
The VLDB Journal (2022) 31:1365–1389
https://doi.org/10.1007/s00778-021-00681-6

SPEC IAL ISSUE PAPER

Maximum and top-k diversified biclique search at scale

Bingqing Lyu1 · Lu Qin2 · Xuemin Lin3 · Ying Zhang2 · Zhengping Qian1 · Jingren Zhou1

Received: 30 November 2020 / Revised: 14 May 2021 / Accepted: 4 June 2021 / Published online: 18 April 2022
© The Author(s) 2022

Abstract
Maximum biclique search, which finds the biclique with the maximum number of edges in a bipartite graph, is a fundamental
problem with a wide spectrum of applications in different domains, such as E-Commerce, social analysis, web services, and
bioinformatics. Unfortunately, due to the difficulty of the problem in graph theory, no practical solution has been proposed to
solve the issue in large-scale real-world datasets. Existing techniques for maximum clique search on a general graph cannot
be applied because the search objective of maximum biclique search is two-dimensional, i.e., we have to consider the size
of both parts of the biclique simultaneously. In this paper, we divide the problem into several subproblems each of which
is specified using two parameters. These subproblems are derived in a progressive manner, and in each subproblem, we can
restrict the search in a very small part of the original bipartite graph. We prove that a logarithmic number of subproblems is
enough to guarantee the algorithm correctness. To minimize the computational cost, we show how to reduce significantly the
bipartite graph size for each subproblem while preserving the maximum biclique satisfying certain constraints by exploring
the properties of one-hop and two-hop neighbors for each vertex. Furthermore, we study the diversified top-k biclique search
problem which aims to find k maximal bicliques that cover the most edges in total. The basic idea is to repeatedly find the
maximum biclique in the bipartite graph and remove it from the bipartite graph k times. We design an efficient algorithm that
considers to share the computation cost among the k results, based on the idea of deriving the same subproblems of different
results. We further propose two optimizations to accelerate the computation by pruning the search space with size constraint
and refining the candidates in a lazy manner. We use several real datasets from various application domains, one of which
contains over 300 million vertices and 1.3 billion edges, to demonstrate the high efficiency and scalability of our proposed
solution. It is reported that 50% improvement on recall can be achieved after applying our method in Alibaba Group to
identify the fraudulent transactions in their e-commerce networks. This further demonstrates the usefulness of our techniques
in practice.

Keywords Biclique search · Bipar title graph · Graph algorithms

B Lu Qin
lu.qin@uts.edu.au

Bingqing Lyu
bingqing.lbq@alibaba-inc.com

Xuemin Lin
lxue@cse.unsw.edu.au

Ying Zhang
ying.zhang@uts.edu.au

Zhengping Qian
zhengping.qzp@alibaba-inc.com

Jingren Zhou
jingren.zhou@alibaba-inc.com

1 Alibaba Group, Hangzhou, China

2 The University of Technology Sydney, Ultimo, Australia

3 The University of New South Wales, Sydney, Australia

1 Introduction

A bipartite graph is denoted by G = (U , V , E) where
U (G) and V (G) denote the two disjoint vertex sets and
E(G) ∈ U × V denotes the edge set. Bipartite graph is
a popular data structure, which has been widely used for
modelling the relationship between two sets of entities in
many real world applications. For example, in E-Commerce,
a bipartite graph canbeused tomodel the purchasing relation-
ship between customers and products; In web applications, a
bipartite graph can be used to model the visiting relationship
between users and websites; In bioinformatics, a bipartite
graph can be used to model the acting relationship between
genes and roles in biological processes.

A subgraphC is a biclique if it is a complete bipartite sub-
graph of G that for every pair u ∈ U (C) and v ∈ V (C), we

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00681-6&domain=pdf
http://orcid.org/0000-0001-6068-5062

1366 B. Lyu et al.

have (u, v) ∈ E(C). Like a clique in general graph, biclique
is a fundamental structure in a bipartite graph, and has been
widely used to capture cohesive bipartite subgraphs in a wide
spectrum of bipartite graph applications. Below are several
representative examples.
(1) Anomaly detection [4,7] In E-commerce such as Ebay and
Alibaba, the behavior of a large group of customers purchas-
ing a set of products together is considered as an anomaly
because there is a high probability that the group of people
is making fraudulent transactions to increase the rankings of
their businesses selling the corresponding products. This can
be modeled as bicliques in a bipartite graph. Similarly, in
web services, bicliques can be used to detect a group of web
spammers who click a set of webpages together to promote
their rankings.
(2) Gene expression analysis [16,18,25,45,59] In gene
expression data analysis, different genes will respond in dif-
ferent conditions. The group of genes that have a number of
common responses over multiple conditions is considered as
a significant gene group.
(3) Social recommendation [23] In social analysis, there may
exist a group of users who have the same set of interests, such
as swimming, hiking, and fishing. Such groups and interests
can be naturally captured by a biclique, which is helpful in
social recommendation and advertising.

In practice, we cannot directly enumerate the bicliques of
the bipartite graphs as the number of bicliques is prohibitively
large in the above applications. In this paper, we investigate
the problem of maximum biclique search, i.e., finding the
biclique with the largest number of edges, for the following
two reasons:
(1) Given the biclique model, it is a very natural problem to
find the maximum biclique, which is not only theoretically
interesting but also useful in many real-life scenarios. For
instance, the maximum biclique may represent the largest
suspicious click farm in the e-commerce networks, the most
significant gene group in a gene-condition bipartite graph,
and the user group with the largest potential market value in
the social network.
(2) In some scenarios, one may need to enumerate a set of
bicliques. For instance, the fraud transactions cannot be fully
covered by the maximum biclique in the e-commerce net-
work. To reduce the number of output bicliques, we may
consider the maximal biclique where none of its superset
is also a biclique. Unfortunately, as shown in our initial
empirical study, the number of maximal biclique is still large
(e.g., over 109 maximal bicliques have been output after 24h
running of maximal biclique enumeration algorithm on a
e-commerce bipartite graph obtained from Alibaba). Thus,
we have to consider the diversified top-k bicliques. Inspired
by the well-studied diversified top-k clique search problem
(e.g., [57]), we can follow the same procedure by repeatedly
removing the current maximum biclique from the bipartite

graph k times.Clearly, the efficient computation ofmaximum
biclique is the key of this problem.

Challenges and motivations Despite its wide range of appli-
cations, finding themaximumbiclique is anNP-hard problem
[38]. In the literature, there are many solutions to solve
another related NP-hard problem: the maximum clique
search problem in a general graph [17,19,20,26,31,46–49].
The main idea is to use graph coloring and core decomposi-
tion to obtain an upper bound for the maximum clique size
and use this upper bound to prune vertices that cannot be
contained in the maximum clique.

A natural question raised is: can we use the above graph
coloring and core decomposition techniques to search the
maximum biclique in a bipartite graph? Unfortunately, the
answer is negative. First, in a bipartite graph, only two col-
ors are needed to color the whole bipartite graph. Obviously,
we cannot obtain an upper bound for the maximum biclique
size using graph coloring. Second, in a large biclique, it is
possible for a vertex to have a very small degree/core num-
ber. For example, suppose the maximum biclique C is a star
where |U (C)| = 1 and |V (C)| is large, we only require the
degree/core number for each vertex in V (C) to be ≥ 1. Con-
sequently, even a vertex has a small degree/core number, it
still cannot be pruned. Therefore, the core decomposition
technique also fails in maximum biclique search.

The main reason for the challenges in maximum biclique
search is that the size of a bicliqueC depends on two factors:
|U (C)| and |V (C)|; so, it is difficult to find a one-dimensional
indicator, such as color number, degree, or core number,
to prune vertices that cannot participate in the maximum
biclique. Due to this challenge, existing solutions [38,59]
can only handle small bipartite graphs and will face seri-
ous efficiency issues when the bipartite graph scales up in
size. Motivated by this, in this paper, we tackle the above
challenges and aim to solve the maximum biclique search
problem on bipartite graphs at billion scale.

Furthermore, based on the maximum biclique search, we
can find the diversified top-k bicliques which is desired
in some applications such as fraudulent transaction detec-
tion. Instead of computing the top-k bicliques based on the
maximal biclique enumeration algorithm which may output
exponential number of bicliques and is not practical on large-
scale bipartite graphs, we adopt a simple but effectivemethod
by removing the maximum biclique from the bipartite graph
k times to obtain the diversified top-k results. However, in
this way, we still need to compute the maximum biclique k
times independently, which is costly. One may wonder if we
can share the computation costs among the diversified top-k
bicliques. It is quite challenging because there is no overlap
among the k diversified results.

Our solution Based on the above discussion, existing color-
ing and core decomposition-based approaches cannot yield

123

Maximum and top-k diversified biclique search at scale 1367

effective pruning in maximum biclique search. Our paper
aims for a new way to solve the problem. Our main idea is
as follows: instead of finding the upper bounds for pruning,
we try to guess a lower bound of |U (C∗)| as well as a lower
bound of |V (C∗)| for the maximum biclique C∗. If the guess
is correct and tight, we can search on a much smaller bipar-
tite graph by eliminating a large number of vertices based on
the two lower bounds. However, we cannot guarantee that
our guess is always correct. Therefore, instead of guessing
only once, we guess multiple times which results in a list of
lower-bound pairs (τ 0U , τ 0V), (τ 1U , τ 1V), To gain high prun-
ing power, the list of pairs should satisfy four conditions: (1)
τ 0U × τ 0V should be as large as possible but not larger than the
number of edges in the optimal bicliqueC∗; (2) The pairs are
derived in aprogressivemanner so that τ iU×τ iV ≥ τ i−1

U ×τ i−1
V

for any i > 0; (3) There exists at least one pair τ kU and τ kV
that are the true lower bounds of |U (C∗)| and |V (C∗)|; and
(4) The number of pairs should be well-bounded.

To make this idea practically applicable, two issues need
to be addressed: (1) How to guess the list of lower-bound
pairs so that they satisfy the above four conditions; and (2)
Given a lower-bound pair, how to eliminate as many vertices
as possible while preserving the corresponding maximum
biclique to optimize the computational cost.

Following the idea of the maximum biclique search prob-
lem, in the diversified top-k biclique search, we try to share
the computation cost among the k results by taking advantage
of the derived subspaces with lower-bound pairs. Our main
idea is as follows: instead of guessing tight lower bounds
only for the maximum biclique, we try to preserve more
results within one list of lower-bound pairs by slightly relax-
ing the constraints in each lower boundpair. By doing this,we
can share the computation cost among the preserved results,
without computing lower-bound lists and eliminating ver-
tices w.r.t. each lower-bound pair independently for every
single result.

Contributions In this paper, we answer the above questions
and make the following contributions:

– The first work to practically study maximum biclique
search on big real datasets Although the maximum
biclique search problem is NP-hard, we aim to design
practical solutions to solve the problem in real-world
large bipartite graphswith billions of edges. To the best of
our knowledge, this is the first work to solve this impor-
tant problem on real datasets at billion scale.

– A novel progressive-bounding framework We propose a
progressive bounding framework to obtain the lower-
bound pairs (τ iU , τ iV). We analyze the framework by
projecting the problem into a two-dimensional space, and
we show that the set of lower-bound pairs forms a sky-
line in the two-dimensional space, and only logarithmic

lower-bound pairs are enough to guarantee the correct-
ness.

– Maximum-biclique preserved graph reduction Given a
certain pair of lower bounds, we study how to elimi-
nate verticeswhile preserving themaximumbiclique.We
investigate the vertex properties and derive pruning rules
by exploring the one-hop and two-hop neighbors for each
vertex. Based on the pruning rules, we can significantly
reduce the size of the bipartite graph.

– Diversified top-k biclique search with computation shar-
ingWe formalize the diversified top-k biclique search as
a problem to maximize the total number of edges cov-
ered by the top-k bicliques, which takes both size and
diversity into consideration. Instead of computing the k
results independently, we propose an efficient algorithm
by considering the computation sharing among them.
Based on the progressive bounding framework, we gen-
erate the subspaces by slightly relaxing the lower-bound
constraints to preserve more results within one subspace
set, such that we can share the computation among the
preserved results. Two optimizations are proposed to fur-
ther accelerate the computation by pruning search spaces
and lazy refining candidates.

– Extensive performance studies on billion-scale bipartite
graphsWe conduct extensive performance studies using
18 real datasets from different application domains. The
experimental results demonstrate the efficiency and scal-
ability of our proposed approaches. Remarkably, in a
user-product bipartite graph from Alibaba with over 300
million vertices and over 1.3 billion edges, our approach
can find the maximum biclique within 15min. It is also
reported that 50% improvement on recall can be achieved
after applying our proposed method in Alibaba Group to
identify the fraudulent transactions.

Outline The remainder of this paper is organized as follows.
Section 2 provides the preliminaries that formally defines
the maximum biclique search problem and shows its hard-
ness. Section 3 introduces the baseline solution based on
the branch-and-bound framework. In Sect. 4, we analyze the
reason for the inefficiency of the baseline solution, and pro-
pose the progressive bounding framework. Section 5 presents
themaximum-biclique preserved graph reduction techniques
and its optimizations. In Sect. 6, we study the problem of
diversified top-k biclique search and propose an efficient
algorithm by sharing the computation cost among the k
results. In Sect. 7, we evaluate our proposed algorithms using
extensive experiments. We review the related work in Sect. 8
and conclude the paper in Sect. 9.

This paper is extended fromour previouswork [28] to give
a more comprehensive study. First, we add the introduction
and motivation of the diversified top-k biclique search prob-
lem.Then,we add algorithms TopKBasic and TopK to find the

123

1368 B. Lyu et al.

(a) (b) (c)

Fig. 1 An example of a bipartite graph and its maximum biclique

diversified top-k bicliques, with two optimizations to further
accelerate the computation. Finally, we add more experi-
ments on maximum and diversified top-k biclique search to
show the efficiency of the proposed algorithms.

2 Preliminaries

We consider an unweighted and undirected bipartite graph,
G = (U , V , E) where U (G) and V (G) denote the two dis-
joint vertex sets and E(G) ∈ U×V denotes the edge set inG.
For each vertex u ∈ U (G), we use N (u,G) to denote the set
of neighbors of u in G, i.e., N (u,G) = {v|(u, v) ∈ E(G)}.
The degree of a vertex u ∈ U (G), denoted as d(u,G), is the
number of neighbors of u in G, i.e., d(u,G) = |N (u,G)|.
We use dUmax(G) to denote the maximum degree for all ver-
tices inU (G), i.e., dUmax(G) = maxu∈U (G) d(u,G). We have
symmetrical definition for each vertex v ∈ V (G). The size of
a bipartite graph G, denoted as |G|, is defined as the number
of edges in G, i.e., |G| = |E(G)|.
Definition 1 (Biclique) Given a bipartite graph G = (U , V ,

E), a biclique C is a complete bipartite subgraph of G, i.e.,
for each pair of u ∈ U (C) and v ∈ V (C), we have (u, v) ∈
E(C).

