
The VLDB Journal (2021) 30:579–602
https://doi.org/10.1007/s00778-021-00657-6

REGULAR PAPER

Distributed detection of sequential anomalies in univariate time series

Johannes Schneider1 · Phillip Wenig1 · Thorsten Papenbrock1

Received: 5 August 2020 / Revised: 18 January 2021 / Accepted: 8 February 2021 / Published online: 25 March 2021
© The Author(s) 2021

Abstract
The automated detection of sequential anomalies in time series is an essential task for many applications, such as the
monitoring of technical systems, fraud detection in high-frequency trading, or the early detection of disease symptoms. All
these applications require the detection to find all sequential anomalies possibly fast on potentially very large time series. In
other words, the detection needs to be effective, efficient and scalable w.r.t. the input size. Series2Graph is an effective solution
based on graph embeddings that are robust against re-occurring anomalies and can discover sequential anomalies of arbitrary
length and works without training data. Yet, Series2Graph is no t scalable due to its single-threaded approach; it cannot, in
particular, process arbitrarily large sequences due to the memory constraints of a single machine. In this paper, we propose
our distributed anomaly detection system, short DADS, which is an efficient and scalable adaptation of Series2Graph. Based
on the actor programming model, DADS distributes the input time sequence, intermediate state and the computation to all
processors of a cluster in a way that minimizes communication costs and synchronization barriers. Our evaluation shows that
DADS is orders of magnitude faster than S2G, scales almost linearly with the number of processors in the cluster and can
process much larger input sequences due to its scale-out property.

Keywords Distributed programming · Sequential anomaly · Actor model · Data mining · Time series

1 Sequential anomaly detection

Time series analysis is a multi-disciplinary field with use
cases in astrophysics [12], neurosciences [37], environmen-
talmonitoring [35], Internet of things [14], finance [46], asset
tracking [29], aviation engineering [7] and many further dis-
ciplines. Most of these analyses are about the discovery of
special events as well as frequent and rare time series pat-
terns. Due to the valuable knowledge that is lying within
time series datasets, much research has been conducted on
efficient and effective time series mining techniques [36].

Univariate time series are ordered sequences of one-
dimensional, real-valued records [3,16,24,42,52]. The order-
ing is usually time-related—hence the name—but sometimes
also followsother continuousmeasures, such as size, distance

B Phillip Wenig
phillip.wenig@hpi.de

Johannes Schneider
johannes.schneider@hpi-alumni.de

Thorsten Papenbrock
thorsten.papenbrock@hpi.de

1 Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany

or speed. Anomalies in time series denote subsequences with
significant, i.e., particularly infrequent values or patterns.
In general, we distinguish between point anomalies a.k.a.
outliers and sequential anomalies a.k.a. collective anoma-
lies [13]. Because point anomalies are sequential anomalies
of size one, sequential anomalies cover point anomalies. For
example, a temperature reading of 50 ◦C in an ordinary room
is a point anomaly; a sudden temperature increase of 10 ◦C
directly followed by a drastic drop of 15 ◦C is a sequential
anomaly, if common temperature changes are slow.

Anomalies often indicate meaningful events in time series
and are, therefore, important for various applications. Exam-
ples for such applications range from intrusion detection
in digital networks [23,39], over finding unexpected phe-
nomenons in astrophysical measurements [51], to medical
studies of disease cases [18]. Figure 1 shows another example
from aircraft engineering: We see a time series T of engine
measurements with various regular spikes and one anoma-
lously lean spike. None of the records in the anomaly is an
outlier, but its shape is clearly different from other patterns
that we find in the sequence. An anomaly score, which is
depicted in red in Fig. 1, is a proper indicator of this anomaly.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00657-6&domain=pdf
http://orcid.org/0000-0002-8942-4322
http://orcid.org/0000-0002-4019-8221

580 J. Schneider et al.

Fig. 1 Excerpt of the SED time series T (blue) and the anomaly score
Anomaly(T) (red) calculated with our DADS algorithm

In this paper, we propose a scalable algorithm that efficiently
calculates such anomaly scores.

Sequential anomalies are hard to detect, because theyoften
differ in length, vary in degree of anomaly and might even
re-occur a few times; moreover, the input time series can be
very long (oftenmillions to billions of records), and the input
might be comprised of different but normal subsequence pat-
terns. For this reason, automatic anomaly detection has been
a research topic for more than 30 years [48], which led to the
invention of various anomaly detection algorithms [13]. But
although we find effective, efficient and scalable detection
approaches for sequential anomalies, none of the approaches
covers all three properties.

An effective sequential anomaly detection algorithm auto-
matically marks all anomalous, i.e., infrequent subsequences
in a time series; thereby the algorithm is robust against re-
occurring anomalies, can discover sequential anomalies of
arbitrary length and works without training data. Being able
to detect re-occurring patterns as anomalous is important,
because many anomalous events, such as earth quakes in
seismological recordings, enginemisfires in vehiclemonitor-
ing or heartbeat dropouts in cardiography, can repeat several
times while still being rare events overall. Considering dif-
ferent anomaly lengths is important as well, not only because
the duration of certain events and, hence, the length of their
recordings is usually unpredictable, it might also differ in
one and the same time series. Storms in climate data or load
fluctuation in online systems, for example, can both be short
and long-lasting events. An effective anomaly detection sys-
tem, finally, cannot rely on labeled training data, because it
does not exist (in sufficient quantity) in many cases, such as
whenmonitoring aircraft engines for failures or astrophysical
scans for surprising events.

The Series2Graph (S2G) algorithm [10] is a sequential
anomaly detection approach that meets all the discussed

effectiveness properties. The algorithm is based on a novel
subsequence embedding technique that is used to map uni-
variate time series to cyclic, directed, and weighted graphs,
which—once constructed—can be traversed to find anoma-
lies of different lengths. The graph also enables the detection
of re-occurring sequential anomalies and assigns anomaly
scores based on statistical re-occurrence frequencies and sub-
sequence similarity, which is without a need for training
data. Series2Graph is also an efficient algorithm considering
state-of-the-art competitor algorithms: The authors demon-
strate that S2G outperformsDAD [51], LSTM [33], Lof [11],
GrammarViz [43], Isolation Forest [31] and STOMP [52] in
both runtime and detection accuracy while also being more
robust against imprecise parameters. Nevertheless, we found
that S2G’s calculation time can be improved significantly by
the use of more efficient data structures and parallelization.

The real limiting aspect of S2G is its lack of scalability.
The algorithm is a single-threaded approach that works on
only one machine. Because the algorithm needs to keep the
input time series and certain intermediate data structures in
main memory, the available memory is a hard constraint for
the algorithm’s applicability. Typical time series of terabyte
to petabyte size, such as those that often appear in domains
like bioinformatics [20] or astrophysics [51], are hardly com-
putable with the current version of S2G.

For this reason, we introduce our Distributed Anomaly
Detection System (DADS). DADS is a parallelized and dis-
tributed adaptation of Series2Graph that overcomes the main
memory restrictions of a single computer by combining the
computed resources of multiple machines in a cluster. Our
system follows exactly the same conceptual transformation
steps as proposed byS2G, but translates them into amore effi-
cient and scalable execution model. Via reactive, actor-based
programming, DADS distributes the input time sequence,
intermediate state and the computation to arbitrary many
machines in a way that minimizes communication costs and
synchronization barriers.

In this paper, we first discuss related work (Sect. 2) and
the formal foundations for the discovery of sequential anoma-
lies (Sect. 3). We then describe the processing steps of the
S2G algorithm and our approaches for their parallelization
and distribution (Sect. 4). Afterward, we make the following
S2G-based contributions:

1. Distributed S2G System. We decompose the transfor-
mation process into eight reactive protocols; for these
protocols, we design an asynchronous communication
scheme that orchestrates protocol executions and data
sharing (Sect. 5).

2. Distributed S2G Sequence Embedding. We partition the
input data and intermediate state so that communication
costs are minimized; we also propose a more compact
data structure for the embedding space matrix (Sect. 6).

123

Distributed detection of sequential anomalies in univariate time series 581

3. Distributed S2G Node Extraction.We distribute the node
extraction in a way that exploits data locality, maximizes
the parallelization potential andmakes use of peer-to-peer
data exchange to relieve the master node (Sect. 7).

4. Distributed S2G Edge Extraction.We distribute the edge
extraction analogously to the node extraction and assem-
ble the final graph from the nodes and edges with an
event-based broadcast mechanism (Sect. 8).

5. Distributed S2G Subsequence Scoring. We re-use the
distribution of already calculated intermediate results to
distribute the scoring process (Sect. 9).

In Sect. 10, we evaluate DADS’ runtime, CPU, memory
and network utilization on differently sized input time series
and with different cluster sizes. The comparison with S2G
shows that DADS is orders of magnitude faster even on a
single processor and scales almost linearly with the number
of processors in the cluster; on 12 processors, DADS could
process 50 times longer sequences than S2G in less than 16%
of the time.

2 Related work

The survey of Chandola et al. [13] defines three gen-
eral classes of anomaly detection approaches: supervised,
semi-supervised and unsupervised detection algorithms.
Although supervised and semi-supervised approaches are
able to deliver competitive results in specific applications
[17,32,50], they require labeled training data that are for
many time series not or in not sufficient quantity available.
For this reason, we focus on an unsupervised anomaly detec-
tion approach in this work.

Anomaly detection systems are also divided into point and
sequence anomalies. If some use case is interested in only
point anomalies, more efficient detection approaches exist.
In this section, we cover both types of anomalies and discuss
distributed approaches for their detection.

2.1 Point anomaly detection

Basic point anomaly detection algorithms classify points as
outliers mostly based on statistical methods [6,28,41,49]. A
popular approach is to form clusters in some embedding
space. All records with the largest distance (e.g. Euclidean
distance) to these clusters are then recognized as outliers.
Such approaches usually donot consider the order of the input
records for the outlier detection. Many publications on out-
lier detection also study multi-dimensional data [15,26,40].
Their contributions are different optimizations and pruning
strategies to deal with the quadratic runtime complexity of
the problem.

Point anomaly detection is a particularly important tool
for the analysis of sensor networks. For this special purpose,
several time series mining algorithms have been introduced
[35]. To identify distance- or density-based outliers, algo-
rithms, such as [44], propose to estimate the data distribution
of the underlying time series across the network of sensors
and, then, calculate local outliers to these estimates. The
algorithms can often handle multi-dimensional data but are
restricted to point anomalies.

The use of machine learning is another popular strategy
for finding outliers [3,4,27]. In this context, unsupervised
approaches, such as the work of Ahmed et al. [3], are partic-
ularly interesting, because they demonstrate that no training
data are needed to achieve reliable results. Deriving appro-
priate anomaly parameters is, however, still an issue for these
approaches. For a more comprehensive summary of outlier
detection methodologies and a technical overview of various
detection methods, we refer the interested reader to [22].

Outlier detection is also a recurring task in mining stream-
ing data.An extensive comparison of different algorithms can
be found in [45].

2.2 Sequence anomaly detection

The Series2Graph (S2G) algorithm by Boniol et al. [10]
is the most recent publication on unsupervised sequential
anomaly detection. In their work, the authors introduce a
novel approach that represents time series of real-valued
records as graphs. With this graph, subsequences of arbitrary
size can efficiently be scored and, in this way, classified as
normal or anomalous. The authors show that their approach
outperforms state-of-the-art competitors, such as DAD [51],
LSTM [33], Lof [11], GrammarViz [43], Isolation Forest
[31] and STOMP [52], under almost all circumstances and
w.r.t. both detection accuracy and efficiency; the algorithm
is also able to detect repeated anomalies. S2G is, however, a
single-threaded, non-scalable algorithm whose applicability
is bound to the available memory of its host machine. Our
DADS algorithm overcomes this limitation.

