear query
q with associated predicate πq over R is answered by
iteration over the distinct values in the join attributes; i.e.

E[〈q, I〉] =
∑

d1∈Dj1,2

. . .
∑

dr−1∈Djr−1,r

E[〈q′, I1〉] . . .E[〈q′, Ir〉]

s.t. πq′ = πq ∧ (R1.Aj1,2 = d1) ∧ (R2.Aj1,2 = d1)∧
. . . ∧ (Rr.Ajr−1,r = dr−1).

where q′ is the linear query associated with πq′ and Ri.Aj
denotes attribute Aj in relation Ri. We abuse notation
slightly in that E[〈q′, Ii〉] is the answer to q′ projected on
to the attributes of Ri (i.e. setting ρ ≡ true for attributes
not in Ri). Note that if q is only over a subset of relations,
then the summation only needs to be over the distinct join
values of the relations in the query.

While this method will return an approximate answer, it
does rely on iteration over the active domain of the join
attributes, which, as we shown in Fig. 14, can be expen-
sive for larger domain sizes. However, for each relation Ri,
if we modify the statistic constraints associated with the
1D statistics of the join attribute Aji,i+1 , we can improve
runtime by decreasing the number of iterations in the sum-
mation.

At a high level, before learning multi-dimensional statis-
tics, for each ` ∈ Jji,i+1 (i.e. each 1D statistic index for
attribute Aji,i+1), we replace (c`, s`) by (c`, s̄) where s̄ is
the average s` value of a group of statistics in Jji,i+1 . This
is similar to building a COMPOSITE statistic over Aji,i+1

except instead of replacing each individual statistic by the
composite, we are modifying the constraint for each statis-
tic. We do do not replace the 1D statistics because we still
want to be able to query at the level of an individual tu-
ple. As our querying technique is equivalent to derivation,
if we remove the fine-grained 1D statistics, there is nothing
to derivate by if a query is issued over a 1D statistic.

Specifically, with B′s ≤ Bs as the budget for the 1D statis-
tic, suppose we learn that {gi,i+1

k = [lik, u
i
k] : k = 1, B′s} is

the optimal set of boundaries for join attribute Aji,i+1 from
relation Ri to Ri+1. These can be learned with the K-D tree

method in Sec. 6 by sorting and then repeatedly splitting
on the single axis until the budget B′s is reached. We then
apply the same bounds of {[lik, uik] : k = 1, B′s} on any multi-
dimensional statistic covering Aji,i+1 in Ri and Ri+1 and the
1D statistic covering Aji,i+1 in Ri+1 (see Example 8.1). As
this boundary is learned before multi-dimensional statistics
are built, when we build a 2-dimensional statistic covering
Aji,i+1 , we seed the K-D tree with the Aji,i+1 axis splits of

{gi,i+1
k : k = 1, B′s} and repeatedly split on the other axis

until reaching our budget Bs.
Using this transfer boundary technique and rewriting the

summation, we can answer queries over joins by iterating
over a single point in each range boundary rather than all
individual values. The following example gives intuition as
to how this boundary transfer works.

Example 8.1. Suppose we have two relations R(A,B)
and S(B,C) with instances IR and IS where each attribute
has an active domain size of 3. We also have a query q
with predicate πq = (A = a1 ∧ C = c1) over R ./ S. Let
each relation build a data summary (P, {αj},Φ) using a 1D
composite statistic over B and a 2D statistic over their two
attributes with Bs = 4 and B′s = 2. Lastly, for the composite
statistic, suppose we learn that the optimal boundaries for B
are [b1, b2] and [b3], meaning the statistics over B will be

(B = b1, (sb1 + sb2)/2)

(B = b2, (sb1 + sb2)/2)

(B = b3, sb3)

where sbi is the number of tuples where B = bi. Note
that the constraint for b1 and b2 is the same which implies
nβ1∂P/P∂β1 = nβ2∂P/P∂β2 by Eq. 1.

By our näıve strategy, the answer to q is

E[〈q, IR ./ IS〉] =
∑

b∈[b1,b3]

E[〈q′, IR〉]E[〈q′, IS〉]

s.t. πq′ = (A = a1 ∧ C = c1 ∧B = b).