In this paper, given a bipartite graph G, we aim to find
a biclique C∗ in G with the maximum size. Considering
that many real applications (e.g., fraud transaction detection)
require that the number of vertices in each part of the biclique
C∗ is not below a certain threshold, we add size constraints
τU and τV on |U (C∗)| and |V (C∗)| s.t. |U (C∗)| ≥ τU and
|V (C∗)| ≥ τV . Such a size constraint can also provide the
users with more flexibility to control the size of each side of
the biclique or avoid generating a too skewed biclique (e.g.,
a biclique with a single vertex of the highest degree at one
side and all its neighbors at the other side). As a special case,
when τU = 1 and τV = 1, the problem will find the maxi-
mumbicliquewithout any constraint. Themaximumbiclique
problem studied in this paper is defined as follows:

Problem statement Given a bipartite graph G = (U , V , E),
and a pair of positive integers τU and τV , the problem of
maximum biclique search aims to find a biclique C∗ in G,
s.t. |U (C∗)| ≥ τU and |V (C∗)| ≥ τV , and |C∗| ismaximized.
We use C∗

τU ,τV
(G) to denote such a biclique.

Example 1 Figure 1a shows a bipartite graphG withU (G) =
{u1, u2, ..., u7}, V (G) = {v1, v2, ..., v6}. Given thresholds
τU = 1 and τV = 1, the maximum biclique C∗

1,1(G) = C1

is shown in Fig. 1b, where U (C1) = {u3, u4, u5, u6} and
V (C1) = {v2, v3, v4, v5}. Given thresholds τU = 1 and
τV = 5, the maximum biclique C∗

1,5(G) = C2 is shown in
Fig. 1c, where U (C2) = {u3, u4} and V (C2) = {v1, v2, ...,
v6}.

NP-hardness and inapproximability As shown in [38], the
maximum biclique problem is NP-hard, and as proved in [5]
and [30], it is difficult to find a polynomial time algorithm
to solve the maximum biclique problem with a promising
approximation ratio. Due to the inapproximability, in this
paper, we aim to find the exact maximum biclique and will
propose several techniques to make our algorithm practical
in handling large real-world bipartite graphs.

3 The baseline solution

In the literature, the state-of-the-art algorithm proposed in
[59] resorts to the branch-and-bound framework, aiming to
list all maximal bicliques by pruning non-maximal candi-
dates from the search space. To obtain a reasonable baseline,
in this section, we extend the algorithm proposed in [59],
and design an algorithm to compute the maximum biclique
by adding some pruning rules in the branch-and-bound pro-
cess.

The branch-and-bound algorithm We briefly introduce the
branch-and-bound algorithm. The algorithmmaintains a par-
tial biclique (U , V ,U×V) and recursively adds vertices into
V . When V is fixed,U can be simply computed as the set of
common neighbors of all vertices in V , i.e.,

U = {u|(u, v) ∈ E(G) ∀v ∈ V } (1)

Therefore, we only need to consider V to determine the
biclique. Based on this idea, the key to reducing the cost is
to prune the useless vertices to be added into V . According
to Eq. 1, when V is expanded, U will be contracted.

The pseudocode of the algorithm is shown inAlgorithm 1.
The input of the algorithm includes the bipartite graphG, the
thresholds τU and τV , and an initial biclique C . Here, C is

123

Maximum and top-k diversified biclique search at scale 1369

Fig. 2 An example of MBC
searching

(a)

(b)

Algorithm 1: MBC(G, τU , τV ,C)

Input : Bipartite graph G, τU and τV , initial biclique C
Output : The maximum biclique C∗

C∗ ← C ;1
BranchBound(U (G),∅, V (G),∅);2
return C∗;3

Procedure BranchBound(U , V ,CV , XV)4
if |V | ≥ τV and |U | × |V | > |C∗| then5

C∗ ← (U , V ,U × V);6

while CV �= ∅ do7
v∗ ← CV .pop();8
U ′ ← {u ∈ U |(u, v∗) ∈ E(G)};9
V ′ ← V ∪ {v∗} ∪ {v ∈ CV |U ′ ⊆ N (v,G)};10
C ′
V ← {v ∈ CV \ V ′ | |N (v,G) ∩U ′| ≥ τU };11

X ′
V ← {v ∈ XV | |N (v,G) ∩U ′| ≥ τU };12

if |U ′| ≥ τU and |V ′| + |C ′
V | ≥ τV and |U ′| × (|V ′| + |C ′

V |)13
> |C∗| and � v ∈ XV s.t.U ′ ⊆ N (v,G) then

BranchBound(U ′, V ′,C ′
V , X ′

V);14

XV ← XV ∪ {v∗};15

used when a biclique is obtained before invoking the algo-
rithm, or can be set as ∅ otherwise. The algorithm initializes
C∗ as C (line 1), invokes the BranchBound procedure to
update C∗ (line 2), and returns C∗ as the answer (line 3).

The recursive procedure BranchBound has four parame-
ters U , V , CV , and XV , initialized as U (G), ∅, V (G) and ∅,
respectively. Here, (U , V ,U × V) defines a partial biclique.
CV is the set of candidate vertices that can be possibly added
to V , and XV is the set of vertices that has been used and
should be excluded from V . The procedure BranchBound
updatesC∗ using (U , V ,U×V) if it is larger than the current
C∗ and satisfies the threshold constraints (line 5–6). Then, it
iteratively adds vertex v∗ from CV to expand V (line 7–8).

Then, U ′ is updated by selecting the vertices from U that
are neighbors ofv∗;V ′ includes vertices inV ,v∗, and vertices
in CV that are neighbors of all vertices in U ′; C ′

V includes
the vertices in CV by excluding the vertices in V ′ as well as
the vertices with number of neighbors in U ′ no larger than
τU ; X ′

V includes all vertices in XV by excluding the vertices
with number of neighbors inU ′ no larger than τU (line 9–12).

Fig. 3 Drawbacks of MBC

The new search branch by including v∗ will be created after
considering the following pruning conditions (line 13–14):

(1) τU pruning The size of U ′ should be ≥ τU since U will
only be contracted in the branch.

(2) τV pruning The size of V ′ ∪ C ′
V should be ≥ τV .

(3) Size pruning The value of |U ′| × (|V ′| + |C ′
V |) should

be ≥ |C∗|. Without it, exploiting the current branch will not
result in a larger biclique.

(4) Non-maximality pruning The non-maximality pruning is
based on the fact that a maximum biclique should be a max-
imal biclique. If there is a vertex v in the exclusion set XV

that are neighbors of all vertices in U ′ (i.e., U ′ ⊆ N (v,G)),
the resulting biclique cannot be maximal and thus the branch
can be pruned.
After searchingbicliqueswithv∗,we addv∗ into Xv (line 15).

Example 2 Given the bipartite graph G in Fig. 1a and thresh-
olds τU = 1 and τV = 1, we show the search tree ofMBC in
Fig. 2a. The vertices in V are processed in non-descending
order of degree [59], and each tree node represents v∗
selected in the branch. We illustrate the details in search
branch from v5 in Fig. 2b. At first, we have XV = {v6, v1},
CV = {v5, v2, v4, v3}, U (C∗) = {u3, u4}, and V (C∗) =
{v1, v2, v3, v4, v5, v6}. In step (1), we select v∗= v5 and refine
U ′ = {u2, u3, u4, u5, u6}. V ′ is the vertices in CV that con-
nect to all vertices in U ′, i.e., V ′ = {v2, v3, v5}. Then, we
refine C ′

V = {v4} and X ′
V = {v1, v6}. By now, we update

U (C∗) = U ′, V (C∗) = V ′ and |C∗| = 15. In step (2), we
further select v∗ = v4, refine corresponding sets in a similar
way as shown in Fig. 2, and update |C∗| = 16.

123

1370 B. Lyu et al.

4 A progressive boundingmethod

In this section, we first analyze the reason for the large
search space of the baseline solution, and then introduce
our approach using search space partitioning based on a
progressive bounding framework to significantly reduce the
computational cost.

4.1 Problem analysis

Why costly? Although four pruning conditions are used to
reduce the search space for maximum biclique search in
Algorithm 1, it will still result in a huge search space in real
large bipartite graphs due to the following two drawbacks:

– Drawback 1: loose pruning bounds Most pruning con-
ditions in Algorithm 1 rely on τU and τV . However, τU
and τV are user given parameters which can be small. In
this way, the pruning power by τU and τV can be rather
limited. For size pruning, the constraint of |U ′| × (|V ′|
+ |C ′

V |) > |C∗| can be very loose because C ′
V is filtered

using τU and thus |C ′
V | can be large when τU is small.

– Drawback 2: large candidate size The size of a biclique
C , calculated as |U (C)| × |V (C)|, depends on two
factors: |U (C)| and |V (C)|. It is possible that the opti-
mal solution C∗ is unbalanced, i.e., either with a large
|U (C∗)| and a small |V (C∗)| or with a small |U (C∗)|
and a large |V (C∗)|. Therefore, during the branch-and-
bound process, even if the degrees of all candidates inCV

are small (where |U | is small), we cannot stop branch-
ing when V ∪CV is large, because we may still generate
a large biclique in this situation. Similarly, we cannot
remove a vertex from U when its degree is small. This
can result in a huge search spaceon a large bipartite graph.

Example 3 Figure 3 shows a bipartite graph G with U =
{u1, u2, ..., u100} and V = {v1, v2, ..., v100}. Specifically, u1
connects to all vertices in V and v1 connects to all vertices in
U . Given τU = 1 and τV = 1, the size of maximum biclique
C∗ is 100. By adoptingMBC, we firstly select v1 into V ′. As
v1 connects to all vertices in U , U ′ = {u1, u2, ..., u100}.
Furthermore, as u1 connects to all vertices in V , C ′

V =
{v2, v3, ..., v100}. However, we cannot prune any vertices
with τU = 1 and τV = 1, and neither can we prune search
branches with size constraint since |U ′| × (|V ′| + |C ′

V |) is
larger than |C∗|. Moreover, we can not prune candidate ver-
tices inC ′

V , though the degrees of vertices are 1s, which leads
to large candidate size and a huge search space.

Our idea Based on the above analysis and to significantly
improve the algorithm, we consider two aspects:

– To resolve drawback 1, we need to improve the pruning
bounds to achieve the stop conditions in early stages of
the branch-and-bound process;

– To resolve drawback 2, we need to remove as many ver-
tices as possible from the graph to reduce the number of
candidates that may participate in the optimal solution.

Our idea is as follows: instead of using the thresholds τU
and τV for pruning, we enforce two new thresholds τ ∗

U and
τ ∗
V for U (C∗) and V (C∗), respectively, with τ ∗

U ≥ τU and
τ ∗
V ≥ τV . To tighten the bounds, we try to make τ ∗

U × τ ∗
V

as large as possible but ensure that τ ∗
U × τ ∗

V is no larger
than the size of the optimal solution. With τ ∗

U and τ ∗
V , we

are able to obtain a smaller bipartite graph G∗ by removing
as many vertices as possible that will not participate in the
maximum biclique. On the smaller graph G∗ with tighter
bounds τ ∗

U and τ ∗
V , the algorithmwill bemuchmore efficient.

Suppose C∗ is the optimal solution, if we can guarantee that
τ ∗
U ≤ |U (C∗)| and τ ∗

V ≤ |V (C∗)|, the algorithmon graphG∗
with thresholds τ ∗

U and τ ∗
V will output the optimal solution.

However, to make our idea practically applicable, the fol-
lowing two issues need to be addressed:

– First, we do not know the size of the maximum biclique
C∗ before the search.

– Second, it is difficult to find a single pair τ ∗
U and τ ∗

V to
guarantee that τ ∗

U ≤ |U (C∗)| and τ ∗
V ≤ |V (C∗)|.

In the following,wewill introduce a progressive bounding
framework to resolve the two issues.

4.2 The progressive bounding framework

We propose a progressive bounding framework to address
the two issues raised as follows:

– To address the first issue, instead of using the size of
the optimal solution |C∗|, we use a lower bound lb(C∗)
of |C∗|, i.e., lb(C∗) ≤ |C∗|. The lower bound can be
quickly initialized and will be updated progressively to
make the thresholds τ ∗

U and τ ∗
V tighter.

– To address the second issue, instead of using a single
pair τ ∗

U and τ ∗
V , we use multiple pairs (τ 1U , τ 1V), (τ 2U , τ 2V),

. . ., (τ kU , τ kV). We will guarantee that for any possible
biclique C with U (C) × V (C) ≥ lb(C∗), there exists
a pair (τ iU , τ iV) for 1 ≤ i ≤ k s.t. τ iU ≤ |U (C)| and
τ iV ≤ |V (C)|. Then, for each (τ iU , τ iV) for 1 ≤ i ≤ k, we
compute a bicliqueC∗

i withmaximumsize s.t. |U (C∗
i)| ≥

τ iU and |V (C∗
i)| ≥ τ iV . Among the computed bicliques,

the biclique with the maximum size is the answer for the
original problem.

