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Abstract Data-cleaning (or data-repairing) is considered a
crucial problem in many database-related tasks. It consists
in making a database consistent with respect to a given set
of constraints. In recent years, repairing methods have been
proposed for several classes of constraints. These methods,
however, tend to hard-code the strategy to repair conflicting
values and are specialized toward specific classes of con-
straints. In this paper we develop a general chase-based re-
pairing framework, referred to as LLUNATIC, in which re-
pairs can be obtained for a large class of constraints and
by using different strategies to select preferred values. The
framework is based on an elegant formalization in terms of
labeled instances and partially ordered preference labels. In
this context, we revisit concepts such as upgrades, repairs
and the chase. In LLUNATIC, various repairing strategies
can be slotted in, without the need for changing the under-
lying implementation. Furthermore, LLUNATIC is the first
data repairing system which is DBMS-based. We report ex-
perimental results that confirm its good scalability and show
that various instantiations of the framework result in repairs
of good quality.

1 Introduction

In the constraint-based approach to data quality, a database
is said to be dirty if it contains inconsistencies with respect
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to some set of constraints [7,24,37]. The corresponding data-
repairing process consists in removing these inconsistencies
in order to clean the database. The modeling and repairing of
dirty data represents a crucial activity in many real-life infor-
mation systems. Indeed, unclean data often incurs economic
loss and erroneous decisions [21,24,37]. For these reasons,
several constraint-based data quality approaches have recent-
ly been put forward in the database community. These can
be distinguished based on the following three facets:

– Facet 1: Data-quality constraints. A plenitude of languages
has been devised to capture various aspects of dirty data as
inconsistencies of constraints. These constraint languages
range from standard database dependency languages such
as functional dependencies, to conditional functional depen-
dencies [24,25], to editing-rules [29] and fixing rules [52],
among others.

– Facet 2: Conflict resolution. Repairing strategies for in-
consistencies (violations of constraints) are based on extra
information indicating how to modify the dirty data. In most
cases, values are changed into “preferred ” values. Preferred
values can be found from, e.g., master data [43], tuple-cer-
tainty and value-accuracy [30], freshness and currency [28],
just to name a few.

– Facet 3: Selecting types of repairs. Repairing strategies
also differ in the kind of repairs that they compute. Since
the computation of all possible repairs is infeasible in prac-
tice, conditions are imposed on the computed repairs to re-
strict the search space. These conditions include, e.g., var-
ious notions of (cost-based) minimality [9,11] and certain
fixes [29]. Alternatively, sampling techniques are put in place
to randomly select repairs [9].

We refer to [24] and [37] for recent overviews of con-
straint-based approaches to data quality. We note, however,
that there is currently no uniform framework to handle all
of the three facets in a flexible and efficient way. To remedy
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this situation, in this paper we describe a flexible and ef-
ficient repairing system referred to as LLUNATIC. A system
overview of LLUNATIC is shown in Figure 1. We provide de-
tailed running examples and descriptions of all ingredients
of the system later in the paper. We here briefly highlight the
key components of LLUNATIC.

The LLUNATIC system consists of two core components:
(i) an initial labeled instance and (ii) a disk-based chase en-
gine over labeled instances. Furthermore, (iii) the constraint
language is fixed to a generalization of equality-generating
dependencies.

(i) The initial labeled instance is a generalization of a stan-
dard database instance in which additional information is
stored alongside the values in the input dirty instance. This
information is provided by the user at the start of the repair-
ing process. Intuitively, when conflicts need to be resolved at
some point, this information allows inferring the most pre-
ferred way of modifying the data. More precisely, each lo-
cation in the database will be adorned with a set of prefer-
ence labels each consisting of a preference level and a value,
where preference levels are elements of a partial order. The
partial order will allow us to define a notion of most pre-
ferred value, which will be used to resolve a conflict. This
value can either be a normal domain value or, when insuf-
ficient information is encoded in the partial order, a special
value which we refer to as a llun (llun stands for the reverse
of null), hence the name LLUNATIC. The use of partial order
information is what allows users to plug-in any kind of pref-
erence information (cfr. Facet 2) into the repairing process
(e.g., in a conflict, prefer the more recent value). We illus-
trate in the next sections how information from constraints,
master data, user-input, and special attributes (holding pref-
erence information) can be encoded in the partial order and
initial labeled instance.

(ii) The second component is the chase engine. A key in-
sight underlying LLUNATIC is that most data-repairing meth-
ods behave like the well-known chase procedure [2,4], i.e.,
as long as violations (conflicts) of data-quality constraints
exist, some data updates are triggered to resolve these vio-
lations. Since we use labeled instances, we completely over-
haul the standard chase procedure such that it works on la-
beled instances. That is, it uses partial order information to
resolve conflicts. This requires a revision of the formaliza-
tion of the chase to ensure that it will generate repairs, which
we develop in this paper. Furthermore, we provide a disk-
based implementation of the revised chase procedure, with
great attention for optimizations to ensure scalability. To our
knowledge, LLUNATIC is the first repairing framework that
works with data residing on disk. We allow a fine-grained
control of the chase by the user by means of a cost man-
ager. This manager allows users to effectively reason about
the trade-offs between performance and accuracy and let the
chase only generate certain kinds of repairs (cfr. Facet 3).
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Fig. 1: System overview of LLUNATIC.

(iii) The use of labeled instances and more specifically the
partial order information on preference levels allows us to
model a variety of constraint formalisms in a uniform way
(cfr. Facet 1). More precisely, LLUNATIC supports variable
and constant equality-generating dependencies (egds). Con-
stant egds are an extension of classical egds [4] which can
enforce the presence of certain constants. We provide ample
examples of egds and how labeled instances and the chase
interact with those constraints in the next sections. In the
following it should therefore be understood that when we
mention data-quality constraints (or dependencies) we al-
ways mean egds. We further emphasize that we assume that
the edgs are given, either by a domain expert or automati-
cally discovered from the data (see e.g., [10,26,35,45,46]).

In summary, we propose LLUNATIC as a data repairing
framework which addresses all three facets in a flexible way.

We remark that this paper is based on our previous work
[31]. Due to the complexity of the formalization used in [31]
we believe that some of the key insights behind our approach
were unclear. We therefore completely changed the under-
lying formalization: Everything is now modeled in terms of
labeled instances. Not only does this result in a more elegant
way of describing how the partial order information is used
to resolve conflicts during the chase, it also provides a more
clear semantics of repairs. Moreover, labeled instances and
the integration of the partial order in the chase process may
be of interest in its own right. The current formalization is
closer to the standard chase and it is now clearer how our
ideas can be adopted in other contexts as well where now
only the standard chase is available. We only consider vari-
able and constant egds in this paper. In [32], we extended our
approach to more powerful constraints (tuple-generating de-
pendencies, tgds). The labeled instance formalization can be
extended to this more general setting but for the sake of clar-
ity of exposition, we do not consider tgds in this paper. We
remark that we provide many more details compared to [31,
32] and also include a more extensive experimental evalua-
tion than in our previous work.

Organization of the paper. We start with preliminaries in
Section 2. Motivation for using labeled instances and the
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chase for repairing can be found in Section 3. We provide
a formalization of our approach in Section 4. We detail the
chase procedure and how to use LLUNATIC in Section 5.
Optimizations and implementation details are described in
Section 6. We discuss how ideas from other approaches can
be integrated in Section 7. In Section 8 we report our exper-
imental findings. Finally, related work and future directions
of research are discussed in Sections 9 and 10, respectively.
We conclude the paper in Section 11.

2 Preliminaries

We fix a countably infinite domain of constant values, de-
noted by CONSTS, and a countably infinite set of labeled
nulls, denoted by NULLS, distinct from CONSTS. Labeled
nulls will be denoted by ⊥0, ⊥1, ⊥2, . . ., and are used to
denote different unknown values, i.e., ⊥i is assumed to be
different from⊥ j, for i 6= j. Furthermore, we fix a countably
infinite set, TIDS, of tuple identifiers distinct from CONSTS

and NULLS.

Database instances and cells. A schema R is a finite set
{R1, . . . ,Rk} of relation symbols. For i ∈ [1,k], the relation
symbol Ri in R has a fixed set of attributes, Tid,A1, . . . ,Ani ,
where Tid is a special attribute whose domain is TIDS. All
other attributes have CONSTS∪ NULLS as domain. For i ∈
[1,k], an instance of Ri is a finite subset Ii of TIDS×(CONSTS

∪NULLS)ni . A (database) instance I = (I1, . . . , Ik) of R con-
sists of instances Ii of Ri, for i ∈ [1,k]. A tuple t in I is an
element in one of the instances Ii in I. Let t be a tuple in
Ii and A j an attribute in Ri. We denote by t[A j] the value
of tuple t in attribute A j. We assume that every tuple in I
has a unique Tid-value. If t is a tuple in I with t[Tid] = tid,
then we also refer to this (unique) tuple by ttid. Given an
instance Ii over Ri, a cell in Ii is a location specified by
a tuple id/attribute pair 〈tid,A j〉 (or 〈tid,Tid〉), where tid is
an identifier for a tuple in Ii and A j is an attribute in Ri.
The value of a cell 〈tid,A j〉 in Ii is the value of tuple ttid
in attribute A j, i.e., ttid[A j]. Similarly, the value of the cell
〈tid,Tid〉 in Ii is tid. We denote by cells(Ii) the set of all cells
in Ii. Similarly, for an instance I=(I1, . . . , Ik) of R we define
cells(I) =

⋃
{cells(Ii) | i ∈ [1,k]}.

Example 1 An instance I of relation D(Tid,NPI,Name,Sur-
name,Spec,Hospital) consisting of tuples t1, t2 and t3 (with
ids 1, 2 and 3, respectively) containing information about
doctors is shown in Figure 2. Also depicted is a master data
instance J, containing correct data, of schema M(Tid,NPI,
Name,Surname,Spec,Hospital) consisting of a single tuple
tm. In instance I we also depict the cells in cells(I). For cells
corresponding to the Tid-attribute, we simply denote the cell
by ct

i , where i is the tuple identifier for the tuple. For exam-
ple, ct

1 = 〈1,Tid〉. For cells corresponding to other attributes,
we represent cells by ci j. For example, c10 = 〈1,NPI〉, c11 =

〈1,Name〉, and so on. We ignore the attribute Conf(idence)
for the moment. We do not include cells for the master data
instance. We show below that we can eliminate master data
instances using an encoding in data-quality constraints. ♦

Data-quality constraints. We will use equality-generating
dependencies (or egds for short) to express data-quality con-
straints (also called quality rules in the literature). In fact,
we use two types of egds: variable and constant egds. Un-
like the seminal paper [4], our egds need not to be typed
and can contain constants. A variable egd is defined as fol-
lows. A relational atom over R is a formula of the form
R(s̄) with R ∈R and s̄ is a tuple of (not necessarily distinct)
constants and variables. Then, a variable egd over R is a
formula e of the form ∀x̄(φ(x̄)→ xi = x j), where φ(x̄) is
a conjunction of relational atoms over R with variables x̄,
and xi and x j are variables in x̄. A constant egd e is of the
form ∀x̄(φ(x̄)→ x = a) where x is a variable in x̄ and a is
a constant in CONSTS. It is common to write an egd e with-
out writing the universal quantification. So, in what follows
φ(x̄)→ xi = x j corresponds to ∀x̄(φ(x̄)→ xi = x j). Simi-
larly for constant egds.

To prevent any interaction of the egds with the tuple
identifiers we assume that: (i) every relational atom R(s̄) in
φ(x̄) carries a variable in its first position, i.e., s1 is a vari-
able, and this variable does not occur anywhere else in s̄ and
also does not occur in any other relational atom in φ(x̄); and
(ii) if φ(x̄)→ xi = x j or φ(x̄)→ x = a, then neither xi, x j
nor x can be a variable that occurs in the first position of a
relational atom in φ(x̄). These conditions basically indicate
that the egds do not pose constraints on the tuple identifiers.

In the constraint-based data quality approach, dependen-
cies are used to assess the cleanliness of data [7,24,37].
More specifically, an instance I of R satisfies an egd e, vari-
able or constant, denoted by I |= e, if it satisfies e according
to satisfaction of first-order logic with (i) a Herbrand inter-
pretation of the constants in e, and (ii) the universe of dis-
course of the first-order structure being CONSTS ∪ NULLS

(and TIDS for the Tid-attributes) [2]. In particular, nulls are
interpreted as constants and hence ⊥ = a is false for a ∈
CONSTS. Similarly, ⊥i =⊥ j is false for two different nulls.

Example 2 Examples of variable egds include functional and
(variable) conditional functional dependencies. Constant con-
ditional functional dependencies can be expressed as con-
stant egds. In Figure 2, the variable egds e1–e4 correspond
to the functional dependency expressing that attribute NPI is
a key for relation D (we again ignore the attribute Conf and
also do not take into account the Tid-attribute). Furthermore,
the constant egd e5 corresponds to the constant conditional
functional dependency which requires the standardization of
the name “Greg” into “Gregory”. Finally, constant egds e6–
e9 originate from a so-called editing rule, which states that
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D(octors)
Tid NPI Name Surname Spec Conf Hospital

ct
1 c10 c11 c12 c13 c14 c15
1 111 Robert Chase surg 0.9 PPTH

ct
2 c20 c21 c22 c23 c24 c25
2 111 Frank Chase urol 0.1 ⊥1

ct
3 c30 c31 c32 c33 c34 c35
3 222 ⊥2 House diag 1 ⊥1

M(aster Data)
Tid NPI Name Surname Spec Hospital
m 222 Greg House diag PPTH

e1 = D(tid,npi,nm,sur,spec,hosp)∧D(tid′,npi,nm′,sur′,spec′,hosp′)→ nm = nm′

e2 = D(tid,npi,nm,sur,spec,hosp)∧D(tid′,npi,nm′,sur′,spec′,hosp′)→ sur = sur′

e3 = D(tid,npi,nm,sur,spec,hosp)∧D(tid′,npi,nm′,sur′,spec′,hosp′)→ spec = spec′

e4 = D(tid,npi,nm,sur,spec,hosp)∧D(tid′,npi,nm′,sur′,spec′,hosp′)→ hosp = hosp′

e5 = D(tid,npi,Greg,sur,spec,hosp)→ nm = Gregory

e6 = D(tid,222,nm,sur,spec,hosp)→ nm = Greg

e7 = D(tid,222,nm,sur,spec,hosp)→ sur = House

e8 = D(tid,222,nm,sur,spec,hosp)→ spec = diag

e9 = D(tid,222,nm,sur,spec,hosp)→ hosp = PPTH

Fig. 2: Running example: Instances and equality-generating dependencies.

any tuple s in I which shares the same NPI-value with a tu-
ple t in the master data J must agree on all common other
attributes with t. Such editing rules are easily seen to be
equivalent to a set of constant egds by introducing a con-
stant egd for each tuple in the master data and each attribute
(except for the Tid-attribute) in the master data’s schema. In
our example, t3[NPI] = tm[NPI] = 222 and the editing rule is
translated into the four constant egds e6–e9 basically requir-
ing the four remaining attributes of t3 to take the correspond-
ing values from tm. In this way, master data and editing rules
are represented by constant egds. It is readily verified that
I |= {e2,e7,e8} but I does not satisfy any of the remaining
egds. For example, t1[Name] =Robert and t2[Name] = Frank
should be equal according to the egd e1. Hence, I is a dirty
instance relative to these egds. ♦

The previous example shows that egds are expressive
enough to capture a wide variety of existing data-quality
formalisms: Functional dependencies [2], conditional func-
tional dependencies [25], and editing rules [29]. Further-
more, one can also verify that egds can express fixing rules
(without negative patterns) [52], and certain classes of denial
constraints (basically, denial constraints which are logically
equivalent to an egd) [7,24]. Motivated by this, we focus on
egds. Not supported in LLUNATIC are, for example, match-
ing dependencies [23], metric dependencies [42], differen-
tial dependencies [49], and general denial constraints [7,24].
We defer to future work to include a larger variety of data-
quality constraints in LLUNATIC.

3 LLUNATIC: Finding repairs using the chase

With the constraint formalism fixed, we next turn to the re-
pairing or cleaning of the data. Intuitively, repairing a dirty
instance I such that I 6|= Σ for some set Σ of egds means
finding a clean instance J such that J |= Σ and I and J are
“closely related”. As already mentioned in the Introduction,
in recent years, repairing methods have been proposed for
several classes of constraints. These methods typically con-
sider only specific types of constraints and different inter-
pretations of “closely related”. Furthermore, each of these

methods differs in how conflicting values (such as Robert
and Frank in the previous example) are resolved. We refer
to the Related Work Section 9 for more details.

With LLUNATIC we aim to provide a single-node scal-
able algorithmic framework for finding repairs of instances
for a set of egds, hereby covering different classes of con-
straints in a uniform way. Moreover, different conflict reso-
lution strategies should be easy to incorporate in the frame-
work, without the need of changing the underlying algo-
rithm (and thus implementation). To this aim, LLUNATIC

uses a generalization of the standard chase procedure by in-
corporating preference information on values in cells and by
producing a chase tree consisting of chase sequences, where
each sequence leads to a repair.

We next recall the standard chase procedure and then
identify why it needs to be revised in order to become a true
workhorse for repairing. In particular, we argue the need for
better conflict resolution (Section 3.2), support for constant
egds (Section 3.3), backward repairs (Section 3.4) and user
provided repairs (Section 3.5). With the help of a motivating
example, we informally introduce the main concepts used in
LLUNATIC to address these issues. A formal account will be
given in Sections 4 and 5.