This can be rewritten in terms of polynomial derivation as

=
nRα1β1
PR

∂PR
∂α1∂β1

nSβ1γ1
PS

∂PS
∂β1∂γ1

+
nRα1β2
PR

∂PR
∂α1∂β2

nSβ2γ1
PS

∂PS
∂β2∂γ1

+
nRα1β3
PR

∂PR
∂α1∂β3

nSβ3γ1
PS

∂PS
∂β3∂γ1

.

Consider two cases: when the other 2-dimensional statis-
tics have the same boundaries on B and when they do not.
For the first case, let the 2D statistics over R and S be as
shown by the rectangles all in black with the red line for S.

R S

δ3

δ1

δ4

δ2

δ8

δ6

δ7

δ5

b1 c1b2 c2b3 c3

a3 b3

a2 b2

a1 b1
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Using these statistics, E[〈q, IR ./ IS〉] now becomes

=
nRα1β1
PR

δ1
nSβ1γ1
PS

δ5 +
nRα1β2
PR

δ1
nSβ2γ1
PS

δ5

+
nRα1β3
PR

δ2
nSβ3γ1
PS

δ7

= 2
nRα1β1
PR

δ1
nSβ1γ1
PS

δ5 +
nRα1β3
PR

δ2
nSβ3γ1
PS

δ7

where the second line follows because nβ1∂P/P∂β1 =
nβ2∂P/P∂β2. Notice how instead of summing over all dis-
tinct values in B, we are summing over B′s values.

In we had statistics over S that were the rectangles in black
with the green line (the boundaries on B do not match those
of the composite 1D statistic), E[〈q, IR ./ IS〉] would be

=
nRα1β1
PR

δ1
nSβ1γ1
PS

δ5 +
nRα1β2
PR

δ1
nSβ2γ1
PS

δ6

+
nRα1β3
PR

δ2
nSβ3γ1
PS

δ7

which does not simplify.

Formally, suppose we only use the transfer boundary tech-
nique for Ajr−1,r , the last join attribute; i.e. we make the
1D composite statistic boundaries of Ajr−1,r the same in

Rr−1 and Rr. Using |gi,i+1
k | = uik − lik + 1 (the size of the

range), we can rewrite E[〈q, I〉] as

E[〈q, I〉] =
∑

d1∈Dj1,2

. . .
∑

dr−1∈Djr−1,r

r∏
i=1

E[〈q′, Ii〉]

=
∑

d1∈Dj1,2

. . .
∑
g
r−1,r
k

∑
dr−1∈g

r−1,r
k

r∏
i=1

E[〈q′, Ii〉]

=
∑

d1∈Dj1,2

. . .
∑
g
r−1,r
k

E[〈q′r, Ir〉]
∑

dr−1∈g
r−1,r
k

r−1∏
i=1

E[〈q′, Ii〉]

=
∑

d1∈Dj1,2

. . .
∑
g
r−1,r
k

[
|gr−1,r
k | ∗ E[〈q′r−1, Ir−1〉]

∗ E[〈q′r, Ir〉] ∗
r−2∏
i=1

E[〈q′, Ii〉]
]

s.t. πq′r−1
= π ∧ (R1.Aj1,2 = d1) ∧ . . . ∧ (Rr.Ajr−1,r = true)

∧ (Rr−1.Ajr−1,r = Djr−1,r [lik])

πq′r = π ∧ (R1.Aj1,2 = d1) ∧ . . . ∧ (Rr−1.Ajr−1,r = true)

∧ (Rr.Ajr−1,r = Djr−1,r [lik]).

The step from line one to line two is replacing the sum
over dr−1 ∈ Djr−1,r to a sum over boundaries {gr−1,r

k } and
a sum over distinct values in the boundary. In line three, we
pull out the query over Ir because the answer for E[〈q′, Ir〉]
is the same for each dr−1 ∈ gr−1,r

k as they use the same
composite statistic. Therefore, we pull out the query and
modify the query’s predicate to be over the lower boundary
value (any value in the boundary would produce equivalent
results).