123

Maximum and top-k diversified biclique search at scale 1371

Algorithm 2: MBC∗(G, τU , τV)

Input : Bipartite graph G, thresholds τU and τV
Output : The maximum biclique C∗

C∗
0 ← InitMBC(G, τU , τV);1

τ 0V ← dUmax(G);2
k ← 0;3

while τ kV > τV do4

τ k+1
U ← max(

⌊
|C∗

k |
τ kV

⌋
, τU);

5

τ k+1
V ← max(

⌊
τ kV
2

⌋
, τV);

6

Gk+1 ← Reduce(G, τ k+1
U , τ k+1

V);7

C∗
k+1 ← MBC(Gk+1, τ

k+1
U , τ k+1

V ,C∗
k);8

k ← k + 1;9

return C∗
k ;10

The algorithm framework The progressive bounding frame-
work is shown in Algorithm 2. For any valid biclique C with
|U (C)| ≥ τU and |V (C)| ≥ τV , |C | is a lower bound of the
optimal solution C∗. Based on this, we first use InitMBC to
obtain an initial biclique, denoted as C∗

0 , s.t. |C∗
0 | ≤ |C∗|

(line 1). Then, we set τ 0V to be an upper bound of |V (C)|
for any possible biclique C . Here, a natural upper bound is
the maximum degree for any nodes in U (G), i.e., dUmax(G)

(line 2). k is used to denote the number of iterations and ini-
tialized as 0 (line 3). The progressive bounding framework
will finish in logarithmic iterations. Each iterationwill gener-
ate a pair τ k+1

U and τ k+1
V based on the values of τ kV and the the

lower bound of the optimal solution |C∗
k |. When τ k+1

V (τ k+1
U

resp.) is smaller than τV (τU resp.), it will be set to be τV (τU
resp.) (line 5–6). We will analyze the rationale later. With
τ k+1
U and τ k+1

V , we aim to obtain a graph Gk+1 that is much
smaller thanG using procedure Reduce(G, τ k+1

U , τ k+1
V), and

the maximum biclique w.r.t. thresholds τ k+1
U and τ k+1

V is pre-
served in Gk+1 (line 7). After this, we find the maximum
biclique w.r.t. τ k+1

U and τ k+1
V on Gk+1 with C∗

k as an initia-
tion in MBC (line 8).

The rationale Next, we address the rationale of the progres-
sive bounding framework. Note that the size of a biclique C
is determined by |U (C)| and |V (C)|. Therefore, to analyze
the problem, we define a two-dimensional space as follows:

Definition 2 (Search Space S(G)) Given a bipartite graph
G, a two-dimensional space S(G) has two axes |U | and |V |.
Given any biclique C in G, we can represent it as a two-
dimensional point (|U (C)|, |V (C)|) in the space S(G).

Given the search space S(G), the i-th search in line 7-8
of Algorithm 2 can be considered as to cover a certain sub-
space ([τ iU ,+∞), [τ iV ,+∞)) in S(G). To show the search
preserves the optimal solution, we define the optimal curve
in S(G):

Definition 3 (Optimal Curve) Given a bipartite graph G and
parameters τU and τV , suppose C∗ is the maximum biclique
w.r.t. τU and τV , we call the curve |U | × |V | = |C∗| the
optimal curve in the two-dimensional space S(G).

Note that the optimal curve is unknown before the search.
However, it can be used to analyze the correctness of the
progressive bounding framework as followers.

Theorem 1 (AlgorithmCorrectness)Given a bipartite graph
G and parameters τU and τV , for any point (sU , sV) on
the optimal curve with sU ∈ [τU , dVmax(G)] and sV ∈
[τV , dUmax(G)], there exists a certain (τ iU , τ iV) generated by
Algorithm 2 s.t. (sU , sV) ∈ ([τ iU ,+∞), [τ iV ,+∞)).

Proof Sketch: In Algorithm 2, τ 0V is set to be dUmax(G), and
when k increases, τ kV will be iteratively divided by 2 until it
is smaller than τV . Therefore, we can always find a certain
i > 0 s.t.

τ iV ≤ sV ≤ τ i−1
V

Based on Algorithm 2, we have τ iU = max(

⌊
|C∗

i−1|
τ i−1
V

⌋
, τU).

We consider two cases:

– Case 1: τ iU = τU . In this case, we have:

sU ≥ τU = τ iU

Therefore, (sU , sV) ∈ ([τ iU ,+∞], [τ iV ,+∞]) holds.
– Case 2: τ iU =

⌊
|C∗

i−1|
τ i−1
V

⌋
. Note that |C∗

i−1| is a lower bound
of the optimal value |C∗| i.e.,

|C∗
i−1| ≤ |C∗|

Since (sU , sV) is a point on the optimal curve, we have

sU × sV = |C∗|

Consequently, we can derive the following inequalities:

τ iU =
⌊ |C∗

i−1|
τ i−1
V

⌋
≤

⌊ |C∗|
τ i−1
V

⌋

≤
⌊ |C∗|

sV

⌋
= �sU � ≤ sU

Therefore, (sU , sV) ∈ ([τ iU ,+∞], [τ iV ,+∞]) holds.

According to the analysis above, Theorem 1 holds. ��
Theorem 1 shows that all the points in the optimal curve

within the range ([τU , dVmax(G)], [τV , dUmax(G)]) are cov-
ered by the search spaces in Algorithm 2. Note that for any

123

1372 B. Lyu et al.

Fig. 4 Illustration of algorithm rationale

biclique C in G, we can guarantee that |U (C)| ≤ dVmax(G)

and |V (C)| ≤ dUmax(G). Therefore, Algorithm 2 obtains the
optimal solution.

The rationale of the progressive bound framework is
shown in Fig. 4. Here, we draw the two-dimensional space
S(G), and show the search spaces of the first three itera-
tions of Algorithm 2 on S(G). We generate three search
spaces using (τ 1U , τ 1V), (τ 2U , τ 2V), and (τ 3U , τ 3V), which obtains
the bicliques C∗

1 , C
∗
2 , and C∗

3 , respectively. We use red,
green, and blue colors to differentiate the three spaces respec-
tively. As shown in Fig. 4, when i increases, the curve
|U |×|V | = |C∗

i | progressively approaches the optimal curve
|U |×|V | = |C∗|, and the optimal curve |U |×|V | = |C∗| in
S(G) for |V | ≥ τ 3V is totally covered by the three search
spaces. This illustrates the correctness of the progressive
bounding framework.

Example 4 Given the bipartite graph G in Fig. 1a and thresh-
olds τU = 1 and τV = 1, we adopt Algorithm 2 to find
the maximum biclique. Suppose we initiate biclique C∗

0 as
shown in Fig. 1c that we have |C∗

0 | = 12 and τ 0V = 6. Then,
we search the optimal solution progressively:

(1) τ 1U = 2, τ 1V = 3. We adopt Reduce to filter vertices
in G, e.g., we filter u7 as d(u7,G) = 2 and it cannot
be involved in a biclique with τ 1V = 3. We will explain
Reduce in detail later. We search for C∗

1 on G1, and get
U (C∗

1) = {u3, u4, u5, u6}, V (C∗
1) = {v2, v3, v4, v5}.

Thus |C∗
1 | = 16.

(2) τ 2U = 5, τ 2V = 1. Sincewe cannot find any larger biclique
on reduced graph G2, |C∗

2 | = 16. As shown above, we
progressively use multiple strict τ kU and τ kV threshold
pairs to approach the optimal solution.

The effectiveness of the progressive bounding framework
is further verified in our experiments. For example, Table 2

shows that the graph compression ratio in the bounding iter-
ations varies from 0% (omitted in the table) to 2.05%. This
reduces significantly the search space and computation cost
in the maximum biclique search procedure.

To realize the algorithm frameworkMBC∗ in Algorithm 2,
we still need to solve the following two components:

– The initial biclique computation algorithm InitMBC. We
use a greedy strategy to obtain the initial biclique. Specif-
ically, we initialize an empty biclique and iteratively
add the vertex that can maximize the size of the current
biclique until no vertex can be added. The biclique with
the maximum size among the process is returned.

– The graph reduction algorithm Reduce. We will discuss
the details of Reduce in the next section.

5 MBC-preserved graph reduction

As shown in Algorithm 2, one of the most important pro-
cedures is to reduce the size of the bipartite graph given
certain τ iU and τ iV while preserving the maximum biclique.
In this section, we show how to reduce the bipartite graph
size by exploring some properties of the one-hop and two-
hop neighbors for a certain vertex. We first introduce the
MBC-preserved graph below.

Definition 4 (MBC-Preserved Graph) Given a bipartite
graph G, and thresholds τ iU and τ iV , a bipartite graph G ′ is
called a MBC-preserved graph w.r.t. τ iU and τ iV , if U (G ′) ⊆
U (G), V (G ′) ⊆ V (G), E(G ′) ⊆ E(G) and |C∗

τ iU ,τ iV
(G ′)| =

|C∗
τ iU ,τ iV

(G)|. In other words, the maximum biclique for G is

preserved in G ′. We use G ′ �τ iU ,τ iV
G to denote that G ′ is an

MBC-preserved graph of G.

We can easily derive the following lemma:

Lemma 1 (Transitive Property) If G1 �τ iU ,τ iV
G2 and

G2 �τ iU ,τ iV
G3, we have G1 �τ iU ,τ iV

G3.

5.1 One-hop graph reduction

To reduce the size of the bipartite graph, we first consider a
simple case by exploring the one-hop neighbors for each ver-
tex. Specifically, we use the number of neighbors to reduce
the bipartite graph. Besides, we eliminate a vertex u by
removing u and all its adjacent edges from G, denoted as
G � u. We derive the following lemma:

Lemma 2 Given a bipartite graph G, thresholds τ iU and τ iV ,
we have:

(1) ∀u ∈ U (G): d(u,G) < τ iV �⇒ G � u �τ iU ,τ iV
G;

123

Maximum and top-k diversified biclique search at scale 1373

Algorithm 3: Reduce1Hop(G, τ iU , τ iV)

Input : Bipartite graph G, thresholds τ iU and τ iV
Output : A graph Gi s.t. Gi �τ iU ,τ iV

G

Gi ← G; f inish ← false;1
while f inish = false do2

f inish ← true;3

if exists u ∈ U (Gi) s.t. d(u,Gi) < τ iV then4
Gi ← Gi � u; f inish ← false;5

if exists v ∈ V (Gi) s.t. d(v,Gi) < τ iU then6
Gi ← Gi � v; f inish ← false;7

return Gi ;8

(2) ∀v ∈ V (G): d(v,G) < τ iU �⇒ G � v �τ iU ,τ iV
G.

Proof Sketch: We only prove (1), and (2) can be proved
similarly. Given a certain vertex u ∈ U (G) with d(u,G) <

τ iV , we need to prove that for any biclique C in G with
|U (C)| ≥ τ iU and |V (C)| ≥ τ iV , C is also a biclique in
G � u. That is, we only need to prove u /∈ U (C). Next, we
prove u /∈ U (C) by contradiction. Suppose u ∈ U (C), since
C is a biclique with |V (C)| ≥ τ iV , u has at least τ

i
V neighbors

in G, i.e., d(u,G) ≥ τ iV . This contradicts with the fact that
d(u,G) < τ iV . Therefore, the lemma holds. ��
Lemma 2 provides a sufficient condition for a vertex to be
eliminated s.t. the maximum biclique is preserved. Based on
the Lemma 1, Lemma 2 can be iteratively applied to reduce
the graph size until no vertices can be eliminated.

The one-hop graph reduction is shown in Algorithm 3.
Given a bipartite graph G and thresholds τ iU and τ iV , the
algorithmaims to compute a bipartite graphGi s.t.Gi �τ iU ,τ iV
G by applying the one-hop reduction rule in Lemma 2. We
first initialize Gi to be G (line 1), and then we iteratively
remove vertices fromGi that satisfy either case (1) (line 4–5)
or case (2) (line 6–7) in Lemma 2. The algorithm terminates
until no such vertices can be found in Gi . The following
lemma shows the time complexity of Algorithm 3.

Lemma 3 Algorithm 3 requires O(|G|) time.

Proof Sketch: To implement Algorithm 3 efficiently, we
can use a queue Q to maintain the set of vertices satisfy-
ing Lemma 2. Each vertex is pushed into and poped from
the queue Q at most once. For each vertex v, after removing
it from Gi , we need to maintain the degrees of its neigh-
bors and put those neighbors that can be eliminated using
Lemma 2 due to decreasing of the degree into the queue
Q. This requires O(d(v,G)) time. Therefore, the overall
time complexity of Algorithm 3 is O(

∑
u∈U (G) d(u,G) +∑

v∈V (G) d(v,G)) = O(|G|). ��

5.2 Two-hop graph reduction

Next, we explore the two-hop neighbors to further reduce
the size of the bipartite graph. For each vertex u, suppose u′
is a two-hop neighbor of u, i.e., N (u′,G) ∩ N (u,G) �= ∅.
To eliminate u by fully using the information involved within
the two-hopneighbors, instead of only considering the degree
of u′, i.e., |N (u′,G)|, we consider the number of common
neighbors of u and u′, i.e., |N (u′,G) ∩ N (u,G)|. To do so,
we define the τ -neighbor and τ -degree as follows:

Definition 5 (τ -Neighbor and τ -degree) Given a bipartite
graph G and a parameter τ , for any u ∈ U (G) and u′ ∈
U (G), u′ is a τ -neighbor of u iff

|N (u′,G) ∩ N (u,G)| ≥ τ

For any u ∈ U (G), the set of τ -neighbors of u is defined as
Nτ (u,G), i.e.,

Nτ (u,G) = {u′ | |N (u′,G) ∩ N (u,G)| ≥ τ }

and the τ -degree of u is defined as the number of vertices in
Nτ (u,G), i.e.,

dτ (u,G) = |Nτ (u,G)|

Similarly, we can define the τ -neighbor set Nτ (v,G) and the
τ -degree dτ (v,G) for any v ∈ V (G).

Obviously, the τ -neighbor of any vertex u is a subset of a
union of u itself and the two-hop neighbors of u. For example,
in Fig. 5b, when τ = 4, Nτ (v1,G ′) = {v1, v2, v3}, because
both v2 and v3 have ≥ 4 neighbors with v1.

The following lemma shows how to use the τ -neighbor of
a vertex to eliminate the vertex with the given thresholds.

Lemma 4 Given a bipartite graph G, thresholds τ iU and τ iV ,
we have:

(1) ∀u ∈ U (G) : dτ iV
(u,G) < τ iU �⇒ G � u �τ iU ,τ iV

G;

(2) ∀v ∈ V (G) : dτ iU
(v,G) < τ iV �⇒ G � v �τ iU ,τ iV

G.