3.1 The standard chase

When Σ consists of variable egds only, the chase proce-
dure (or, simply the chase) provides an elegant repairing
method [4]. It works as follows. Consider a dirty instance
I 6|= Σ and variable egd e : φ(x̄)→ xi = x j in Σ . A homo-
morphism h from φ(x̄) to I = (I1, . . . , Ik) is a mapping which
assigns to every variable x in x̄ a value in CONSTS∪NULLS

(and TIDS for the variables in Tid-attributes) such that ev-
ery relational atom Ri(s̄) in φ(x̄) maps onto a tuple h(s̄) ∈ Ii,
where h is the identity on CONSTS. When h(xi) 6= h(x j), we
say that e can be applied to I with homomorphism h. The
result of applying e on I with h is defined as follows: If h(xi)

and h(x j) are two different constants in CONSTS, then the
result of applying e on I with h is “failure”, and we write

I e,h→  . Otherwise, the result is a new instance I′, defined as
follows. When h(xi) ∈ CONSTS and h(x j) ∈ NULLS, the null
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value h(x j) is replaced everywhere in I by the constant value
h(xi), resulting in I′. When h(xi) and h(x j) are both null val-
ues, then one is replaced everywhere by the other, resulting

in I′ 1. In both cases we write I e,h→ I′. Then, for a set Σ of
variable egds, a chase sequence of I with Σ is a sequence of

the form Ii
ei,hi→ Ii+1 with i = 0,1, . . ., I0 = I, ei ∈ Σ and hi

a homomorphism from ei to Ii. A finite chase of I with Σ is

a finite chase sequence Ii
ei,hi→ Ii+1, i ∈ [0,m− 1], such that

either Im =  or no egd e exists in Σ for which there is a
homomorphism h such that e can be applied to Im with h.
We call Im the result of such a finite chase and when Im 6=  ,
the instance Im is called the result of a successful chase. It
is known that if Im is the result of a successful chase of I
with Σ , then Im |= Σ and Im is thus clean [4]. The repair
Im has many other nice theoretical properties (universality,
independence of the order in which egds are applied, ...),
see e.g., [22]. Our revised chase does not inherit these prop-
erties. Our primary goal, however, is using the chase as a
practical way of generating repairs.

3.2 Avoiding failure by conflict resolution

Clearly, when repairing data, the standard chase will often
be unsuccessful because different constants may need to be
equated. This is not surprising. After all, the chase was orig-
inally designed to reason about dependencies, where the in-
put instance does not contain constants, and not for repairing
data [4]. As an example, we chase our running example with
variable egds.

Example 3 Consider the variable egds e1, e2, e3 and e4 in
Figure 2. Since I |= e2, only e1, e3 and e4 are applicable.
It is readily verified that there is a homomorphism h for e4

such that I
e4,h→ I′ with I′ obtained from I by replacing the

null value ⊥1 in t2[Hospital] and t3[Hospital] by PPTH, i.e.,
the value from t1[Hospital]. However, chasing I′ further with
e1 and e3 results in a failure. Indeed, e1 requires t1[Name] =
Robert to be equal to t2[Name] = Frank which are two dif-
ferent constants. Similarly, e3 requires t1[Spec] = surg to be
equal to t2[Spec] = urol. ♦

Instead of simply returning failure ( ) it is desirable,
from a data repairing perspective, for the chase to (i) ei-
ther report the reasons for failure, or (ii) resolve conflicts
between constant values based on some additional informa-
tion. In LLUNATIC this is achieved as follows. Let I be a
database instance.
– The initial step consists of adorning the cells in I with

preference levels from a partially ordered set (P,�P) and

1 Typically, to make this step deterministic, an ordering on null val-
ues is assumed and the smaller null value is replaced by the larger one.
We assume that ⊥0 <⊥1 <⊥2 <⊥3 < · · · .

combining these with values of the cells in I. As a result,
each cell initially contains a preference label of the form
〈p,v〉 where p ∈ P and v is the value in the cell, resulting
in the initial labeled instance I◦. Looking ahead, the ini-
tial labeled instance will be changed during the (revised)
chase process into a labeled instance in which cells may
have multiple preference labels. Preference labels allow
comparing values based on their preference levels and the
order between these levels according to �P. We use this
information to resolve conflicts, when cells have multiple
preference labels after chasing, by taking the most pre-
ferred value, i.e., the value with the highest preference
level. The partial order(P,�P) is fixed at the beginning of
the repairing process. For preference levels p and p′, we
denote by p≺P p′, if p�P p′ and p′ 6�P p.

Example 4 In Figure 3a we show an initial labeled instance
I◦ obtained from I (cfr. Figure 2) by putting in each cell of I
a single preference level together with the value of that cell.
From here on, we do not depict the attribute Tid since it is
only used for identifying tuples and the tuple identifiers do
not interact with the egds. In I◦ we find preference levels
p⊥1 and p⊥2 assigned to null values ⊥1 and ⊥2 in cells c25,
c35 and c31, respectively. We also find preference levels p0.1,
p0.9 and p1, associated with urol, surg and diag, in cells c23,
c13 and c33, respectively. These preference levels encode the
confidence of these values according to the Conf attribute.
By imposing p0.1 ≺P p0.9 ≺P p1 we encode that the higher
the confidence is, the more preferred the value associated
with these levels in the preference labels is. This is an im-
portant example showing how external information (in this
case confidence) can be encoded in preference levels and la-
bels. We generalize the use of attributes that encode some
ordering (such as Conf) to assign preference levels to values
in another attribute (such as Spec) later in Section 4.5 in the
form of a partial order specification. All other preference
levels in I◦ are chosen arbitrarily, except that we impose
that p⊥1 ≺P p15. This is to indicate that when the value in
the preference labels of cells c25 and c35 (i.e., the value ⊥1)
needs to be equated later on with the value in the label of c15
(i.e., PPTH) due to egd e4, that PPTH is preferred over ⊥1.
We here capture the semantics that constants are preferred to
null values, just as in the standard chase. From the labeled
instance I◦ we can obtain a normal instance inst(I◦) simply
by picking the values in the preference labels in each cell
with the highest preference value (Figure 3b). In I◦, each cell
carries a single preference label holding the original value of
that cell in the instance I given in Figure 2. Hence, inst(I◦)=
I in this case. The partial order�P used is shown in Figure 4
and comes into play when chasing I◦. In this partial order
we more generally assume that p⊥i ≺P p for any preference
level p⊥i associated with null value ⊥i and any preference
value p associated with a constant in I◦. Furthermore, we
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D(octors)
NPI Name Surname Spec Conf Hospital

c10 c11 c12 c13 c14 c15
t1 {〈p10,111〉} {〈p11,Robert〉} {〈p12,Chase〉} {〈p0.9,surg〉} {〈p14,0.9〉} {〈p15,PPTH〉}

c20 c21 c22 c23 c24 c25
t2 {〈p20,111〉} {〈p21,Frank〉} {〈p22,Chase〉} {〈p0.1,urol〉} {〈p24,0.1〉} {〈p⊥1 ,⊥1〉}

c30 c31 c32 c33 c34 c35
t3 {〈p30,222〉} {〈p⊥2 ,⊥2〉} {〈p32,House〉} {〈p1,diag〉} {〈p34,1〉} {〈p⊥1 ,⊥1〉}

(a) Initial labeled instance I◦

D(octors)
NPI Name Surname Spec Conf Hospital
c10 c11 c12 c13 c14 c15

t1 111 Robert Chase surg 0.9 PPTH
c20 c21 c22 c23 c24 c25

t2 111 Frank Chase urol 0.1 ⊥1
c30 c31 c32 c33 c34 c35

t3 222 ⊥2 House diag 1 ⊥1

(b) Corresponding instance inst(I◦).

D(octors)
NPI Name Surname Spec Conf Hospital

c10 c11 c12 c13 c14 c15
t1 {〈p10,111〉} {〈p11,Robert〉, {〈p12,Chase〉} {〈p0.9,surg〉, {〈p14,0.9〉} {〈p15,PPTH〉,

〈p21,Frank〉} 〈p0.1,urol〉} 〈p⊥1 ,⊥1〉}
c20 c21 c22 c23 c24 c25

t2 {〈p20,111〉} {〈p11,Robert〉, {〈p22,Chase〉} {〈p0.9,surg〉, {〈p24,0.1〉} {〈p15,PPTH〉,
〈p21,Frank〉} 〈p0.1,urol〉} 〈p⊥1 ,⊥1〉}

c30 c31 c32 c33 c34 c35
t3 {〈p30,222〉} {〈p⊥2 ,⊥2〉} {〈p32,House〉} {〈p1,diag〉} {〈p34,1〉}

{〈p15,PPTH〉,
〈p⊥1 ,⊥1〉}

(c) Labeled instance I?1 chased using variable egds in Σ .

D(octors)
NPI Name Surname Spec Conf Hospital
c10 c11 c12 c13 c14 c15

t1 111 `0 Chase surg 0.9 PPTH
c20 c21 c22 c23 c24 c25

t2 111 `0 Chase surg 0.1 PPTH
c30 c31 c32 c33 c34 c35

t3 222 ⊥2 House diag 1 PPTH

(d) Corresponding instance inst(I?1 ).

D(octors)
NPI Name Surname Spec Conf Hospital

c10 c11 c12 c13 c14 c15
t1
{〈p10,111〉}

{〈p11,Robert〉,
{〈p12,Chase〉}

{〈p0.9,surg〉,
{〈p14,0.9〉}

{〈p15,PPTH〉,
〈p21,Frank〉} 〈p0.1,urol〉} 〈p⊥1 ,⊥1〉,

〈pau,PPTH〉}
c20 c21 c22 c23 c24 c25

t2
{〈p20,111〉}

{〈p11,Robert〉,
{〈p22,Chase〉}

{〈p0.9,surg〉,
{〈p24,0.1〉}

{〈p15,PPTH〉,
〈p21,Frank〉} 〈p0.1,urol〉} 〈p⊥1 ,⊥1〉}

c30 c31 c32 c33 c34 c35
t3
{〈p30,222〉}

{〈p⊥2 ,⊥2〉,
{〈p32,House〉} {〈p1,diag〉} {〈p34,1〉}

{〈p15,PPTH〉,
〈pau,Gregory〉, 〈p⊥1 ,⊥1〉}
〈pau,Greg〉}

(e) Labeled instance I?2 chased using Σ .

D(octors)
NPI Name Surname Spec Conf Hospital
c10 c11 c12 c13 c14 c15

t1 111 `0 Chase surg 0.9 PPTH
c20 c21 c22 c23 c24 c25

t2 111 `0 Chase surg 0.1 PPTH
c30 c31 c32 c33 c34 c35

t3 222 `1 House diag 1 PPTH

(f) Corresponding instance inst(I?2 ).

D(octors)
NPI Name Surname Spec Conf Hospital

c10 c11 c12 c13 c14 c15
t1 {〈p10,111〉} {〈p11,Robert〉} {〈p12,Chase〉} {〈p0.9,surg〉} {〈p14,0.9〉} {〈p15,PPTH〉}

c20 c21 c22 c23 c24 c25
t2 {〈p20,111〉, {〈p21,Frank〉} {〈p22,Chase〉} {〈p0.9,urol〉} {〈p24,0.1〉} {〈p⊥1 ,⊥1〉,
〈p×,×〉} 〈pau,PPTH〉}

c30 c31 c32 c33 c34 c35
t3
{〈p30,222〉}

{〈p⊥2 ,⊥2〉,
{〈p32,House〉} {〈p1,diag〉} {〈p34,1〉}

{〈p⊥1 ,⊥1〉,
〈pau,Gregory〉, 〈pau,PPTH〉}
〈pau,Greg〉}

(g) Labeled instance I?3 chased using Σ with a backward repair.

D(octors)
NPI Name Surname Spec Conf Hospital
c10 c11 c12 c13 c14 c15

t1 111 Robert Chase surg 0.9 PPTH
c20 c21 c22 c23 c24 c25

t2 `2 Frank Chase urol 0.1 PPTH
c30 c31 c32 c33 c34 c35

t3 222 `1 House diag 1 PPTH

(h) Corresponding instance inst(I?3 ).

D(octors)
NPI Name Surname Spec Conf Hospital

c10 c11 c12 c13 c14 c15
t1 {〈p10,111〉} {〈p11,Robert〉} {〈p12,Chase〉} {〈p0.9,surg〉} {〈p14,0.9〉} {〈p15,PPTH〉}

c20 c21 c22 c23 c24 c25
t2 {〈p20,111〉, {〈p21,Frank〉} {〈p22,Chase〉} {〈p0.9,urol〉} {〈p24,0.1〉} {〈p⊥1 ,⊥1〉
〈p×,×〉, {〈pau,PPTH〉}
〈p>,112〉}

c30 c31 c32 c33 c34 c35
t3

{〈p30,222〉}

{〈p⊥2 ,⊥2〉, {〈p32,House〉, {〈p1,diag〉,

{〈p34,1〉}

{〈p⊥1 ,⊥1〉,
〈pau,Gregory〉, 〈pau,PPTH〉}
〈pau,Greg〉,
〈p>,Gregory〉}

(i) Labeled instance I?4 chased with Σ and a user repair.

D(octors)
NPI Name Surname Spec Conf Hospital
c10 c11 c12 c13 c14 c15

t1 111 Robert Chase surg 0.9 PPTH
c20 c21 c22 c23 c24 c25

t2 112 Frank Chase urol 0.1 PPTH
c30 c31 c32 c33 c34 c35

t3 222 Gregory House diag 1 PPTH

(j) Corresponding instance inst(I?4 ).

Fig. 3: Running example: Labeled instances and their corresponding (standard) instances at different times during the LLU-
NATIC chase process.
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<latexit sha1_base64="i9Ky+3YBLi+9D1wjYg8T4SRAtJM=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO0vXSiwdi0TSSrSKHHNUpk5s2Q4SivofWMvvYuGvMEEhC/SZHt17d29ulHSe0g/Sam9t7+x29rr7vYPDo+D4JHW6sgIToZW2k5w7VLLExEuvcGIs8iJXOM4XN+t8/IzWSV3e+ReDs4LPS/koBfffo9RkNaPLLAhpRH843xTWSAgNoyzoTx+0qAosvVDcuXsWGz+rufVSKFx2p5VDw8WCz7H2skB3XXhjdbxuYv//bkoaR4xG7JaGg6umswNncAGXwKAPAxjCCBIQ8ASvsII3eIdPQkj7d7VFmptT+APpfQE8/1Ie</latexit>

<latexit sha1_base64="qyhJ8cbtHXmSvdvUPonHvTYudHY=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO0vXSiwdi0TSSrSKHHNUpk5s2Q4SivofWMvvYuGvMEEhC/SZHt17d29ulHSe0g/Sam9t7+x29rr7vYPDo+D4JHW6sgIToZW2k5w7VLLExEuvcGIs8iJXOM4XN+t8/IzWSV3e+ReDs4LPS/koBfffo9RkNWPLLAhpRH843xTWSAgNoyzoTx+0qAosvVDcuXsWGz+rufVSKFx2p5VDw8WCz7H2skB3XXhjdbxuYv//bkoaR4xG7JaGg6umswNncAGXwKAPAxjCCBIQ8ASvsII3eIdPQkj7d7VFmptT+APpfQE96VIf</latexit>

<latexit sha1_base64="o2EIxA+CcOhg1VTm+fuwYhshBNA=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO0vXSiwdi0TSSrSKHHNUpk5s2Q4SivofWMvvYuGvMAElC/SZHt17d29ulHSe0g/Sam9t7+x29rr7vYPDo+D4JHW6sgIToZW2k5w7VLLExEuvcGIs8iJXOM4XNz/5+Bmtk7q88y8GZwWfl/JRCu6/R6nJahYvsyCkEV1zvimskRAaRlnQnz5oURVYeqG4c/csNn5Wc+ulULjsTiuHhosFn2PtZYHuuvDG6nUT+/93U9I4YjRitzQcXDWdHTiDC7gEBn0YwBBGkICAJ3iFFbzBO3wSQtq/qy3S3JzCH0jvCz7TUiA=</latexit>

<latexit sha1_base64="q3TkYLwrxCSKk1HIUu5uXfnygAo=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO6rUtRILY5FIWolWkWOOytSJLdtBQlH/Ayv8Lhb+ChMUskCf6dG9d/fmRknnKf0grfbG5tZ2Z6e729vbPwgOj1KnKyswEVppO8m5QyVLTLz0CifGIi9yheN8cbXKx09ondTlrX82OCv4vJQPUnD/PUpNVrP+MgtCGtEfTteFNRJCwygLBtN7LaoCSy8Ud+6OxcbPam69FAqX3Wnl0HCx4HOsvSzQXRbeWB2vmtj/v+uSxhGjEbuh4fCi6ezACZzBOTAYwBCuYQQJCHiEF3iFN3iHT0JI+3e1RZqbY/gD6X0BQKdSIg==</latexit>

<latexit sha1_base64="PJuxF5NdTbeSu56R0D2Evq5KevM=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO1LVtRILY5FIWolWkWOOytSJLdtBQlH/Ayv8Lhb+ChMUskCf6dG9d/fmRknnKf0grfbG5tZ2Z6e729vbPwgOj1KnKyswEVppO8m5QyVLTLz0CifGIi9yheN8cbXKx09ondTlrX82OCv4vJQPUnD/PUpNVrP+MgtCGtEfTteFNRJCwygLBtN7LaoCSy8Ud+6OxcbPam69FAqX3Wnl0HCx4HOsvSzQXRbeWB2vmtj/v+uSxhGjEbuh4fCi6ezACZzBOTAYwBCuYQQJCHiEF3iFN3iHT0JI+3e1RZqbY/gD6X0BQZFSIw==</latexit>