In line four, we perform the same trick and pull out the
query over Ir−1 because E[〈q′, Ir−1〉] will also be the same
for each dr−1 ∈ gr−1,r

k . Lastly, because
∏r−2
i=1 E[〈q′, Ii〉] is

independent of Rr−1 as it does not contain Ir−1, we can
also pull it out of the sum. At the end, we get a summation

Algorithm 4 Update Model

f o r (∆t) do
Φ = updateStats(Φ , ∆t)
i f ( not {αj} being updated ) do

i f timeToRebuild do
(P, {αj},Φ) = rebuildModel(R)

e l s e
{αj} = updateParams(Φ , {αj})

over the value one that repeats |gr−1,r
k | times. This sum

rewriting trick can be applied to all attributes with shared
boundaries on all statistics covering the join attributes.

By performing this boundary transfer trick, we have re-
placed the sum for distinct values of Ajr−1,r with the sum

over lower boundary points of {gi,i+1
k }. We can repeat this

boundary transfer for any of the dense distinct join values
to make the final join algorithm efficient. Note that this
technique does lose accuracy as we are no longer building
building fine-grained 1D statistics over the join attributes
and are using potentially suboptimal boundaries for other
multi-dimensional statistics.

8.2.2 Updates
Another key assumption made in Sec. 3 is that the data

being summarized is read only and not updated. If we relax
that assumption and let the underlying data change, our
model needs to be updated, too. We make the assumption
that data updates are represented as single tuple additions
or deletions. For example, a value change can be represented
as a tuple deletion followed by a tuple addition. Alg. 4
describes our update technique.

The intuition behind our algorithm is that as updates
come in, it is satisfactory to initially only update the polyno-
mial parameters {αj} while keeping the statistic predicates
the same. However, as the data continues to be updated, the
underlying correlations and relationships of the attributes
may change, meaning the statistic predicates are no longer
optimal. When this occurs, the entire summary needs to be
rebuilt. Ideally, the rebuilding would happen overnight or
when the summary is not in high demand.

Out algorithm works as follows. For each tuple update,
updateStats modifies sj for each predicate πj that t satisfies.
sj increases or decreases by one depending of it t is being
added or removed. It is important to realize that updateS-
tats does not update the predicates defining the statistics,
just the predicate values.

After the statistics are updated, we check if either up-
dateParams or rebuildModel is currently running or in
progress. If it is, we move on to the next update, effec-
tively batching our changes. If no update is in progress, we
update or rebuild our model. updateParams simply updates
the polynomial parameters {αj} by running Alg. 1 initial-
ized by the last solved for parameters. By initializing our
model at the last know solution, we decrease convergence
time because many of the parameters are already solved for
and do not need to change. In contrast to simply updat-
ing our parameters, rebuildModel starts from scratch and
regenerates the statistics, polynomial, and parameters.

The final method to discuss, timeToRebuild, decides
whether to update or rebuild the model. There are numer-
ous different ways to defining timeToRebuild, and we give
three such possibilities below.
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• When the number of tuple updates reaches some prede-
fined threshold B.

• When the system does not have many users, meaning
there is more compute power to rebuild the summary.

• When attribute correlations are not accurately repre-
sented in Φ. i.e. when some attribute pair in Φ is uni-
formly distributed or when some attribute pair in R is
correlated but not included in Φ.

8.3 Connection to Probabilistic Databases
At a high level, EntropyDB learned a probability dis-

tribution of the data so that each possible instance has
some associated probability of existing. Since this possible
world semantics is the same semantics as used by probabilis-
tic databases, how does EntropyDB relate to probabilistic
databases [43, 18]?

Recall that probabilistic databases store uncertain data,
and, like EntropyDB, represent the probability of a tuple
as Pr(t) =

∑
I∈PWD|t∈I Pr(I). The uncertainty in the data

arises from the application such as data extraction, data
integration, or data cleaning. Probabilistic databases are
commonly stored as tuple independent (TI) databases where
each tuple has an associated marginal probability and is an
independent probabilistic event.

EntropyDB, on the other hand, does not store the
marginal probabilities. Recall that for EntropyDB, if we
let q = t` for some tuple t`, then, from Eq. 11, we can
calculate the expected number of times tuple t` appears in
an instance. If we divide by n, we calculate the expected
percent of times tuple t` appears in an instance. This, in
general, is not the same as the marginal probability. It turns
out that when n = 1, the two are equivalent.

Lemma 8.2. For some tuple t` and associated linear
query t` (query with 1 in the place of tuple t` and 0 else-
where), when n = 1, E[〈t`, I〉] is the marginal probability of
a tuple; i.e., Pr(t` ∈ I).