Proof Sketch:Weonly prove (1), and (2) can be proved simi-
larly. Given a certain vertex u ∈ U (G)with dτ iV

(u,G) < τ iU ,
we need to prove that for any biclique C in G with |U (C)| ≥
τ iU and |V (C)| ≥ τ iV , C is also a biclique in G � u. That is,
we only need to prove u /∈ U (C). Next, we prove u /∈ U (C)

by contradiction. Suppose u ∈ U (C), since C is a biclique
with |U (C)| ≥ τ iU and |V (C)| ≥ τ iV , for each u′ ∈ U (C),
we have:

|N (u,C) ∩ N (u′,C)| = |V (C)| ≥ τ iV

123

1374 B. Lyu et al.

Algorithm 4: Reduce2Hop(G, τ iU , τ iV)

Input : Bipartite graph G, thresholds τ iU and τ iV
Output : A graph Gi s.t. Gi �τ iU ,τ iV

G

Gi ← G;1

Gi ← Reduce2H(Gi ,U (Gi), τ
i
U , τ iV);2

Gi ← Reduce2H(Gi , V (Gi), τ
i
V , τ iU);3

return Gi ;4

Procedure Reduce2H(Gi ,U , τ iU , τ iV)5
for each u ∈ U do6

S ← ∅;7
for each v ∈ N (u,Gi) do8

for each u′ ∈ N (v,Gi) do9
if S. f ind(u′) = ∅ then10

S ← S ∪ {(u′, 1)};11

else12
o ← S. f ind(u′);13
o.cnt ← o.cnt + 1;14

c ← |{o ∈ S|o.cnt ≥ τ iV }|;15

if c < τ iU then16
Gi ← Gi � u;17

return Gi ;18

In other words, u′ is a τ iV -neighbor of u in C , i.e., u′ ∈
Nτ iV

(u,C). Therefore,

|Nτ iV
(u,C)| = |U (C)| ≥ τ iU

Consequently, we can derive:

dτ iV
(u,G) = |Nτ iV

(u,G)| ≥ |Nτ iV
(u,C)| ≥ τ iU

This contradicts with the assumption that dτ iV
(u,G) < τ iU .

As a result, the lemma holds. ��
Based on Lemma 4 and the transitive property shown in

Lemma 1, we are ready to design the two-hop graph reduc-
tion algorithm. The pseudocode of the algorithm is shown
in Algorithm 4. Since Lemma 4 can be applied for vertices
in both U (G) and V (G), the algorithm reduce the bipartite
graph G twice, and each time the vertices in one side are
reduced using the procedure Reduce2H (line 1–4).

In the Reduce2H procedure (line 5–18), we visit each
vertex u ∈ U to check whether u can be eliminated using
Lemma 4 (line 6). We use S to maintain the set of two-hop
neighbors of u along with the number of common neighbors
with each two-hop neighbor. Specifically, for each two-hop
neighbor u′ of u, we create a unique entry o = (u′, cnt)
in S where o.cnt denotes the number of common neighbors
for u and u′. In the algorithm, we first search the neigh-
bors v ∈ N (u,Gi) (line 8) and then search the neighbors
u′ ∈ N (v,Gi) to obtain each two-hop neighbor u′ (line 9). If
the entry for u′ does not exist in S, we add u′ to Swith cnt = 1

(line 10–11); otherwise, we obtain the entry o for u′ and
increaseo.cnt by1 (line 13–14).After processing all two-hop
neighbors of u, we maintain a counter c to count the number
of τ iV -neighbor of u (line 15). Obviously, c = dτ iV

(u,G).

Therefore, if c < τ iU , we can eliminate u from Gi according
to Lemma 4 (line 16–17).

Lemma 5 Algorithm 4 requires O(
∑

u∈U (G) d(u,G)2 +∑
v∈V (G) d(v,G)2) time.

Proof Sketch:When processingU (G) (line 2), for each u ∈
U (G) (line 6) and v ∈ N (u,G) (line 8), we need to process
all neighbors u′ of v using O(d(v,G)) time. Therefore, the
total time complexity of the procedure in line 2 is

O

(∑
u∈U (G)

∑
v∈N (u,G)

d(v,G)

)

= O

(∑
(u,v)∈E(G)

d(v,G)

)

= O

(∑
v∈V (G)

∑
u∈N (v,G)

d(v,G)

)

= O

(∑
v∈V (G)

d(v,G)2
)

Similarly, the total time complexity of the procedure in
line 3 is O(

∑
u∈U (G) d(u,G)2). Consequently, the overall

time complexity of Algorithm 4 is O(
∑

u∈U (G) d(u,G)2 +∑
v∈V (G) d(v,G)2). ��

Optimizations However, Reduce2Hop is more costly than
Reduce1Hop. So we introduce two heuristics, early pruning
and early skipping, to further optimize the two-hop reduction
algorithm as follows.
(1) Early pruning In Algorithm 4, there is no specific order
to process vertices. However, if we process vertices that are
more likely to be pruned first, the removal of these vertices
may result in more vertices elimination in later iterations.
Based on this, we design a score function so that vertices
with small scores are more likely to be pruned. A straightfor-
ward score is the vertex degree. However, it only considers
the vertices in one side and ignores those in the other side.
Therefore, for each vertex u, we summarize the degrees for
all u’s neighbors, and design the score function as follows:

score(u) =
∑

v∈N (u,G)

d(v,G) (2)

The score function considers both the number of neighbors
u has and the degrees of the u’s neighbors, and is cheap to
compute. Given the score function, we can simply modify
the algorithm by processing vertices in non-decreasing order
of their scores to improve the algorithm performance.

123

Maximum and top-k diversified biclique search at scale 1375

(a) (b)

(d)

(c)

Fig. 5 An example of graph reduction with τU = 4, τV = 4

(2) Early skippingThen,we proceed to identify somevertices
that cannot be pruned using Reduce2Hop before explor-
ing their two-hop neighbors. These vertices can be skipped
directly. The following lemma provides a way to do this:

Lemma 6 For any vertices u, u′ and threshold τ , we have:
u′ ∈ Nτ (u,G) ⇐⇒ u ∈ Nτ (u′,G)

Proof Sketch: According to Definiton 5, u′ ∈ Nτ (u,G) is
equivalent to N (u′,G) ∩ N (u,G) ≥ τ , which is equivalent
to u ∈ Nτ (u′,G). ��

Based on Lemma 6, for any vertex u′ ∈ U (G), if there
are more than τ iU vertices u with u′ ∈ Nτ iV

(u,G), we can

guarantee that dτ iV
(u′,G) ≥ τ iU , and therefore u′ can be

skipped by Lemma 4 without exploring the two-hop neigh-
bors of u′. To realize this idea, for each vertex u′ ∈ U (G),
we use u′.c to maintain the number of processed vertices u
s.t. u′ ∈ Nτ iV

(u,G). When processing u, for each two-hop

neighbor u′, if u′ ∈ Nτ iV
(u,G), we increase u′.c by 1. Later

on, when processing u′, we check whether u′.c + 1 ≥ τ iU
before exploring the two-hop neighbors of u′. If so, we know
that u′ cannot be pruned and directly skip u′. Here, we use
u′.c + 1 to take u′ itself into consideration.

5.3 The overall reduction strategy

Based on the above analysis, we can use either one-hop or
two-hop reduction to reduce the size of the bipartite graphG.
The following lemma shows that the two-hop reduction rule
in Lemma 4 has stronger pruning power than the one-hop
reduction rule in Lemma 2.

Lemma 7 Given a bipartite graph G, thresholds τ iU and τ iV ,
we have:

(1) ∀u ∈ U (G) : d(u,G) < τ iV �⇒ dτ iV
(u,G) < τ iU ;

(2) ∀v ∈ V (G) : d(v,G) < τ iU �⇒ dτ iU
(v,G) < τ iV .

Proof Sketch: We first prove (1). For any u ∈ U (G), if
d(u,G) < τ iV , we know that there does not exist a two-hop
neighbor u′ of u s.t. |N (u′,G) ∩ N (u,G)| ≥ τ iV . Therefore,
dτ iV

(u,G) = 0 < τ iU . (2) can be proved similarly. ��
Nevertheless, based on Lemmas 3 and 5, applying one-

hop reduction is much more efficient than applying two-hop
reduction. Therefore, we design the overall graph reduction
strategy as follows:
Reduce Given a bipartite graph G and thresholds τ iU and τ iV ,
Reduce iteratively applies one-hop and two-hop reduction
strategies on G for MAX_ITER rounds where MAX_ITER is a
small constant, and returns the reduced graph Gi . Specifi-
cally, in each round, Reduce first applies Reduce1Hop and
then further applies Reduce2Hop on the reduced graph.

Example 5 We show the example of the complete graph
reduction process in Fig. 5. Given the bipartite graph G in
Fig. 1a and thresholds τU = 4, τV = 4 and MAX_ITER = 2,
we first apply Reduce1Hop in Fig. 5a. Since d(u7,G) =
2 < τV and d(v6,G) = 2 < τU , we prune u7 and v6. Then,
we apply Reduce2Hop in Fig. 5b with the details shown in
Fig. 5d. We traverse the one-hop and two-hop neighbors of
v1, and update the entries in S as shown in step (1) to step (4).
For example, in step (1), we traverse v1’s neighbor u1 and
two-hop neighbors v1, v2, v3 and v4, and set cnt = 1 for each
two-hop neighbor. After visiting all neighbors in step (4), we
have three vertices with cnt = 4, i.e., c = dτU (v1,G ′) = 3.
According to Lemma 4, since dτU (v1,G ′) < τV , we prune
v1. After that, we further apply Reduce1Hop in Fig. 5c, and
prune vertices u1 and u2. By applying Reduce, we save huge
search space in biclique search.

6 Diversified top-k biclique search

In some applications, one may need to enumerate a set
of bicliques. For example, in click farm detection in E-
commerce such asAlibabaGroup, the fraudulent transactions
cannot be fully covered by the maximum biclique. Instead,

123

1376 B. Lyu et al.

(a) (b)

Fig. 6 Top-2 bicliques in G with τU = 1 and τV = 1

we may need to consider the maximal biclique, where none
of its superset is also a biclique. However, as the number
of maximal bicliques may be exponential in the graph size
[11], a possible solution is to compute the top-k results
ranked by size, since maximal bicliques with larger size
are always more important [23]. However, the top-k results
ranked by size are usually highly overlapping, which sig-
nificantly reduce the effective information of the k results.
Motivated by this, we study the problem of the Diversified
Top-k Biclique Search in this section, aiming to find top-k
results that are distinctive and informationally rich.

Firstly, we formally define the diversified top-k biclique
search problem.

Definition 6 (Coverage cov(D)) Given a set of bicliques
D = {R1, R2, ...} in a bipartite graph G, the coverage of
D, denoted by cov(D), is the set of edges in G covered by
the bicliques in D, i.e., cov(D) = ⋃

R∈D E(R).

Problem statement Given a bipartite graph G = (U , V , E),
an integer k, and thresholds of τU and τV , the problem of
diversified top-k biclique search aims to find a set D, such
that (1) each biclique R ∈ D is a maximal biclique with
|U (R)| ≥ τU and |V (R)| ≥ τV , (2) |D| ≤ k and (3) cov(D)

is maximized.

Example 6 We show an example of top-2 bicliques in bipar-
tite graph G with τU = 1 and τV = 1 in Fig. 6. There
are three maximal bicliques in G: R1 with U (R1) =
{u3, u4, u5, u6} and V (R1) = {v2, v3, v4, v5}; R2 with
U (R2) = {u3, u4, u5, u6, u7} and V (R2) = {v3, v4, v5};
and R3 with U (R3) = {u1, u2, u3} and V (R3) = {v1, v2}.
The result of top-2 maximal bicliques ranked by size is
D1 = {R1, R2}, and the result of diversified top-2 bicliques
is D2 = {R1, R3}. Although |R2| > |R3|, it is obvious that
D2 is more favorable since R2 is highly overlapping with R1.
In other words, cov(D2) > cov(D1).

NP-hardness We show the hardness of the problem by con-
sidering the simple case: k = 1, τU = 1, and τV = 1. In this
case, the problem becomes the maximum biclique search
problem which is NP-hard [38]. Therefore, the diversified
top-k biclique search problem is an NP-hard problem.

Algorithm 5: TopKBasic(G, k, τU , τV)

Input : Bipartite graph G, integer k, thresholds τU and τV
Output : The set of diversified top-k results D
D ← ∅;1
for i = 1 to k do2

Ri ← MBC∗(G, τU , τV);3
if Ri is empty then4

break;5

D ← D ∪ Ri ;6
E(G) ← E(G) \ E(Ri);7

return D;8

6.1 Baseline solution

In the literature, the problem of maximal biclique enumer-
ation is widely studied [15,29,35–37,41,59]. This leads to a
straightforward solution of diversified top-k biclique search:
firstly, we can enumerate all the maximal bicliques satisfy-
ing the thresholds of τU and τV , and then we formulate the
problem of diversified top-k biclique search as amax k-cover
problem. However, in a large-scale bipartite graph, the enu-
meration is costly and may not be able to terminate. Besides,
it is infeasible to keep all the maximal bicliques in memory
due to the exponential number of maximal bicliques in large
bipartite graphs.

Fortunately, by taking advantage of our efficient maxi-
mum biclique search method, we can find the diversified
top-k results by repeatedly removing the current maximum
biclique from the bipartite graph k times, which follows the
framework in a well-studied diversified top-k clique problem
[57].

The baseline solution is shown in Algorithm 5. It firstly
initiates the result set D as empty (line 1), and then greedily
compute k bicliques to insert into D (line 2–7), and return
D as the top-k results (line 8). Each time, it invokes MBC∗
to compute the maximum biclique Ri in G satisfying the
thresholds of τU and τV (line 3). If Ri is empty, it indicates
that no more bicliques satisfying τU and τV can be found and
we can stop searching (line 4–5). Otherwise, we update D
by inserting Ri into it (line 6), and then remove the edges in
Ri from G (line 7).

Time complexity We analyze the time cost of Algorithm 5.
The time cost is mainly spent on the k times computation
of MBC∗, which consists of the graph reduction time and
maximum biclique searching time. In MBC∗, we denote the
number of subspaces generated for searching result R j as
l j , where l j is bounded by log(dUmax(G)). For result R j , we
use Treduce(G) to denote the graph reduction time (includ-
ing one-hop and two-hop graph reduction), and Tsearch(Gi, j)

to denote the maximum biclique searching time, where
Gi, j represents the reduced graph in the i-th subspace
for R j . Here, Tsearch(G) = O(|V (G)|dVmax(G)β) where

123

Maximum and top-k diversified biclique search at scale 1377

(a) (b)

Fig. 7 Search top-2 bicliques in G by TopKBasic

β denotes the number of the maximal bicliques in G as
introduced in [59]. Thus, the time cost of Algorithm 5 is

O(
∑k

j=1
∑l j

i=1(Treduce(G) + Tsearch(Gi, j)).