<latexit sha1_base64="3bdG4Cr03YdGMnOl2UOt/LoMBdA=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO0vXSiwdi0TSSrSKHHNUpk5s2Q4SivofWMvvYuGvMEEhC/SZHt17d29ulHSe0g/Sam9t7+x29rr7vYPDo+D4JHW6sgIToZW2k5w7VLLExEuvcGIs8iJXOM4XN+t8/IzWSV3e+ReDs4LPS/koBfffo9RkdUyXWRDSiP5wvimskRAaRlnQnz5oURVYeqG4c/csNn5Wc+ulULjsTiuHhosFn2PtZYHuuvDG6njdxP7/3ZQ0jhiN2C0NB1dNZwfO4AIugUEfBjCEESQg4AleYQVv8A6fhJD272qLNDen8AfS+wI96lIf</latexit>

<latexit sha1_base64="MirIHFY/ce3mKbBSLh29Mq2hHeE=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO0vXSiwdi0TSSrSKHHNUpk5s2Q4SivofWMvvYuGvMEEhC/SZHt17d29ulHSe0g/Sam9t7+x29rr7vYPDo+D4JHW6sgIToZW2k5w7VLLExEuvcGIs8iJXOM4XN+t8/IzWSV3e+ReDs4LPS/koBfffo9RkdcyWWRDSiP5wvimskRAaRlnQnz5oURVYeqG4c/csNn5Wc+ulULjsTiuHhosFn2PtZYHuuvDG6njdxP7/3ZQ0jhiN2C0NB1dNZwfO4AIugUEfBjCEESQg4AleYQVv8A6fhJD272qLNDen8AfS+wI+1FIg</latexit>

<latexit sha1_base64="DNrAeAOgtraHcksQVEhl4Vg+fsI=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO0vXSiwdi0TSSrSKHHNUpk5s2Q4SivofWMvvYuGvMAElC/SZHt17d29ulHSe0g/Sam9t7+x29rr7vYPDo+D4JHW6sgIToZW2k5w7VLLExEuvcGIs8iJXOM4XNz/5+Bmtk7q88y8GZwWfl/JRCu6/R6nJ6jheZkFII7rmfFNYIyE0jLKgP33Qoiqw9EJx5+5ZbPys5tZLoXDZnVYODRcLPsfaywLddeGN1esm9v/vpqRxxGjEbmk4uGo6O3AGF3AJDPowgCGMIAEBT/AKK3iDd/gkhLR/V1ukuTmFP5DeFz++UiE=</latexit>

<latexit sha1_base64="JidWVLfRDwv2w5WYDRo2lIFFg1g=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO6rUtRILY5FIWolWkWOOytSJLdtBQlH/Ayv8Lhb+ChMUskCf6dG9d/fmRknnKf0grfbG5tZ2Z6e729vbPwgOj1KnKyswEVppO8m5QyVLTLz0CifGIi9yheN8cbXKx09ondTlrX82OCv4vJQPUnD/PUpNVsf9ZRaENKI/nK4LaySEhlEWDKb3WlQFll4o7twdi42f1dx6KRQuu9PKoeFiwedYe1mguyy8sTpeNbH/f9cljSNGI3ZDw+FF09mBEziDc2AwgCFcwwgSEPAIL/AKb/AOn4SQ9u9qizQ3x/AH0vsCQZJSIw==</latexit> <latexit sha1_base64="vLeWMUw5Ux60bgWIfQiFXSbsGcA=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiOx26VmJhLBJJK9EqcsxRmTqxZTtIKOp/YIXfxcJfYYJCFugzPbr37t7cKOk8pR+k1d7Y3Nru7HR3e3v7B8HhUep0ZQUmQittJzl3qGSJiZde4cRY5EWucJwvrlb5+Amtk7q89c8GZwWfl/JBCu6/R6nJ6j5dZkFII/rD6bqwRkJoGGXBYHqvRVVg6YXizt2x2PhZza2XQuGyO60cGi4WfI61lwW6y8Ibq+NVE/v/d13SOGI0Yjc0HF40nR04gTM4BwYDGMI1jCABAY/wAq/wBu/wSQhp/662SHNzDH8gvS8+1VIg</latexit>

<latexit sha1_base64="FbIAbUINWseiP4G4Oqdqj3seg4g=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiOx26VmJhLBJJK9EqcsxRmTqxZTtIKOp/YIXfxcJfYYJCFugzPbr37t7cKOk8pR+k1d7Y3Nru7HR3e3v7B8HhUep0ZQUmQittJzl3qGSJiZde4cRY5EWucJwvrlb5+Amtk7q89c8GZwWfl/JBCu6/R6nJ6j5bZkFII/rD6bqwRkJoGGXBYHqvRVVg6YXizt2x2PhZza2XQuGyO60cGi4WfI61lwW6y8Ibq+NVE/v/d13SOGI0Yjc0HF40nR04gTM4BwYDGMI1jCABAY/wAq/wBu/wSQhp/662SHNzDH8gvS8/v1Ih</latexit> <latexit sha1_base64="28wnpvR1DXj6zoe7u5YEeatswGc=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiOx26VmJhLBJJK9EqcsxRmTqxZTtIKOp/YIXfxcJfYQJKFugzPbr37t7cKOk8pR+k1d7Y3Nru7HR3e3v7B8HhUep0ZQUmQittJzl3qGSJiZde4cRY5EWucJwvrn7y8RNaJ3V5658Nzgo+L+WDFNx/j1KT1f14mQUhjeiK03VhjYTQMMqCwfRei6rA0gvFnbtjsfGzmlsvhcJld1o5NFws+BxrLwt0l4U3Vq+a2P+/65LGEaMRu6Hh8KLp7MAJnME5MBjAEK5hBAkIeIQXeIU3eIdPQkj7d7VFmptj+APpfQFAqVIi</latexit>

<latexit sha1_base64="s0DEcVVA11ff9mEwlwX+RV8/YFU=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiOyB1rcTCWCSSVqJV5JijMnViy3aQUNT/wAq/i4W/wgSFLNBnenTv3b25UdJ5Sj9Iq722vrHZ2epu93Z294L9g9TpygpMhFbajnPuUMkSEy+9wrGxyItc4SifXy3z0RNaJ3V5658NTgs+K+WDFNx/j1KT1ReXiywIaUR/OF4V1kgIDcMs6E/utagKLL1Q3Lk7Fhs/rbn1UihcdCeVQ8PFnM+w9rJAd154Y3W8bGL//65KGkeMRuyGhoOzprMDR3ACp8CgDwO4hiEkIOARXuAV3uAdPgkh7d/VFmluDuEPpPcFQn1SJA==</latexit>

<latexit sha1_base64="x45YFw1n4rUjX2cJxpNJXYp1X5g=">AAABVnicZY1NS8NAEIYn1dpav6IevYi5iEjY7aXXghePFUxbNCVs1rEs3WSX3Ykgof/Cq/4u/TOi1Vy0z+lh3pl5c6uVJ8Y+gtbGZnur093u7ezu7R+Eh0djbyonMZFGGzfNhUetSkxIkcapdSiKXOMkX1yt8skTOq9MeUvPFmeFmJfqUUlB36M7m9VpbijjyyyMWMx+OF0X3kgEDaMsHKQPRlYFliS18P6e9y3NauFISY3LXlp5tEIuxBxrUgX6y4KsM/1VE///d13G/ZizmN+waHjRdHbhBM7gHDgMYAjXMIIEJJTwAq/wBu/wGbSDzu9qK2hujuEPQfgFgXRUFg==</latexit>

<latexit sha1_base64="seo5LOuzzDVankEwTL8LA+6XQRA=">AAABVnicZY1NS8NAEIYn1dpav6IevYi5iEjY7aXXghePFUxbNCVs1rEs3WSX3Ykgof/Cq/4u/TOi1ly0z+lh3pl5c6uVJ8Y+gtbGZnur093u7ezu7R+Eh0djbyonMZFGGzfNhUetSkxIkcapdSiKXOMkX1z95JMndF6Z8paeLc4KMS/Vo5KCvkd3NqvT3FDWX2ZhxGK24nRdeCMRNIyycJA+GFkVWJLUwvt73rc0q4UjJTUue2nl0Qq5EHOsSRXoLwuyzqya+P+/6zLux5zF/IZFw4umswsncAbnwGEAQ7iGESQgoYQXeIU3eIfPoB10fldbQXNzDH8Iwi+CXlQX</latexit>

<latexit sha1_base64="9T/+dACQSf5+MNkFSuw7yOOTgAM=">AAABU3icZY69TsMwFEZvQoFSKAQYWRBZEEKRnaVrJZaORSJNJVpFjrlUVpzYsh0kFPUhWOlzMfAsLLSQBXqmo/v33VxLYR0hn56/09nd2+8e9A6P+scnwenZxKracEy4kspMc2ZRigoTJ5zEqTbIylximhd3m376gsYKVT24V43zki0q8Sw4c+tSqrOGRHSZBSGJyA+X20JbCaFlnAWD2ZPidYmV45JZ+0hj7eYNM05wicverLaoGS/YAhsnSrS3pdNGxZsk+v/utkziiK7/uifh8KbN7MIFXME1UBjAEEYwhgQ4FPAG77CCD/jyfK/zO+p77c45/MHrfwONBVJW</latexit>

<latexit sha1_base64="QbO/muxvPrtmJYV/k5xeEdtn/Yo=">AAABU3icZY2xTsMwEIYvoUApFAKMLIgsCKHIzlKxVerCWCTSVKJV5JijsuLElu0goagPwVqei4FnYYFCFug3fbr/7v5cS2EdIR+ev9XZ3tnt7vX2D/qHR8HxycSq2nBMuJLKTHNmUYoKEyecxKk2yMpcYpoXo3WePqOxQlX37kXjvGSLSjwJztz3KNVZQ6KbZRaEJCI/nG8KbSWElnEWDGaPitclVo5LZu0DjbWbN8w4wSUue7Paoma8YAtsnCjRXpdOGxWvm+j/v5syiSNKInpHwuFV29mFM7iAS6AwgCHcwhgS4FDAK6zgDd7h0/O9zu+q77U3p/AHr/8FlFVSXg==</latexit>

<latexit sha1_base64="/og+5vq9oipuursRRnKkHneYqDg=">AAABUXicZY09T8MwEIbP4au0fAQYWRBZEEKRnaVrJRbGIpG2Eq0ixxyVVTu2bAcJRf0NrPC7mPgpbFDIAn2mR/fe3VtaJX2g9INEG5tb2zud3W5vb//gMD46HnlTO4G5MMq4Sck9KllhHmRQOLEOuS4VjsvF9SofP6Hz0lR34dniTPN5JR+l4OF7lNuiYcsiTmhKfzhbF9ZKAi3DIu5PH4yoNVZBKO79PctsmDXcBSkULrvT2qPlYsHn2ASp0V/pYJ3JVk3s/991GWUpoym7pcngsu3swCmcwwUw6MMAbmAIOQiQ8AKv8Abv8EmARL+rEWlvTuAPpPcF60RR5A==</latexit>

<latexit sha1_base64="HDIVDC0HC8QplCG9PMKsbomcdMw=">AAABUnicZY09T8MwEIbPLR+lFAgwsiCyIIQiO0vXSiwdi0TSSrSKHHNUpk5s2Q4SivofWMvvYuGvMEEhC/SZHt17d29ulHSe0g/Sam9t7+x29rr7vYPDo+D4JHW6sgIToZW2k5w7VLLExEuvcGIs8iJXOM4XN+t8/IzWSV3e+ReDs4LPS/koBfffo9RkNa+WWRDSiP5wvimskRAaRlnQnz5oURVYeqG4c/csNn5Wc+ulULjsTiuHhosFn2PtZYHuuvDG6njdxP7/3ZQ0jhiN2C0NB1dNZwfO4AIugUEfBjCEESQg4AleYQVv8A6fhJD272qLNDen8AfS+wKoIVKT</latexit>

<latexit sha1_base64="tNKzKiYYbCTxQFE9QKHzcvdQsxg=">AAABVHicZY2xTsMwEIYvLYVSoAQYWRBZEEKRnaVrJRbGIpE2EqkixxyVVTu2bAcJRX0JVnguJN6FAQpZoN/06f67+0sjhfOEfASd7lZve6e/O9jbPxgehkfHU6dryzHlWmqblcyhFBWmXniJmbHIVClxVi6v1/nsCa0Turrzzwbnii0q8Sg489+jzBRN7rVZFWFEYvLD2abQViJomRThKH/QvFZYeS6Zc/c0MX7eMOsFl7ga5LVDw/iSLbDxQqG7Ut5Ynayb6P+/mzJNYkpiekui8WXb2YdTOIcLoDCCMdzABFLgIOEFXuEN3uEz6Aa939VO0N6cwB+C4Re70FOA</latexit>

<latexit sha1_base64="ILCLBBqgWaYT4RYZPYm79fOJSbk=">AAABVnicZY09T8MwEIYvhdJSvgKMLIgsCKHIztK1EgtjkUhbQarIMUdl1Y4t26mEov4LVvhd8GcQtGSBPtOje+/uLYwUzhPyGbS2tts7ne5ub2//4PAoPD4ZOV1ZjinXUttJwRxKUWLqhZc4MRaZKiSOi/nNKh8v0Dqhy3v/YnCq2KwUz4Iz/zN6MHmdeaHQLfMwIjFZc74ptJEIGoZ52M+eNK8Ulp5L5twjTYyf1sx6wSUue1nl0DA+ZzOs1xXXyhurk1UT/f93U0ZJTElM70g0uGo6u3AGF3AJFPowgFsYQgocSniFN3iHD/gK2kHnd7UVNDen8Icg/AbIBFRj</latexit>

<latexit sha1_base64="6+2kyVPlMn1h4a/WZKZP8Z3BzvE=">AAABZHicZY3PSsNAEIdn679aq40WvQgSzEVEQjaXXgtePFYwbcGWsFmnZelmN+xuClL7Ml71hXwBn8OouWi/08fM/OaXFVJYF0UfpLG1vbO719xvHbQPjzre8cnQ6tJwTLiW2owzZlEKhYkTTuK4MMjyTOIoW9x+70dLNFZo9eCeC5zmbK7ETHDmqlHqnalSSr+KzNCg4uhLXKK0qRdEYfSDvym0lgBqBqnXmzxpXuaoHJfM2kcaF266YsYJLnHdmpQWC8YXbI4rJ3K0N7krjI7XVRP9/3dThnFIo5Dex0H/uu5swjlcwhVQ6EEf7mAACXB4gVd4g3f4JG3SJae/pw1SZ7rwB3LxBQHoWG8=</latexit>

<latexit sha1_base64="5CK3a0lJdjRYuF1wQkF2AHLfSU0=">AAABc3icZY3LSsNAFIZP6q3WS6MuuxkaBREtmWy6LbhxWcG0BVvCZDwpQyczYWZSkNIn8Gnc6pP4IO6Nmo32W32c85/zp4UU1oXhh9fY2t7Z3Wvutw4Oj47b/snpyOrScIy5ltpMUmZRCoWxE07ipDDI8lTiOF3cfu/HSzRWaPXgnguc5WyuRCY4c9Uo8S9IFc/QoOJIJC5RWpJpQ7hW1jHlCEcpbeIHYS/8gWwKrSWAmmHi96dPmpc5Kscls/aRRoWbrZhxgktct6alxYLxBZvjyokc7XXuCqOjddVE///dlFHUo2GP3kfB4KrubEIHunAJFPowgDsYQgwcXuAV3uAdPr2O1/XOf6MNr745gz94N1+zJl5u</latexit>

<latexit sha1_base64="upKnYeZHIJqHzD+FpCqjOLW73Hk=">AAABZnicZY3PSsNAEIdn679atY2KKHgJ5iIiJcml14IXjxVMW7AlbLbTsnSzu+xuAlLq03jV9/ENfAyj5qL9Th8z85tfpgW3Lgw/SGNre2d3r7nfOjg8ane845OhVYVhmDAllBln1KLgEhPHncCxNkjzTOAoW95970clGsuVfHTPGqc5XUg+54y6apR6F1yWVPCZX6XmaFAy9AWWKFIvCLvhD/6mRLUEUDNIvd5kpliRo3RMUGufoli76Yoax5nAdWtSWNSULekCV47naG9zp42K11VT9P/vpgzjbhR2o4c46N/UnU24hCu4hgh60Id7GEACDF7gFd7gHT5Jm5yR89/TBqkzp/AH4n8BBXBZPA==</latexit>

<latexit sha1_base64="zczepMpDnGMHWR+XeXHDAgPl7gM=">AAABbHicZY3LSsNAGIX/qbdab/GyK0owICISMtl0W3DjsoK9gC1hMv6tQyeZYWYSkNKdT+NWX8aX8BmMmo32rL7/cs5JtRTWRdEHaaytb2xuNbdbO7t7+wfe4dHAqsJw7HMllRmlzKIUOfadcBJH2iDLUonDdH7zfR+WaKxQ+b171jjJ2CwXU8GZq1aJd8YK96SMcNVcol95p2gw5+hLLFEmXhCF0Y/8VaA1BFCrl3id8aPiRYa545JZ+0Bj7SYLZpzgEpetcWFRMz5nM1w4kaG9zpw2Kl5WTfR/7ioM4pBGIb2Lg+5V3dmENpzDJVDoQBduoQd94PACr/AG7/BJTkibnP6+NkjtOYY/Ihdfi9ZcGg==</latexit>