Other than S2G, all competing state-of-the-art approaches
for sequential anomaly detection, i.e., DAD [51], LSTM
[33], Lof [11], GrammarViz [43], Isolation Forest [31] and
STOMP [52], are based on the discord definition. Hereby,
abnormal subsequences are defined by their spatial distance
to all other subsequences. In other words, the subsequences
with the largest distances to their nearest neighbors are
assumed to have the least commonalities with the remaining
data and, therefore, must be anomalous. An advantage of the
discord definition is its simplicity; a major drawback is, how-
ever, that repeated or similar anomalies cannot be detected,
because they are spatially close together and, hence, also
close to their nearest neighbor.

123

582 J. Schneider et al.

One algorithm that circumvents this issue is the Disk
Aware Discord Discovery (DAD) of Yankov et al. [51]. To
deal with repeated anomalies, the authors propose mth dis-
cords. Inspired by the definition of distance-based outliers
[26],m th discords are isolated sequences that have the largest
distance to their m nearest neighbors. In this way, similar or
repeated anomalies can be detected if the parameter m is
chosen correctly. The DAD algorithm is also an interesting
competitor for our work, because it is able to process very
large datasets due to the usage of external memory, i.e., disk,
and it can be distributed. However, we did not include a com-
parative evaluation in this work, because Boniol et al. have
already shown in [10] that DAD is significantly slower than
other approaches that operate on sequences in main memory,
that it is very sensitive to a correct choice of m (high risk of
false-positive or false-negative results), and that it offers the
across many experiments on average worst detection accu-
racy (sometimes as low as 1%).

Another special approach in related work is the Long
Short-Term Memory Network (LSTM) algorithm [33] by
Malhotra et al., because it is the only semi-supervised detec-
tion method for sequential anomalies. Despite being able to
use domain-specific training data, LSTMs do not produce
more accurate sequential anomaly results than S2G w.r.t.
average detection rate.

The recently published anomaly detection algorithm
VALMOD [30] discovers and ranks motifs and discords in
time series by systematically calculating the Euclidean dis-
tance of certain subsequences to all other subsequences of
the same length. To improve its performance, VALMOD
re-uses already calculatedEuclidean distances of shorter sub-
sequence pairs for subsequent comparisons. Similar to S2G,
VALMOD can discover anomalies of different lengths, but
a qualitative comparison between the two approaches is still
missing. In this paper,we focus onS2G, becausememory and
runtime limitations seemmore problematic for this approach
than for VALMOD.

The NorM [8] algorithm is another recent sequence
anomaly discovery approach for time series. It constructs
a model that represents the normal character of the time
series to find subsequences that deviate from this charac-
ter. Like most anomaly discovery algorithm, NorM fixes the
length of the target anomalies prior to the discovery process.
VALMOD, in contrast, searches for all anomalies in a given
range, and S2G uses a query length only in the final scoring
step once the anomaly graph has already been calculated.

Many of the above-discussed algorithms are implemented
in the SAD anomaly detection tool [9]. SAD allows data
scientists to interactively discover anomalies in time series
and compare the results of different algorithms.

2.3 Distributed anomaly detection

Besides the distributed DAD algorithm [51], which we
already discussed in Sect. 2.2, we find only two other
distributed anomaly detection approaches. The first is a dis-
tributed, unsupervised detection algorithm for point anoma-
lies proposed by Rajasegarar et al. [39]. The proposed
algorithm pre-clusters records distributedly before sending
a description of these clusters to a central agent, which
then performs a spatial distance-based analysis. Like other
related works, the algorithm cannot find re-occurring or sim-
ilar anomalies and it focuses on only point anomalies.

Another distributed anomaly detection algorithm that
finds contextual collective anomalies within a collection of
data streams was published by Jiang et al. [24]. To find
anomalously behaving streams, this algorithm simultane-
ously processes multiple data streams that provide context
information to one another. Because multiple streams are
necessary for this approach to provide context information
and because it detects a completely different class of anoma-
lies, it is not applicable to sequential anomaly detection in
basic time series.

2.4 Distributed principal component analysis

One step in the S2G algorithm uses Principal Component
Analysis(PCA) for dimensionality reduction. In our version
of S2G, we need to distribute this step, because it is com-
putationally expensive and , if the projected time series does
not fit into one processor’s main memory, the input for the
PCA can be too large for one processor alone. In other words,
our DADS algorithm needs to calculate the PCA of arbitrar-
ily large, distributed embedding spaces that result from the
embeddings of numerous subsequences. For this purpose, we
use thework ofBai et al. [5]. Their distributed PCAalgorithm
overcomes the issue of large network transfers by performing
QR decompositions on the local data parts and sharing only
the relatively small R portion of the results. This step needs
to be repeated �log2 n� times, where n is the total number
of partition locations. Section 6.2 explains the algorithm in
more detail. A major advantage of the approach is that it pro-
duces exact results, where earlier approaches, such as [38],
rely on approximation techniques to reduce network transfer
volumes.

3 Foundations

Throughout the paper, we use the symbols and notation listed
in Table 1. The notation mostly follows the conventions of
[10]. In this section, we first provide the theoretical back-
ground for the anomaly detection with the S2G algorithm

123

Distributed detection of sequential anomalies in univariate time series 583

Table 1 List of symbols used in
the S2G algorithm with *
denoting user-defined input
parameters

Symbol Description

T * Time series of length |T | under investigation
T[From,To) Subsequence of T between indices From (inclusive) and To (exclusive)

l * Length of the subsequences used to build the graph (l = To − From)

lq * Length of (potentially) abnormal subsequences that should be found

λ* Size of the local convolution to embed subsequences

r * Number of samples (intersection segments) in SProj

ψ ∈ Ψ Angle from the angle set Ψ = (i ∗ 2π
r)i∈[0,r]

Proj (High-dimensional) embedding space with all embedded subsequences

Projr Three-dimensional embedding space retrieved by reducing Proj

SProj Two-dimensional embedding space retrieved by rotating Projr

Gl (N , E) Directed, cyclic and weighted graph that represents the trained model

P Directed path of nodes in Gl

Weight(Ei) Weight of edge Ei ∈ E

Degree(Ni) Degree of the node Ni ∈ N

and, then, provide some foundations for the distribution of
the algorithm.

3.1 Anomaly detection

In thiswork,we focus on anomalies in time series data, which
is formally defined as follows:

Definition 1 (Time Series) A time series T with T =
{T0, T1, ..., Tn−1} ∈ R

n is a chronologically ordered (uni-
variate) sequence of real-valued records Ti ∈ R with length
|T | = n where Ti is the value at the i th position in T with
0 ≤ i < n.

We sometimes also refer to time series as (record)
sequences or simply (data) series, because time is not the
only possible ordering criterion. Within the time series, we
are interested in finding subsequences that are shaped anoma-
lously, which is differently from the vast majority of the other
subsequences. Thereby, a subsequence is defined as follows:

Definition 2 (Subsequence) A (time series) subsequence
T[From,To) ∈ R

To−From with T[From,To) = { TFrom,

TFrom+1, ..., TTo−1 } is a chronologically ordered series of
consecutive records from T so that 0 ≤ From < To ≤ |T |.

The idea of the S2G algorithm is to extract all subse-
quences of a specific length l from a given time series in order
to convert, i.e., embed these subsequences into a weighted
graph Gl(N ,E) where N is the set of nodes and E is the
set of directed edges between these nodes. We describe this
conversion process in Sect. 4. Intuitively, a node represents
a certain value pattern of length l that corresponds to one or
more subsequences T[From,To) and an edge represents pat-
tern changes. In the graph, node degrees and edge weights

correspond to the frequency of subsequences, i.e., similar
subsequences are mapped to the same nodes so that paths in
the graphover heavy edges and strongly connected nodes rep-
resent frequent, normal subsequences and, vice versa, paths
over light edges andweakly connected nodes represent infre-
quent, anomalous subsequences. A path is formally defined
as follows [10]:

Definition 3 (Path) Let NFrom ∈ N be the node that repre-
sents the subsequence T[From,To) of series T . Then, a path
P in the embedding graph Gl(N ,E) of time series T is
an ordered sequence of nodes P = { NFrom0 , NFrom1 , . . . ,

NFromm } such that ∀NFromi , NFromi+1 ∈ P : Fromi +1 =
Fromi+1.

According to this definition, it needs to be true that
(NFromi → NFromi+1) ∈ E . If two subsequences map to
the same node, it can be that NFromi = NFromi+1 . For bet-
ter readability, we write P = { N0, N1, . . . , Nm } implicitly
assuming that N0 to Nm represent successive subsequences
in T .

We can use the paths in the weighted graph to define a
normality value for the subsequences and their changes in T
as follows [10]:

Definition 4 (Normality Value) The normality of a path P
and, hence, the pattern changes in the respective subse-
quences of a time series T is defined as Norm(P) =
∑|P|−1

k=0
weight(Nk→Nk+1)·(degree(Nk)−1)

|P| whereweight(Nk →
Nk+1) is the weight of the directed edge between the nodes
Nk and Nk+1 and degree(Nk) is the node degree of node Nk .

Because we are interested in anomalies rather than normal
patterns, we define a continuous anomaly score, such as the
one depicted in Fig. 1, as follows [10]:

123

584 J. Schneider et al.

Definition 5 (Anomality Score) The anomality of a path P
in the embedding graph Gl of a time series T is defined as
Anomaly(P) = 1 − Norm(P)−normmin

normmax−normmin
where normmin and

normmax are the smallest and largest measured normality
values, respectively, for all paths of length |P|.

In other words, the anomaly score normalizes the normal-
ity values to the range [0, 1] and inverts them. The length of
P , i.e., |P|, depends on the expected anomaly length: Only
long enough paths can cover long anomalies, but short paths
assign higher weights to short anomalies and can, therefore,
detect them better. With the graph representation of T , an
application can efficiently, i.e., in linear time, test various
anomaly lengths—for this reason, the algorithm is consid-
ered capable of detecting anomalies of different lengths.

In summary, the anomaly score serves to rank the anoma-
lity of subsequences; it can be calculated for subsequences
of different lengthswith the same graph representation of the
time series.

3.2 Distributed computing

To distinguish between graph nodes and compute nodes, i.e.,
the nodes in the graph representation of our time series and
the nodes of the computer cluster used to distribute the graph
construction, we refer to graph nodes simply as nodes (N)
and to compute nodes as processors or (cluster) participants.

For the distribution of the anomaly detection process,
we use the actor programming model [2] that encapsulates
program state and behavior in special actor objects. Actors
communicate asynchronously via messaging, run their indi-
vidual tasks in parallel and protect their private state from
concurrent access. This design and the fact that messages can
transparently be exchanged over the networkmakes the actor
programming model ideal for the development of highly par-
allel, distributed systems.

Technically, we use theAkka 1 actor programming toolkit.
Because Akka runs on the Java virtual machine, it enables
easy cross-platform deployment and execution. For complex
mathematical calculations, such as the matrix calculations,
we use the highly optimized oj!Algo 2 library.

4 Series2Graph algorithm overview

The Series2Graph (S2G) algorithm scores subsequences of
time series by their anomality w.r.t. all other subsequences
of same length using a graph-based approach. In this sec-
tion, we give a fundamental overview of the steps involved

1 https://akka.io/ (26.05.2020).
2 https://www.ojalgo.org/ (25.05.2020).

in this process and the intuition on how we approach their
parallelization and distribution.

Figure 2 summarizes the four-step workflow and visu-
alizes how data are transformed along the way: S2G first
embeds all subsequences of a certain length in a low-
dimensional space; from this time series embedding, it
extracts graph nodes and, then, graph edges; the graph repre-
sentation is in the end used to score arbitrary subsequences of
the time series (see subsect. 3.1). In the following, we discuss
these steps in more detail.