Example 7 Given a bipartite graph G in Fig. 7a with thresh-
olds τU = 1 and τV = 1, we adopt Algorithm 5 to find the
diversified top-2 bicliques in G:

(1) To find R1 in G with MBC∗, suppose |C0| = 10 and
τ 0V = 5, we generate two subspaces as follows:

(i) τ 1U =
⌊

|C0|
τ 0V

⌋
= 2, τ 1V =

⌊
τ 0V
2

⌋
= 2. We find the

maximum biclique C∗
1 (marked as gray in Fig. 7a),

and we update |C∗
1 | = 16.

(ii) τ 2U =
⌊

|C∗
1 |

τ 1V

⌋
= 8, τ 2V =

⌊
τ 1V
2

⌋
= 1. We cannot find

larger bicliques.

Thus, we obtain R1 = C∗
1 as shown in Fig. 7a. Then,

we remove all edges in R1 from G, and get G ′ as shown
in Fig. 7b. (Here, we omit the vertices with no edges.)
(2) To find R2 in G ′ with MBC∗, suppose |C ′

0| = 6, and

τ 0V
′ = 4, we generate two subspaces as follows:

(i) τ 1U
′ =

⌊
|C0

′|
τ 0V

′

⌋
= 1, τ 1V

′ =
⌊

τ 0V
′

2

⌋
= 2. We find C∗

1
′

(marked as gray in Fig. 7b), and update |C∗
1
′| = 15.

(ii) τ 2U
′ =

⌊
|C∗

1
′|

τ 1V
′

⌋
= 7, τ 2V

′ =
⌊

τ 1V
′

2

⌋
= 1. We cannot

find larger bicliques.

Thus, we obtain R2 = C∗
1
′, as shown in Fig. 7b. It should be

noticed that the subspaces generated in G and G ′ are differ-
ent. Consequently, for R1 and R2, we compute the reduced
subgraph by Reduce and the maximum biclique by MBC in
each subspace independently.

Finally, we obtain the result set D = {R1, R2}.

6.2 Advanced diversified top-k search

In this subsection, we first analyze the drawbacks of the base-
line solution, and then introduce our new diversified top-k
biclique search approach, based on the idea of deriving the
same subspaces for different results to share computation
cost among them.

6.2.1 Problem analysis

Drawbacks ofTopKBasic The major limitation of TopKBasic
is the isolated computation of Ri by MBC∗. Recall that in
MBC∗, we progressively generate subspaces based on the
value of the maximum biclique size found so far (line 5–
6 in MBC∗). We call such subspaces generated for Ri as
a subspace set. Obviously, for the top-k results, the gener-
ated subspace sets are different (e.g., the generated subspace
sets of R1 and R2 in Example 7). Consequently, both graph
reduction by Reduce and maximum biclique search byMBC
in MBC∗ will be computed independently in each subspace
among all the k results, which is costly.

Our idea Intuitively, since the different generated subspace
sets lead to the isolated computations of Ri in TopKBasic, we
consider to generate the same subspace set for all the k results
so as to share the computation among them. Specifically,
we fix the subspace set in MBC∗ as follows: (1) Instead of
using the largest biclique size found so far as the lower bound
of the optimal solution for generating subspaces, we use a
constant c. According to Theorem 1, it is not hard to prove
that with c as the lower bound, we can preserve themaximum
biclique whose size is larger than c in the derived subspaces.
Thus to find the top-k results, we set c as a constant value
which is smaller than the size of the k-th result Rk . (2)We fix
τ 0V = dUmax(Gori) where Gori denotes to the original bipartite
graph G, and dUmax(Gori) is guaranteed to be an upper bound
of |V (R)| for all the k results. Consequently, with the fixed
c and τ 0V , we can generate the same subspace set for all the
k results. We denote such a fixed subspace set as FS(G, c),
or FS in short if the context is clear.

With the idea of the fixed subspace set FS(G, c), the
following two issues need to be further addressed:

– First, we do not know the size of the k-th result Rk .
Although we can set c as a small constant, e.g., c =
τU ×τV , the τ iU and τ iV computed based on c in each sub-
space may be very loose for graph reduction and search
space pruning.

– Second, even we can generate the same subspace set for
the k results, we still need to remove Ri from bipartite
graph G when searching for Ri+1, which indicates that
the reduced graph and the maximum biclique in each
subspace need to be recomputed.

6.2.2 Advanced top-k biclique search

To solve the above problems, we first preserve the following
three information for each subspace in FS(G, c):

(1) the thresholds τ iU and τ iV computed based on c;
(2) the reduced subgraph Gi w.r.t. τ iU and τ iV ;

123

1378 B. Lyu et al.

(3) the maximum biclique C∗
i in Gi that |U (C∗

i)| ≥ τ iU ,|V (C∗
i)| ≥ τ iV and |C∗

i | > c.

Based on FS(G, c), we address the two issues as follows:

– To address the first issue, instead of initiating c as a very
small constant to cover all the results which leads to loose
thresholds, we search for the top-k results by progres-
sively relaxing c. Specifically, we use a lower bound of
the size of the top-1 biclique to initiate c. Then, we gen-
erate FS(G, c) and search results in it. Once we cannot
find enough results within FS(G, c), we relax c to c′ by
multiplying a factor α, where 0 < α < 1, and regenerate
FS(G, c′) to cover more results.

– To address the second issue, instead of recomputing the
subgraph by Reduce and maximum biclique by MBC
in each subspace when searching for the next result,
we apply light-costed subgraph updating and on-demand
maximum biclique searching in FS(G, c). Specifically,
as we have maintained the reduced subgraph Gi and the
maximum biclique C∗

i in each subspace in FS(G, c),
when we need to remove R j from G, we can update Gi

by simply eliminating the edges in R j from Gi . More-
over, we only need to recompute C∗

i that has overlaps
with R j . Otherwise, C∗

i remains unchanged even when
Gi is updated.

The advanced algorithm The proposed algorithm is shown in
Algori thm 6. It firstly initiates D as an empty set and R0 as
empty (line 1). We set the value of c as the size of the initial
biclique in G found by InitMBC, which is a lower bound of
the size of top-1 result R1 (line 2). We use f lag to indicate
whether or not we need to generate FS with constant c, ini-
tialized as true, and i to denote the index of the top-k results,
initialized as 0 (line 3). Then, we search for the top-k results
(line 4–16). We first invoke GenSubSpaces to generate FS
when f lag is true , and after generation, we set f lag as
false (line 5–6). With FS, we invoke FixedMBC∗ to search
the maximum biclique in each subspace, respectively, and
return the one with the largest size as the result Ri+1 (line 7).
If Ri+1 is empty, it indicates that no bicliques larger than c
can be found inFS. Here, wewill terminate the computation
if c < τU × τV , as in this case, no more bicliques satisfying
τU and τV can be found (line 9–10). Otherwise, we relax c
by multiplying a factor α, where 0 < α < 1, and set f lag
as true to indicate that we need to regenerate FS (line 11–
12). If Ri+1 is not empty, we add Ri+1 into D and update G
by deleting edges in Ri+1 from G (line 13–16). Finally, we
return D as the diversified top-k results (line 17).

Procedure GenSubSpaces generates the fixed subspace
set based on c. It follows similar procedures inMBC∗, except
that in GenSubSpaces, each iteration generates a pair of

Algorithm 6: TopK(G, k, τU , τV)

Input : Bipartite graph G, integer k, thresholds τU and τV
Output : The set of diversified top-k results D
D ← ∅; R0 ← ∅;1
c ← |InitMBC(G, τU , τV)|;2
f lag ← true; i ← 0;3
while i < k do4

if f lag = true then5
FS ← GenSubSpaces(G, τU , τV , c); f lag ← false;6

Ri+1 ← FixedMBC∗(FS, Ri , c);7
if Ri+1 is empty then8

if c < τU × τV then9
break;10

else11
c = α × c; f lag ← true;12

else13
D ← D ∪ Ri+1;14
E(G) ← E(G) \ E(Ri+1);15
i ← i + 1;16

return D;17

Procedure GenSubSpaces(G, τU , τV , c)18

τ 0V ← dUmax(G);19
i ← 0;20

while τ iV > τV do21

τ i+1
U ← max(

⌊
c

τ iV

⌋
, τU);

22

τ i+1
V ← max(

⌊
τ iV
2

⌋
, τV);

23

Gi+1 ← Reduce(G, τ i+1
U , τ i+1

V);24

C∗
i+1 ← MBC(Gi+1, τ

i+1
U , τ i+1

V , c);25

FS ← FS ∪ (Gi+1, τ
i+1
U , τ i+1

V ,C∗
i+1);26

i ← i + 1;27

return FS;28

Procedure FixedMBC∗(FS, R, c)29
C∗ ← ∅;30

for (Gi , τ
i
U , τ iV ,C∗

i) inFS do31
E(Gi) ← E(Gi) \ E(R);32
if E(C∗

i) ∩ E(R) �= ∅ then33

C∗
i ← MBC(Gi , τ

i
U , τ iV , c);34

if |C∗
i | > |C∗| then35

C∗ ← C∗
i ;36

return C∗;37

τ i+1
U and τ i+1

V based on the fixed constant c (line 22–23)
and searches for the maximum biclique whose size is larger
than c (line 25). Here, we slightly modifyMBC that we use a
constant c rather than an initial biclique for size pruning, and
if no biclique larger than c can be found, we directly return
an empty biclique. Besides, we further preserve the reduced
subgraph Gi , thresholds τ iU and τ iV , and maximum biclique
C∗
i as the subspace information in FS (line 26), in order

to share the computation cost among all results preserved in
FS.

123

Maximum and top-k diversified biclique search at scale 1379

(a)

(b)

(c)

(d)

Fig. 8 Search top-2 bicliques in G by TopK

Procedure FixedMBC∗ searches for themaximumbiclique
in the fixed subspace set FS. Firstly, we initiate C∗ as
empty (line 30), and then progressively update it with larger
bicliques found in each subspace (line 31–36). For the i-th
subspace in FS, we first update the subgraph Gi by elimi-
nating all edges in R from Gi , where R is the last diversified
biclique result we found (line 32). Then if C∗

i overlaps with
R, which indicates that themaximum biclique in current sub-
space has changed, we recompute C∗

i by MBC (line 33–34).
Otherwise, C∗

i remains unchanged, and there is no need to
update it. We update C∗ if we find larger biclique (line 35–
36), and finally return C∗ as the result(line 37).

Time complexity We analyze the time cost of Algorithm 6.
The time cost mainly consists of the graph reduction time (in
GenSubSpaces) and maximum biclique searching time (in
GenSubSpaces and FixedMBC∗).
Firstly, for graph reduction, suppose we generate k′ subspace
sets to cover all the top-k results by invokingGenSubSpaces.
Here, k′ is bounded by logα(1

c0
), where c0 is a lower bound

of the size of the top-1 biclique R1 (0 < α < 1). In each
subspace set FSm (1 ≤ m ≤ k′), we denote the number of
subspaces as lm , where lm is bounded by log(dUmax(G)). Then,

the total graph reduction time is O(
∑k′

m=1
∑lm

i=1 Treduce(G)).
Secondly, for maximum biclique search, in GenSubSpaces,
we need to compute the maximum biclique in all subspaces
in FSm , while in FixedMBC∗, we only need to compute
the maximum biclique when needed. Suppose for result
R j , we need to compute C∗

1, j ,C
∗
2, j , ...,C

∗
l ′j , j

, where C∗
i, j

denotes the i-th maximum biclique that need to be recom-
puted on subgraph Gi, j to obtain R j . Here, l ′j ≤ lm for
R j preserved in FSm . Then, the total maximum biclique

search time is O(
∑k

j=1
∑l ′j

i=1 Tsearch(Gi, j)). Consequently,

the time cost of Algorithm 6 is O(
∑k′

m=1
∑lm

i=1 Treduce(G)+∑k
j=1

∑l ′j
i=1 Tsearch(Gi, j)), where k′ ≤ logα(1

|R1|). Note that
in practice, we observe that k′ is much smaller than k, and
for result R j preserved in FSm , l ′j is also much smaller than
lm in most cases.

Example 8 Given a bipartite graph G in Fig. 7a with thresh-
olds τU = 1 and τV = 1, we adopt Algorithm 6 to find the
diversified top-2 bicliques in G as shown in Fig. 8.

Supposewe have c = 10 and τ 0V = 5.We generateFS(G, c)
consisting of two fixed subspaces:

(i) τ 1U =
⌊

c
τ 0V

⌋
= 2, τ 1V =

⌊
τ 0V
2

⌋
= 2. The reduced sub-

graphG1 is shown in Fig. 8awith themaximumbiclique
C∗
1 marked as gray;

(ii) τ 2U =
⌊

c
τ 1V

⌋
= 5, τ 2V =

⌊
τ 1V
2

⌋
= 1. The reduced sub-

graphG2 is shown in Fig. 8bwith themaximumbiclique
C∗
2 marked as gray.

Based on FS(G, c), we search for the top-2 diversified
bicliques as follows:

(1) With the preserved maximum bicliques in subspace
set, we obtain R1 = C∗

1 whose size is maximized.
Then, we remove all edges in R1 from G and get G ′.

(2) After found R1, we can update G1 and G2 by
directly removing edges in R1 from them, as shown
in Fig. 8c, d, respectively (here we omit vertices with
no edges). Furthermore, we only need to recompute
C∗
1 as it overlaps with R1, and skip C∗

2 as it remains
unchanged. Then, we obtain R2 = C∗

2 . Finally, we
obtain the result D = {R1, R2}. Compared with
TopKBasic, benefiting from the fixed subspace set,
TopK saves the cost by sharing the computation of
graph reduction and maximum biclique search in
subspaces among the results preserved inFS(G, c).

6.3 Optimization strategies

In Algorithm 6, the computation cost mainly consists of
two parts: (1) the graph reduction when generating FS in
GenSubSpaces, and (2) the updating of maximum biclique
C∗
i in FixedMBC∗. To further save the computation cost, we

propose the following two optimizations.

Global size pruning In GenSubSpaces, we apply Reduce
on G in each subspace to reduce the graph size, which is
costly since G is large. However, inFS(G, c), we search for
biclique whose size is larger than c. Based on this, before
we apply Reduce on G in each subspace w.r.t. τ iU and τ iV ,
we can firstly prune all vertices that cannot be involved in a
bicliquewith size larger than c, so as to share the computation
among all subspaces inFS(G, c). Although we do not know
the biclique size before searching, for vertex u, we could use
the summarization of the degree for all u’s neighbors as an
upper bound for the size of biclique that involvesu. Following
Definiton 4, with the size constraint c, we use G ′ �c G to
denote that G ′ is an MBC-preserved graph of G w.r.t. c. We
derive the following lemma:

Lemma 8 Given a bipartite graph G, and size constraint c,
we have:

123

1380 B. Lyu et al.

(1) ∀u ∈ U (G):
∑

v∈N (u,G) d(v,G) ≤ c �⇒ G � u �c

G;
(2) ∀v ∈ V (G):

∑
u∈N (v,G) d(u,G) ≤ c �⇒ G � v �c

G.