<latexit sha1_base64="KAu3lgOYsW+ajTHIFAzmE6Jriiw=">AAABY3icZY3LSsNAFIbP1FttvcSqKxGC2YhIyGTTbcGNywqmLdgSJuNpGTrJDDOTgoQ+jFt9Ih/A9zBqNtpv9XHO+c+faSmsi6IP0tra3tnda+93ugeHR8feSW9kVWk4JlxJZSYZsyhFgYkTTuJEG2R5JnGcLe++9+MVGitU8eheNM5ytijEXHDm6lHqnZcWjV9H5miw4OhLXKFMvSAKox/8TaGNBNAwTL3+9FnxMsfCccmsfaKxdrOKGSe4xHVnWtdoxpdsgZUTOdrb3Gmj4nXdRP//3ZRRHNIopA9xMLhpOttwAVdwDRT6MIB7GEICHCp4hTd4h0/SJT1y9nvaIk3mFP5ALr8AcF5X9g==</latexit>

<latexit sha1_base64="0Wfg+mbpBmI8RyPkB4MV407K59M=">AAABVnicZY1NS8NAEIYn1dpav6IevYi5iEjY7aXXghePFUxbNCVs1rEs3WSX3Ykgof/Cq/4u/TOi1Vy0z+lh3pl5c6uVJ8Y+gtbGZnur093u7ezu7R+Eh0djbyonMZFGGzfNhUetSkxIkcapdSiKXOMkX1yt8skTOq9MeUvPFmeFmJfqUUlB36M7m9VpbihjyyyMWMx+OF0X3kgEDaMsHKQPRlYFliS18P6e9y3NauFISY3LXlp5tEIuxBxrUgX6y4KsM/1VE///d13G/ZizmN+waHjRdHbhBM7gHDgMYAjXMIIEJJTwAq/wBu/wGbSDzu9qK2hujuEPQfgFgIpUFQ==</latexit>

<latexit sha1_base64="E/WCffn/tBRJXPb5NxgfeyUlrt0=">AAABUHicZY09T8MwEIYv5auErwAjS0UWxBDZlRBrpS6MRSJpJVpFjnsUUzu2YgdRRfkPrPCz2PgnbFAgC/RZ7tF7p3szI4V1hLx7rbX1jc2t9ra/s7u3fxAcHiVWlwXHmGupi1HGLEqRY+yEkzgyBTKVSRxm8/73fviIhRU6v3ELgxPFZrm4E5y5ZZSYtBLTOg1CEpEfOqtCGwmhYZAGF+Op5qXC3HHJrL2lXeMmFSuc4BJrvzMuLRrG52yGlWLu3jj1VPvLHvr/66ok3YiSiF6TsHfeNLbhBE7hDChcQg+uYAAxcHiAZ3iBV3iDD/j0vN/TVjPhGP7g+V+tflJo</latexit>

Fig. 4: Partial order �P on preference levels used in our
running example. Arrows between preference levels denote
≺P (strictly less). No arrow means incomparable. Arrows
between dotted boxes mean that all levels in one box are
strictly less preferred than those in the other box.

also assume that p⊥0 ≺P p⊥1 ≺P p⊥2 in accordance with the
ordering on null values (see earlier footnote). ♦

As previously mentioned, when chasing an initial la-
beled instance I◦ we will obtain labeled instances I? in which
each cell is assigned a set of preference labels.
– More precisely, in LLUNATIC we use a modified chase

procedure which works on labeled instances. Intuitively,
whenever a variable egd e : φ(x̄)→ xi = x j applies with
a homomorphism h, the set of preference labels corre-
sponding to the cells in h(xi) and h(xk) are merged. This
merging represents that these cells must carry the same
value (according to e) and that the choice of value should
take into account preference level information present in
the set of preference labels of all cells involved. If a unique
preferred value, i.e., a value with maximal preference level
exists, that value will be used for repairing and find its
way to the standard instance inst(I?) corresponding to I?.

– Moreover, when a set of preference labels of a cell does
contain different preferred values (distinct maximal pref-
erence levels), this implies that not enough information
is present to resolve the conflict. Instead of returning fail-
ure, we mark such cells in inst(I?) with a special constant
which we refer to as a llun.

Example 5 We chase the initial labeled instance I◦ by our
revised chase procedure. The resulting labeled instance I?1
of this chase, using the variable egds in Σ is shown in Fig-
ure 3c. As an example, t1[Spec] = surg and t2[Spec] = urol
need to be equated, due to egd e3. The chase will consider
the preference labels in I◦ of the cells c13 and c23 and merge
these, resulting in the set of preference labels {〈p0.1,urol〉,
〈p0.9,surg〉}. To resolve the conflict between t1[Spec] = surg
and t2[Spec] = urol, one finds that “surg” has a higher pref-
erence level (p0.9) than “urol” (p0.1) according to �P. This

implies that when turning the labeled instance I?1 back into
a normal instance inst(I?1 ), the cells c12 and c23 will carry
value “surg”, as shown in Figure 3d.

We next focus on preference level p15 in 〈p15,PPTH〉
in cell c15. In the standard chase, PPTH will replace both
occurrences of⊥1 in I, in cells c25 and c35. To satisfy e4, the
revised chase will again merge preference labels in I◦ for the
cells c15, c25 and c35 resulting in {〈p15,PPTH〉,〈p⊥1 ,⊥1〉}
as shown in Figure 3c. Since in our partial order (Figure 4)
p⊥1 ≺P p15, in instance inst(I?1 ) we pick PPTH as the most
preferred value for c15, c25 and c35 as shown in Figure 3d.
So indeed, nulls are less preferred than constants when they
need to be equated, just as in the standard chase.

To illustrate the use of lluns, we consider the set of pref-
erence labels {〈p11,Robert〉,〈p21,Frank〉} in I?1 obtained by
merging the preference labels of cells c11 and c21 to satisfy
e1. Here, we do not have a most preferred value as �P does
not have information about how the preference levels p11
and p21 compare (cfr. Figure 4). In this case, in inst(I?1 ),
these cells are populated by a fresh llun value `0 to indicate
that there is a conflict as shown in Figure 3d. It is easily
verified that inst(I?1 ) satisfies the variable egds in Σ . ♦

3.3 Supporting constant egds

The next issue is that the standard chase does not support
constant egds. These are, however, crucial to model pop-
ular data-quality constraint formalisms such as conditional
functional dependencies and editing rules. In LLUNATIC, we
benefit from the use of labeled instances to revise the chase
so that it works with constant egds, as follows:
– We reserve a special authoritative preference level, pau, to

indicate authoritative values. Authoritative values origi-
nate from user-defined constant egds and should thus be
enforced by the chase, whenever possible. We therefore
impose that pau is more preferred according to �P than
most other preference levels (except for the invalid and
user preference level to be introduced below). Hence, when-
ever a preference label 〈pau,v〉 is present in a set of pref-
erence labels, the authoritative value v will be picked.

– In the revised chase, when a constant egd e : φ(x̄)→ x = a
can be applied with a homomorphism h, we simply put
〈pau,a〉 in the preference labels of all cells related to h(x).
This is how authoritative preference labels are assigned to
cells and authoritative values find their way into repairs.

This once more shows the usefulness of working with la-
beled instances and the partial order �P.

Example 6 The labeled instance I?2 shown in Figure 3e re-
flects the situation after chasing the labeled instance I?1 from
the previous example with the constant egds in Σ . For ex-
ample, the cell c31 now holds preference labels {〈p⊥2 ,⊥2〉,
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〈pau,Gregory〉,〈pau,Greg〉} due to the application of the con-
stant egds e5 and e6. In other words, we simply mark that
these values come from user-defined constraints and should
have high preference. Since these constant egds are incon-
sistent with each other, i.e., they require to apply inconsis-
tent changes, we find two values (Gregory and Greg) both
with the authoritative preference level pau. When moving
from the labeled instance I?2 to the normal instance inst(I?2 )
shown in Figure 3f, we end up in a situation in which no sin-
gle most preferred value exists (both Greg and Gregory are
candidates) and hence c31 obtains a llun value `1. This illus-
trates that LLUNATIC will still generate a repair even when
the egds are in conflict with each other. Suppose that only
e5 would be present in Σ then c31 would have ended up with
preference labels {〈p⊥2 ,⊥2〉,〈pau,Gregory〉} and the value
Gregory would be picked in inst(I?2 ). In Figure 4, we show
how pau relates to other preference levels in (P,�P). ♦

3.4 Backward repairing

So far, when chasing with egds we always enforced that the
antecedent of an egd was satisfied. Another way is to invali-
date the premise of an egd, i.e., performing a so-called back-
ward repair. Again, labeled instances and preference levels
make it easy to incorporate such backward repairs.
– In the revised chase, whenever an egd e : φ(x̄)→ xi = x j or

e : φ(x̄)→ x = a applies with a homomorphism h, we per-
form a backward repair by introducing a special invalid
preference label, 〈p×,×〉, into the set of preference labels
of cells on which relation atoms in φ(x̄) are mapped into
by h. We refer to p× as the invalid preference level and to
× as an invalid value (we assume that × is in CONSTS).
Intuitively, we mark cells as invalid if they are changed
in order to prevent an egd to be applicable, but we do not
know to which value they are changed. By positioning
p× in �P such that it is incomparable to most other pref-
erence levels, we can force cells to take a llun value in the
corresponding instance, indicating that the original value
was incorrect.

Example 7 Consider the labeled instance I?3 shown in Fig-
ure 3g. It is obtained by enforcing the constant egds, as be-
fore, and by invalidating the value 111 in cell c20 by insert-
ing 〈p×,×〉 into its set of preference labels. We now check
how this prevents any variable egd to be applicable. Assum-
ing that p× and p20 are incomparable, in inst(I?3 ) the cell
c20 will obtain a llun value `2 since no single most preferred
value exists in {〈p20,111〉,〈p×,×〉}. Clearly, inst(I?3 ) satis-
fies all egds in Σ and this because we marked one single cell
with an invalid preference label. We also note that although
the constant egd e9 only applies to tuple t3, when the cell c35
obtains preference label 〈pau,PPTH〉, also c25 obtains this
preference labels. This is in accordance with how the stan-
dard chase replaces all occurrences of the same null value

with the same constant. How p× relates to other preference
levels is shown in Figure 4. ♦

3.5 User repairs

A final important aspect is the incorporation of user knowl-
edge in the repairing process. In LLUNATIC we allow users
to change the value of sets of preference labels and solve
any incompleteness or conflict marked by lluns, as follows.
– We reserve a special user preference level, p>, such that

when 〈p>,v〉 is present in a set of preference labels then
this implies that the user specified the “correct” value v.
User interaction gracefully embeds in our revised chase
as it suffices to add the user provided label 〈p>,v〉 to the
preference labels of relevant cells. The preference level
p> will be the maximal level in our partial order.

Example 8 Consider labeled instance I?4 shown in Figure 3i
which is obtained from I?3 by injecting two pieces of in-
formation from a user: t2[NPI] should be 112 and t3[Name]
should be Gregory. This is represented in I?4 by inserting
〈p>,112〉 in the preference labels of cell c20 and inserting
〈p>,Gregory〉 in the preference labels of c31. Since p> is
the most preferred preference level, inst(I?4 ) will carry value
112 (instead `2 in inst(I?3 )) and Gregory (instead of `1 in
inst(I?3 )) in the corresponding cells. How p> relates to other
preference levels is shown in Figure 4. ♦

In summary, by using labeled instances, preference lev-
els and labels, and revising the chase, we obtain a flexible
mechanism of repairing data for sets of egds.

4 The formalization underlying LLUNATIC

Having informally described the main concepts underlying
LLUNATIC in the previous section, we next formalize la-
beled instances and how to go from a standard instance to a
labeled instance and back (Section 4.1), what it means for an
egd to be satisfied on a labeled instance (Section 4.2) as this
is needed to understand the semantics, introduce user-input
functions (Section 4.3) and finally define when a labeled in-
stance is an upgrade of another labeled instance (Section 4.4)
as this will enable us to link repairs obtained from our re-
vised chase procedure to the original dirty instance.

4.1 Labeled instances

Given an instance I, a labeled instance assigns a set of pref-
erence labels to each cell in I. Preference labels consist of
values taken from CONSTS or NULLS (and TIDS for the Tid-
attributes), together with preference levels. We model pref-
erence levels by values taken from a partially ordered, count-
able set P. The partial order on P is denoted by �P and
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reflects how different preference levels compare with each
other. For two preference levels p and p′ in P, we denote by
p≺P p′ if p�P p′ and p′ 6�P p.

Definition 1 A preference label over P is a pair 〈p,v〉, where
p is a preference level in P, and v is a value from CONSTS∪
NULLS (and TIDS for the Tid-attributes). A labeled instance
I? over P of instance I is a mapping that associates a non-
empty finite set of preference labels over P with each cell c
in I, denoted by I?(c).

Intuitively, in a labeled instance I? all cells in I come equip-
ped with a set of preference labels indicating possible values
that can be put in the cells. Instances I◦, I?1 , I?2 , I?3 and I?4 in
Figure 3 are examples of labeled instances over P, shown
in Figure 4, of instance I given in Figure 2. As an example,
I?1 (c21) = {〈p11,Robert〉,〈p21,Frank〉}.

In the LLUNATIC framework everything starts by inspect-
ing the dirty instance I and (i) extracting preference levels pc
for the values in all cells c in I; (ii) extracting partial order
information about these preference levels, to form (P,�P);
and (iii) creating an initial labeled instance based on this
information. In Example 4 we have put arbitrary preference
levels p10, p11, p12, p14, p15, p20, p21, p22, p24, p30, p32, p34
in cells for which we have no further information, p⊥1 and
p⊥2 for cells containing null values, and p0.1, p0.9, p1 for
cells for which confidence information was available. For
cells ct

i = 〈i,Tid〉 we always assign preference label 〈pid , i〉
for some arbitrary fixed preference level pid .

These preference levels relate to each other by �P as
shown in Figure 4. We come back to this important initial-
ization phase in more detail in Section 4.5. For now, we as-
sume that (P,�P) is given and assume that for each cell c of
I we have a preference level pc ∈ P associated with it. Given
this, we can easily associate a labeled instance to a normal
instance.

Definition 2 The initial labeled instance I◦ over P of I is
defined as the labeled instance in which each cell c= 〈tid,Ai〉
of I is assigned 〈pc,v〉 where v = ttid[Ai], that is, I◦(c) =
{〈pc,v〉}.

The labeled instance I◦ depicted in Figure 3a is obtained
from the instance I and (P,�P) shown in Figure 4.

We also associate a unique (standard) instance to a la-
beled instance by leveraging the partial order information in
the preference labels. More specifically, we associate with a
set of preference labels a unique value. Intuitively, this value
is the value associated with the “highest” preference level
among all preference labels. When no such unique value ex-
ists, we assign it a special constant value, which we refer to
as a llun. More specifically, we denote by LLUNS = {`0, `1,

`2, . . .}, an infinite set of constants, disjoint from CONSTS,
TIDS and NULLS. These constants are used to solve con-
flicts. That is, when the correct value of a cell is currently

unknown, we mark it by a llun so that it might be resolved
later on into a constant, e.g., by asking for user input. Lluns
allow us to always infer a unique value for a set of prefer-
ence labels.

Definition 3 Given a set of preference labels L = {〈p1,v1〉,
. . . ,〈pk,vk〉} over P, the preferred value of L , denoted by
pval(L ), is obtained as follows. Consider the set M of maxi-
mal elements in L according to�P, i.e., the set of all 〈p,v〉 ∈
L such that there exists no 〈p′,v′〉 ∈L for which p ≺P p′

holds. Then:
1. if all preference labels in M have exactly the same value

v, then pval(L ) = v;
2. otherwise pval(L ) is a fresh llun value in LLUNS.

For example, for L = {〈p0.1,urol〉,〈p0.9,surg〉} in I?1 we
have that pval(L ) = surg because p0.1 ≺P p0.9. By con-
trast, for L = {〈p11,Robert〉,〈p21,Frank〉} in I?1 , we have
that pval(L ) = `1 ∈ LLUNS because p11 and p21 are in-
comparable according to �P. Moreover, pval({〈pid , i〉}) is
always i for cells 〈i,Tid〉. With this notion in place, we can
now assign a unique standard instance to a labeled instance.

Definition 4 Given a labeled instance I? over P of I, we de-
fine the instance associated with I? as the standard instance,
denoted by inst(I?), obtained by assigning each cell c in I
the value pval(I?(c)). We note that inst(I?) consists of re-
lations taking values from CONSTS∪ NULLS∪ LLUNS (and
TIDS for the Tid-attributes).

In Figure 3 we have shown various labeled instances and
their associated instances. As a sanity check, we observe that
inst(I◦) = I. That is, the standard instance associated with
the initial labeled instance of I is I itself. This holds because
in I◦, every cell is associated with a single preference label
and pval{〈p,v〉}= v with v the value of the cell in I.

4.2 Satisfaction of egds for labeled instances.

We next define what it means for a labeled instance to satisfy
an egd. We distinguish between variable and constant egds.
For variable egds, we simply use the standard notion of sat-
isfaction of first-order logic 2 on the instance associated with
a labeled instance.

Definition 5 Given a variable egd e : φ(x) → xi = x j, an
instance I and a labeled instance I? over P of I, we say that
I? satisfies e, denoted I? |=` e, if inst(I?) |= e.

The motivation behind this definition is as follow. Let I? =
(I?1 , . . . , I

?
k ) be a labeled instance of I = (I1, . . . , Ik), e be a

variable egd φ(x̄) → xi = x j, and let inst(I?) = (inst(I?1 ),

2 Of course, here the universe of discourse of the first-order struc-
ture being CONSTS∪NULLS∪LLUNS (and TIDS for the Tid-attributes).
Similarly to constants and nulls, lluns are treated as constants.
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. . . , inst(I?k )) be the instance associated with I?. We next as-
sociate cells with homomorphisms and variables of φ(x̄).