4.1 Subsequence embedding

The first step of the algorithm extracts subsequences
T[From,To) of a certain length l from the sequence T
and maps them to the two-dimensional embedding space
SProj(T , l, λ), which represents shape-related spatial com-
monalities and differences between subsequences of T .
Thereby, besides the actual sequence T , the parameters λ,
which is the size of the local convolution, and l, which speci-
fies the length of extracted subsequences, are decisive for the
resulting embedding. Both l and λ are user-specified param-
eters. Boniol et al. use λ = l

3 for all of their experiments,
because results do not significantly differ for λ between l

10
and l

2 .
The subsequence embedding is achieved through a three-

stage process of (I) projection creation, (II) PCA calculation
and (III) dimension reduction. The general idea is to first
extract and embed subsequences in a high-dimensional space
Proj(T , l, λ); via PCA, S2G then finds and uses the most
significant principal components to reduce the dimension-
ality of the embedding space down to three; the three-
dimensional embedding space RProj(T , l, λ) is, finally,
rotated along what is identified to be the time axis so that
only shape-related information is preserved, which yields
SProj as a result.

For our distribution, the general idea is to distribute the
global sequence T , which is initially stored on disk on the
cluster leader (master), to all cluster processors. To keep the
ordering of T intact, themaster processor creates consecutive
slices of T , i.e., one slice for each processor in the cluster, and
sends them to the respective processors so that each compute
node owns one sequence slice T[From,To) for the rest of the
computation.

Projection Creation The projection creation of S2G extracts
subsequences from T using a sliding windows of length
l. Each subsequence T[i,i+l) is transformed into a vector
V[i,i+l) ∈ R

n where n = l − λ is the number of compo-
nents of the vector. This is done through local convolution in
the following way:

123

https://akka.io/
https://www.ojalgo.org/

Distributed detection of sequential anomalies in univariate time series 585

Fig. 2 Le f t : Systematical overview of the S2G workflow and its four
main steps including the most important subroutines within each step.
Additionally, inputs and outputs of individual steps and subroutines are
shown as labels on the arrows that indicate the overall flow of the pro-
cess. Right : Symbolic sketches of what the data transformation along
the process looks like. Image sources from top to bottom: Collective
Anomaly (first) [13]; SProj (second) and path score (fifth) [10]

V[i,i+l) =
[
i+λ∑

k=i
Tk,

i+1+λ∑

k=i+1
Tk, . . . ,

i+l∑

k=i+l−λ

Tk

]

All of these vectors (embedded subsequences) are com-
bined to build the embedding space Proj(T , λ, l) ∈ R

m×n

with m = |T | − l + 1 being the number of subsequences of
length l that can be extracted from T :

Proj(T , λ, l) =

⎡

⎢
⎢
⎢
⎣

V[0,l)
V[1,l+1)

...

V[|T |−l,|T |)

⎤

⎥
⎥
⎥
⎦

With T being already distributed, each processor can per-
form the projection creation locally. In other words, each
processor creates a local slice of the embedding space
Proj[From,To) from its T[From,To) subsequence of T . As
a result, the global embedding space is distributed within
our cluster exactly like the global time series. The necessary
parameters l and λ for this step are provided by the master
processor.

PCACalculationThe dimensionality of the embedding space
Proj depends on the length l of the subsequence. Via PCA,
S2G reduces the dimensionality of Proj to the threemost sig-
nificant dimensions that capture the shape of the sequences.
For this purpose, S2G first determines Proj’s principal com-
ponents to, then, select the three most significant ones.

Calculating the principal components via PCA is a
straight-forward operation, but it is not trivial to distribute. In
ourDADS algorithm,we propose an actor-based PCA imple-
mentation of the distributed approach of Bai et al. [5]. The
general idea is to perform a series of QR decompositions
on each local slice of the embedding space while sending
only the (small) R portion of the result to the next processor.
This procedure ends after �log2 n� steps with the master pro-
cessor calculating and, then, broadcasting the final principal
components.

Dimension Reduction The last stage of the sequence embed-
ding uses the principal components to transform Proj(T ,

l, λ) into SProj(T , l, λ) ∈ R
m×2. This is done by first calcu-

lating the reduced embedding space RProj(T , l, λ) ∈ R
m×3

using Proj(T , l, λ) and PCA3. After that, S2G rotates
RProj to extract the most important shape-related infor-
mation. To do so, the authors define a reference vector
as vre f = −−−−−→

OmnOmx , where Omn = PCA3(min(T) ∗
λ ∗ 1l−λ) and Omx = PCA(max(T) ∗ λ ∗ 1l−λ). vre f
naturally describes the time dimension of value changes.
Hereby, the function PCA(x) reduces the dimensionality
of x down to three using the principal components from
earlier. The reference vector is used to calculate the angles
Φx =
 uxvre f , Φy =
 uyvre f , Φz =
 uzvre f between

123

586 J. Schneider et al.

itself and the unit vectors ux , uy, uz that represent the axes
of RProj . Finally, the reduced embedding space is rotated
using the rotation matrices Rux (Φx), Ruy (Φy), Ruz (Φz) so
that SProj = Rux (Φx)Ruy (Φy)Ruz (Φz)RProjT .

For the distribution of this stage, the master first calcu-
lates min(T) and max(T), which are the global minimum
and maximum of T , from the local minimum and maximum
values min(T[From,To)) and max(T[From,To)) of each pro-
cessor. The master then broadcasts min(T) and max(T)

so that every processor can calculate the reference vec-
tor vre f . After calculating vre f , all processors transform
their local Proj[From,To) to SProj[From,To) independently.
This is possible, because every processor receives the same
min(T), max(T) and PCA3; hence, the reduced embed-
ding spaces represented by ux , uy, uz as well as the rotations
Rux (Φx)Ruy (Φy)Ruz (Φz) are the same for all processors
without further synchronization.

4.2 Node extraction

The node extraction is the second step in S2G and the first
of two steps to extract the embedding graph Gl(N , E) from
the two-dimensional embedding space SProj(T , l, λ) that
is the result of the subsequence embedding (Sect. 4.1). Dur-
ing this step, S2G extracts the nodes N by measuring the
density of the embedding space within different segments.
Figure 3 illustrates the node creation that consists of the
three subroutines: (I) intersection calculation, (II) density
estimation and (III) node creation. As a prerequisite, S2G
partitions the two-dimensional embedding space SProj with
a series of vectors of the form uψ = cos(ψ)ry + sin(ψ)rz .

Fig. 3 Sketch of various intersections (red) betweenmultiple embedded
subsequences (blue) and two intersection segments (purple) in the two-
dimensional embedding space SProj ; especially dense areas are later
turned into nodes

Thereby, ry and rz are the axes’ unit vectors of SProj and
ψ ∈ Ψ = (i ∗ 2π

r)i∈[0,r] with r ∈ N being the user-defined
number of samples. The intersections of the vectors uψ with
the embedded subsequences later form the nodes N of Gl

whereby dense intersections are grouped into same nodes.

Intersection Calculation The intersection calculation parti-
tions the two-dimensional embedding space SProj with a
series of vectors of the form uψ = cos(ψ)ry + sin(ψ)rz .
Thereby, ry and rz are the axes’ unit vectors of SProj ,
and ψ ∈ Ψ = (i ∗ 2π

r)i∈[0,r] with r ∈ N is the user-
defined number of samples. The intersections of the vectors
uψ with the embedded subsequences form the nodes N
of Gl whereby dense intersections are grouped into same
nodes. Each vector angle ψ ∈ Ψ leads to the creation of an
intersection segment Iψ that is defined through the vector
uψ = cos(ψ)ry + sin(ψ)rz . These intersection segments
are used to calculate the intersections Iψ = {x |(uψ × x =
0)∧ (

−−−→xi−1x ×−−−→xi−1xi = 0)}with xi−1 and xi are two consec-
utive rows in SProj and × is the cross-product. S2G hands
these intersections (and the radius sets) to the next subrou-
tine.

In our distributed system, we build upon the already dis-
tributed slices of the reduced embedding space SProj that
is stored on the individual processors. With the user-defined
parameter r , which is also broadcasted by the master proces-
sor, all processors autonomously calculate the intersection
segments and the corresponding intersections in their local
slice. Every processor needs to create every intersection
segment, but we can aggressively parallelize the segment
calculation. After the intersection calculations, S2G needs
to re-partition the intersections so that all segments with the
same angle can be aggregated on the same processor.

Density Estimation Based on the intersections, S2G per-
forms a density estimation on every aggregated intersection
segment; local maxima in the densities, i.e., estimated prob-
ability function, then, represent the graph nodes for their
near embedded subsequences. The density estimation uses
a Gaussian distribution of the intersection distances, such as
|I

x| where Iψ
x ∈ Iψ . This leads to the creation of multiple

estimated Gaussian probability functions—one function as
visualized in Fig. 4 for each intersection segment. S2G then
samples these functions using a fixed number of equally dis-
tributed points, which results in the creation of a set of density
probabilities Dψ that are needed to extract the set of nodes
Nψ .

To estimate the distribution functions in the distributed
setup, all intersection segments with the same angle need to
be aggregated on one processor. For this purpose, the master
processor assigns responsibilities for individual segments to
each cluster participant. In this way, every processor knows
already while performing the calculation where to send its
calculated intersections. Processors send emptymessages for

123

Distributed detection of sequential anomalies in univariate time series 587

Fig. 4 Sketch of the probability distribution (blue) estimated from the
calculated intersections (red) using a Gaussian kernel on one specific
intersection segment Iψ with the node set Nψ = {Nψ

0 , Nψ
1 } extracted

from the local maxima (yellow) of the distribution, which are deter-
mined by sampling the distribution with a fixed number of equally
distributed points (gray and yellow, not all shown)

segments with no intersections so that a processor knows
when all intersections have been received and the density esti-
mation can start. For each intersection vector I

x, S2G sends
only its distance to the origin, because nothing else is needed
to estimate the Gaussian distribution along the intersection
vector uψ = cos(ψ)ry + sin(ψ)rz . Once the estimation is
done, each processor samples the distribution as if it had
calculated all the intersections itself.

Node Creation Given the sampled density probabilities Dψ ,
S2G extracts a graph node Nψ

i for each local maximum in
Dψ . S2G does this for every intersection segment, i.e., every

angle ψ . This process yields the set of nodes N =
r⋃

i=0
Nψi ,

which is then passed to the edge extraction step.
In DADS, the sampled density probabilities are already

partitioned by their intersection segments so that every owner
of such a segment Iψ can create the nodes Nψ independently
of all other nodes. In this process, N is assembled from the
Nψ ’s by letting every processor broadcast its local Nψ . In
the end, every processor knows all the nodes N of Gl , which
is necessary for the edge extraction.

4.3 Edge extraction

The edge extraction step of S2G completes the graph extrac-
tion by calculating the weighted edges E of Gl(N ,E). For
this purpose, S2G iterates the entire embedding space SProj
to find for each subsequence the corresponding intersection
point and, from that, its corresponding graph node Nx . With
these nodes, S2G constructs the sequence (N0, N1, . . . , Nn)

that corresponds to the sequence of embedded subsequences
(SProj(T , l, λ)0, SProj(T , l, λ)1, . . . , SProj(T , l, λ)n).
This sequence of nodes includes every node of Gl at least
once. Each consecutive pair (Ni , Ni+1) represents an edge of
E . In this process, the edge weights are calculated by count-
ing the number of appearances of each specific node pair.
The node sequence (N0, N1, N2, N0, N1), for example, cor-
responds to the node pairs [(N0, N1), (N1, N2), (N2, N0),

(N0, N1)], which are transformed into the weighted edges

E = [(N0
2−→ N1), (N1

1−→ N2), (N2
1−→ N0)]. With E , the

entire graph Gl(N ,E) is assembled.
In the distributed setting, every processor creates the

node sequence and, hence, the edges for its local subse-
quenceT[From,To).Aprocessor that finishes the edge creation
locally, sends the results to the master processor that com-
bines the partial results into one global graph Gl(N ,E). For
the scoring step, the global graph is then again broadcasted
to all cluster participants.

4.4 Subsequence scoring

We covered much of the subsequence scoring already in sub-
section 3.1 and focused on the more technical details here. In
summary, we use the previously constructed graphGl(N ,E)

to create relative anomaly scores for paths in Gl with length
lq that correspond to subsequences of T (see Definition 5).
The path lengths lq are a user-defined query parameter, and
it is important to note that, although we show it as the last
processing step, the subsequence scoring is rather a separate
process that uses the outcome of the S2G transformation pro-
cess, i.e., the constructed graph Gl , to score anomalies w.r.t.
potentially multiple values of lq . In other words, the scoring
process can be repeated arbitrarily often, without running all
of the previous steps, to find anomalies of different lengths.
Overall, the subsequence scoring step is divided into two sub-
routines: (I) path scoring and (II) score normalization. The
first subroutine calculates the absolute normality values (see
Definition 4); the second calculates the final anomality score
(see Definition 5).