We omit the proof here. Lemma 8 provides a sufficient
condition for a vertex to be eliminated s.t. the maximum
biclique whose size is larger than c is preserved. Based on
the Lemma 1, Lemma 8 can be iteratively applied to reduce
the graph size until no vertices can be eliminated.

We can simply modify GenSubSpaces in Algorithm 6 by
applying the global size pruning rule onG to getG ′ first, and
then iteratively generate subspaces by applying Reduce on
G ′.

Lazy candidate refining In FixedMBC∗, when searching for
R j+1 after found R j , the case of C∗

i overlapping with R j

indicates that C∗
i is not up to date, thus we recompute C∗

i
by adoptingMBC. However, it is not necessary to update C∗

i
immediately if it cannot be R j+1, thus we decide to refine
the candidates in a lazy manner. Specifically, in FixedMBC∗,
when C∗

i that overlaps with R j is no larger than the optimal
biclique C∗ found so far, instead of directly updating C∗

i
by MBC which is costly, we label it with lazy = true, and
will not recompute it until it could be the maximum one. To
apply the lazy refine strategy, we modify GenSubSpaces by
initiating lazy = false for C∗

i in all subspaces. Then, we
modify FixedMBC∗ as follows:

(1) Before updating subspaces in FS and searching for
R j+1, we first traverse all subspaces to get the update-
to-date maximum bicliques, i.e., those who do not have
overlaps with R j and have lazy = false. Among all
these bicliques, we use the size of the largest one as the
lower bound of |R j+1|, denoted as lb(R j+1).

(2) Then in all subspaces: (i) For C∗
i with lazy = true,

if |C∗
i | > lb(R j+1), we update C∗

i by MBC and set
lazy = false; Otherwise, we skip C∗

i . (ii) For C
∗
i with

lazy = false but overlaps with R j , if |C∗
i | > lb(R j+1),

we update C∗
i by MBC; Otherwise, we set lazy = true

for C∗
i and skip it. (iii) For C∗

i with lazy = false and
does not overlap with R j , there is no need to refine it as
it is already up-to-date.

(3) Finally, we returnC∗ as the biclique with the largest size
among all up-to-date candidates with lazy = false.

7 Performance studies

In this section, we show the performance studies. We first
present the experimental results by comparing the proposed
maximum biclique search algorithmMBC∗, with the follow-
ing two baseline algorithms:

(1) MBC: MBC is developed based on the algorithm in [59],
where the code is obtained from the authors, with the pruning
rules in Algorithm 1 added.

(2)MAPEB:MAPEB is developed based on the parameterized
algorithm APEB in [14]. Given a bipartite graph G and an
integer p, APEB aims to find a biclique C in G with at least p
edges (where (G, p) is called a yes-instance) , or report that
no such biclique exists. Naturally, we extend APEB with the
binary search technique to find the maximum biclique C∗.
We denote the lower bound and the upper bound of |C∗| as
lb and ub, respectively. The basic idea is that we iteratively
set p = � lb+ub

2 �, and adopt APEB to compute if (G, p) is a
yes-instance: if it is, we update C∗ as the found biclique C
and set lb = |C | + 1; otherwise, we update ub = p − 1.
We stop the computation when lb > ub, and return C∗. We
initialize C∗ as ∅, lb as τU × τV , and ub as the maximum
score(u) (defined in Eq. 2) among all vertices u in G. We
also add pruning rules for size constraints of τU and τV . We
call the extended algorithm MAPEB.
We evaluate our algorithms in two aspects: (1) the effec-
tiveness of the graph reduction techniques and optimization
strategies used in MBC∗, and (2) the efficiency and scalabil-
ity of maximum biclique search by comparing MBC∗ with
MBC and MAPEB. Then, we show the performance of the
diversified top-k biclique search by comparing the proposed
algorithm TopK with the baseline algorithm TopKBasic. A
case study of anomaly detection on real datasets obtained
from Alibaba Group is further described to demonstrate the
resultant quality by applying our method. Unless otherwise
specified, experiments are conductedwith τU = 3, τV = 3by
default. All of our experiments are performed on a machine
with an Intel Xeon E5-2650 (32 Cores) 2.6GHz CPU and
128GB main memory running Linux.

Datasets We use 18 real datasets selected from different
domainswith various data properties, including the ones used
in existing works. The detailed statistics of the datasets are
shown in Table 1. The first 13 datasets are obtained from
KONECT1. The last five datasets are real datasets obtained
from the E-Commerce company Alibaba Group. Here, the
AddCart20 and AddCart18 datasets include data of cus-
tomers adding products into cart in 1 day (sampled from
data in 2020) and 10 days (sampled from data in 2018),
respectively. The Transaction20 and Transaction18 datasets
include data of customers purchasing products in 3 days
(sampled from data in 2020) and 15 days (sampled from
data in 2018), respectively. Additionally, the LabeledAdd-
Cart dataset includes fraudulent transactions labels that we
utilize as the ground truth in the case study.

1 http://konect.cc/.

123

http://konect.cc/

Maximum and top-k diversified biclique search at scale 1381

Table 1 Dataset statistics

Dataset Category |U | U Type |V | V Type |E | E Type

Writers Authorship 89,355 Writer 46,213 Work 144,340 Authorship

YouTube Affiliation 124,325 User 94,238 Group 293,360 Membership

Github Authorship 56,519 User 120,867 Project 440,237 Membership

BookCrossing Rating 105,278 User 340,523 Book 1,149,739 Rating

StackOverflow Rating 545,195 User 96,678 Post 1,301,942 Favorite

Teams Affiliation 901,130 Athlete 34,461 Team 1,366,466 Membership

ActorMovies Affiliation 127,823 Movie 383,640 Actor 1,470,404 Appearance

TVTropes Feature 64,415 Work 87,678 Trope 3,232,134 HasFeature

Wikipedia Feature 2,036,440 Article 1,853,493 Category 3,795,796 Inclusion

Flickr Affiliation 499,610 User 395,979 Group 8,545,307 Membership

DBLP Authorship 1,425,813 Author 4,000,150 Publication 8,649,016 Authorship

LiveJournal Affiliation 3,201,203 User 7,489,073 Group 112,307,385 Membership

WebTrackers Hyperlink 27,665,730 Domain 12,756,244 Tracker 140,613,762 Inclusion

LabeledAddCart MISC 78,582,023 Customer 23,827,661 Product 184,265,522 AddCart

Transaction20 MISC 38,711,236 Customer 18,206,012 Product 229,852,398 Purchasing

AddCart20 MISC 68,016,875 Customer 34,660,953 Product 243,843,277 AddCart

AddCart18 MISC 141,839,807 Customer 65,589,796 Product 1,307,950,593 AddCart

Transaction18 MISC 272,227,190 Customer 75,350,951 Product 1,319,706,942 Purchasing

Table 2 Graph reduction on TVTropes

k (τ kU , τ kV) |U | |V | |E | |C∗
k | rk (%)

0 (3, 3) 64,415 87,678 3,152,266 6,045 97.53

1 (3, 928) 15 6,088 32,991 5,564 1.02

2 (5, 464) 40 5,823 62,913 5,564 1.95

3 (11, 232) 59 2,247 43,602 5,564 1.35

4 (23, 116) 36 78 1,903 5,564 0.06

7 (191, 14) 1,259 115 46,776 5,564 1.45

8 (397, 7) 3,899 59 66,219 5,564 2.05

9 (863, 3) 8,889 27 63,251 6,045 1.96

7.1 Graph reduction and optimizations

In this subsection, we test the effectiveness and efficiency of
the graph reduction techniques and optimization strategies
used in the algorithm MBC∗.

Effectiveness of graph reduction We test the effectiveness
of the proposed one-hop and two-hop graph reduction tech-
niques on datasets of TVTropes andBookCrossing, and show
the results in Tables 2 and 3, respectively. We setMAX_ITER
in Reduce as 2. Experiments on other datasets have similar
outcomes. In Tables 2 and 3, we list τ kU , τ

k
V and the number

of vertices and edges of the reduced graph in each iteration k
in MBC∗. We also list the size of C∗

k found in each iteration.
We compute the compression ratio rk as the value of divid-
ing reduced graph size by its original size. In iteration 0, we

Table 3 Graph reduction on BookCrossing

k (τ kU , τ kV) |U | |V | |E | |C∗
k | rk (%)

0 (3, 3) 15,330 46,068 599,593 880 52.15

1 (3, 110) 154 9,284 89,550 840 7.79

2 (7, 55) 194 2,020 46,471 880 4.04

3 (16, 27) 236 496 23,155 880 2.01

4 (32, 13) 272 138 10,773 880 0.94

5 (67, 6) 468 70 8,910 880 0.77

show the results of graphG0 reduced by τU = 3 and τV = 3,
as a comparison. We omit the results in the iterations where
the reduced graphs are empty. From the results, we can see
that in each iteration, we adopt much more strict τ kU and τ kV
constraints rather than τU and τV . Therefore, by utilizing the
graph reduction techniques, we get much smaller reduced
graphs, e.g., compression ratio of 0% (omitted in the table)
to 2.05% by using τ kU and τ kV in our progressively bound-
ing framework v.s. 97.53% by using τU and τV as shown
in Table 2. This saves huge search space and accelerates the
biclique computation greatly.

Efficiency of graph reduction We conduct experiments on
LiveJournal andWebTrackers to compare the performance of
the basic algorithms with the optimized versions. We denote
the basic version of Algorithm 2 as BASIC, the algorithm
with early pruning strategy introduced in Sect. 5.2 as OPT1,
and the algorithm with early skipping strategy introduced in

123

1382 B. Lyu et al.

(a) (b)

Fig. 9 Optimization strategies

Fig. 10 C∗
3,3 search on all datasets

Sect. 5.2 as OPT2 based on OPT1. The results are shown in
Fig. 9, with the two-hop graph reduction time cost denoted as
TwoHopTime, and the total time cost denoted asAllTime.We
can see that for TwoHopTime in LiveJournal, OPT2 is about
21.41% faster than OPT1, and 41.74% faster than BASIC.
Consequently, OPT2 accelerates AllTime by around 17.56%
w.r.t. the BASIC version. For TwoHopTime inWebTrackers,
OPT2 is about 30.9% faster thanOPT1, and 45.7% faster than
BASIC. Consequently, OPT2 accelerates AllTime by around
23.2% w.r.t. the BASIC version. When comparing with the
baseline algorithm in the following experiments, we apply
all the optimization techniques.

7.2 MBC∗ versus baseline algorithms

In this subsection, we compare the performance of MBC∗,
MBC and MAPEB on maximum biclique search by: (1) con-
ducting experiments on all datasets; (2) varying τU and τV
thresholds on both small-sized and large-sized graphs; (3)
varying graph density; (4) varying graph scale.

In all experiments,we set themaximumprocessing time as
24h, and if the methods cannot finish computing, we denote
the time cost as NaN. For those experiments that cannot fin-
ish within 24h, we also report the quality ratio above the
corresponding bars, which is calculated as:

quality ratio = the size of current best biclique

the size of the maximum biclique

Note that it is possible that the quality ratio is 100% while
the algorithm cannot finish, because the size of themaximum
biclique is unknown before the algorithm finishes.

(a) (b)

(c) (d)

Fig. 11 C∗ search by varying τU and τV

All datasets In this experiment, we test the efficiency of C∗
3,3

search in all datasets by comparing MBC∗ with MBC and
MAPEB, and report the processing time in Fig. 10. From
Fig. 10, we can see that when the size of dataset is rela-
tively small, e.g., around 0.1 million edges in Writers,MBC∗
and MBC can both find C∗

3,3 efficiently. As the graph size
scales up, e.g., for the graphs with millions of edges such
as BookCrossing and StackOverflow, MBC takes hours to
compute the results, while MBC∗ only takes seconds. Fur-
thermore, when the graph size grows up to around 1 billion
edges such as AddCart and Transaction, MBC cannot finish
computing within 24h, while MBC∗ only takes minutes to
compute the results. MAPEB, however, fails to finish com-
puting for most cases. Moreover, for most time-out cases,
the bicliques found byMBC andMAPEB are far smaller than
the maximum bicliques. From the results shown in Fig. 10,
we can see that MBC∗ is much more efficient and scalable
than both MBC and MAPEB on all datasets.

Varying τU and τV thresholdsWe vary τU and τV thresholds
to compute C∗ and illustrate the performance ofMBC∗,MBC
and MAPEB in Fig. 11. Figure 11 shows that MBC can pro-
cess small graphs (YouTube and StackOverflow) but fails in
processing large graphs (LiveJournal andWebTrackers). For
small graphs,when τU and τV get larger, the time cost ofMBC
decreases. This is because as τU and τV get larger, MBC can
filtermore search branches. For large graphs,MBC cannot fin-
ish computing within 24h, since the search space is huge and
MBC is stuck in local search. MAPEB cannot finish comput-
ing for all cases. The main reason is thatMAPEB is developed
based onAPEB [14], whichmainly benefits from the early ter-
mination as soon as the yes-instance is found. However, to
find the maximum biclique, we will encounter no-instances
in the binary search process in MAPEB. For the no-instance
case (G, p), for each vertex u ∈ U (G) (v ∈ V (G) resp.),
APEB has to enumerate all the combinations (with size con-
straints of ≥ τV (≥ τU resp.) and ≤ ⌈√

p
⌉
) of u’s (v’s

resp.) neighbors and induce biclique for each combination
correspondingly, which is very costly. In comparison,MBC∗

123

Maximum and top-k diversified biclique search at scale 1383

(a) (b)

(c) (d)

Fig. 12 C∗
3,3 search by varying graph density

is orders of magnitude faster than both MBC and MAPEB
on all settings. For most cases, when τU and τV get larger,
the time cost of MBC∗ slightly increases. This is because
in most real cases, as τU and τV get larger, |C∗| becomes
smaller. Thus, MBC∗ generates relatively looser τ kU and τ kV
constraints, which results in larger reduced graph. Specif-
ically, in WebTrackers, the processing time is steady. This
is because for all τU and τV settings in this experiment,
|C∗| in WebTrackers is relatively large, and consequently
τ kU and τ kV are quite strict. In general, the high efficiency of
MBC∗ mainly benefits from the effective progressive bound-
ing framework with graph reduction techniques, which saves
enormous search space in biclique search.