Definition 6 Let h be a homomorphism from φ(x̄) to inst(I?)
and let x be a variable in φ(x̄). The set of cells associated
with x and h, denoted by cellsh(x), is the smallest subset of
cells in cells(I) such that for every atom Ri(s̄) in φ(x), if
x occurs at position j in s̄, then cellsh(x) contains 〈tid,A j〉
where tid is the tuple identifier of the tuple h(s̄) ∈ inst(I?i )
and A j is the attribute corresponding to position j in Ri.

If inst(I?) |= e for a variable egd e, then h(xi) = h(x j)

for any homomorphism h from φ(x̄) to inst(I?). This in turn
implies that for any pair of cells c and c′ in cellsh(xi) and
cellsh(x j), the preferred values of I?(c) and I?(c′) agree,
which is precisely what e demands. It is easily verified that
the labeled instances I?2 , I?3 , I∗4 in Figure 3 satisfy all vari-
able egds in Σ because their associated instances inst(I?2 ),
inst(I?3 ) and inst(I?4 ) do so.

Satisfaction of constant egds is defined differently. Con-
sider a constant egd e : φ(x̄)→ x = a. If, as in the variable
egd case, inst(I?) |= e then we also say that I? satisfies e,
denoted by I? |=` e. We also consider another way for a con-
stant egd to be satisfied, as is explained next. Consider the
set of cells cellsh(x). We want to ensure that the set of pref-
erence labels in I? associated with cells in cellsh(x) carry
information that the constant a is preferred as described by
the constant egd. As previously explained, to this aim we
introduce a special authoritative preference level pau in P
and preference label 〈pau,a〉 where a is the constant in the
constant egd e.

Definition 7 Given a constant egd e : φ(x)→ x = a, an in-
stance I and a labeled instance I? over P of I, we say that
I? satisfies e, denoted I? |=` e, if either inst(I?) |= e, or for
every homomorphism h from φ(x) to inst(I?), for every cell
c ∈ cellsh(x), I?(c) contains 〈pau,a〉.

By positioning pau in the partial order �P, the prefer-
ence of pau compared with other preference levels can be
adjusted. See, for example�P in Figure 4. In this way, when
I? |=` e holds, the preferred values used to obtain inst(I?)
took into account that a constant egd required certain cells
to have a specific constant value, despite that the preferred
value of the cell’s preference labels may not agree with con-
stants required by the constant egd.

In Figure 3, the labeled instance I?2 satisfies the constant
egds e7–e9 because inst(I?2 ) does so. Furthermore, e5 and e6
are satisfied by I?2 because I?2 (c31)= {〈p⊥2 ,⊥2〉,〈pau,Greg〉,
〈pau,Gregory〉} and hence I?2 has encoded that e5 tells that
the value should be “Greg” and e6 tells that the value should
be “Gregory”. Note, however, that inst(I?2 ) does not satisfy
e5 and e6 since the conflicting information is resolved by a
llun value `1. Similarly, the labeled instances I?3 and I?4 satis-
fies all constant egds in Σ . We note that the labeled instance
I?1 does not satisfy e5.

Given a set Σ of egds, a labeled instance I? over P of I
satisfies Σ , denoted I? |=` Σ , if I? |=` e for all e ∈ Σ .

Definition 8 A labeled instance I? over P of I is clean rel-
ative to a set Σ of egds when I? |=` Σ . It is called dirty,
otherwise.

From our earlier observations it now follows that I?2 , I?3 and
I?4 in Figure 3 are all clean, and I◦ and I?1 are dirty.

4.3 User functions

Labeled instances provide an elegant formalism for dealing
with user corrections. In LLUNATIC, we abstract user inputs
by seeing the user as an oracle over sets of preference labels.
Such an oracle represents the ultimate way to change the
preferred value for a cell with a given set of labels.

Definition 9 We call a user-input function a (computable)
partial function User that takes as input any set of prefer-
ence labels, L , and returns a value v ∈ CONSTS, denoted by
User(L ), to indicate that the clean value of any cell anno-
tated with L is v.

Note that User is by definition a partial function, and it may
thus be undefined for some sets of labels. User-specified
clean values will be encoded by means of special user pref-
erence label 〈p>,v〉 and we require, when User(L ) = v is
defined, that L is always extended with 〈p>,v〉.

Definition 10 A labeled instance I∗ over P of I is said to
be user-corrected according to User if there exists no cell
c ∈ cells(I) such that for some v ∈ CONSTS, User(I?(c)) = v
but 〈p>,v〉 6∈ I?(c).

Similarly to the level pau, we can adjust the preference of
p> compared with other preference values in P by posi-
tioning p> in the partial order �P of P. See, for example
�P in Figure 4. It is now easy to see that the labeled in-
stance I?4 in Figure 3 is user-corrected according to the user-
input function given by User({〈p20,111〉,〈p×,×〉}) = 112,
User({〈p⊥2 ,⊥2〉,〈pau,Greg〉,〈pau,Gregory〉}) = Gregory.

4.4 Upgrades and repairs

Given a dirty instance I, a set Σ of egds and a user-input
function User, we will consider labeled instances I∗ that are
(i) clean relative to Σ ; and (ii) user-corrected according to
User. What is missing from the picture is how such labeled
instances I∗ are related to I. We formalise this using the no-
tion of upgrade.

We start from I, consider the initial labeled instance I◦
and now want to assess whether a labeled instance I? of I
is of better “quality” than I◦. More generally, we want to
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compare two labeled instances in terms of the information
stored in their preference labels. Intuitively, a set of prefer-
ence labels is of higher quality than another set of preference
labels when it contains at least the same preference labels.
This lifts to labeled instances in a natural way.

Definition 11 Given labeled instances I?1 and I?2 over P of I,
we say that I?1 upgrades I?2, denoted by I?2 � I?1, if for each
cell c of I, it is the case that the set of labels of cell c in I?1
contains the set of labels of c in I?2, i.e., I?2(c) ⊆ I?1(c). We
say that I?1 strictly upgrades I?2, denoted by I?2 ≺ I?2, if I?2 � I?1
and I?1 6� I?2.

Indeed, upgrades capture our intended semantics in that val-
ues are replaced by more preferred values. Intuitively, when-
ever instance I?1 upgrades I?2, then, for each cell c of I, it must
be the case that the value assigned to c in inst(I?1) is more
(or equally) preferred over the corresponding value assigned
in inst(I?2).

Definition 12 A labeled instance I? over P of I is said to
upgrade instance I if it upgrades the initial labeled instance
I◦ of I, i.e., I◦ � I?. Similarly, if I◦ ≺ I? holds, then the
labeled instance I? is said to be a strict upgrade of I.

In Figure 3, we see by simply checking containment of
the sets of preference labels in cells that I◦ ≺ I?1 ≺ I?2 and
I◦ ≺ I?3 ≺ I?4 . We note, however, that I?1 and I?3 are incompa-
rable. We are now finally ready to define what we mean by
a repair.

Definition 13 A repair I? of I is a labeled instance over
P of I which is (i) clean relative to Σ ; (ii) user-corrected
according to User; and (iii) is an upgrade of I. Moreover,
I? is a minimal repair if any other repair K? of I satisfies
I? �K?.

In Figure 3 only the labeled instance I?4 is a repair of I
for the egds in Σ and user-input function User given earlier.

The computational challenge is now to compute such re-
pairs. We do this by means of a revised chase procedure on
labeled instances. Before explaining the LLUNATIC chase,
we provide some more information on how to extract the
initial labeled instance from a dirty instance, as this initial
labeled instance is the starting point of the chase.

4.5 Partial order specification

From the discussion so far, it should be clear that the pref-
erence levels and preference labels in the initial labeled in-
stance are fixed up front and are used later on to select the
preferred value from a set of preference labels. Although
any partially ordered set (P,�P) could be used (as long as
it supports p×, pau and p>), in practical settings we assume
that (P,�P) is structured as in Figure 4. More precisely, we
assume that P:

– contains a null preference level p⊥i for each null value
⊥i in NULLS, such that p⊥0 ≺P p⊥1 ≺P p⊥2 ≺P · · · , and
furthermore p⊥i ≺P p for any other p ∈ P\{p×};

– is such that for any p ∈ P \ {pau, p>}, p ≺P pau, i.e., the
authoritative preference level is higher than any other pref-
erence level, except for the user preference level p>;

– for any p ∈ P\{pau, p>}, p is incomparable with the in-
valid preference level p×; and

– for any p ∈ P \ {p>}, p ≺P p>, i.e., the user preference
level trumps any other preference level.

This ensures that the preference levels p⊥i , p×, pau and p>
have the desired effect when present in a set of preference
labels. We also assume p⊥i only to be present in the prefer-
ence label 〈p⊥i ,⊥i〉 and p× in 〈p×,×〉.

We next describe how a user can create the initial labeled
instance. More precisely, in the initial labeled instance I◦
over P of I, one initalizes
– for any cell c = 〈tid,Ai〉 in I such that ttid[Ai] =⊥ j:

I◦(c) := {〈p⊥ j ,⊥ j〉},

– and for all other cells c = 〈tid,Ai〉 in I such that ttid[Ai] =

v ∈ CONSTS:
I◦(c) := {〈pc,v〉},

where pc ∈ P \ {p⊥i , p×, pau, p>}. Further inspection of
the data is needed to select these preference levels pc and
fixing their relationship in the partial order.

To better understand what we mean here, just recall how
cells c13 and c23 in I in our running example were labeled
in I◦ by preference labels 〈p0.9,surg〉 and 〈p0.1,urol〉, re-
spectively, such that p0.1 ≺P p0.9, based on the confidence
information stored in the Conf attribute. Hence, when later
on a conflict between “surg” and “urol” needed to be re-
solved, “surg” will be the most preferred value and be used
to resolve the conflict. In principle there is no restriction on
how the preference levels pc relate to each other, however,
we next describe a practical way of extracting partial or-
der information on preference levels pc associated with the
constant values in cells in I.

We propose the use of ordering attributes. An ordering
attribute A in R is such that tuples t in instances I of R
have values t[A] coming from a domain equipped with a nat-
ural partial order. For example, Conf is an ordering attribute
over the rational numbers. Other examples are timestamp at-
tributes, or other numerical attributes. We then define a par-
tial order specification as a partial function Π from the set
of attributes in R to the set of ordering attributes in R. For
example, in our running example Π maps attribute Spec to
Conf in relation D. Although Spec by itself is not an ordering
attribute, the partial order specification Π can now be used
to extract partial order information on preference levels in P
for cells related to Spec.
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In general, consider an instance I of R and cells c1 =

〈tid1,A〉 and c2 = 〈tid2,A〉 in I. Let pc1 and pc2 be two
new preference levels in P used to create the initial instance
I◦. That is, in the initial labeled instance I◦ we have that
I◦(c1) = {〈pc1 , ttid1 [A]〉} and I◦(c2) = {〈pc2 , ttid2 [A]〉}. We
then define

pc1 �P pc2 if and only if ttid1 [Π(A)]≤ ttid2 [Π(A)].

That is, we order pc1 and pc2 in �P in accordance to the
(ordered) attribute values ttid1 [Π(A)] and ttid2 [Π(A)] (recall
that c1 and c2 are cells in the A attribute in I.)

In this way we can use temporal information (e.g., time-
stamps) to give certain cell values higher preference in I◦
based on their date of creation. We can also add an ordering
attribute as part of a preprocessing step which records the
frequency of values in another attribute. In I◦ we then give
more preference to frequent values. We tie the use of partial
order specifications to other repairing methods in Section 7.
We emphasize that this is only one of the possible ways of
specifying the desired partial order, and by no means it is
the most general. Yet, we believe that it represents a good
compromise between simplicity and expressiveness.

5 The LLUNATIC chase

As anticipated, we now revise the standard chase procedure
such that it works on labeled instances and generates re-
pairs according to Definition 13. Intuitively, starting from
the initial labeled instance I◦ over P of I, in each step of
the chase we generate an upgrade by either merging sets of
preference labels or extending sets of preference labels. By
contrast to the standard chase, the revised chase produces a
chase tree, i.e., a tree in which each branch corresponds to
a different chase sequence. To guarantee that the chase ends
after a finite number of steps, we do impose a restriction
on the labeled instances (upgrades) that can be generated by
the chase. More precisely, for a given set L of preference
labels, the set of all cells having L as their set of prefer-
ence labels in a labeled instance I?, is referred to as the cell
group of L in I?. We will change all cells in the same cell
group in the same way. For example, in an initial labeled in-
stance I◦ all cells having 〈p⊥i ,⊥i〉 as their preference label
will be in the same cell group. We have remarked earlier that
these should indeed be changed in the same way, in accor-
dance with the standard chase. As another example, when
the chase merges two sets of preference labels, for example
in cells c11 and c12 in I?1 in Figure 3, this implies that these
two cells should carry the same preferred value. By putting
these cells in the same cell group, we guarantee that this
is preserved during further chase steps. Typically, cells will
belong to the same cell group if a previous application of an
egd required the two cells to carry the same information. We

next detail the chase steps (Section 5.1) and then describe
the result of chase and some of its properties (Section 5.2).
How a user interacts with the chase (and LLUNATIC in gen-
eral) is explained in Section 5.3.

5.1 Chase steps

Let I? be a labeled instance over P of I and consider the
corresponding instance inst(I?). Let e : φ(x̄)→ xi = x j or
e : φ(x̄)→ x = a be a variable or constant egd, respectively.
Let h be a homomorphism from φ(x̄) to inst(I?). We asso-
ciate, similar to Definition 6, cells with variables and con-
stants in φ(x̄). A more fine-grained association is needed for
the backward chase step (see below) since we have to be
able to distinguish between cells corresponding to different
occurrences of the same variable in φ(x̄) and also need to
identify cells corresponding to constants in φ(x̄).

Definition 14 Consider a homomorphism h from φ(x̄) to
inst(I?) = (inst(I?1 ), . . . , inst(I?k )). Let F =Ri(s̄) =Ri(tid,s1,

. . . ,sni) be an atom in φ(x̄) and let j ∈ [1,ni +1]. We define
the cell associated with h, atom F and position j, denoted by
cellh(F, j), as the (single) cell 〈tid,A j〉, where tid is the tuple
identifier of the tuple h(s̄) ∈ inst(I?i ) and A j is the attribute
name of position j in Ri.

We remark that cellsh(x) (cfr. Definition 6) is just the union
of cellh(F, j) where F and j range over all atoms F in φ(x)
containing x at a position j. We further expand cellh(F, j) by
the cells in its cell group, i.e., we define

cellh(F, j) := {c′ ∈ cells(inst(I?)) | I?(c′) = I?(cellh(F, j))}.

Intuitively, cellh(F, j) contains all cells that need to be chan-
ged in the same way as cellh(F, j) during the chase, as re-
marked earlier. The value to which all cells in cellh(F, j)
need to be changed is determined by I?(cellh(F, j)).

We can lift these definitions to variables x in φ(x) in
a natural way. More precisely, cellsh(x) is the union of all
cellh(F, j) where, as before, F and j range over all atoms
F in φ(x) containing x at position j. The value to which all
cells in cellsh(x) need to be changed is determined by the
union of the set of preference labels associated to cells in
cellsh(x). We denote this union by Lh(x) which is the union
of I?(cellh(F, j)) where F and j range over all atoms F in
φ(x) containing x at position j.

Then, when e is a variable egd, we say that e can be ap-
plied to I? with homomorphism h when h(xi) 6= h(x j). When
e is a constant egd, we say that e can be applied to I? with
homomorphism h when either h(x) 6= a or when 〈pau,a〉 is
not part of Lh(x). These conditions basically check whether
I? 6|=` e (cfr. Section 4.2). We now define the result of apply-
ing e on I? with homomorphism h as a new labeled instance
J? over P of I defined as follows.
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Forward chase step variable egd: In this case, I? and J?
agree on all cells in I except for those corresponding to
cellsh(xi) and cellsh(x j). More precisely, for all cells c ∈
cellsh(xi)∪ cellsh(x j) we define

J?(c) := Lh(xi)∪Lh(x j).

In other words, we merge all sets of preference labels of cells
related to h(xi) and h(x j).

Forward chase step constant egd: In this case, I? and J?
agree on all cells in I except for those corresponding to
cellsh(x). More precisely, for all cells c ∈ cellsh(x) we de-
fine

J?(c) := Lh(x)∪{〈pau,a〉}.

In both cases we write I? e,h→ J?. It is readily verified that

there exist homomorphisms h1, h2, h3 such that I◦
e1,h1→ J?1

e3,h2→
J?2

e4,h3→ I?1 for the labeled instances I◦ and I?1 and variable
egds in Σ given in Figure 3. Furthermore, there exist homo-

morphisms h4 and h5 such that I?1
e5,h4→ J?3

e6,h5→ I?2 for I?2 and
constant egds in Σ in Figure 3.

Backward chase step egd: We want to create a labeled in-
stance J? over P of I such that, when e is applicable to I?
with a homomorphism h from φ(x̄) to inst(I?), then h is not
a homomorphism anymore from φ(x̄) to inst(J?).

We distinguish between the following two cases, depend-
ing on whether we “disable” a constant or an equality be-
tween variables in φ(x̄). Let F = Ri(s̄) = Ri(tid,s1, . . . ,sni)

be an atom in φ(x). Suppose that j ∈ [1,ni] is such that
s j ∈ CONSTS. Then, we first check whether I?(c) does con-
tain authoritative preference labels for c ∈ cellh(F, j). If so,
we do not perform a backward chase step since we do not
want to invalidate such information. Otherwise, we ensure
that J?(c), for all c ∈ cellh(F, j), contains the invalid prefer-
ence label 〈p×,×〉. In other words, for such cells c, inst(J?)
will not hold constant value s j anymore, ensuring that h(s̄) 6∈
inst(J?). More precisely, we create a new labeled instance J?
over P of I which agrees with I? on all cells in I except for
those in cellh(F, j). For cells c in cellh(F, j) we define

J?(c) := I?(c)∪{〈p×,×〉},

as just explained.
For the second case, let x be a variable in φ(x) that oc-

curs multiple times in φ(x̄). If no such variable exists, then
this case does not apply. Consider relational atoms F =Ri(s̄)
and F ′ = R j(s̄′) in φ(x̄) and assume that s` = x and s′`′ = x.
When F = F ′, then we must have that ` 6= `′.