Path Scoring The path scoring extracts all paths PFrom of
length lq from the graph Gl to calculate Norm(PFrom) for
every PFrom . A path PFrom starts with the subsequence
T[From,To) and ends with the subsequence T[From+lq ,To+lq).
Thenormality values, hence, describe the ranges [From, T o+
lq). To make the retrieval of paths from Gl efficient, S2G
stores which subsequences T[From,To) correspond to which
nodes in Gl . In this way, the algorithm can iterate the input
time series T and efficiently retrieve the corresponding graph
nodes on the way. A window of size lq thereby generates the
paths PFrom .

In our distributed system,we re-use the already distributed
time series T and the replicated graph Gl . In this way, every
processor can calculate the normality value of paths corre-
sponding to its local subsequences. Just like the base S2G
algorithm, DADS also stores, which subsequences produced
which nodes and edges of Gl during the edge extraction
step—technically,we simply store the edge order during their
creation, which corresponds to the order of subsequences in
T . With the global graph Gl and the edge creation orders,

123

588 J. Schneider et al.

every processor can autonomously calculate the normality
value for all of its local subsequences in T[From,To).

Score Normalization The score normalization first calculates
normmin and normmax over all normality values and, then,
simply applies Definition 5 to all normality values. This
inverts and normalizes the values into anomaly scores. We
can plot these anomaly scores with their time series T to
generate visuals, such as Fig. 1, or rank the subsequences by
this score to detect anomalies.

To calculate the anomaly scores distributedly, DADS also
needs to find the global minimum and maximum normality
values. For this purpose, all processors find their local min-
imum and maximum values and share it with the rest of the
cluster. Thus, every processor knows the global normality
value range after it has received the local values from every
other processor. At that point, the processor normalizes its
local normality values and sends the results to the master
processor, which persists them on disk.

5 Distributed anomaly detection system

DADS is our distributed implementation of the S2G algo-
rithm. For the design of DADS, we leverage the capabilities
of actor programming to devise reactive, highly scalable
protocols for the distributed computation of the S2G transfor-
mation steps. In this section, we first introduce our protocol
concept that is used for the reactivemodularization ofDADS.
Afterward, we describe the architecture of our system and
how the system is started.

5.1 DADS protocols

Protocols in DADS are self-contained, loosely coupled, dis-
tributed modules. This means that protocols communicate
asynchronously via events and messages and that they span
over multiple processors, i.e., actors that are placed on differ-
ent machines. A protocol solves a specific task and exposes
a public “interface” that consists of a set of accepted mes-
sages while hiding internal structures and logic, such as actor
hierarchies and internal messages. Protocols can fire events
that can be intercepted by any protocol, i.e., actor in the sys-
tem. Events allow us to trigger the execution of protocols and
to exchange calculation results. Protocols may consider the
role of the processor that starts them so that they alter their
behavior depending on whether they need to lead or follow
in their execution. We later design our system as a sequence
of such protocols.

Every protocol contains at least two mandatory actors:
an EventDispatcher and a RootActor. The EventDispatcher
allows the actors of this and other protocols to subscribe to
the events emitted by this protocol; the EventDispatcher then

sends the events created by actors of the local protocol to all
subscribers. The RootActor of a protocol, which is not to
be confused with Akka’s Root actor, is responsible for the
creation of the protocol’s worker actors that implement the
protocol logic; it is also the central contact point for external
actors in other protocols that need to address actors in this
protocol. Bywriting protocol X receivesmessage Y/publishes
event Z, we implicitlymean that either theRootActor receives
and forwards a message or a worker actor of the protocol
creates and publishes an event using the EventDispatcher.

A central protocol in DADS is the actor pool protocol,
because it implements a cross-cutting concern. The actor pool
protocol is used to control the parallel execution of different
calculations. Its RootActor accepts generic types of work
packages and dispatches them to its internal worker actors
that simply complete whatever calculation they receive. The
number of workers (parameter workers) in this protocol can
be used to control the degree of parallelism for calculations
so that they interfere less with system-related tasks, such as
message passing or cluster heartbeats. The RootActor of the
actor pool protocols also maintains a work queue for not yet
dispatched messages and, hence, serves as a load balancer
and buffer. The protocol also accepts WorkFactories, which
are larger tasks that procedurally generate smallerwork pack-
ages; these WorkFactories serve to save memory, and we
mark them with «work factory» annotations in sequence dia-
grams.

5.2 DADS architecture

DADS is a distributed algorithm with a master/slave archi-
tecture: Every setup has one master processor and arbitrary
many slave processors. Themaster is a special slave that takes
some additional responsibility for I/O, cluster supervision
and algorithm orchestration. All slave processors (including
the master processor) process their share of the global time
series T . In contrast to batch processing, slaves communicate
among each other, which relieves pressure from the master
and adds peer-to-peer characteristics to the system.

The architecture of DADS is a sequence of eight protocols
that implement the S2G transformation workflow as illus-
trated in Fig. 5. In the following, we give a brief overview
over the protocols and their event-based interaction.

1. Processor Registration: The processor registration initial-
izes the DADS cluster and the local protocol instances. It
also connects all processors so that they can exchange
peer-to-peer and peer-to-master messages. (see Sect. 5.3)

2. Sequence Slice Distribution: Once a certain number of
processors have successfully registered, the sequence
slice distribution step distributes T to the cluster partici-

123

Distributed detection of sequential anomalies in univariate time series 589

Fig. 5 Overview of the
processing steps, i.e., protocols
of DADS, their dependencies
and exchanged events (left) with
their corresponding steps of the
S2G algorithm (right)

pants, which transform them into slices of the embedding
space Proj(T , l, λ). (Sect. 6.1)

3. Principal Component Analysis: The principal component
analysis step requires the projections Proj to then dis-
tributedly calculate the exact principal components of
Proj . (Section 6.2)

4. Dimension Reduction: Both Proj and its principal com-
ponents are consumed by the dimension reduction step
that calculates the two-dimensional embedding space
SProj . (Section 6.3)

5. Node Creation: From the embedding space SProj , the
node creation step extracts the nodes N for the graph
Gl(N ,E) and, then, shares these nodes among all pro-
cessors. (Section 7)

6. Edge Creation: In the edge creation step, every processor
extracts its local part of edges with the intersections and
nodes given from the previous step. This step also adopts
the processor responsibilities from the node creation step.
(Section 8.1)

7. Graph Merging: The graph merging step is triggered by
the completion of all certain graph partitions. It collects
and combines the edge partitions and, then, replicates the
resulting graph Gl to all processors. (Section 8.2)

8. Scoring: The scoring can be executed for different lengths
lq once Gl is received by all processors. It creates the
anomaly scores to rank the subsequences accordingly.
(Section 9)

5.3 Processor registration

The processor registration protocol consists of a single
worker actor, which is the ProcessorRegistry actor. Once a
slave system is started, this actor runs the following initial-
ization steps:

1. Protocol instantiation: The ProcessorRegistry creates all
local protocols, i.e., their RootActors and EventDispatch-
ers,which then spawnand initialize their protocol-specific
worker actors.

2. Local event subscription: The ProcessorRegistry wires all
local protocols up by sending a SetupProtocolMessage
with references to all previously instantiated protocols to
all these protocols.Actorswithin the protocols thendecide
to which events they need to subscribe.

3. Registration: The ProcessorRegistry periodically sends a
ProcessorRegistrationMessagewith a list of all local pro-
tocols to the master’s ProcessorRegistry until the master
acknowledges the registration with a list of all other pro-
tocols in the cluster.

4. Remote event subscription: The ProcessorRegistry shares
the remote protocols with all local protocols so that they
can subscribe to their events as well. This concludes the
wiring process and triggers the sequence slice distribution
protocol.

123

590 J. Schneider et al.

6 Distributed subsequence embedding

To distribute the subsequence embedding, we propose three
protocols: sequence slice distribution, principle component
analysis and dimensionality reduction. In this section, we
discuss the three protocols in detail.

6.1 Sequence slice distribution

The sequence slice distribution protocol consists of two
worker actors: the SequenceSliceDistributor and its coun-
terpart the SequenceSliceReceiver. The protocol starts on the
master processor with the SequenceSliceDistributor reading,
slicing and then distributing the global sequence T .Wedivide
T into p consecutive, evenly sized partitions, i.e., subse-
quences T[From,To) with 0 ≤ From < To ≤ |T |. Each
of the p processors in the cluster receives one of these slices
of T via its SequenceSliceReceiver.

Because every processor gets an equal share of the input
time series T , the slice length s = |T[From,To)| = To −
From is defined by the length of the input series |T | and
the number of processors in the cluster p. We also need
to consider an overlap of l − 1 records between adjacent
slices so that every embedding subsequence of length l falls
completely into one slice. Hence, s is actually defined as
|T |
p + (l − 1). At this point, we emphasize that DADS han-
dles three different kinds of subsequences: (I) the slices of T
of length s that are owned by the different processors, (II) the
embedded subsequences of T of length l that are created for
the embedding and (III) the anomaly scoring subsequences
of length lq + l − 1.

To send large messages, such as the slices in this protocol,
over the network, we use a dedicated channel, work pulling
and reliable proxy actors. This prevents system-relevant con-
trol messages, such as heartbeats, to be blocked or critically
delayed. In diagrams, we indicate the transmission of large
messages with the «large data» annotation.

After receiving the local sequence slice, the SequenceS-
liceReceiver calculates the first local and then global min-
imum (min(T)) and maximum (max(T)) record values.
These serve to create vre f and then rotate the projection space
accordingly (see Sect. 4.1). The SequenceSliceReceiver sig-
nals that the local embedding slice Proj[Fromi ,Toi−(l−1)] is
fully calculated, by issuing a ProjectionCreatedEvent.

Matrix Compaction. The embedding space Proj(T , l, λ) is
technically a matrix of n ×m double (8 bytes) values where
n = |T | − (l − 1) is the number of rows (embedded sub-
sequences) that each consists of m = l − λ components
(columns). This makes Proj the largest data structure in the
transformation process. It effectively prevents the S2G algo-
rithm from calculating larger time series T that consume
multiple gigabytes or even terabytes [20,51] of memory,

Fig. 6 Example of two consecutive subsequences T[0,5) (green) and
T[1,6) (blue), which end up replicating l − λ − 1 (l = 5, λ = 2) values
after the convolution of length λ is applied

because Proj needs to be kept in memory. For example,
the MIT-BIH Supraventricular Arrhythmia Database [18,34]
(MBA) dataset of patient 14046 contains roughly 10 × 106

records, which consume mere 80 megabytes of disk stor-
age. Representing the embedding space Proj(T , l, λ) with
l = 100 and λ = � l

3
 = 33, as proposed in the S2G pub-
lication [10], takes more than 5 gigabytes of main memory
already. Scaling this exampleup to a sequenceof 10gigabytes
size, the matrix would consume more than 660 gigabytes of
memory for the sequence embedding alone. Although we
slice and distribute Proj , this memory limits the applicabil-
ity of the algorithm.

To mitigate this issue, we propose a sequence matrix data
structure for storing Proj that reduces thememory consump-
tion fromO(n×m) down toO(n+m) exploiting the fact that
large parts of the matrix store redundant data. The redundan-
cies are the result of the local convolutions that are applied
to subsequences of T , as illustrated in Fig. 6.

The sequence matrix is a floating point array that stores
only physical cells, i.e., non-replicated cells. All virtual cells,
i.e., cell with redundant values, are not stored explicitly, but
inferred from the physical cells via pointer arithmetic. Fig-
ure 7 illustrates the mapping of virtual cells to physical cells
in the sequence matrix. The sequence matrix calculates the
mapping transparently and exposes the same interface (e.g.
getValue(row, column)) as a fully materialized matrix.