Varying graph density In this experiment, we test the effect
of graph density on the performance, and demonstrate the
results in Fig. 12. We prepare graphs with different density
by sampling edges in the original graph. For example, we
sample 20%, 40%, 60%, 80% and 100% edges in TVTropes,
and denote these (sub)graphs as TV1, TV2, TV3, TV4 and
TV5 in ascending order of density. Figure 12 shows that
as the graphs grow denser, MBC takes longer time to find
the maximum bicliques, or cannot finish computing within
24h. AlthoughMAPEBmay output larger bicliques thanMBC
sometimes (e.g., on dataset of WebTrackers), since it may
find yes-instances efficiently with some appropriate p dur-
ing the binary search, it cannot finish computing for most
cases due to the inefficiency of the no-instances in the binary
search. In contrast, MBC∗ is orders of magnitude faster than
both MBC and MAPEB on all settings. It is worth noting that
for dense graphs, MBC∗ also finds maximum bicliques effi-
ciently. For example, in Fig. 12c, as the graphs grow denser
from LJ3 to LJ5, the processing time ofMBC∗ decreases. The
reason is thatMBC∗ can find largerC∗

k in denser graphs. This
helps improve the τ kU and τ kV thresholds and lead to small
reduced graphs (or even empty) in the progressive bound-
ing framework. Therefore, MBC∗ finds maximum biclique
efficiently on both sparse and dense graphs.

(a) (b)

Fig. 13 C∗
3,3 search by varying graph scale

(a) (b)

Fig. 14 Optimization strategies in TopK

Varying graph scale The effects of graph size on the perfor-
mance show scalability. We prepare datasets by obtaining 1,
3, 6 and 10 days data of AddCart18, and 1, 3, 6, 10 and 15
days data of Transaction18. We list the statistics in Table 4,
and report the results in Fig. 13. In Fig. 13, we can see that
bothMBC andMAPEB cannot finish computingwithin 24h on
all datasets and the reported bicliques are much smaller than
the maximum bicliques. In contrast, the processing time of
MBC∗ increases steadily as the graph scales up. For graphs of
AddCart10d andTransaction15d,which both consist of about
1.3 billion edges,MBC∗ costs 18min and 15min to compute
the results respectively, which is quite efficient. To the best
of our knowledge, no existing solutions can find maximum
bicliques in bipartite graphs at this scale.

7.3 TopK versus TopKBasic

In this subsection, we test the efficiency of TopK and
TopKBasic on diversified top-k biclique search. We first test
the efficiency of the proposed optimizations of global size
pruning and lazy candidate refining in TopK. Then, we com-
pare TopK with TopKBasic by: (1) varying the result number
k; (2) varying τU and τV thresholds; and (3) varying graph
density. In this subsection,we set k = 80, τU = 3 and τV = 3
by default unless otherwise specified. Besides, in TopK, we
relax the lower bound c by multiplying factor α to include
more results, where FS with smaller c can preserve more
results, while FS with larger c can generate tighter bounds
in subspaces. In compromise, we set α = 0.7 in this sub-
section. Moreover, we set the maximum processing time as
24h, and if the computation is not finished, we denote the
time cost as NaN.

Efficiency of optimizations We conduct experiments on
Transaction20 and AddCart20 to compare the basic TopK
algorithm with the optimized versions. We denote the basic
version of Algorithm 6 as BASIC, the algorithm with global

123

1384 B. Lyu et al.

Table 4 Statistics of AddCart
and Transaction

Dataset |U | |V | |E |
AddCart1d 36,610,265 18,840,419 112,796,688

AddCart3d 78,574,410 35,834,266 362,528,389

AddCart6d 107,870,369 48,056,268 768,628,469

AddCart10d 141,839,807 65,589,796 1,307,950,593

Transaction1d 57,324,865 14,381,171 99,906,746

Transaction3d 133,563,771 30,702,475 305,137, 702

Transaction6d 166,496,732 45,016,333 490,500, 877

Transaction10d 231,377,734 59,688,447 872,112, 829

Transaction15d 272,227,190 75,350,951 1,319,706, 942

(a) (b)

(c) (d)

Fig. 15 Top-k search by varying k

size pruning strategy introduced in Sect. 6.3 as TopKOPT1,
and the algorithm with lazy candidate refining strategy intro-
duced in Sect. 6.3 as TopKOPT2 based on TopKOPT1.
We show the time cost to compute the top-10, 20, 40,
and 80 bicliques on Transaction20 and AddCart20 respec-
tively in Fig. 14. From the result, we can see that on
Transaction20, TopKOPT1 is 21.27% faster than BASIC on
average, which mainly benefits from the computation shar-
ing among subspaces in FS by pruning vertices with size
constraint first. Furthermore, TopKOPT2 is 18.37% faster
than TopKOPT1 on average, which mainly saves the com-
putation cost in unnecessary maximum biclique updating in
subspaces. Consequently, TopKOPT2 accelerates the com-
putation by 35.81% on average w.r.t. the BASIC version
on Transaction20. Similarly, on AddCart20, TopKOPT1 is
27.73% faster than BASIC, and TopKOPT2 further improves
TopKOPT1 by19.92%onaverage. In total, TopKOPT2 accel-
erates the computation by 42.03% on average on Addcart20.

In the following experiments, when comparing TopK with
the baseline algorithm TopKBasic, we apply all the optimiza-
tion techniques.

Varying results number k In this experiment, we test the
efficiency by varying the results number k and report the
processing time of TopK and TopKBasic in Fig. 15. We set k

(a) (b)

(c) (d)

Fig. 16 Top-k search by varying τU and τV

as 10, 20, 40, 80 and 160, respectively. For both TopK and
TopKBasic,when k increases, the time cost also increases. For
small graphs of Wikipedia and DBLP, we can see that TopK
achieves several times better performance than TopKBasic
on all k settings. For large graphs of Transaction20 and Add-
Cart20, TopK also outperforms TopKBasic by several times,
and an order of magnitude for top-20 biclique searching on
AddCart20. Besides, from the figure, we can see that as
k becomes larger, it takes longer time for both TopK and
TopKBasic to find the results. This is because as k increases,
the sizes of the result bicliques tend to be smaller. Conse-
quently, the subspaces of later results in top-k are generated
with relatively looser τ iU and τ iV constraints, which leads to
larger reduced subgraphs and longer biclique searching time.
In general, TopK outperforms TopKBasic by several times to
an order of magnitude for all k settings.

Varying τU and τV In this experiment, we test the efficiency
by varying the thresholds of τU and τV . The results are
reported in Fig. 16. On Wikipedia and AddCart20, when τU
and τV get larger, the time cost of both TopK and TopKBasic
increases. The reason is that the average size of the top-k
results becomes much smaller on Wikipedia and AddCart20
as τU and τV get larger. This leads to relatively looser τ iU
and τ iV constraints and thus larger reduced subgraphs in sub-
spaces, which takes longer time for biclique searching. On

123

Maximum and top-k diversified biclique search at scale 1385

(a) (b)

(c) (d)

Fig. 17 Top-k search by varying graph density

DBLP and Transaction20, the sizes of the top-k results are
relatively large on all τU and τV settings, and thus the per-
formance is not sensitive to the τU and τV settings but to the
specific generated τ iU and τ iV in subspaces. As TopKBasic
needs to compute the k results one by one, while TopK can
preserve more results in FS by slightly relax the τ iU and τ iV
constraints in subspaces, the experimental results show that
TopK benefits a lot from the computation sharing, and outper-
forms TopKBasic by several times to an order of magnitude
on all τU and τV settings.

Varying graph density In this experiment, we show the effect
of graph density on the performance and report the results
in Fig. 17. We prepare graphs with different density by sam-
pling edges in the original graphs, including small graphs of
DBLP andWikipedia, and large graphs of Transaction20 and
AddCart20. For example, we sample 20%, 40%, 60%, 80%
and 100% edges in Transaction20, denoted as TRA1, TRA2,
TRA3, TRA4 and TRA5, respectively. Note that we eliminate
the results on WIKI1 and DBLP1, since we cannot obtain
enough top-80 results on them. Figure 17 shows that as the
graphs grow denser, TopKBasic takes longer time to find the
top-k results inmost cases, except that in TRA5, the time cost
decreases. Themain reason is that the sizes of result bicliques
in TRA5 are relatively large, and consequently the subspaces
are generated with more strict τ iU and τ iV constraints. The
time cost of TopK has similar tendency with TopKBasic but
increases slower as graphs grow denser (except TRA5 where
time cost decreases for the same reason), and TopK is from
times to an order of magnitude faster than TopKBasic on all
graphs. Therefore, TopK finds the diversified top-k bicliques
efficiently on both sparse and dense graphs.
7.4 Case study

Our proposed algorithm has been deployed in Alibaba
Group to detect fraudulent transactions. E-business owners
at Taobao and Tmall (two E-commerce platforms of Alibaba
Group) may pay some agents in black market to promote
the rankings of their online shops. Considering the costs of

Fig. 18 Precision of TopK

fake transactions and maintenance of a large amount of user
accounts, these agents usually need to organize a group of
users to “purchase” a set of products at the same time for
cost effectiveness. This will lead to some bicliques (i.e., click
farms) in the bipartite graph consisting of users, products and
purchase transactions. As the maximum biclique alone can-
not cover all fraudulent transactions, we apply the diversified
top-k biclique search method as follows.
TopK We adopt Algorithm 6 to compute the diversified
top-k bicliques (i.e., suspicious click farms) in the bipartite
graph. Note that TopK improves the recall rate of fraudu-
lent transaction by 50% according to the feedback of the risk
management team from Alibaba Group.
To further demonstrate the effectiveness and efficiency
of TopK, we also evaluate the following two baseline
approaches on a real dataset LabeledAddCart obtained from
Alibaba Group, which includes the labels of ground-truth
fraudulent transactions.

(1) EnumK We adopt EnumK, whose logic is the same with
MBC but without the size pruning rule (in line 5 and 13 in
Algorithm 1), to enumerate all maximal bicliques satisfying
the thresholds τU and τV , and each maximal biclique rep-
resents a click farm. However, it is not possible to find all
maximal bicliques and then select the top-k among them due
to the huge number of maximal bicliques, thus we evaluate
the result of the first-k output maximal bicliques.

(2) Reduce Given appropriate values of thresholds τU and
τV , Reduce outputs the reduced bipartite graph, where the
edges represent suspicious fraudulent transactions. Although
Reduce cannot output bicliques, it can reduce the candidate
size.

We define the precision and recall rate as follows:

precision = number of found fraudulent transactions

number of output edges of the method

recall = number of found fraudulent transactions

number of ground-truth fraudulent transactions

TopK result evaluation In this experiment, we vary τV from
2 to 5 (with τU = 1) to test the precision of top-k diversified
bicliques found by TopK on LabeledAddCart, and show the
results in Fig. 18. The figure shows that the precision is over
95% in most cases except top-1000 when τV = 2. This is
because coincidences are more likely to happen when τV is

123

1386 B. Lyu et al.

Fig. 19 Quality of EnumK

small. When τV > 2, the precision is even larger than 99%.
In general, TopK outputs fraudulent transactions with high
precision, and the found biclique can be served as the evi-
dence when taking disciplinary measures. In real application
in Alibaba Group, TopK not only returns fraudulent transac-
tions with high precision, but also improves the recall rate by
50% w.r.t. to existing solutions.

EnumK result evaluationWe conduct experiments of EnumK
on LabeledAddCart and show the results in Fig. 19. We set
τU = 1 and τV = 2, and the results with other settings are
similar. Given the fact that EnumK cannot finish maximal
biclique enumeration within 24h, we record two statistics of
the first-k output maximal bicliques: (1) the total number of
output edges, denoted as All, and (2) the number of unique
output edges, denoted as Uni. Besides, the enumeration pro-
cess easily becomes stuck in local search, so the search order
has great influence on the result of first-k bicliques. Thus, we
adopt two search orders in EnumK, i.e., we iteratively add
v ∈ V into biclique in descending order (denoted asDesc) or
ascending order (denoted as Asc) of the number of v’s neigh-
bors inU . This is because, intuitively, we may enumerate the
maximal bicliques in the dense region or sparse region of the
bipartite graph respectively. From Fig. 19, we can see that
for Desc order, when the output biclique number increases,
the total number of output edges increases as well. However,
the number of unique edges barely grows, which indicates
that EnumK enumerates many redundant maximal bicliques
with very limited effective information when searching in
dense region of the graph. In comparison, for Asc order, both
total output edges and unique edges increases. However, the
average size of the first-16000 maximal bicliques is only 12,
which is too small to be used in anomaly detection applica-
tion, with the precision of only 33.23% compared with the
ground-truth. The computation cost of EnumK is also high,
and the algorithmoutputs huge amounts ofmaximal bicliques
(over 109 bicliques in 24h). In conclusion, maximal biclique
enumeration is not suitable to this case study for anomaly
detection on large-scale graphs.

Reduce result evaluation Given specific τU and τV values,
we can detect fraudulent transactions with Reduce. In this
experiment, we vary τV from 2 to 5, and for each τ kV , we
set two corresponding τ kU values, i.e., the small value τ

sk
U for

loose condition, and the large value τ
lk
U for strict condition.

All τU values are suggested by the experts of anomaly detec-

(a) (b)

Fig. 20 Precision and recall rate of Reduce

tion in Alibaba. Due to the confidential nature, we omit the
exact values. For simplicity, we use τ sU and τ lU to represent
the loose and strict constraints for all τ kV .

We evaluate the performance in terms of precision and
recall rate, and present the results in Fig. 20. In Fig. 20a,
the precision of Reduce improves when τV grows larger,
since the more common products a group bought together,
the more suspicious the transactions are. Similarly, larger τU
also leads to higher precisionwith fixed τV . However, the pre-
cision does not meet the requirement of at least 95% (from
Alibaba). In Fig. 20b, the recall rate is relatively high espe-
cially for loose constraints τ sU , due to the fact that we only
take advantages of the graph topological structure. However,
we gain the high recall rate at the cost of low precision and
large amount of output edges (over 107 edges for all settings).
Besides, the result quality depends heavily on the given τU
and τV thresholds, which cannot be easily adapted to differ-
ent datasets manually. Therefore, Reduce is not suitable for
anomaly detection in this case study.