Let h be a homomorphism from φ(x̄) to inst(I?) and
consider c = cellh(F, `) and c′ = cellh(F ′, `). We only back-
ward chase when pval(I?(c)) = pval(I?(c′)) is a constant,
I?(c) 6= I?(c′) and, as above, no authoritative preference la-
bels are present in I?(c) and I?(c′). Here, the second con-
dition implies that cellh(F, `) and cellh(F ′, `′) are disjoint.

We then create a new labeled instance J? over P of I which
agrees with I? on all cells in I except for those in either
cellh(F, `) or cellh(F ′, `′). In one of those sets of cells, we
will add to all cells the invalid preference label 〈p×,×〉 to
their set of preference labels. As a consequence, the two
variable occurrences will be mapped to different values in
inst(J?) hereby disabling the application of e.

More precisely, say that we pick cellh(F, `). Then for all
c ∈ cellh(F, `) we define

J?(c) = I?(c)∪{〈p×,×〉}.

The reason to restrict the application of backward chase steps
when pval(I?(c)) = pval(I?(c′)) is a constant is that we feel
that invalidating a null or a llun does not make sense seman-
tically. (Of course, in general one may allow this.)

In both cases (disable constant, disable equality) we write

I? e,h,F,`−→ J? indicating which atom (F) and position ( j) in
φ(x̄) we invalidate.

As an example, consider variable egd e1 : D(tid,npi,nm,

sur,spec,hosp)∧D(tid′,npi,nm′,sur′,spec′,hosp′)→ nm =

nm′. Both these atoms, let us denote them by F and F ′, have
variable npi at position 2. It is now readily verified that there

exist homomorphisms h1, h2, h3 and h4 such that I◦
e1,h1,F,2−→

J?1
e5,h2→ J?2

e6,h3→ J?3
e9,h4→ I?3 for I?3 and egds in Σ in Figure 3.

User chase step: When a user-input function User is given,
we say that this function is applicable on I? when there are
cells c such that User(I?(c)) = v is defined. In this case we
create a new labeled instance J? over P of I which agrees
with I? on all cells in I except for those cells c in which
User(I?(c)) is defined. More precisely, for all such cells c
we define

J?(c) := I?(c)∪{〈p>,User(I?(c))〉}.

In other words, we add User(I?(c)) = v together with the
user preference level p> to the set of preference labels. Note
that this step changes all cells in the same cell group in the
same way. Indeed, cells in a cell group have the same set

of preference labels. We write I? User,L−→ J? where L = I?(c)
for which this chase step is applied. As an example, we have

that I?3
User,L1−→ J?1

User,L2−→ I?4 for I?4 shown in Figure 3, where
L1 = {〈p20,111〉,〈p×,×〉}, L2 = {〈p⊥2 ,⊥2〉,〈pau,Greg〉,
〈pau,Gregory〉}, and User is the user-input function given
earlier.

5.2 The LLUNATIC chase and its properties

Given a set Σ of egds, constant or variable, a user-input func-
tion User and a labeled instance I? over P of I, a chase se-
quence of I? with Σ and User is a sequence of labeled in-
stances I?i with i = 0,1, . . ., such that I?0 = I? and for every



14 Floris Geerts et al.

i, either I?i
e,h→ I?i+1 (forward step), I?i

e,h,F, j−→ I?i+1 (backward

step), or I?i
User,Li−→ I?i+1 (user step). The chase tree I? with Σ

and User, denoted by chaseΣ ,User(I∗), is a tree whose root is
I∗ and all branches correspond to finite chase sequences of
I? with Σ and User such that no further chase steps can be
applied to the last labeled instance in the sequence. We note
that our chase steps never return failure  .

We next show that every branch in the chase is a finite
chase sequence and that the leaves of the chase are repairs.

Theorem 1 Given a labeled instance I? over P of I, a set
Σ of egds and user-input function User. Then, every chase
sequence in chaseΣ ,User(I∗) is finite and furthermore, every
labeled instance in a leaf of chaseΣ ,User(I∗) is a repair of I?.

Proof To show that every chase sequence in chaseΣ ,User(I∗)
is finite, it suffices to observe that every chase step, whether
it is a forward, a backward or a user chase step, either strictly
increases the size of cell groups (cells that carry the same set
of preference labels), or strictly increases the size of sets of
preference labels. There is clearly an upper bound on how
many times cell groups can be expanded as in the worst case
all cells in an instance belong to the same cell group. Simi-
larly, since Σ contains a finite number of constant egds, the
number of times the corresponding authoritative preference
level can be added is bounded. The same holds for the in-
valid preference level and user preference level. Hence ev-
ery chase sequence is bounded in length. From the definition
of chase steps, it is clear that when no further chase steps
can be executed on a labeled instance, it satisfies all egds
in Σ and is user-corrected according to User. Furthermore,
by definition, a chase step from a labeled instance I?i to a
labeled instance I?i+1 ensures that I?i+1 is an upgrade of I?i .
Hence, every leaf in chaseΣ ,User(I∗) is a repair of I?. �

In LLUNATIC, we will of course apply the chase on the
initial labeled instance I◦ of a dirty instance I. As an exam-
ple, I?4 in Figure 3 is a repair generated by chaseΣ ,User(I◦).
We return both I?4 and its corresponding instance inst(I?4 ) to
the user.

Furthermore, some properties of the standard chase carry
over to our revised chase.

Theorem 2 Given an initial labeled instance I◦ over P of I,
a set Σ of egds and user-input function User, we have that:
– the number of repairs (leaves) in chaseΣ ,User(I◦) is at most

exponential in the size |I| of I; and
– every chase sequence in chaseΣ ,User(I◦) is of length poly-

nomial in the size |I| of I,
where |I| is the number of tuples in I and where, as usual,
we consider the schema, the set of constraints and user-input
function to be fixed (data complexity).

Proof Repairs are obtained from I◦ by expanding the set of
preference labels associated with cells in I. For each cell, the

possible set of preference labels is bounded by the constants
appearing in I and preference levels in I◦ (together with the
special levels p×, pau and p>). Hence, there are most 2O(|I|)

different sets of preference labels and since the number of
cells is bounded by O(|I|) (recall the schema is fixed), we
have at most 2O(|I|) possible labeled instances over P of I
which upgrade I◦. Consequently, there are at most an expo-
nential number (in |I|) leaves in chaseΣ ,User(I◦).

To see that every chase sequence in chaseΣ ,User(I◦) is of
length polynomial in the size |I| of I, we have seen in the
proof of the previous theorem that each step either strictly
increases the size of cell groups (cells that carry the same
set of preference labels), or strictly increases the size of
sets of preference labels. One can now associate an integer-
valued function f to labeled instances based on the size of
cell groups and sizes of sets of preference labels such that
f (J1)< f (J2) when J2 is the result of a chase step on J1. It
suffices now to observe that f is bounded by O(|I|) on every
upgrade generated in a chase sequence in chaseΣ ,User(I◦).
Hence, such a chase sequence must of length bounded by
O(|I|). �

We conclude this section by observing that the LLU-
NATIC chase can be seen as a conservative extension of the
standard chase. Indeed, we instantiate P by preference lev-
els for nulls and assign a unique preference level for each
cell carrying a constant value in I. We relate these to the null
preference levels as before. By redefining pval(L ) such that
it returns  (instead of a llun) when no single preferred value
can be obtained from L , then it is readily verified that the
LLUNATIC chase on I◦ coincides with the standard chase
when no backward chase steps are performed.

5.3 LLUNATIC in action

We next illustrate how a user would interact with the chase
while repairing data with our LLUNATIC open-source data-
repairing system3. LLUNATIC has been developed in Java on
top of PostgreSQL as DBMS and its GUI is depicted in Fig-
ure 5. First of all, the data can browsed to inspect the data, as
illustrated in frame (1) for an example database exposed as a
standard instance. A partial order specification Π can then be
specified by simply selecting columns as shown in frame (2).
In that frame, Π maps attribute phone to an attribute cfphone
holding confidence information, and attribute salary to an at-
tribute date holding timestamps. The constraints (egds) can
either be declaratively specified, but the system also pro-
vides a graphical user interface for this task, as reported
in frame (3). The example shows a functional dependency
(“fd3”) that enforces equality on attribute cc. In addition,
users may specify configuration options, such as the cost
manager which we introduce later in the paper (Section 6.2).

3 https://github.com/donatellosantoro/Llunatic
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Fig. 5: LLUNATIC GUI.

Then, LLUNATIC has all information to create the initial
labeled instance and compute a set of repairs. To do this, it
generates a chase tree, reported in frame (4). Leaves in the
chase tree are repairs that can be inspected by users to an-
alyze the modifications to the original instance, as shown
in frame (5). In the figure, we highlight the intermediate
node (labeled “I”) after chasing with “fd3” in a branch of the
tree; the following chase steps enforce other possible egds.
In the corresponding upgrade, credit card (cc) values “781-
658” and “784-659” have been updated with a llun to satisfy
“fd3”.

As LLUNATIC models upgrades by means of labeled in-
stances and changes cells in cell groups in the same way, it
is possible to retrieve cell groups and their labels, as illus-
trated in frame (6). In the example, we see how, as attribute
cc has no ordering attribute associated, LLUNATIC does not
make an arbitrary choice and rather marks the conflict with a
llun. In general, a user can analyze the cell group and labels
associated to a llun and the dependency at hand to manu-
ally intervene and provide values with the user preference
level. In the example, we show the details for the cell group
of the chase step involving constraint “fd3” with the result-
ing llun ‘L202’. We pick up the corresponding node in the
chase tree (frame (4)), consult its history in terms of changes
to the original database, as described by the labels, inspect
the lluns that have been introduced (frame (5)), and analyze
the associated cell groups and labels (frame (6)). Based on
this, we can now take an informed decision in order to up-

date the llun with the appropriate constant (provided by the
user) or discard unwanted repairs. If we make a change, i.e.,
if a user chase step is applied, we are updating the prefer-
ence level for the labeled instance. We then rerun the chase
for the branch at hand, this time with the user-input function,
and we will get a different repair.

In another frame, which is not reported in the figure, we
allow users to rank the alternative repairs according to the
number of lluns contained in the final instance. We argue
that the chase tree, lluns, and cell groups and their labels
provide an effective source of information to support users
in exploring and refining alternative repairs.

6 Implementing the chase

The computation of the chase tree of all chase sequences
of I◦ with Σ and User, i.e., chaseΣ ,User(I◦), is the core al-
gorithmic component in LLUNATIC. In this section, we de-
scribe some underlying internal optimizations and an exter-
nal mechanism, called the cost manager, to control the chase
in a fine-grained manner.

To accommodate for large datasets, LLUNATIC is built
around a disk-based chase engine. The chase logic is con-
trolled by a Java program that handles the heuristic decisions
we describe next, such as when to go forward or backward,
the computation of value similarity, and caching strategies.
Disk support, essential for scalability, is provided by exploit-
ing a DBMS for data access. This is a natural choice for our
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setting, as a DBMS is faster and exposes data operations
closer to our needs than the OS file system.

6.1 Chasing on top of a DBMS

Due to space limitations we only provide a high-level de-
scription of some internal implementation choices.

Storing the delta’s. It is clearly infeasible to materialize the
entire chase tree since each of its nodes corresponds to an
upgrade, i.e., a labeled instance obtained by a chase step, and
we may have exponentially many repairs. In LLUNATIC, we
therefore only store the changes (the “delta’s”) made after
each chase step, i.e., how the preference labels in a labeled
instance are changed in each step. We use a relational repre-
sentation in which changes to the labeled instance made in
one chase step are grouped together by means of the same
value for a special StepId-attribute. We store strings in StepId
which uniquely identify nodes in the chase tree and such that
ancestor nodes are identified by prefixes of those strings. By
means of SQL queries we can check easily for violations of
the egds and user-input function, and for each set of violat-
ing tuples (i.e., for homomorphisms that make egds applica-
ble), we add the changes as determined by the chase steps to
the preference labels of the cells involved.

Caching of cell groups. In Section 5 we explained how
the chase changes together all cells in the same cell group.
Speeding up the identification and management of the cell
groups involved at each step is crucial for performance. We
therefore introduce three caching strategies for cell groups:
(i) the lazy strategy, in which a cell group is first searched in
the cache; in case it is missing, it is loaded from the database
and stored in the cache; (ii) the greedy strategy in which the
first time a cell group for a chase step s is requested, we
load into the cache all cell groups involved in step s with a
SQL query; and (iii) the single-step strategy, that caches cell
groups for a single step at a time. Similarly to greedy, we
keep cell groups for chase step s in the cache, but, whenever
a cell group for a different step s′ is requested, we clean the
cache and load all cell groups for s′. We will show in our ex-
periments that the last strategy performs best, as the first two
tend to keep in memory cell groups that are not immediately
reused.

Equivalence class based chase. We limit the number of
nodes (upgrades) generated by grouping together different
homomorphisms h that make an egd e : φ(x̄)→ xi = x j (or
e : ϕ(x̄)→ x= a) applicable, as follows. Let I?s be the labeled
instance obtained in step s of the chase. Let h and h′ be two
different homomorphisms of φ(x̄) into inst(I?s ) such that e
is applicable to I?s with h and h′. We then say that h and h′

are compatible if h and h′ agree on all occurrences of vari-
ables x that occur more than once in φ(x). Intuitively, this
implies that the chase steps for h and h′ can be combined.

The compatibility relation induces an equivalence relation
of homomorphisms and we perform a single chase step for
each equivalence class of homomorphisms.

Example 9 Consider the schema R(Tid,A,B,C) and the fol-
lowing labeled instance I? over (P,�P):

Tid A B C
{〈pid ,1〉} {〈p11,1〉} {〈p0.1,1〉} {〈p13,1〉}
{〈pid ,2〉} {〈p21,1〉} {〈p0.2,2〉} {〈p23,2〉}
{〈pid ,3〉} {〈p31,1〉} {〈p0.3,3〉} {〈p33,3〉}

such that p0.1 ≺P p0.2 ≺P p0.3 and all other preference levels
are incomparable. Consider the variable egd e : R(tid,x,y,z)∧
R(tid′,x,y′,z′)→ y = y′ (expressing the functional depen-
dency A→ B) and homomorphisms h1, h2 and h3 such that
h1(R(tid,x,y,z)) = t1, h1(R(tid′,x,y′,z′)) = t2, h2(R(tid,x,y,
z)) = t1, h2(R(tid′,x,y′,z′)) = t3, h3(R(tid,x,y,z)) = t2 and
h3(R(tid′,x,y′,z′)) = t3. In e, only variable x has multiple
occurrences and all three homomorphisms map these oc-
currences to the same value “1”. They are then regarded
as compatible and the equivalence-based chase will apply
the three corresponding forward chase steps simultaneously.
The result is the labeled instance in which the cells corre-
sponding to attribute B in all tuples are assigned preference
labels {〈p0.1,1〉,〈p0.2,2〉,〈p0.3,3〉}; the preference labels of
all other cells remain the same. ♦

We note that a similar equivalence-class based repairing
strategy is used in [11,24]. One can verify that the equi-
valence-based chase still returns repairs. Of course, some
repairs may be missed out because of the coarser granularity
with which is chased. Nevertheless, the equivalence-based
chase enables some additional ways of guiding the chase
when combined with the cost manager, which we describe
next.

6.2 Cost manager

We have shown before that all leaves in chaseΣ ,User(I◦) are
repairs. Instead of computing all repairs, in practice, one
wants to impose further conditions on these repairs, by e.g.,
limiting the number of repairs, disallowing backward chase
steps, or by disallowing changes to very reliable attributes.
In LLUNATIC we allow the user to control the behaviour of
the chase by incorporating pruning strategies. To this aim,
we complement the chase procedure in LLUNATIC with a
cost manager. During the chase, only the nodes (i.e., inter-
mediate results –upgrades– of chase steps) that are accepted
by the cost manager are generated.

Definition 15 A cost manager for a labeled instance I◦ over
P of I, Σ and User is a predicate CM over nodes in the chase
tree chaseΣ ,User(I◦). For each node n in this tree, it may ei-
ther accept (CM(n) = true) or refuse it (CM(n) = false).
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The standard cost manager is the one that accepts all
chase nodes. We note that when the cost manager is too re-
strictive, it is possible that no repairs are found. Indeed, sim-
ply consider the cost manager that rejects all nodes. More
practical cost managers are motivated by approaches taken
in related work, as follows:

– the maximum size cost manager (SN): it accepts new nodes
as long as the number of leaves in the chase tree (i.e., the
repairs produced so far) are less than N; as soon as the
size of the chase tree exceeds N, it accepts only one child
of each node, and rejects the rest; as a specific case, the
S1 cost manager only generates one path in the chase tree,
and ignores other branches;

– the forward-only cost manager (FO): it accepts forward
nodes (i.e., nodes representing the result of a forward chase
step) and rejects backward nodes (i.e., nodes representing
the result of a backward chase step);

– the sampling cost manager (SPLK): it randomly accepts
nodes, until K repairs have been generated (see also [9]);

– The certain-region cost manager (CTN): it incorporates
the notion of a certain region [29], i.e., a set of attributes
that are considered “fixed”. Values in these attributes are
reliable and cannot be changed. Nodes corresponding to
results of chase steps that change these reliable attributes
are rejected; all others are accepted.