Proof. We will use the same trick as in Sec. 3.2 by ex-
tending the polynomial with a new variable β = 1 represent-
ing the query t`. Denote this extended polynomial as Pt` .
Following Eq. 10, we get

(Pt`)
n =

∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j β〈t`,ti〉

n

=

 ∏
j=1,k

α
〈cj ,t`〉
j β +

∑
i=1,d
i6=`

∏
j=1,k

α
〈cj ,ti〉
j β〈t`,ti〉


n

=

((
β
∂Pt`

∂β

)
+

(
Pt` − β

∂Pt`

∂β

))n
. (25)

Note that β〈t`,ti〉 = 0 when ` 6= i. We use this rewriting in
finding the marginal probability.

Pr(t` ∈ I) = 1− Pr(t` /∈ I)

= 1− 1

(Pt`)
n

∑
I:t` /∈I

∏
j=1,k

α
〈cj ,I〉
j β〈t`,I〉

= 1− 1

(Pt`)
n

∑
i=1,d
i 6=`

∏
j=1,k

α
〈cj ,ti〉
j β〈t`,ti〉


n

= 1− 1

(Pt`)
n

(
Pt` − β

∂Pt`

∂β

)n
= 1−

(
1− β

Pt`

∂Pt`

∂β

)n

The third line follows a similar proof as Eq. 6. From Eq. 11
and since β = 1 and n = 1, we get

Pr(t` ∈ I) =
1

Pt`

∂Pt`

∂β

= E[〈t`, I〉]

It is important to note that although we can calculate the
marginal probability, the probabilities are not independent;
i.e., we do not have a TI probabilistic database.

8.4 Connection to Graphical Models
The Principle of Maximum Entropy is well studied, and it

is known that the maximum entropy solution with marginal
constraints (i.e., COUNT(*) constraints) is equivalent to the
maximum likelihood solution for exponential family mod-
els [37, 44, 47, 28]. This can be seen by transforming Eq. 2
into exponential form

Pr(I) = exp

((
k∑
j=1

θjφj(I)

)
(26)

− log
∑

I∈PWD

(
exp

(
k∑
j=1

θjφj(I)

)))
. (27)

Further, this exponential form is equivalent to the probabil-
ity distribution defined over an exponential family Markov
Network or, more generally, factor graph [49]. Markov net-
works are factor graphs where the factors representing the
parameterization of the probability distribution are defined
solely on cliques in the graph.

This connection implies that we can use MLE techniques
to solve for the parameters θj , and, in fact, the modified
gradient descent technique we use in Sec. 3.3 is the same as
the iterative proportional fitting (also called iterative scal-
ing algorithm) used to solve the parameters in exponential
family graphical models.

It is important to note that because we use the slotted
possible world semantics, we are able to factorize our par-
tition function Z to a multi-linear polynomial raised to the
power n (see Eq. 5). This simplification allows for drastic
performance benefits in terms of solving and query answer-
ing Sec. 4.

22



9. RELATED WORK
Although there has been work in the theoretical aspects of

probabilistic databases [43], as far as we could find, there is
not existing work on using a probabilistic database for data
summarization. However, there has been work by Markl [35]
on using the maximum entropy principle to estimate the se-
lectivity of predicates. This is similar to our approach except
we are allowing for multiple predicates on an attribute and
are using the results to estimate the likelihood of a tuple
being in the result of a query rather than the likelihood of
a tuple being in the database.

Although not aimed at data summarization, the work
in [9] builds a probabilistic graphical model that is guar-
anteed to have efficient query answering for certain classes
of queries, i.e. a tractable model. They propose a greedy
search algorithm that simultaneously learns a Markov net-
work and its underlying sentential decision diagram which
gives a tractable representation of the network. While En-
tropyDB also learns a Markov network, our features are
count queries over instances while in [9], they only use
boolean valued features.

Our work is also similar to that by Suciu and Ré [42]
except their goal was to estimate the size of the result of a
query rather than tuple likelihood. Their method also relied
on statistics on the number of distinct values of an attribute
whereas our statistics are based on the selectivity of each
value of an attribute.