Altogether, the sequence matrix structure stores only the
first embedded subsequence of length m plus one additional
record for every following subsequence, consequentially
reducing the required space tom+ (n−1) = |T |−λ values,
which is even less than the input time series T . In Sect. 10,
we demonstrate the significant memory savings of this com-
pression.

6.2 Principal component analysis

The principal component analysis protocol calculates the
PCA for the global embedding space Proj on its dis-
tributed slices. It is an actor-based implementation of the
PCA algorithm by Bai et al. [5] and consists of two actors:
the PCACoordinator and the PCACalculator. The PCACo-

123

Distributed detection of sequential anomalies in univariate time series 591

Fig. 7 A sequence matrix that encodes the entire embedding space
Proj(T , l, λ) (l = 5, λ = 2) with only physical cells (marked with
Tx + Ty) while mapping virtual cells (marked with) accordingly

Fig. 8 Distributed PCA calculation using Bai et al.’s algorithm [5],
which is concluded by firing the PrincipalComponentsCreatedEvent

ordinator is created only on the master processor and is
responsible for assigning unique identifiers, i.e., indices to
all processors; afterward, it is directly terminated. The PCA-
Calculator on every processor is the actor that implements
the PCA calculation on the local Proj slice. Figure 8 gives
an overview of the protocol.

The PCA algorithm of Bai et al. assumes that the global
data matrix X ∈ R

n×p (n � p), which is our embedding
space Proj , is distributed among s different processors, i.e.,
X = [X0, X1, ...Xs−1]T . Hereby, X is horizontally, i.e.,
row-based partitioned into chunks Xi ∈ R

ni×p, where each
processor i (0 ≤ i < s) stores one of these partitions so that
n = ∑s−1

i=0 ni . With X = Proj and Xi = Proj[Fromi ,Toi),
this directly maps to our situation.

Atfirst, everyPCACalculator calculates the columnmeans
x̄ Ti ∈ R

1×p = 1
ni
eTni Xi and the column-centered data matrix

X̄i ∈ R
ni×p = Xi − eni x̄

T
i = Q(0)

i R(0)
i of their local data

slice where el ∈ R
l×1 = (1, 1, . . . , 1) is a column vector

of length l that contains all 1s. Hereby, R(0)
i ∈ R

p×p is an
upper triangular matrix that results from applying the QR
decomposition [19] to X̄i , which is required for the further
calculation; at this point, Q(0)

i is no longer required and can
be dropped. Afterward, every PCACalculator transfers its
local column means x̄ Ti and the number of rows ni to the
processor with index 0 (which is always the master proces-
sor in DADS). This processor is responsible for finalizing the
PCA computation at the end of the algorithm. Additionally,
processors with an index i ≥ s

2 send their local R(0)
i to the

processor with index i − s
2 . To address the correct proces-

sor, the PCACalculators need to know the processor indices;
thanks to the PCACoordinator, these indices have already
been broadcasted via InitializePCACalculationMessages.

The sending of the R(0)
i matrices concludes the initializa-

tion step. In the c ∈ [1, �log2 s�] following steps, the results
are successively aggregated: In each step c, the processors
with indices 0 ≤ i < s

2c calculate the following QR decom-
position:

[
R(c−1)
i

R(c−1)
i+ s

2c−1

]

= Q(c)
i R(c)

i

Again, R(c)
i ∈ R

p×p is an upper triangular matrix, which
is transferred to the processor with index i− s

2c+1 if i ≥ s
2c+1 .

This procedure repeats until the master processor at index
i = 0 calculates the final matrix. Figure 9 shows an example
of this process with eight processors.

The master then calculates the last required QR decom-
position using the previously transferred column means x̄i ,

the row counts ni , and x̄ = 1
n

s−1∑

i=0
ni x̄i :

⎡

⎢
⎢
⎢
⎢
⎢
⎣

√
n0(x̄0 − x̄)√
n1(x̄1 − x̄)

...√
ns−1(x̄s−1 − x̄)

R(c)
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= QR

123

592 J. Schneider et al.

Fig. 9 Exemplary procedure of the distributed PCA computation of Bai
et al. [5] with 8 involved processors

From the result, themaster calculates the PCAvia singular
value decomposition. It then ends by issuing a Principal-
ComponentsCreatedEvent with the three most significant
components PCA3.

6.3 Dimension reduction

After receiving PCA3 from the principal component analy-
sis and the min(T) and max(T) values from the sequence
slice distribution, the dimension reduction protocol trans-
forms the global embedding space Proj(T , l, λ) into the
global reduced embedding space SProj(T , l, λ). For this,
we use two worker actors: DimensionReductionDistributor
and DimensionReductionReceiver.

The DimensionReductionDistributor exists only on the
master. It calculates the rotation matrices Rux (Ψx) Ruy (Ψy)

Ruz (Ψz) and sends the results to all processors. For optimal
bandwidth utilization, the protocol sends the matrices to all
target processors simultaneously.

The DimensionReductionReceiver is created once on
every processor. It uses PCA3 to reduce its local slice of the
embedding space Proj[From,To) to RProj[From,To). Then, it
uses the rotation matrices to transform RProj[From,To) into
SProj[From,To). It finally ends the subsequence embedding
by issuing a ReducedProjectionCreatedEvent; at this point,
the two-dimensional embedding space SProj is, like Proj ,
horizontally partitioned—each processor stores one slice.

7 Distributed node extraction

The node creation step of the Series2Graph transformation
process consists of three subroutines, which are intersec-
tion calculation, density estimation and node extraction (see

subsection 4.2). Although these subroutines could be imple-
mented in three protocols, we put them into one, because the
calculation process is particularly coherent in that it requires
the master only once and then uses peer-to-peer communica-
tion throughout the three subroutines. The task of the protocol
is to extract the nodes of the graphGl(N , E) from the reduced
projection SProj . For this, it creates three worker actors:
NodeCreationCoordinator,NodeCreator,DensityEstimator.

The NodeCreationCoordinator is a master-only actor that
assigns in an initial setup phase each processor to a range of
intersection segments. Afterward, the NodeCreators can find
each other directly so that the NodeCreationCoordinator can
be terminated. The NodeCreator actor orchestrates the local
node extractionworkflow,which covers all three subroutines.
It creates for each intersection segment oneDensityEstimator
as a child actor. Each DensityEstimator is responsible for
the calculation of the probability function of its segment,
the sampling of density probabilities Dψ and the extraction
of the node set Nψ . For optimal local parallelization, the
NodeCreator and the DensityEstimator dispatch intersection
calculation tasks and density estimation tasks, respectively,
to local worker actors of the actor pool protocol. Figure 10
illustrates the entire node extraction protocol and its phases.
In the following, we describe these steps in more detail.

SetupOnce a local reduced embedding slice SProj[From,To)

has been received, its NodeCreator signals its readiness
via NodeCreatorReadyMessage, which contains the local
sequence slice indices From and To, to the NodeCre-
ationCoordinator. Once all NodeCreators are ready, the
NodeCreationCoordinator splits the range of intersection
segments [0, r] into equal partitions and distributes them
among the available processors. It then sends these respon-
sibilities, and sequence slice ranges [Fromi , Toi) of the
individual processors via InitializeNodeCreationMessage to
all NodeCreators. Afterward, the NodeCreationCoordinator
terminates.

Each NodeCreator determines whether it has a succes-
sor, i.e., a processor responsible for the subsequent sequence
slice, and/or a predecessor, i.e., a processor with a pre-
ceding sequence. For example, if the global time series
T is distributed among three processors A, B and C so
that A is responsible for SProj[0,ToA), B is responsible for
SProj[ToA,ToB), andC is responsible for SProj[ToB ,|T |) (we
ignore the subsequence overlap of l − 1 here), then A and B
have successors B andC , respectively, and B andC have pre-
decessors A and B, respectively. Because intersections are
calculated between the segments uψ∈Ψ and vectors −−−→xi−1xi
defined by two consecutive rows xi−1 and xi of SProj , we
need to make sure that all pairs of consecutive rows coin-
cide on oneNodeCreator. For this reason, every NodeCreator
sends its last embedded subsequence, which is a single-, two-
dimensional point, to its successor and receives a new first

123

Distributed detection of sequential anomalies in univariate time series 593

Fig. 10 Node creation protocol

embedded subsequence from its predecessor, if a successor
and/or predecessor exists.

Intersection Calculation Once a processor receives the last
embedded subsequence from its predecessor or if the pro-
cessor does not have a predecessor, it immediately starts the
local intersection calculation. The intersection calculations
work exactly as described in subsection 4.2) but only on the
local reduced embedding slice SProj[From,To). For paral-

lelization, the protocol exploits that each pair of consecutive
rows xi−1 and xi of SProj can be processed independently. It
therefore divides SProj[From,To), which might be preceded
by the last reduced subsequence from a predecessor, into
horizontal partitions that overlap by one subsequence each.
Then, it sends a WorkFactory (see Sect. 5.1), which creates
individual CalculateIntersectionsMessage tasks that contain
the overlapping chunks and the parameter r , to the local actor

123

594 J. Schneider et al.

pool protocol. The worker actors in the actor pool calculate
the intersections Iψ for allψ ∈ Ψ and send them to theNode-
Creator. Note that each pair of consecutive rows xi−1 and xi
can create between 0 and r

2 intersections depending on how
many intersection segments their connection crosses. Once
an intersection is calculated, the algorithm stores not only
the intersection point but also a mapping to the embedded
sequence xi−1. This mapping helps during edge creation and
path scoring to quickly relate an intersection (or graph node)
back to its (embedded) subsequence of T . After collecting
the last result, the NodeCreator emits an IntersectionsCal-
culatedEvent containing all locally calculated intersections
I[From,To).

Density Estimation The first step in the density estimation
phase is a shuffle operation: Each processor groups its local
intersections I by their intersection segment ψ (note that for
each point x ∈ Iψ only its distance to the root, i.e., ||x|| is
needed, which reduces the size of Iψ). The resulting groups
are then transferred to the processors that are responsible for
specific segments. In this way, the following density estima-
tions each take as input one complete intersection segment
Iψ . Once all intersections of a segment Iψ are collected, a
NodeCreator immediately spawns a new DensityEstimator
for Iψ that performs the density estimation and node extrac-
tion for intersection segment ψ , as we will detail next.

After receiving the intersections Iψ , theDensityEstimator
needs to estimate the density for a fixed number of equidis-
tant evaluation points. These points are taken from the range
[0,max(I)], where max(I) is the largest distance of any
sequence embedding to the root. Following the implemen-
tation of Series2Graph, we take 250 of these evaluation
points per intersection segment. For the density estimation,
eachDensityEstimator re-implements the kernel density esti-
mation (kde) algorithm of python’s scipy 3 library; more
specifically, kde.py 4. This algorithm, which was also used
in the implementation of S2G, takes Iψ and calculates a den-
sity estimate d ∈ Dψ for every estimation point. For the
calculations, kde proposes to either loop over the intersection
points or the evaluation points depending on which point set
is larger—we adopt this strategy. Regardless of which point
set is used, we divide it into small chunks for parallelization.
Each chunk can be processed independently by the worker
actors of the local actor pool protocols, which improves the
calculation efficiency significantly. Ifweparallelized over the
intersection points, the DensityEstimator needs to concate-
nate all results; if we parallelized over the evaluation points,
the DensityEstimator aggregates the results. Either way, the
results are the density estimations Dψ for the segment Iψ .

3 https://www.scipy.org/ (21.05.2020).
4 https://github.com/scipy/scipy/blob/adc4f4f7bab120ccfab9383aba2
72954a0a12fb0/scipy/stats/kde.py\#L211-L265 (21.05.2020).

Node Extraction The node extraction continues in the Densi-
tyEstimators. From the density estimations Dψ , it selects all
local maxima Dψ

i , which are estimates with Dψ
i > Dψ

(i−1)

and Dψ
i > Dψ

(i+1), as nodes Nψ
i . The DensityEstimators

finally broadcast their nodes viaNodesCreated events so that
the complete node set N = ⋃r

i=0 N
ψi is known to all pro-

cessors. After receiving a NodeCollectionCreated message
from all local DensityEstimators, the NodeCreator ends the
protocol.