– The frequency cost manager (FR) (or similarity to most
frequent): it is inspired by the heuristics originally pro-
posed in [11] and modelled in our semantics as discussed
in Section 7. We resort to this manager when preference
levels for the cells in a violation for dependency e are in-
comparable with other partial orders. The idea is to make
local decisions for which cells to change by analyzing
the violations in one equivalence class for e. For a given
equivalence class of homomorphisms, the cost manager
computes the frequency of values appearing in conclusion
cells and a similarity measure across their values (based
on the Levenshtein distance for strings). Based on this in-
formation, it makes decisions in terms of the next chase
step. The manager rejects repair strategies that backward-
chase cells with the most frequent conclusion value. The
intuition is that these cells are likely to be correct. For ev-
ery other conclusion cell, if its value is similar (distance
below a fixed threshold) to the most frequent one, the cell
is forward-chased (i.e., it is likely to be a typo); otherwise,
it is backward chased.

Notice that combinations of cost managers are possible, e.g.,
one can have a FO-S5 or a SPL50-FO cost manager. The
FO-S5 strategy, for example, discards backward changes
and, in addition, it considers five different ways of chasing in
a forward way. We believe that cost managers are an elegant
way of controlling the chase.

7 Comparison to other semantics

We further illustrate how partial order specifications and ini-
tial label instances can be used such that the LLUNATIC

chase mimics repair semantics used in other work. In par-
ticular, we show how:
– frequency information can be used to resolve conflicts.

This is motivated by the Minimum Cost repair method
for functional and conditional functional dependencies in-
troduced in [11,18]. Here, when conflicts need to be re-
solved, equivalence classes are formed of cells that need
to get the same value. The actual values for such classes
are determined at the end and are selected based on a cost
function [11]. We focus on the heuristic in which the most
frequent value in each equivalence class is selected in an
attempt to minimize the number of changes made.

– random conflict resolution can be incorporated. This is
motivated by the Sampling repair method for functional
dependencies [9]. Here, conflicts of functional dependen-
cies are randomly resolved (forward or backward) and
special variables or values are randomly selected to repair
conflicts.

Example 10 Consider the initial labeled instance I◦ shown
in Figure 6. Compared to our running example we added
one more tuple and expanded the schema with two order-
ing attributes: Freq, which is to hold the frequency of values
appearing in the Name-attribute, and Rnd, which holds ran-
dom values. The partial order specification Π maps Name to
Freq, and Surname to Rnd. The attribute Spec is still mapped
to Conf, just as before. This implies, e.g., that p11 ≺P p21 =P
p31, p33 ≺P p23 ≺P p13 ≺P p43, and p25 =P p35 ≺P p15 ≺P
p45. Here, x =P y denotes that x �P y and y �P x hold. In
addition, we still have the standard partial order informa-
tion related to nulls, invalid, authoritative and user prefer-
ence levels as in Figure 4. Suppose that we chase I◦ in a
forward way with the variable egds e1–e4 in Σ , stating that
attribute NPI is a key of the relation. Then it should be clear
that the LLUNATIC chase resolves conflicts of Name-values
based on frequency. We also recall that the chase changes
cells belonging to the same cell group in the same way. In-
tuitively, cell groups can be seen to correspond to the equiv-
alence classes used in [11,18]. Hence, the chase behaves
like the minimum cost repairing method for the Name at-
tribute. Similarly, the chase resolves conflicts of Surname-
values in a random way. When complemented with a sam-
pling of the chase steps at random (sampling cost manager,
Section 6.2), we obtain a repairing method similar to the
Sampling method [9]. The instance inst(I◦) obtained by chas-
ing I◦ with the variable egds is shown in Figure 6 (we omit-
ted the ordering attributes). We also remark that although
we explicitly added ordering attributes to the schema, one
can of course regard these as virtual attributes and compute
frequencies or random values on the fly, when needed. ♦
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D(octors)
NPI Name Freq Surname Rnd Spec Conf Hospital

c10 c11 c12 c13 c14 c15 c16 c17
t1 {〈p10,111〉} {〈p11,Robert〉} {〈p12,1〉} {〈p13,Chase〉} {〈p14,0.55〉} {〈p15,surg〉} {〈p16,0.9〉} {〈p15,PPTH〉}

c20 c21 c22 c23 c24 c25 c26 c27
t2 {〈p20,111〉} {〈p21,Frank〉} {〈p22,2〉} {〈p23,Chasee〉} {〈p24,0.21〉} {〈p25,urol〉} {〈p26,0.1〉} {〈p⊥1 ,⊥1〉}

c30 c31 c32 c33 c34 c35 c36 c37
t3 {〈p30,111〉} {〈p31,Frank〉} {〈p32,2〉} {〈p33,Chase〉} {〈p34,0.03〉} {〈p35,urol〉} {〈p36,0.1〉} {〈p⊥1 ,⊥1〉}

c40 c41 c42 c43 c44 c45 c46 c47
t4 {〈p40,222〉} {〈p⊥2 ,⊥2〉} {〈p42,1〉} {〈p43,House〉} {〈p44,0.812〉} {〈p45,diag〉} {〈p46,1〉} {〈p⊥1 ,⊥1〉}

(a) Initial labeled instance I◦

D(octors)
NPI Name Surname Spec Hospital
c10 c11 c13 c15 c17

t1 111 Frank Chase surg PPTH
c20 c21 c23 c25 c27

t2 111 Frank Chase surg PPTH
c30 c31 c33 c35 c37

t3 111 Frank Chase surg PPTH
c40 c41 c43 c45 c47

t4 222 ⊥2 House diag PPTH
(b) Corresponding instance inst(I◦).

Fig. 6: Extended running example with extra ordered attributes Freq (frequency) and Rnd (random).

We want to stress that these are just two examples. By
adding ordering attributes related to string similarity, dis-
tance functions, timestamps, and others, one can encode com-
plex relationships between preference levels by using appro-
priate partial order specifications. These in turn affect how
conflicts are resolved during the chase and what kind of re-
pairs one obtains.

8 Experiments

This section reports our experimental results with LLUNATIC.
We consider several cleaning scenarios of different nature
and sizes, and study both the quality of the upgrades com-
puted by our system, and the scalability of the chase algo-
rithm. We show that our algorithm produces upgrades of bet-
ter quality with respect to other systems in the literature, and
at the same time scales to large databases. We ran all tests on
a server with 40 physical Xeon v4 cores running at 2.4GHz
and a 512 GB SSD under Ubuntu v16. All the tools are Java-
based, use PostgreSQL as DBMS, and have been executed
on a JVM with 16 GB of RAM.

The section is organized as follows. We start by intro-
ducing the datasets and the cleaning scenarios. We describe
the way errors are introduced in the datasets and how re-
pairs are evaluated with several metrics. We then introduce
alternative algorithms to obtain repairs and compare them
against LLUNATIC.

Datasets and cleaning scenarios. We selected five datasets:
(a) Hospital is based on real data from the US Department of
Health & Human Services4. It contains a single table with
100K tuples and 17 attributes, over which we specified 7
functional dependencies. To test the scalability of the sys-
tems, we generated instances of size up to 1M tuples by
replicating the original data several times. We call this vari-
ant Hospital-Synth.
(b) Bus, is a real-world scenario [19] composed by a sin-
gle table containing 284K tuples with 25 attributes, and 9
functional dependencies.

4 http://www.medicare.gov/hospitalcompare/

(c) IMDB, it contains real data about movies, directors and
actors obtained by joining data provided by Internet Movie
Database (IMDB)5. The resulting single table is composed
by 8 attributes and contains 20 million of tuples. We identi-
fied 4 functional dependencies for this dataset.
(d) Tax, is a synthetic scenario [25] with a single table with
15 attributes and 4 functional dependencies.
(e) Doctors, corresponds to our running example introduced
in Section 3. The target database schemas contain 2 tables,
plus 1 master data table. We considered 3 editing rules, 4
CFDs and 3 FDs. We synthetically generated up to 1M tu-
ples with a proportion of 40% in the Doctors table, and
60% in a Treatments table; the master-data table contains
a few hundreds of the tuples present in Doctors. We con-
sider master-data tuples outside the total, as they cannot be
modified. Moreover, the master data and editing rules are
compiled into constant egds.

These scenarios represent a spectrum of data-repairing
problems. The first four scenarios contain functional depen-
dencies only, and therefore are quite standard in terms of
constraints. Hospital can be considered a worst-case in terms
of scalability, since all data are stored as a single, non-nor-
malized table, with many attributes and lots of redundancy;
over this single table, the dependencies interact in various
ways, and there is no partial order information to ameliorate
the cleaning process. The Doctors scenario contains a com-
plex mix of dependencies; this increased complexity of the
constraints is compensated by the fact that data are stored as
normalized tables, with no redundancy, and a partial order
specification is provided for some of the attributes.
Errors and metrics. To test our algorithms with different
levels of noise, we introduced errors by using BART, an error-
generation tool [3]. Differently from ad-hoc strategies, BART
allows researchers to inject errors into data in a principled
and controlled way. More specifically:
– it guarantees that all errors are detectable using the given

constraints, i.e., it does not generate errors that are “im-
possible” to identify using a constraint-based tool;

– it controls the degree of repairability of errors; intuitively,
this is a measure of the “difficulty” of repairing errors;

5 https://datasets.imdbws.com/
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– finally, it represents a platform for researchers to share
their datasets and error-generation configurations, in or-
der to foster repeatability.

We introduced 5% of errors, all detectable by the constraints.
To test the impact of the errors on the final quality of the
process, we used different level of repairability, that we call
HIGH REP, MED REP and LOW REP. Datasets, constraints,
and BART configurations are available through the project
web site (http://db.unibas.it/projects/llunatic/).

For all scenarios, we measure running times and size of
the chase trees. We measure quality as precision and recall
in terms of dirty cells that have been restored to the orig-
inal values. More specifically, for each clean database, we
generated the set Cp of perturbed cells. Then, we run each
algorithm to generate a set of repaired cells, Cr, and com-
puted precision (P), recall (R), and F-measure (F = 2×(P×
R)/(P+R)) of Cr wrt Cp. Since several of the algorithms
may introduce variables to repair the database – like our
lluns – we calculated two different metrics.
- Metric 0.5. This is the metrics adopted in [9]: (i) for each
cell c ∈ Cr repaired to the original value in Cp, the score
was 1; (ii) for each cell c∈Cr changed into a value different
from the one in Cp, the score was 0; (iii) for each cell c∈Cr
repaired to a variable value, if the cell was also in Cp, the
score was 0.5. In essence, a llun or a variable is counted as a
partially correct change. This gives an estimate of precision
and recall when variables are considered as a partial match.
- Metric 1.0. Since our scenarios may require a consistent
number of variables, due to the need for backward updates,
and this metric disfavors variables, we also adopt a different
metric, which counts all correctly identified cells to repair.
In this metric, called Metric 1.0, item (iii) above becomes:
for each cell c ∈ Cr repaired to a variable value, if the cell
was also in Cp, the score was 1.

Algorithms. We ran LLUNATIC with several cost managers
and several caching strategies, as discussed in Section 6. We
chose variants of the LLUNATIC-FR-SN cost manager – the
frequency cost-manager that generates up to N repairs – with
N = 1,10,50, and the LLUNATIC-FR-S1-FO, the forward-
only variant of LLUNATIC-FR-S1. We do not report results
obtained by the standard cost manager, as it only can be used
with small instances due to its high computing times.

In order to compare our system to previous single-node
approaches, we tested the several repairing algorithms from
the literature, implemented as separate systems: (a) HOLIS-
TIC [16]; (b) MIN. COST [11]; (c) VERTEX COVER [41];
(d) SAMPLING [9]; for this, we took 500 samples for each
experiment, as done in the original paper. All of these sys-
tems support a smaller class of constraints wrt to the ones
expressible in our framework, and cannot handle all of the
constraints in the Doctors experiment. Therefore, only vari-
ants of LLUNATIC were used for the latter.

Hospital 20k Bus 20k Tax 20k
High Rep 0.89 0.85 0.89
Med Rep 0.59 0.51 0.74
Low Rep 0.12 0.33 0.49

Table 1: Repairability levels for the datasets in Figure 7.a-h

Results. Each experiment was run 5 times, and the results
for the best execution are reported, both in terms of quality
and execution times. We pick the best result, instead of the
average, in order to favor SAMPLING, which is based on a
sampling of the possible repairs and has no guarantee that
the best repair is computed first.

For the LLUNATIC variants that return more than one re-
pair for a database, we calculated quality metrics for each
repair; in the graphs, we report the maximum, minimum,
and average values for LLUNATIC-FR-S10. We do not re-
port quality values for the LLUNATIC-FR-S50 cost man-
ager, since they differ for less than one percentage point
from those of LLUNATIC-FR-S10.

The quality experiment. We first investigate the quality of
the repairing algorithms by using three datasets: Hospital,
Bus and Tax. For each of them, we made three noisy ver-
sions introducing 5% errors with different repairability lev-
els. In Table 1, we report the average repairability of errors.
A higher repairability configuration involves mostly con-
straints with master data and CFDs (if any) and contains
errors for right-hand sides of FDs, while a low repairability
one mostly involves left-hand side errors. We do not report
quality results for Doctors and IMDB since LLUNATIC is the
only system capable of handling these scenarios, either due
to the variety of dependencies, or to the size of data. Results
obtained by LLUNATIC in these scenarios are in line with
those discussed below.

We begin with comparing the quality obtained by the
different LLUNATIC cost managers (Figure 7.a,e). For this
task we choose the Hospital scenario since it contains highly
interacting dependencies. As expected the LLUNATIC-FR-
S10 cost manager shows better result wrt LLUNATIC-FR-
S1, especially for the LOW REP variant. The LLUNATIC-
FR-S1-FO cost manager shows good results only whenever
the repairing task is easy, while in harder cases the choice of
repairing always in a forward way is not appropriate.

In Figures 7.b-d and 7.f-h we compare LLUNATIC-FR-
S1 to the other systems. We notice that LLUNATIC produces
repairs of significantly higher quality with respect to those
produced by previous algorithms. Quality results for algo-
rithms MIN. COST, SAMPLING, and VERTEX COVER are
consistent with those reported in [9], which also conducted a
comparison of these three algorithms on scenarios in which
forward and backward repairs were necessary.

It is not surprising that the F-measure for the LOW REP

variants are quite low. Consider, in fact, a relation R(A,B)



20 Floris Geerts et al.

II. Quality (Metric 1)

IV. Cache Managers VI. User Inputs

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F-
M

ea
su

re

b) Hospital 20K

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F-
M

ea
su

re

a) Hospital 20K

M
in M
ax

Av
g

M
in M
ax

Av
g

M
in
M
ax

Av
g

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F-
M

ea
su

re

c) Bus 20K

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F-
M

ea
su

re

d) Tax 20K

0

20

40

60

80

100

120

140

High Rep Med Rep Low Rep

# 
of

 n
od

es

s) Hospital 20K

0
20
40
60
80

100
120
140

0 1 2 3 4 5 6 7 8 9 10

# 
of

 n
od

es

t) Hospital 20K High Rep

V. Chase Tree Size

III. Scalability (Execution times in sec)

0

5000

10000

15000

20000

100 400 700 1000

m) Tax

0

5000

10000

15000

20000

100 400 700 1000

n) Tax

0

500

1000

1500

2000

20 40 60 80 100

j) Hospital

0

500

1000

1500

2000

20 40 60 80 100

i) Hospital

0

3000

6000

9000

100 400 700 1000

l) Hospital Synth

0

3000

6000

9000

100 400 700 1000

k) Hospital Synth

0

2000

4000

6000

100 400 700 1000

o) Doctors

10

100

1000

10000

100000

100 1000 10000K

p) IMDB

Llun-FR-s1

Holistic Min. Cost Sampling 500 Vertex Cover
Llun-FR-s10 Llun-FR-s50 Llun-FR-s1-FO

0

1000

2000

3000

4000

100 400 700 1000

q) Hospital - Greedy Cache

0

3000

6000

9000

12000

15000

20 40 60 80 100

r) Hospital - Lazy Cache

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F-
M

ea
su

re

f) Hospital 20K

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F-
M

ea
su

re

e) Hospital 20K

M
in
M
ax

Av
g M
in M
ax

Av
g

M
in

M
ax

Av
g

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep
F-

M
ea

su
re

g) Bus 20K

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F-
M

ea
su

re

h) Tax 20K
I. Quality (Metric 0.5)

10M 20M1M
(log scale)

(lo
g 

sc
al

e)

K K K K K K K K K K K K K K K K K K

K K K K

K K K K

K K K K K K K K

K K K KK

Fig. 7: Experimental Results

with FD A→ B and a tuple R(a,1); suppose the first cell
is changed to introduce an error, so that the tuple becomes
R(x,1). There are many cases in which this error is not fixed
by repairing algorithms, since they choose to repair it for-
ward, thus missing the correct repair. In addition, even when
a backward repair is correctly identified, algorithms have no
clue about the right value for the A attribute, and may do
little more than introducing a variable – a llun in our case

– to fix the violation. All of these cases contribute to lower
precision and recall.

The superior quality achieved by LLUNATIC variants can
be explained by first noticing that algorithms capable of re-
pairing both forward and backward obtained better results
than those that only perform forward repairs. Besides LLU-
NATIC, the other algorithms capable of backward repairs are
HOLISTIC and SAMPLING. In particular LLUNATIC’s chase al-
gorithm explores the space of repairs in a more systematic
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way, and this explains its improvements in quality, espe-
cially in harder scenarios. In light of this, the superior qual-
ity achieved by the LLUNATIC variants, which clearly out-
performed the competitors, is a significant improvement.