Even though approximate query processing has been a
major area of research in the database community for
decades, there is still no widely accepted solution [32, 14,
36]. One main AQP technique is to use precomputed sam-
ples [3, 32, 14, 2]. In the work by Chaudhiri et al. [13], they
precompute samples that minimize the errors due to vari-
ance in the data for a specific set of queries they predict.
The work by [6] chooses multiple samples to use in query
execution but only considers single column stratifications.
VerdictDB [40] introduces variational subsamples as an al-
ternative to bootstrapping and subsampling to provide effi-
cient probabilistic guarantees. The core idea of variational
subsampling is to loosen the restrictions on standard sub-
sampling while still providing the same probabilistic guar-
antees. The work by [20] builds a measure-biased sample
for each measure dimension to handle sum queries and uni-
form samples to handle count queries in order to provide
a priori accuracy guarantees. Depending on if the query
is highly selective or not, they choose an appropriate sam-
ple. Along a similar vein is the work of [33] which generates
a unified synopses from a set of samples to answer queries
approximately within a predefined error bound. The later
work of BlinkDB [4] removes any assumptions on the queries.
BlinkDB only assumes that there is a set of columns that are
queried, but the values for these columns can be anything
among the possible set of values. BlinkDB then computes
samples for each possible value of the predicate column in
an online fashion and chooses the single best sample to run
when a user executes a query.

A main drawback for many systems relying on precom-
puted samples is that they require an existing workload to
train on. Instead of using precomputed samples and need-
ing a workload, the Quickr system in [29] injects sampling
operators into query plans to generate samples on the fly
for ad-hoc AQP in big data clusters. By using a variety
of different samplers, they are able to handle distinct value

queries as well as joins.
As EntropyDB does not use any samples nor does it re-

quire any existing workload, our approach is more closely re-
lated to the non-sample based AQP techniques of [12]. Much
like EntropyDB answers queries directly on a probability
distribution, the system in [12] builds multi-dimensional
wavelets from a dataset and answers queries directly over
the wavelet coefficient domain.

There are some AQP hybrid approaches such as the work
in [45] which builds a deep learning model in order to draw
better samples for AQP. They first build a collection varia-
tional autoencoders to learn the data distribution, and then,
during run time, they use the model with rejection sampling
to generate samples from the learned distribution. The sys-
tem AQP++ [41] combines samples with precomputed ag-
gregates, such as data cubes, to build a unified AQP system.
For an input query, it uses samples to generate an estimate
of the error between the true answer and the answer run
on the closest precomputed aggregate and adds the error to
the answer from the precomputed aggregate. IDEA [22] is
a system that combines random sampling with indices tar-
geted at rare populations to answer aggregate queries for
interactive data exploration. The system also leverages re-
sults from previous aggregate queries and probabilistic query
rewrite rules to approximately answer new queries using the
old results, if possible.

The last main AQP technique is to use data sketches (e.g.
count-min or KMV [7])[16, 32]. Sketches have the bene-
fit of being able to handle streaming data but are usually
built to handle a limited number of queries. For example,
a KMV sketch answers how many distinct values there are
but doesn’t answer other aggregates.

Although not built for AQP specifically, the work in [48]
uses Bayesian statistics and a few random samples to ap-
proximately answer what the extreme values are in the en-
tire dataset. Using a historical query workload and Monte
Carlo sampling, they generate a correction factor based on
the shape of the query result and its associated error dis-
tribution. Then, they use the samples to generate a pre-
liminary estimate and their learned correction factor to up-
date their estimate. While this technique is probabilistic in
nature, it is geared towards specifically answering extreme
value queries rather than linear queries, like EntropyDB.

[39] and [30] both use deep learning networks to pre-
dict cardinalities for better query optimization. While En-
tropyDB can be used to estimate cardinalities for queries, we
do not use deep networks and split our feature vector learn-
ing from optimization in that we decide which attributes to
use for statistics before running our model learner. The deep
network in [39] combines learning cardinalities with learning
the best representation of a subquery.

10. CONCLUSION
We presented, EntropyDB, a new approach to generate

probabilistic database summaries for interactive data ex-
ploration using the Principle of Maximum Entropy. Our
approach is complementary to sampling. Unlike sampling,
EntropyDB’s summaries strive to be independent of user
queries and capture correlations between multiple different
attributes at the same time. Results from our prototype
implementation on two real-world datasets up to 210 GB
in size demonstrate that this approach is competitive with
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sampling for queries over frequent items while outperform-
ing sampling on queries over less common items.
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