8 Distributed edge extraction

The edge extraction step extracts the weighted graph edges
E from the intersections I and nodes N and assembles the
final graph Gl(N ,E). It uses two protocols: edge creation
and graph merging.

8.1 Edge creation

The edge creation protocol consists of a single worker actor,
which is the EdgeCreator. As detailed in Fig. 11, this Edge-
Creator initially waits for three events:

– The ResponsibilitiesReceived event with the intersec-
tion segment and sequence slice responsibilities of all
processors tells whether this processor has a succes-
sor/predecessor w.r.t. the sequence slices.

– The IntersectionsCalculated event with the local inter-
sections I[From,To) and the mapping from intersections
to embedded subsequences defines how the intersections
need to be sorted.

– All NodesCreated events with the nodes Nψ together
deliver the node set N that needs to be connected via
edges.

As soon as all these events are received, the EdgeCreator
extracts the edges as described in subsection 4.3: Because the
intersections in I[From,To) arrive grouped by their intersec-
tion segment anglesψ , the EdgeCreator at first sorts the local
intersections I[From,To) by the order of their corresponding
subsequences in the time series T . For the sorting, we use
the mapping of intersections to their subsequence that comes
with the IntersectionsCalculated event.

Once the intersections are sorted, the EdgeCreator can
iterate the intersections to retrieve for each intersection
its nearest node. These nodes are put into a sequence
(N0, N1, . . . , NFrom−To), from which we can extract the
weighted edges E . However, because we calculate the edges
distributedly on time series slices [From, To), the edges
between two consecutive slices cannot be created by either
of the corresponding processors. This is because the inter-

123

https://www.scipy.org/
https://github.com/scipy/scipy/blob/adc4f4f7bab120ccfab9383aba272954a0a12fb0/scipy/stats/kde.py\#L211-L265
https://github.com/scipy/scipy/blob/adc4f4f7bab120ccfab9383aba272954a0a12fb0/scipy/stats/kde.py\#L211-L265

Distributed detection of sequential anomalies in univariate time series 595

Fig. 11 Edge creation protocol

section sets are distinct, i.e., partitioned without overlap.
Although DADS exchanged the last embedded subsequence
during node creation (see Sect. 7), the intersections, which
are formed by pairs of embedded subsequences, are known in
one slice [From, To) only. Hence, the local node sequences
(N0, N1, . . . , NFrom−To) are overlap-free as well. To cre-
ate the edges between consecutive node sequences, every
EdgeCreator i sends its last node NFromi−Toi to its succes-
sor EdgeCreator i + 1, if the ResponsibilitiesReceived event
indicates that a successor exists.

It turns out that finding the nearest node for an intersec-
tion point and extracting the edges from the node sequence
are expensive, but parallelizable operations. For this rea-
son, the EdgeCreator calculates only the last node from the
sorted intersection sequence itself (because it needs to send
this node to its successor); all further node calculations and
edge extractions are parallelized by splitting the sorted inter-
section sequence I[From,To) = (I0, I1, . . . , IFrom−To) into
smaller partitions. Note that these partitions need to over-
lap by one intersection as well to create the partition-linking
edges. Each partition is then given to and processed by a
worker actor of the actor pool protocol. For this purpose,
the EdgeCreator sends a WorkFactory to the local actor
pool protocol. This factory produces CreateGraphPartition-

Messages that contain equidistant, overlapping partitions of
I[From,To) and the starting node (if there is any). To complete
aCreateGraphPartitionMessage, eachworker first creates the
corresponding node sequence. Each pair of subsequent nodes
in the sequence, then, becomes an edge, and if an edge exists
already, the worker increases its weight by one (see subsect.
4.3). The resulting edge sets Ei are send back to the EdgeCre-
ator via GraphPartitionChunk message. The EdgeCreator
merges these edges into the local edge setE[From,T o) = ⋃

Ei ,
which it then sends via GraphPartitionCreated event to all
cluster participants.

8.2 Graphmerging

The graph merging assembles and distributes the final graph
Gl(N ,E). The protocol starts when all local graph partitions
Gl,[From,To)(N ,E[From,To)) have been created. It consists of
four actors:GraphSliceSender,GraphSliceReceiver,Graph-
Merger and GraphReceiver. While the first and last actors
exist on all processors, the other two are started on only the
master.

Because the nodes N have already been broadcasted to all
processors, the GraphSliceSenders start by sending only the
local edges E[From,To) to the master’s GraphSliceReceiver
via largemessage channel. Edges are represented by compact
triples (id(N f rom), weight , id(Nto)) where id(Nx) returns
a 4 bytes integer that points to node Nx and weight is an
8 bytes long. The GraphSliceReceiver accepts the incom-
ing edges and forwards them directly to the GraphMerger.
GraphSliceReceiver and GraphMerger are two actors on the
master so that edges can be received and merged in parallel
for latency hiding. The GraphMerger incrementally calcu-
lates E = ⋃

E[Fromi ,Toi) by merging every received edge
e into the edge set E : If e does not already exist, it simply
adds e to E ; otherwise, it increases the weight of e by the
incoming weight. Once all edges are received, Gl(N ,E) is
the complete graph. The GraphMerger, then, sends E via
large message channel to all GraphReceivers, which publish
GraphReceived events upon completion.

9 Distributed scoring

The scoring protocol calculates the anomaly scores of paths
in Gl as already discussed in subsect. 4.4. In this section, we
discuss the protocol’s actors andmessage flow inmore detail.
Figure 12 visualizes the scoring procedure. It involves two
worker actors, which are the ScoreCalculator on all proces-
sors and aScoreReceiver on themaster. TheScoreCalculators
perform the entire scoring process, and the ScoreReceiver
persists the results. Because the time series T is already
appropriately partitioned across the processors, the Score-

123

596 J. Schneider et al.

Fig. 12 Scoring protocol

Calculators simply infer their responsibilities from their local
slices.

The protocol requires three events to start: the Respon-
sibilitiesReceived event with the sequence slice ranges of
all processors to find a successor/predecessor w.r.t. the
local sequence slice [From, To), the GraphPartitionCre-
ated event with the different edge creation orders to deter-
mine which paths belong to which embedded subsequences,
and the GraphReceived event with the weighted edges. In
addition to these events, the ScoreCalculators also receive
the query length lq via ScoringParameter messages from the
master.

Our approach of distributing the scoring procedure is that
we score all the different paths w.r.t. T in parallel; each
path, however, should be scored on one local partition. To
match each path of length lq entirely to one ScoreCalcula-
tor, their edge sets need to overlap by lq − 1 edges. Because
every ScoreCalculator initially owns only those edges that
correspond to its local slice of T , the ScoreCalculators first
exchange their lq − 1 last edges with their successors. After-
ward, they score all local paths of length lq by adding up their
edgeweights. In a second synchronization step, theScoreCal-
culators exchange their local minimum normmin,[From,To)

and maximum normmax,[From,To) scores to determine the
global extrema normmin and normmax . To calculate the
running mean, DADS needs to slide a window of length
lq over the sequence of path scores, which again requires
the exchange of overlapping path scores between subse-
quent processors. After the score exchange, each processor
normalizes its local path scores and transfers them to the
ScoreReceiver.

To not exhaust the memory of the master, the ScoreRe-
ceiver stores all received path scores immediately, but only
temporarily in individual files on disk. It thereby remembers
the corresponding sequence slice ranges so that it can later,
once all path scores are completely transferred, merge the
scores in the correct order into a single result file. In this
way, the scores in the result file are aligned with their subse-
quences in the time series T . The ScoreReceiver finally ends
the scoring for lq with a ReadyForTermination event.

10 Evaluation

In this section, we evaluate DADS5 w.r.t. computation qual-
ity, memory consumption on a single processor and runtime
scalability depending on both cluster size and input data size.
Hereby, we compare the results of our system with results
produced by the original implementation of S2G 6 and an
improved implementation S2G+. In the improved imple-
mentation, we applied a major algorithmic optimization that
we also used in the implementation of DADS: The original
S2G code calculates the intersections twice, once for generat-
ing the vertices and once for generating the edges; in S2G+,
we reuse the already calculated intersections and, hence, save
a lot of computations.

Hardware We ran the experiments on a cluster of up to 12
processors each equipped with an Intel Xeon E5-2630 v4
CPU (10 cores at 2.2 GHz), Ethernet network of 1 GiBit/s
bandwidth and 31 GiB RAM.

Time Series Data Our experiments use the real-world and
synthetic datasets that have also been used in the evaluation
of the S2G algorithm. The 26 evaluation datasets are listed
in Table 2 and cover various domains.

Configuration Unless stated differently, our experiments use
the same parameters as the evaluation of S2G in [10], which
are l = 50, λ = 16, r = 50 and lq = 75. We assume that
the global time series T is initially stored on only the master
processor and that also the results need to be transferred back

5 https://hpi.de/naumann/projects/repeatability/algorithms/dads-
distributed-detection-of-sequential-anomalies-in-univariate-time-
series (20.07.2020).
6 http://helios.mi.parisdescartes.fr/~themisp/series2graph/
(20.07.2020).

123

https://hpi.de/naumann/projects/repeatability/algorithms/dads-distributed-detection-of-sequential-anomalies-in-univariate-time-series
https://hpi.de/naumann/projects/repeatability/algorithms/dads-distributed-detection-of-sequential-anomalies-in-univariate-time-series
https://hpi.de/naumann/projects/repeatability/algorithms/dads-distributed-detection-of-sequential-anomalies-in-univariate-time-series
http://helios.mi.parisdescartes.fr/~themisp/series2graph/

Distributed detection of sequential anomalies in univariate time series 597

Table 2 Real-world and synthetic time series datasets

Dataset Time Series Length Size [MB] Anomaly Length Anomaly Count Domain

SED [1] 103 167 1.0 75 50 Electronic

6× MBA [18,34] 227 899 − 10 828 800 2.3 − 108 75 27 − 142 Cardiology

3× MV [25] 5 000 0.09 128 1 − 2 Space Engineering

DPD [42,47] 35 039 0.19 800 4 Energy Consumption

15× Synth [10] 104 000 − 196 000 1.6 − 3.0 100 − 1 600 20 − 100 Synthetic

Table 3 ROC-AUC scores for
S2G, DADS and STOMP on
three datasets with different
concatenation factors (×) and,
hence, lengths

Datasets × |T | (×106) S2G+ DADS (12P-20T) STOMP

SRW-[60]-[0%]-[100] 1 0.1 0.9974 0.9974 0.9763

1000 100 † 0.9960 ‡

SRW-[60]-[25%]-[200] 1 0.1 0.9935 0.9935 0.9456

1000 100 † 0.9957 ‡

MBA (14046) 0.01 0.1 0.9352 0.9352 0.6558

1 10 0.9140 0.9140 ‡

10 100 † 0.9233 ‡

† marks memory limit of 58 GiB exceeded and ‡ marks execution time limit of 8 hours exceeded
Maximum ROC-scores for the corresponding data sets are marked bold

to themaster, whichwrites them into a single-output file. This
means that all absolute execution times for DADS include
the initial data distribution time and the final score collection
time. We also included the time for reading and writing data
from/to disk for all algorithms.

10.1 Anomaly detection quality

The DADS algorithm aims to improve the S2G algorithm in
terms of efficiency and scalability. The majority of experi-
ments in this section therefore focuses on these two aspects.
In a first set of experiments, however, we validate that the
distribution does not affect the quality of the discovered
anomalies. For this, we measure the area under the ROC
curve (ROC-AUC) [21] for different results on the MBA
[18,34] dataset and the synthetic SRW [10] datasets. Besides
S2G and DADS, we also considered the STOMP [52] algo-
rithm (with awindow size of 75) in this experiment as another
state-of-the-art reference algorithm.