The scalability experiment. The second set of experiments
is aimed at testing scalability. In Figures 7.i− p we compare
execution times (in seconds) for the various algorithms on
databases with different sizes. We started with a small sce-
nario, Hospital, with data that vary from 20k to 100k tuples,
to end up with a very large scenario, IMDB, with 20 million
tuples (note the logarithmic scale).

To begin, recall that LLUNATIC is the first disk-based
implementation of a data repairing algorithm. Therefore, our
implementation is a bit disfavored in the comparison of ex-
ecution times wrt to main-memory tools. More specifically,
when producing repairs, main-memory algorithms may ag-
gressively use hash-based data structures to speed-up the
computation of repairs, at the cost of using more memory.
On the contrary, our algorithm uses SQL for accessing and
repairing data: updating a single cell (a very quick operation,
when it is performed in main memory) using the DBMS re-
quires to perform an UPDATE, and therefore a SELECT
to locate the right tuple. This difference drastically affects
the execution time of a repair. Nevertheless, the LLUNATIC-
FR-S1 cost manager scales nicely and has better perfor-
mance than some of the main-memory implementations, and
in general has execution times close to the faster main-me-
mory system, HOLISTIC.

In Figure 7. j the other three cost managers of LLUNATIC

are compared to each other. We noticed that the LLUNATIC-
FR-S1-SO variant has almost the same performance as the
LLUNATIC-FR-S1 variant (Figure 7.i) but, as discussed, it
gives in general worse quality results. In addition the system
scales almost linearly with respect to the different number of
permutations tested.

Comparing both quality and scalability results we may
say that LLUNATIC-FR-S1 represents the best trade-off in
terms of quality and scalability for all the considered scenar-
ios. The same trend is also confirmed in the Hospital-Synth
and Tax experiments. Other algorithms do not allow to fine
tune this trade-off. To see an example, consider the SAM-
PLING algorithm: we noticed that taking 1000 samples in-
stead of 500 doubles execution times, but it does not produce
significant improvements in quality.

Even in scenarios with more complex dependencies like
Doctors, our system gives excellent results (Figure 7.o). Other
systems are not reported here since they were not able to
handle the kind of constraints used in this scenario.

Finally, in Figure 7.p we show the clear benefits that
come with a DBMS implementation wrt main-memory ones,
namely the possibility of scaling up to large databases. While
previous works have reported results up to a few thousand
tuples, we were able to investigate the performance of the

system on databases of up to 20 million tuples. In these
cases, execution times in the order of an hour can be con-
sidered as a remarkable result, since no single node system
had been able to achieve them before on problems of such
exponential complexity. None of the main-memory systems
was able to execute scenarios with more than 1M tuples.
Note that these results about LLUNATIC were confirmed in
a recent study about the scalability of chase engines [5].
Comparison with ML cleaning. We report the results for
HOLOCLEAN [47], a data cleaning system that takes as in-
put constraints together with other probabilistic signals, such
as cell co-occurrence, provenance information, and external
lookup dictionaries. To combine such information, it adopts
a probabilistic semantics to estimate the value of every noisy
cell in the dataset, together with a probability for the given
value of being correct. HOLOCLEAN does not compute re-
pairs according to our definition: input constraints are not
satisfied by the produced instances. However, it does im-
prove the quality of the instances and it is worth comparing
its output to LLUNATIC’s results.

Hospital 20k Bus 20k Tax 20k
High Rep 0.95 0.86 0.76
Med Rep 0.83 0.62 0.71
Low Rep 0.79 0.38 0.64

Table 2: HOLOCLEAN F-Measure results with Metric-1

In terms of Metric-1 results, Table 2 shows that HOLO-
CLEAN is comparable to LLUNATIC in most cases. Notable
exceptions are Hospital in the LOW REP configuration, where
HOLOCLEAN does better, and Bus scenarios, where LLU-
NATIC has better results. To obtain the results of HOLO-
CLEAN, we manually tuned its configuration parameters.
More specifically, we used the lowest not-failing value for
“PruningTopK” on our 16GB machine. Notice that our noisy
instances are the expected input for HOLOCLEAN as all er-
rors are detectable. In terms of execution times, HOLOCLEAN

is a main-memory algorithm and could not scale to large in-
put instances with our scenarios and machine configuration:
Hospital failed with 60k and Tax with 100k. For the 20k in-
stances reported above, execution times varied between 480
(Hospital–LOW REP) and 1055 seconds (Bus–HIGH REP).
The cache manager experiment. In this experiment, we in-
vestigate the impact of our optimizations on the scalability
of the chase (Section 6). While in all previous experiments
we used the single step caching strategy, we report in Fig-
ures 7.q–r execution times for the Hospital dataset with the
other two caching strategies, the greedy and the lazy cache
manager, respectively. The charts show that the single-step
cache represents the best choice in terms of performance.
This is explained by the high degree of locality in our chase
algorithm. When chasing node s in the tree to generate its
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children, only cell groups for step s are needed. Then, after
we move from s to its first child, s′, cell groups of s will not
be needed for a while.

The chase tree size and user input experiments. Execu-
tion times achieved by the algorithm can be considered as
remarkable for problems of this complexity. They are even
more surprising if we consider the size of the chase trees that
our algorithm computes, which may reach several hundreds
of nodes as reported in Figure 7.s. Consider also that each
node in the tree is a copy of the entire database. We notice
that storing chase trees as delta databases is crucial in order
to achieve scalability. Without such a representation system
times would be orders of magnitude higher.

We finish by mentioning Figure 7.t, in which we study
the impact of user inputs on the chase. We run the experi-
ment for 20K tuples interactively, and provided random user
inputs by alternating the change of a llun value with the re-
jection of a leaf. It can be seen that small quantities of inputs
from the user may significantly prune the size of the chase
tree, and therefore speed-up the computation of repairs.

9 Related work

There has been a host of work on data quality (see [37,48]
for recent surveys). It has been shown experimentally with
real datasets that methods inspired by different ideas must
all be used together in practice to achieve high quality [1].
Among methods based on statistical analysis, such as outlier
detection [15], and methods that rely on look up of external
dictionaries, such as knowledge bases [17], it stands out that
constraint-based methods are a necessary ingredient.

Several classes of constraints have been proposed to char-
acterize and improve the quality of data. Most relevant to our
work are the automated repairing algorithms for these con-
straints. The methods differ in the constraints that they ad-
mit, e.g., FDs [9], CFDs [18,41], inclusion dependencies [11],
editing rules [29], and in the underlying techniques used to
improve their effectiveness and efficiency, e.g., statistical in-
ference [18], reliability of the data [29], and user interac-
tion [18,55,33]. Furthermore, update-based database repair-
ing has been considered in [53].

All of these methods work for a specific class of con-
straints only, with the exception of [30,34]. A flexible data
quality system was recently proposed [19] to allow user-
defined procedural code for detection and cleaning. The work
on active integrity constraints (see e.g., [13]) provides an al-
ternative way of incorporating repair decisions in constraints.
They require, however, to explicitly state repair actions. In
our setting, these are implicit in the combination of con-
straints and the preference labels. Including preference la-
bels in active integrity constraints may be feasible. More-
over, some form of active constraints may be included in our
framework (e.g., by encoding actions as preferred labels).

Even more importantly, our system is the first disk-based
scalable and efficient repair based method. While some of
the algorithms above have been rewritten to be executed in
a multi-node distributed environment, they are still bounded
by the memory size. For example, the holistic cleaning al-
gorithm [16] has been adapted to be executed on top of
Spark [39] in order to benefit from the bigger memory in
the cluster. Interestingly, our system can handle their clean-
ing scenarios in a single node setting. Table 3 summarizes
the features of LLUNATIC w.r.t. some earlier approaches to
data repairing. We leave out related data cleaning systems
that do not compute repairs [54,47,17].

Our scenarios are inspired by features from other repair-
ing approaches: repairing based on both premise and con-
clusion of constraints [18,9,41], cells [9,41,11], groups of
cells [11], partial orders [28] and its incorporation in the
chase [8]. We discuss these aspects in detail next.

With regards to forward and backward chasing, [18,41,
9] resolve violations by changing values for attributes in
both the premise and conclusion of constraints. They do,
however, only support a limited class of constraints. Pre-
vious works [41,9] have used variables in order to repair
the left-hand side of dependencies. Our special llun values
play a similar role. Moreover, lluns together with labeled in-
stances can be seen as a kind of representation system [38]
for repairs, that stands in between the naive tables of data
exchange and the more expressive c-tables, trying to strike a
balance between complexity and expressibility.

An approach similar to ours has been proposed in [8],
with respect to a different cleaning problem. The authors
concentrate on scenarios with matching dependencies and
matching functions, where the main goal is to merge to-
gether values based on attribute similarities, and develop
a chase-based algorithm. They show that, under proper as-
sumptions, matching functions provide a partial order over
database values, and that the partial order can be lifted to
database instances and repairs. A key component of their
approach is the availability of matching functions that are
essentially total, i.e., they are able to merge any two compa-
rable values. In fact, the problem they deal with can be seen
as an instance of the entity-resolution problem. Further ex-
tensions of egds with, e.g., built-in predicates and matching
functions, are needed to encode matching dependencies in
our system, we leave this to future work.

Finally, in this work we discussed how our system can
compute repairs with a smaller number of chase steps by
exploiting user interaction, a popular way to involve the do-
main experts in improving data repairing [18,55,33].

10 Future directions of research

The framework developed in this paper has been used as a
basis for a number of extensions in data repairing. The se-
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DEPENDENCY LANGUAGE REPAIR STRATEGY VALUE PREFERENCE SOLUTION SELECTION

System FDs CFDs ERs DCs RHS LHS Confid. Currency Master Cost Certain Card. Min Sampling
[11]

√ √ √ √ √

[18]
√ √ √ √ √ √ √

[41]
√ √ √ √ √

[29]
√ √ √ √

[9]
√ √ √ √ √ √

[19]
√ √ √ √ √ √ √ √

[16]
√ √ √ √ √ √ √ √ √ √

This article
√ √ √ √

(eq. only)
√ √ √ √ √ √ √ √ √

equality-generating dependencies chase partial order cost manager

Table 3: Feature Comparison for Data Repairing Systems.

mantics has been extended to an end-to-end solution to deal
with schema-mapping problems in the presence of incon-
sistencies [32]. It has also been used as a baseline for de-
veloping an interactive approach to data repairing [33]. In
this respect, we believe that this work may provide the basis
for further investigation on data cleaning. In this section, we
discuss three directions of research, starting from our frame-
work, that we believe can lead to promising new insights.

10.1 Merge in entity resolution

Let us consider the merge problem in the context of entity
resolution [6] where data conflicts must be handled. It is for-
mulated as follows: we are given a set of records (tuples) Ie,
within the same schema, that correspond to a description of
a single real world entity e. These records may have conflict-
ing values and the goal is to derive a single entity tuple te,
with the most accurate values for all attributes [12]. Master-
data tuples may be used during the process. In entity resolu-
tion, this task is also called the golden record problem [20].

We focus our discussion on a paper that tries to come up
with the golden record assuming the presence of a partial or-
der defined by accuracy rules [12]. While their algorithms
do not aim at repairing an arbitrary database instance that
is dirty w.r.t. a set of constraints, there are several points in
common with our approach. The authors develop a language
and algorithms with two goals in mind. First, their rules can
be used to declaratively specify a partial order among val-
ues. They can express that the value of cell 〈tid,A〉 is more
accurate than the value of a cell 〈tid′,B〉; this may happen,
for example, because they know that more recent values are
higher. Similarly to our ordering attributes, accuracy rules
can be used to infer accuracy relationships among attributes,
such as the value for attribute B is more accurate in those tu-
ples that have a more accurate attribute A. Second, the rules
can be used to update the entity tuple te based on master data
tuples, similarly to editing rules.

The authors develop algorithms to dynamically handle
the construction of the entity tuple while at the same time de-
riving the partial order of accuracy among attribute values.

The main concern here is about the termination and conflu-
ence of the process, i.e., whether the algorithm terminates,
and whether it returns the same identical tuple regardless of
the order in which accuracy rules are fired. This cannot be
guaranteed in all cases. While this is not a general-purpose
data repairing algorithm and it makes the strong assumption
that all tuples represent a single entity, we believe our notion
of partial order can be useful in such a “merge” setting.

The main benefit is that in our approach the partial order
is immune from termination problems as it never changes
during the chase. Our modeling clearly separates the defini-
tion of the partial order for preference levels and the creation
of the initial labeled instance, that is done once and for all
before the repair process starts. This separation, along with
the monotonicity property of cell groups, guarantees that our
chase procedure for cleaning scenarios always terminates.

Accuracy rules are a promising tool to tackle the merge
step, Despite the fact that our partial order is static, we be-
lieve it would be useful to extend our solution to these sce-
narios as our semantics guarantees the benefits of accuracy
rules, without the associated shortcomings.

10.2 Prioritized repairs

There have been proposals on how to choose among alter-
native repairs based on a notion of prioritized repairs [50,
40] in a context different from ours. While we focus on ma-
terializing one or more preferred repairs by means of a gen-
eral chase procedure on a noisy database, their focus is on
consistent query answering over an inconsistent database. In
this setting, a consistent answer is the one obtained in every
repair. They introduce a priority relation between conflicting
tuples so that they can identify a set of preferred repairs. A
prioritized repair exploits user provided preferences on how
to solve conflicts (e.g., “remove the tuples with the smaller
salary”), similarly to what we allow with our partial order.

They give several notions of improvement that charac-
terize when one repair is preferred to another. In one no-
tion, given two repairs, the first is preferred if every tuple
exclusively contained by the first repair is preferable to all
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those exclusively contained by the second repair. If this is
the case, there is a global optimality. As this does not happen
in most cases, they relax the notion to other definitions, such
as the Pareto optimality: the first repair exclusively contains
a tuple that is better than all tuples exclusively contained in
the second repair according to the Pareto semantics. Other
variations have also been introduced. In general, they check
whether a repair can be improved by replacing a set of tu-
ples in the repair with alternative preferred tuples from the
original (inconsistent) instance, but the notions differ in the
definition of preference. In all these semantics, an optimal
repair is a repair that cannot be improved.

Our partial order has points of contact with their notions
of preference and is worth studying how our proposal can be
extended to these notions. Prioritized repairs rely on prefer-
ence orders that are specified over tuples, and lift them to
sets of tuples. On the contrary, we specify preference or-
ders over preference levels, and lift them to sets of prefer-
ence labels and upgrades. This finer granularity of our ap-
proach makes our notion of an upgrade different from their
notions of preferable repairs. However, merging these two
approaches is not trivial. Prioritized repairs consider subset
repairs (i.e., tuple deletions only), and are formalized with
denial constraints with no constants. While our egds can be
extended to capture arbitrary denial constraints, the update
primitives treated in prioritized repairs are considerably dif-
ferent from the ones we use (cell updates, and no deletions).
These differences are such that there is the need for more
studies to bridge our approach and prioritized repairs.

10.3 Distributed and interactive chase

In order to scale to large datasets, memory-based algorithms
for some data repairing systems have been extended to a
distributed platform [39]. While our system is able to ex-
ecute such scenarios on a single node, the execution times
are slower compared to a distributed system and it makes
sense to extend our solution to such setting to improve effi-
ciency. Unfortunately, while there are several chase engines
available [5], there are no distributed implementations. To
design such a distributed implementation is challenging. In-
deed, dependencies may interact with each other and a paral-
lel/distributed chase needs to ensure that these interactions
are all taken into account. Furthermore, to ensure correct-
ness of the chase whilst minimizing communication cost
amongst the different nodes is an open problem. It is even
a hard problem for error detection [27], let alone for repair-
ing. We leave the development of such a distributed chase
algorithm as an interesting direction for future research.

An orthogonal direction in terms of chase implementa-
tion is to push our repair/chase algorithm directly into the
DBMS. Executing the chase by means of SQL scripts only

has been done for source to target egds [44]. However, be-
cause of egd interactions and the cumulative effects of their
enforcement, the logic to enforce chase steps is not modeled
naturally with database primitives. As discussed in a recent
experimental comparison of existing chase engines [5], our
implementation is the first disk-based solution and can be
seen as a first step towards in-DB approach for chasing.

Another direction for future work is to improve the user
involvement. An iterative cleaning repair process leads to a
better understanding of the dataset at hand for the user. It is
natural to expect the original dependencies to change over
time while examining the errors. Existing proposals studied
how to decide between repairing data or constraints when
users do data changes [14,36,51], but our system has spe-
cific opportunities that can be exploited. Specifically, new
dependencies can trigger the reuse of previous user interac-
tions, such as resolution of llun values, and the backtracking
of previous (heuristic) decisions taken in the chase tree. New
algorithms are needed to optimize this iterative loop.

A final direction to improve the system is to support pro-
cedural rules, possibly expressed as user defined functions
(UDFs). Support for UDF-based decisions could in princi-
ple be encoded by means of an abstract function, similar to
our User function, that takes a set of preference labels as
input and returns the output value of the UDF. In terms of
chase, this would require a new kind of chase step.

11 Conclusions

In this paper we develop a DBMS-based, single node, flex-
ible repairing framework called LLUNATIC. Underlying the
framework are: (i) labeled instances, encoding values and
preference information; (ii) a revision of the notions of re-
pair and the chase on such labeled instances, where the pref-
erence information is used to resolve conflicts; and (iii) the
use of a large class of constraints, i.e., constant and variable
egds, which capture a variety of commonly used data qual-
ity constraint formalisms. In addition, we provide support
for user interaction and various fine-grained ways of con-
trolling the chase process by means of a cost manager. We
developed a number of optimization techniques allowing us
to implement the computation of repairs within a disk-based
scalable chase engine. To our knowledge, LLUNATIC is the
only framework able to scale data repairing over millions of
tuples in a single node environment.
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