The measurements, which are shown in Table 3, show
three interesting performance properties: First, both S2G
and DADS yield the same ROC-AUC scores; it is therefore
shown that the distribution does not impact the effectiveness
of the approach. Second, both S2G andDADS produce better
results than STOMP,which confirms the experimental results
of [10] on the SRW andMBA datasets. Third, the result qual-
ity of DADS (and S2G) is relatively stable when the input
dataset is concatenatedmultiple times with itself. This can be
explained by the fact that the algorithm identifies anomalous
subsequences by their relatively low occurrence frequency;

Table 4 Maximum and average result differences over all 26 datasets
between the S2G Python implementation and the DADS Java imple-
mentation for different parameter settings

l λ r lq ∅ Max. Diff. ∅ Avg. Diff

50 16 50 75 1.70 × 10−11 4.05 × 10−12

50 16 180 75 2.80 × 10−11 1.15 × 10−11

100 33 50 150 8.85 × 10−12 7.81 × 10−13

400 133 50 500 6.80 × 10−13 8.00 × 10−14

Overall 1.38 × 10−11 4.14 × 10−12

by concatenating a sequence with itself, the frequencies of
all subsequence patterns in the series are multiplied propor-
tionally so that anomalous sequences remain anomalous. The
reason for the small performance changes is the subsequences
at the concatenation points, which are not present in the orig-
inal time series. Because the concatenation works well for
S2G and DADS, we will use the same construction to gen-
erate longer time series in other experiments as well 7.

Although both DADS and S2G achieve almost identical
ROC-AUC scores, the results are slightly different.We there-
fore compared the results of both algorithms in a systematic
way: For each of the 26 datasets, we conducted four experi-
ments, each with different parameter configuration. For each
parameter configuration, we measured the maximum and
average result differences throughout the 26 datasets. Table 4
lists the outcome of the experiment.

7 Please note that the concatenation trick does not work for anomaly
detection algorithms that cannot deal with repeated anomalies.

123

598 J. Schneider et al.

Fig. 13 Longest processable time series for increasing main memory
volumes of DADS with and without our sequence matrix optimization
and S2G on a single processor

The measurements show an average difference of mere
4 × 10−12, which is practically insignificant. These dif-
ferences stem from floating point rounding behavior that
happens unavoidably in the various calculations of, for exam-
ple, the subsequence embedding or principal component
calculations. Rounding inaccuracies happen in both imple-
mentations, which is pretty normal in this type of application.
Hence, we consider both results as correct and essentially the
same. We also observe that the differences become slightly
smaller whenwe increase the subsequence length l and query
length lq . This is because rounding issues may happen in
either direction and summing upmore values, as in the calcu-
lation of longer paths, compensates for some of these issues.

10.2 Scaling inmemory capacity

We now evaluate DADS’ scalability w.r.t. the main memory
capacity of a single machine. The experiment emphasizes
the impact of our sequence matrix data structure by show-
ing DADS peek memory consumption with and without this
optimized data structure. For increasing amounts of main
memory, the experiments find the longest processable time
series for both DADS and S2G. The time series in this exper-
iment is a snippet/concatenation taken from theMBA (ECG)
database. Figure 13 plots the results.

We observe that S2G and DADS without our sequence
matrix have very similar limits. The small advantage of
DADS (without sequence matrix) over S2G is the result of
a few small memory optimizations. The reference imple-
mentation, for example, calculates and stores intersections
twice, once for the node extraction and once again for the
edge extraction; DADS calculates them only once and passes
the results over. We added such small improvements in the
S2G+ variant. Both implementations do scale linearly w.r.t.

the maximum processable time series length depending on
the upper main memory limit.

The experiment also shows that our sequence matrix
optimization significantly reduces DADS’ main memory
consumption. More specifically, the matrix size reduces by a
factor of l − λ, which more than halves the overall memory
consumption for executions on one processor.

10.3 Scaling in cluster size

In this section, we evaluate DADS’ scalability w.r.t. the num-
ber of processors in the cluster. For this purpose,wemeasured
the runtime of DADS while gradually increasing the number
of processors from 1 to 12. All experiments in this evalua-
tion were conducted on a concatenated variant of the MBA
dataset with a total of 50 million records.

Effectiveness of Parallelization First, we investigate how
effective DADS parallelizes the graph transformation steps
by measuring the steps’ relative (see Fig. 14) and absolute
(see Fig. 15) runtimes depending on the number of proces-
sors. The three most time-consuming steps in DADS are the
PCA (Sect. 6.2), the node creation (Sect. 7) and the result
storing, which is a subroutine of the scoring protocol (Sect.
9).

The measurements in Fig. 14 and 15 (left) show that all
parts of the algorithm except the result storing, which is exe-
cuted in about the same time in all experiments, scale well
with the cluster size, which is, they require proportionally
less execution time with an increasing number of proces-
sors. Because DADS does not parallelize the result storing,
this behavior is expected. So, when increasing the number of
processors, the result storing takes an increasing portion of
the relative runtimes.

Figure 15 (right) plots DADS’ total execution time and
two ideal curves that mark perfect linear scaling times with
and without a scaling result storing step. The curves show
that DADS scales almost perfectly linear with an increasing
number of processors when ignoring the constant result stor-
ing. Hence, all our distribution and parallelization protocols
for S2G scale well.

CPU Utilization Figure 16 plots the average and maximum
CPU statistics of the cluster during an execution of DADS.
Here, we observe that DADS uses the entire cluster, i.e., all
of the available 240 threads, for the most part of the inter-
section calculation [29,32], the node creation [32,65] and the
edge creation [65,67]. For almost the entire period [29,67],
at least one processor is always fully utilized, because these
steps are mostly CPU bound. The drop in average cluster
utilization in [52,65] is caused by the synchronization bar-
rier between the node creation and edge creation protocol
and the fact that some processors need to extract nodes from

123

Distributed detection of sequential anomalies in univariate time series 599

Fig. 14 Relative runtimes of the different processing steps when analyzing 50 million records (concatenated MBA) with different cluster sizes. We
highlight the most time-consuming processing steps PCA, node creation NC and resulting storing RS and aggregate all other O processing steps

Fig. 15 Le f t : Absolute
runtimes of the different
processing steps (relative times
in Fig. 14). Right : Total
runtime of DADS using X
Processors with 20 Threads
each (blue) in comparison with
the ideal time for linear
scalability (green) and the ideal
time for linear scalability when
considering the result storing
costs as constant time (red)

more intersections than others—by chance, their intersection
segments produced relatively many intersections.

For the remaining execution time, especially for the PCA
and result storing routines, we observe a rather low CPU
utilization: about 7% during PCA and only about 2% on
average during result storing. These relatively low numbers
are to be expected, because the steps are not CPU bound.
The distributed PCA algorithm of Bai et al. [5] is designed to
run single-threaded on each processor, which theoretically
corresponds to exactly 5% CPU utilization on our proces-
sors (1 out of 20 available threads). Because the processors
exchange messages during PCA, the average utilization is
slightly higher. For the result storing, we basically measure
onlymessaging overhead, because thewriting happens solely
on the master and is, therefore, bound by the master’s disk
speed.

Network Utilization Figure 17 visualizes the amount of data
transferred via large message channel over the network dur-
ing a distributed DADS execution. Hereby, 99% of total
traffic are the sequence slices (see Sect. 6.1), the intersec-
tions (see Sect. 7) and the anomaly scores (see Sect. 9). The
remaining transfers, such as the graph distribution (see Sect.
8.2), use less than 5 MiB in total. Both the sequence slice
and the anomaly score transfers are smaller than the initial
time series T , because one slice of each transfer stays on the

Fig. 16 Average cluster utilization (orange) and utilization of the most
busy processor (purple) when analyzing 50 million records (concate-
natedMBA dataset).We highlight the most time-consuming processing
steps

master, while only 11 out of 12 need to be transferred. The
amount of transferred intersection data, however, exceeds
even the size of T , because on average every pair of con-
secutive subsequences produces more than one intersection
(each pair can produce between 0 and r

2 intersections); in
our experiment, DADS produces more than 58 million inter-
sections from the initial 50 million records. By distributing
the intersection calculation, however, DADS greatly benefits
from the cluster resources as shown in Fig. 16 [28,32]; the
transfer also serves to keep the remaining data transfers as
small as they are.

123

600 J. Schneider et al.

Table 5 Execution times (best
of 3 runs) of DADS, S2G and
S2G+ when analyzing a
snippet/concatenation of the
MBA time series of patient
14046

|T | (×106) GB Runtime (s)

S2G S2G+ DADS

1P-1T 1P-20T 12P-20T

0.01 0.001 4 4 6 5 7

0.1 0.011 35 29 12 7 7

1 0.108 388 297 145 19 9

10 1.080 5897 3077 904 145 26

50 5.400 ‡ 15947 4575 727 106

100 10.800 † † † † 206

200 21.600 † † † † 401

300 32.400 † † † † 586

400 43.200 † † † † 802

500 54.000 † † † † 986

†marks memory limit of 58 GiB exceeded and ‡ marks execution time limit of 8 hours exceeded
Minimum execution times for the corresponding data sets are marked bold

Fig. 17 Amount of data transferred over the network via large message
channels. We marked the size of the entire time series and annotated
the average transfer speeds

Besides the transfer volumes, Fig. 17 also annotates the
average transfer rates in GiBit/s. We see that the transfer of
intersections utilizes about the entire bandwidth of our clus-
ter, which is 1 GiBit/s. The work-pulling mechanism of our
large data transfers artificially reduces the bandwidth in the
other two transfers, because the data recipients cannot pro-
cess the data fast enough and, therefore, apply backpressure:
For the sequence slices, the receiving processor directly con-
structs the (high-dimensional) embedding space and, for the
anomaly scores, the master directly persists the data to disk.
The latter shows that the result storing is actually disk and
not network bound.

10.4 Scaling in data size

We now evaluate the runtime scalability of DADS w.r.t. the
input data size by conducting a series of experimentswith dif-

ferent configurations ofDADS, the single-threaded reference
implementation S2G and the slightly improved implementa-
tion S2G+ to compare their execution times. For DADS,
we used three configurations: (I) one processor with one
thread, which is the same S2G and S2G+ can use; (II) one
processor with 20 threads, which shows the parallelization
effects; and (III) 12 processors with each 20 threads, which
shows the distribution effects. The experiments use snip-
pets/concatenations of theMBAdataset of patient 14046with
lengths varying between 10 × 103 and 500 × 106 records.
The results are listed in Table 5 and visualized in Fig. 18.
Note that Fig. 18 uses two axes, a logarithmic scale left to
compare all runtimes and a linear scale right to emphasize
DADS’ linear scaling w.r.t. the length of the input time series
T—the green and the blue line represent the same configura-
tion on different scales. The measurements show the best of
three execution times, where execution time deviations were
practically negligible, i.e., within around 1%.

Themeasurements show that all configurations could pro-
cess the entire original time series, which consists of roughly
10 million records. On this relatively short sequence, all
configurations of DADS already outperform the reference
implementations by a factor of 6.5/3.4 (DADS-1P-1T vs.
S2G/S2G+), 40.7/21.1 (DADS-1P-20T), up to 226.8/118.3
(DADS-12P-20T). S2G then exceeds the time limit of 8 hours
when increasing the input time series length to 50 million
records. On the 100 million records time series, all non-
distributed configurations run out of memory, because the
intermediate state exceeds the available 58 GiB main mem-
ory. DADS successfully solves this limitation by distributing
the computation to (in our setup) 12 processors. In this way,
it processes a time series of 500 million records in less than
17minutes using a combined amount of 336 GiBmainmem-
ory. Comparing the execution times for the largest processed

123

Distributed detection of sequential anomalies in univariate time series 601

Fig. 18 Execution times (best of 3 runs) of DADS, S2G and S2G+
when analyzing the MBA time series in different lengths. We use a
logarithmic scale on the left time axis for all but the blue plot. The blue
plot uses a linear scale on the right time axis to show DADS’s linear
scalability

inputs, this is a still 6 times faster than S2G while processing
a 50 times longer input.

11 Conclusion

In this paper, we presented DADS, an efficient, distributed
and scalable adaptation of the S2G algorithm. With DADS
we can detect anomalously shaped subsequences of different
lengths in huge univariate time series. Via reactive pro-
gramming concepts, DADS makes best use of the available
resources, i.e., memory, CPU and network. The algorithm is
orders of magnitude faster than S2G, and because its mem-
ory consumption can be distributed over multiple machines,
it could process 50 times longer sequences than S2G on
our 12 processor cluster. We achieve these improvements
through the parallelization and distribution of the algo-
rithm’s processing steps, theminimization of communication
requirements and the optimization of intermediate data struc-
tures.

Acknowledgements The work was funded by the German government
as part of the LuFo VI call I program (Luftfahrtforschungsprogramm)
under the grant number 20D1915. The management of Rolls-Royce
Deutschland Ltd. & Co. KG is gratefully acknowledged for supporting
the work and permitting the presentation of results.
We thank Paul Boniol and Themis Palpanas for their valuable feed-
back on our research project and their help with the Sequence2Graph
algorithm.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abdul-Aziz, A., Woike, M.R., Oza, N.C., Matthews, B.L., John,
D.L. : Rotor health monitoring combining spin tests and data-
driven anomaly detection methods. Struct. Health Monitor., pp.
3–12 (2012)

2. Agha, G., Hewitt, C.: Actors: A conceptual foundation for con-
current object-oriented programming. Res. Direct. Object Orient.
Program. pp. 49–74, (1987)

3. Ahmed, T., Oreshkin, B., Coates,M.:Machine learning approaches
to network anomaly detection. In: Proceedings of the Workshop
on Tackling Computer Systems Problems with Machine Learning
Techniques (TCSPMLT). pp. 1–6, (2007)

4. Arning, A., Agrawal, R., Raghavan, P.: A linear method for
deviation detection in large databases. In: Proceedings of the Inter-
national Conference on Knowledge discovery and data mining
(SIGKDD). pp. 972–981, (1996)

5. Bai, Z-J., Chan, R.H., Luk, F.T.: Principal Component analysis for
distributed data sets with updating. Adv. Parallel Process. Technol.
pp. 471–483 (2005)

6. Barnett, V., Lewis, T.: Outliers in Statistical Data, 3rd Edition
(1994)

7. Basora, L., Olive, X., Dubot, T.: Recent advances in anomaly detec-
tion methods applied to aviation. Aerospace 6, 11 (2019)

8. Boniol, P., Linardi, M., Roncallo, F., Palpanas, T.: Automated
anomaly detection in large sequences. In 2020 IEEE 36th Inter-
national Conference on Data Engineering (ICDE). IEEE, pp.
1834–1837 (2020)

9. Boniol, P., Linardi, M., Roncallo, F., Palpanas, T.: SAD an unsu-
pervised system for subsequence anomaly detection. In 2020 IEEE
36th International Conference on Data Engineering (ICDE). IEEE,
pp. 1778–1781 (2020)

10. Boniol, P.: Palpanas, Themis: series2graph: graph-based subse-
quence anomaly detection for time series. Proceedings of the
VLDB Endowment, p. 13, (2020)

11. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identify-
ing density-based local outliers. In Proceedings of the International
Conference on Management of Data (SIGMOD). pp. 93–104
(2000)

12. de Miranda, C., José Vinícius, H., Christina, G.-S., Michael, S.,
Nicholas, C., Ann, M., Barclay, T., Hall, O., Sagear, S., Turtel-
boom, E., Zhang, J., Tzanidakis, A., Mighell, K., Coughlin, J.,
Bell, K., Berta-Thompson, Z., Williams, P., Dotson, J., Barentsen,
G.: Lightkurve: Kepler and TESS time series analysis in Python.
Astrophys. Source Code Library 1812, 013 (2018)

13. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a sur-
vey. Comput. Surveys 2009, 1–72 (2009)

14. Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for iot time-
series data: a survey. IEEE Int. Things J. 7(7), 6481–6494 (2020)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

602 J. Schneider et al.

15. Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X.: A density-based
algorithm for discovering clusters in large spatial databases with
noise. In: Proceedings of the International Conference on Knowl-
edge discovery and data mining (SIGKDD). pp. 226–231 (1996)

16. Jiang, F., Wu, Y., Katsaggelos, A.K.: Detecting contextual anoma-
lies of crowd motion in surveillance video. In: Proceedings of the
International Conference on Image Processing (ICIP). pp. 1117–
1120 (2009)

17. Gaddam, S.R., Phoha, V.V., Balagani, K.S.: K-Means+ID3: A
novel method for supervised anomaly detection by cascading k-
means clustering and ID3 decision tree learning methods. IEEE
Trans. Knowl. Data Eng. 2007, 345–354 (2007)

18. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M.,
Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K.,
Eugene, H.S.: PhysioBank, PhysioToolkit, and PhysioNet: compo-
nents of a new research resource for complex physiologic signals.
Circulation, pp. 215–220 (2000)

19. Golub, G.H. Van L., Charles, F.: Matrix computations, (2012)
20. Greene, C.S., Tan, J., Ung, M., Moore, J.H., Cheng, C.: Big data

bioinformatics. J. Cellular Physiol. 2014, 1896–1900 (2014)
21. Hanley, J.A.,McNeil, B.J.: Themeaning and use of the area under a

receiver operating characteristic (ROC) curve. Radiology 1439(1),
29–36 (1982)

22. Hodge, V., Austin, J.: A survey of outlier detection methodologies.
Artif. Intell. Rev. 2004, 85–126 (2004)

23. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using
sequences of system calls. J. Comput. Secur. 1998, 151–180 (1998)

24. Jiang, Y., Zeng, C., Jian, X., Li, T.: Real time contextual collective
anomaly detection over multiple data streams. In Proceedings of
the Workshop on Outlier Detection and Description (ODD). pp.
23–30 (2014)

25. Keogh, E., Lin, J., Fu, A., Hot, S.: Efficiently finding the most
unusual time series subsequence. Proceedings of the International
Conference on Data Mining (ICDM). 8, (2005)

26. Knox, E.M., Ng, R.T.: Algorithms for mining distancebased out-
liers in large datasets. In Proceedings of the VLDB Endowment.
pp. 392–403 (1998)

27. Kohonen, T.: Self-Organizing Maps (1997)
28. Laurikkala, J., Juhola, M., Kentala, E., Lavrac, N., Miksch, S.,

Kavsek, B.: Informal identification of outliers in medical data. In
International Workshop on Intelligent Data Analysis in Medicine
and Pharmacology (IDAMAP). pp. 20–24 (2000)

29. Lee, C.K.M., Palaniappan, S.: Effective asset management for
hospitals with RFID. In 2014 IEEE International TechnologyMan-
agement Conference. pp. 1–4 (2014)

30. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.: Matrix profile goes
MAD: variable-length motif and discord discovery in data series.
Data Mining Knowledge Discovery (2020)

31. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In Proceedings
of the International Conference on Data Mining (ICDM). pp. 413–
422 (2008)

32. Ma, J., Sun, L., Wang, H., Zhang, Y., Aickelin, U.: Supervised
anomaly detection in uncertain pseudoperiodic data streams. ACM
Trans. Internet Technol. pp. 1–20 (2016)

33. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term
memory networks for anomaly detection in time series. In Euro-
pean Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN) (2015)

34. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia
database. IEEE Eng. Med. Biol. Magazine (EMB) 2001, 45–50
(2001)

35. Palpanas, T.: Real-time data analytics in sensor networks. Manag.
Mining Sensor Data. Springer, pp. 173–210, (2013)

36. Palpanas, T., Beckmann, V.: Report on the first and second inter-
disciplinary time series analysis workshop (itisa). ACM SIGMOD
Record 48(3), 36–40 (2019)

37. Pourahmadi, M., Noorbaloochi, S.: Multivariate time series anal-
ysis of neuroscience data: some challenges and opportunities.
Current Opin. Neurobiol. 37(2016), 12–15 (2016)

38. Qu, Y., Ostrouchov, G., Samatova, N., Geist, A.: Principal compo-
nent analysis for dimension reduction in massive distributed data
sets. Presented at the (2002)

39. Rajasegarar, S., Leckie, C., Palaniswami, M., Bezdek, J.: Dis-
tributed anomaly detection in wireless sensor networks. In: Inter-
national Conference on Communication Systems (ICCS). pp. 1–5,
(2006)

40. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for
mining outliers from large data sets. In: Proceedings of the Inter-
national Conference on Management of Data (SIGMOD). pp.
427–443

41. Rousseeuw, P.J., Annick, M.: Leroy Robust regression and outlier
detection, (1996)

42. Senin, P., Lin, J.,Wang,X.,Oates, T.,Gandhi, S.,Boedihardjo,A.P.,
Chen, C., Frankenstein, S.: Time series anomaly discovery with
grammar-based compression. In: Proceedings of the International
Conference on Extending Database Technology (EDBT). pp. 481–
492 (2015)

43. Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo,
A.P., Chen, C., Frankenstein, S.: Time series anomaly discovery
with grammar-based compression. Presented at the (2015)

44. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki,
V., Gunopulos, D.: Online outlier detection in sensor data using
non-parametric models. In Proceedings of the 32nd international
conference on Very large data bases. pp. 187–198 (2006)

45. Tran, L., Fan, L., Shahabi, C.: Distance-based outlier detection in
data streams. Proc. VLDB Endowm. 9(12), 1089–1100 (2016)

46. Tsay, R.S.: Analysis of Financial Time Series, 3rd Edition (2010)
47. Van W., Jarke, J., Van Selow, E.R.: Cluster and calendar based

visualization of time series data. In Proceedings of the IEEE Sym-
posium on Information Visualization (InfoVis). pp. 4–9 (1999)

48. Vigna, G., Kemmerer, R.A.: Intrusion detection: a brief history and
overview. IEEE Comput. Mag. pp. 27–30 (2002)

49. Wettschereck, D.: titleA study of distance-based machine learning
algorithms. thesis type, Ph.D. Dissertation (1994)

50. Wulsin, D., Blanco, J.,Mani, R., Litt, B.: Semi-supervised anomaly
detection for EEG waveforms using deep belief nets. In Proceed-
ings of the International Conference on Machine Learning and
Applications (ICMLA). pp. 436–441, (2010)

51. Yankov, D., Keogh, E., Rebbapragada, U.: Disk aware discord
discovery: Finding unusual time series in terabyte sized datasets.
Knowl. Inf. Syst. pp. 241–262 (2008)

52. Yeh, C.-C., Michael, Z., Yan, U., Liudmila, B., Nurjahan, D., Yifei,
D., Hoang, A., Silva, D., Furtado, M., Abdullah, K.E.: Matrix pro-
file I: all pairs similarity joins for time series: a unifying view
that includes motifs, discords and shapelets. In Proceedings of the
International Conference onDataMining (ICDM). pp. 1317–1322,
(2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Distributed detection of sequential anomalies in univariate time series
	Abstract
	1 Sequential anomaly detection
	2 Related work
	2.1 Point anomaly detection
	2.2 Sequence anomaly detection
	2.3 Distributed anomaly detection
	2.4 Distributed principal component analysis

	3 Foundations
	3.1 Anomaly detection
	3.2 Distributed computing

	4 Series2Graph algorithm overview
	4.1 Subsequence embedding
	4.2 Node extraction
	4.3 Edge extraction
	4.4 Subsequence scoring

	5 Distributed anomaly detection system
	5.1 DADS protocols
	5.2 DADS architecture
	5.3 Processor registration

	6 Distributed subsequence embedding
	6.1 Sequence slice distribution
	6.2 Principal component analysis
	6.3 Dimension reduction

	7 Distributed node extraction
	8 Distributed edge extraction
	8.1 Edge creation
	8.2 Graph merging

	9 Distributed scoring
	10 Evaluation
	10.1 Anomaly detection quality
	10.2 Scaling in memory capacity
	10.3 Scaling in cluster size
	10.4 Scaling in data size

	11 Conclusion
	Acknowledgements
	References