8 Related work

In this section, we review the related work, including max-
imum biclique search and its variants, maximal biclique
enumeration and diversified top-k search.

Maximum biclique search and its variants The maximum
biclique problem has become increasingly popular in recent
years [14,42,43]. Reference [43] proposes an integer pro-
gramming methodology to find the maximum biclique in
general graphs. However, it is not applicable for large-scale
graphs. Reference [42] develops aMonte Carlo algorithm for
extracting a list of maximal bicliques, which contains a max-
imum biclique with fixed probability. Reference [14] studies
the parameterized maximum biclique problem in bipartite
graphs that reports if there exists a biclique with at least
p edges, where p is a given integer parameter. Besides,
there are two variants of the maximum biclique problem,
i.e., the maximum vertex biclique and the maximum bal-
anced biclique. The former one aims to find the biclique C∗
that |U (C∗)| + |V (C∗)| is maximized. This problem can
be solved in polynomial time by a minimum cut algorithm
[33]. The latter one aims to find the biclique C∗ with maxi-

123

Maximum and top-k diversified biclique search at scale 1387

mum cardinality that |U (C∗)| = |V (C∗)|. The most popular
approaches are heuristic algorithms, including [2,44,55] that
solve the problem by converting it into a maximum balanced
independent set problem on the complement bipartite graph
with node deletion strategies, and [60] that combines tabu
search and graph reduction to find the maximum balanced
biclique on the original bipartite graph. References [53,56]
propose local search framework to find good solutions within
reasonable time. Refs. [32,61] introduce exact algorithms to
find themaximumbalancedbiclique by following the branch-
and-bound framework.

Maximal biclique enumeration The maximal biclique enu-
meration problem is widely studied. A biclique is said to be
maximal if it is not contained in any larger bicliques. Refer-
ence [3] proposes a consensus approach, which starts with a
collection of simple bicliques, and then expands the bicliques
as a sequence of transformations on the biclique collections.
References [36,41] find maximal bicliques C = (U , V ,U ×
V) by exhaustively enumerating U as subsets of one vertex
partition, obtaining V as their common neighbors in the other
vertex partition, and then checking the maximality of C . In
[59], the authors propose algorithm iMBEA, which combines
backtracking with branch-and-bound framework to filter out
the branches that cannot lead to maximal bicliques. Ref-
erence [15,29] reduce the problem to the maximal clique
enumeration problem by transferring the bipartite graph
into a general graph. Reference [21] proves that maximal
biclique is in correspondence with frequent closed itemset.
The maximal biclique enumeration can be reduced then to
the well-studied frequent closed itemsets mining problem
[13,27,50,52]. References [35,37] propose parallel methods
to enumerate maximal bicliques in large graphs.

Diversified top-k search The diversified top-k search prob-
lem has been extensively studied, which aims to find top-k
results that are not only most relevant to a query but also
diversified. In the literature, most existing solutions focus
on finding diversified top-k results for a specific query. For
example, Lin et al. study the k most representative skyline
problem [22]. References [1,6] focus on the diversified top-
k document retrieval. Reference [62] studies the diversified
keyword query recommendation. Reference [12] focuses on
the diversified top-k graph pattern matching. Reference [24]
studies the problem of top-k shortest paths with diversity.
Zhang et al. study the diversified top-l (k, r)-core [58]. Yuan
et al. and Wu et al. study the diversified top-k clique search
problem [54,57]. Nevertheless, the techniques developed for
diversified top-k clique search are not suitable for our diver-
sified top-k biclique search problem. Some otherworks study
the general framework for diversified top-k search. For exam-
ple, [10,39,40,51] study the general diversified top-k results
problem. References [8,34] study top-k result diversification
on a dynamic environment. The complexity of query result

diversification is analyzed in [9]. Nevertheless, the diversity
in the above frameworks is considered based on the pair-wise
dissimilarity of the query results, which cannot be applied
directly on the diversified top-k biclique search problem stud-
ied in this paper.

9 Conclusion

Maximum biclique search in a bipartite graph is a fundamen-
tal problem with a wide spectrum of applications. Existing
solutions are not scalable for handling large bipartite graphs
because the search has to consider the size of both sides
of the biclique. In this paper, instead of solving the problem
directly on the original bipartite graph, we propose a progres-
sive bounding framework which aims to solve the problem
on several much smaller bipartite graphs. We prove that only
logarithmic rounds are needed to guarantee the algorithm
correctness, and in each round, we show how to significantly
reduce the bipartite graph size by considering the proper-
ties of the one-hop and two-hop neighbors for each vertex.
Based on the maximum biclique search method, we further
propose an efficient algorithm to find the diversified top-k
bicliques, which is also desirable in many applications. By
taking advantage of the progressive bounding framework, we
consider to derive the same subspaces for different results
by slightly relaxing the constraints in each subspace, so
as to share the computation cost among these results. We
further propose two optimizations to accelerate the compu-
tation by pruning search space and lazy refining candidates.
We conducted experiments on real datasets from different
application domains, and two of the datasets contain bil-
lions of edges. The experimental results demonstrate that
our approach is efficient and scalable to handle large bipar-
tite graphs. It is reported that 50% improvement on recall can
be achieved after applying our method in Alibaba Group to
identify the fraudulent transactions.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1388 B. Lyu et al.

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying
search results. In: Baeza-Yates, R., Boldi, P., Ribeiro-Neto, B.A.,
Cambazoglu, B.B. (eds.) Proceedings of the Second International
Conference on Web Search and Web Data Mining, WSDM 2009,
Barcelona, Spain, February 9–11, 2009, pp. 5–14. ACM (2009)

2. Al-Yamani, A.A., Ramsundar, S., Pradhan, D.K.: A defect toler-
ance scheme for nanotechnology circuits. IEEE Trans. Circuits
Syst. 54(11), 2402–2409 (2007)

3. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Sime-
one, B.: Consensus algorithms for the generation of all maximal
bicliques. Discrete Appl. Math. 145(1), 11–21 (2004)

4. Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Bertino, E., Foo,
N., et al.: Collusion detection in online rating systems. In: Asia-
Pacific Web Conference, pp. 196–207. Springer (2013)

5. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability
results for maximum edge biclique, minimum linear arrangement,
and sparsest cut. SIAM J. Comput. 40(2), 567–596 (2011)

6. Angel, A., Koudas, N.: Efficient diversity-aware search. In: Sel-
lis, T.K., Miller, R.J., Kementsietsidis, A., Velegrakis, Y. (eds.)
Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June 12-
16, 2011, pp. 781–792. ACM (2011)

7. Beutel, A., Xu,W., Guruswami, V., Palow, C., Faloutsos, C.: Copy-
catch: stopping group attacks by spotting lockstep behavior in
social networks. In: 22nd International World Wide Web Confer-
ence, WWW ’13, Rio de Janeiro, Brazil, May 13–17, 2013, pp.
119–130 (2013)

8. Borodin, A., Jain, A., Lee, H.C., Ye, Y.: Max-sum diversifica-
tion, monotone submodular functions, and dynamic updates. ACM
Trans. Algorithms 13(3), 41:1-41:25 (2017)

9. Deng, T., Fan,W.:On the complexity of query result diversification.
Proc. VLDB Endow. 6(8), 577–588 (2013)

10. Drosou, M., Pitoura, E.: Disc diversity: result diversification based
on dissimilarity and coverage. Proc. VLDB Endow. 6(1), 13–24
(2012)

11. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms.
Inf. Process. Lett. 51(4), 207–211 (1994)

12. Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern match-
ing. Proc. VLDB Endow. 6(13), 1510–1521 (2013)

13. Fang, G., Wu, Y., Li, M., Chen, J.: An efficient algorithm for min-
ing frequent closed itemsets. Informatica (Slovenia) 39(1), 87–98
(2015)

14. Feng, Q., Li, S., Zhou, Z., Wang, J.: Parameterized algorithms for
edge biclique and related problems. Theor. Comput. Sci. 734, 105–
118 (2017)

15. Gely, A., Nourine, L., Sadi, B.: Enumeration aspects of maximal
cliques and bicliques. Discrete Appl. Math. 157(7), 1447–1459
(2009)

16. Kershenbaum, A., Cutillo, A., Darabos, C., Murray, K., Schiaffino,
R., Moore, J.H.: Bicliques in graphs with correlated edges: From
artificial to biological networks. In: European Conference on the
Applications of Evolutionary Computation, pp. 138–155. Springer
(2016)

17. Konc, J., Janezic, D.: An improved branch and bound algorithm for
themaximumclique problem.Commun.Math. Comput. Chem. 58,
569–590 (2007)

18. Langston, M.A., Chesler, E.J., Zhang, Y.: On finding bicliques in
bipartite graphs: a novel algorithm with application to the inte-
gration of diverse biological data types. In: Proceedings of the
41st Annual Hawaii International Conference on System Sciences
(HICSS 2008)(HICSS), vol. 1, p. 473 (2008)

19. Li, C.-M., Fang, Z., Jiang, H., Xu, K.: Incremental upper bound
for the maximum clique problem. INFORMS J. Comput. 30(1),
137–153 (2017)

20. Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based
on maxsat for the maximum clique problem. AAAI 10, 128–133
(2010)

21. Li, J., Li, H., Soh, D., Wong, L.: A correspondence between maxi-
mal complete bipartite subgraphs and closed patterns. In: European
Conference on Principles of Data Mining and Knowledge Discov-
ery, pp. 146–156. Springer (2005)

22. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most
representative skyline operator. In: Chirkova, R., Dogac, A, Özsu,
M.T., Sellis, T.K. (eds.) Proceedings of the 23rd International Con-
ference on Data Engineering, ICDE 2007, The Marmara Hotel,
Istanbul, Turkey, April 15–20, 2007, pp. 86–95. IEEE Computer
Society (2007)

23. Liu, G., Sim,K., Li, J.: Efficientmining of largemaximal bicliques.
In: International Conference on DataWarehousing and Knowledge
Discovery, pp. 437–448. Springer (2006)

24. Liu, H., Jin, C., Yang, B., Zhou, A.: Finding top-k shortest paths
with diversity. In: 34th IEEE International Conference on Data
Engineering, ICDE 2018, Paris, France, April 16–19, 2018, pp.
1761–1762. IEEE Computer Society (2018)

25. Liu, J., Wang, W.: Op-cluster: clustering by tendency in high
dimensional space. In: Proceedings of the 3rd IEEE International
Conference on DataMining (ICDM2003), 19–22 December 2003,
Melbourne, Florida, USA, pp. 187–194 (2003)

26. Lu, C., Yu, J.X., Wei, H., Zhang, Y.: Finding the maximum clique
in massive graphs. PVLDB 10(11), 1538–1549 (2017)

27. Lucchese, C., Orlando, S., Perego, R.: Fast and memory efficient
mining of frequent closed itemsets. IEEE Trans. Knowl. Data Eng.
18(1), 21–36 (2006)

28. Lyu, B., Qin, L., Lin, X., Zhang, Y., Qian, Z., Zhou, J.: Maximum
biclique search at billion scale. Proc. VLDB Endow. 13(9), 1359–
1372 (2020)

29. Makino, K., Uno, T.: New algorithms for enumerating all maximal
cliques. In: ScandinavianWorkshoponAlgorithmTheory, pp. 260–
272. Springer (2004)

30. Manurangsi, P.: Inapproximability ofmaximumbiclique problems,
minimum k-cut and densest at-least-k-subgraph from the small set
expansion hypothesis. Algorithms 11(1), 10 (2018)

31. Maslov, E., Batsyn, M., Pardalos, P.M.: Speeding up branch and
bound algorithms for solving the maximum clique problem. J.
Global Optim. 59(1), 1–21 (2014)

32. McCreesh, C., Prosser, P.: An exact branch and bound algo-
rithm with symmetry breaking for the maximum balanced induced
biclique problem. In: International Conference onAI andORTech-
niques in Constriant Programming for Combinatorial Optimization
Problems, pp. 226–234. Springer (2014)

33. Michael, R.G., David, S.J.: Computers and Intractability: A Guide
to the Theory of np-Completeness, pp. 90–91. WH Free. Co., San
Francisco (1979)

34. Minack, E., Siberski, W., Nejdl, W.: Incremental diversification for
very large sets: a streaming-based approach. In: Ma, W., Nie, J.,
Baeza-Yates, R., Chua, T., Croft,W.B. (eds.) Proceeding of the 34th
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 2011, Beijing, China, July
25–29, 2011, pp. 585–594. ACM (2011)

35. Mukherjee, A.P., Tirthapura, S.: Enumerating maximal bicliques
from a large graph using mapreduce. IEEE Trans. Serv. Comput.
10(5), 771–784 (2017)

36. Mushlin, R.A., Kershenbaum, A., Gallagher, S.T., Rebbeck, T.R.:
A graph-theoretical approach for pattern discovery in epidemio-
logical research. IBM Syst. J. 46(1), 135–149 (2007)

123

Maximum and top-k diversified biclique search at scale 1389

37. Nataraj, R., Selvan, S.: Parallel mining of large maximal bicliques
using order preserving generators. Int. J. Comput. 8(3), 105–113
(2014)

38. Peeters, R.: The maximum edge biclique problem is np-complete.
Discrete Appl. Math. 131(3), 651–654 (2003)

39. Qin,L.,Yu, J.X.,Chang,L.:Diversifying top-k results. Proc.VLDB
Endow. 5(11), 1124–1135 (2012)

40. Ranu, S., Hoang, M.X., Singh, A.K.: Answering top-k representa-
tive queries on graph databases. In: Dyreson, C.E., Li, F., Özsu,
M.T. (eds.) International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22–27, 2014, pp. 1163–
1174. ACM (2014)

41. Sanderson,M.J.,Driskell,A.C.,Ree,R.H., Eulenstein,O., Langley,
S.: Obtaining maximal concatenated phylogenetic data sets from
large sequence databases. Mol. Biol. Evolut. 20(7), 1036–1042
(2003)

42. Shaham, E., Yu, H., Li, X.: On finding the maximum edge biclique
in a bipartite graph: a subspace clustering approach. In: Proceed-
ings of the 2016 SIAM International Conference on Data Mining,
Miami, Florida, USA, May 5–7, 2016, pp. 315–323 (2016)

43. Shahinpour, S., Shirvani, S., Ertem,Z.,Butenko, S.: Scale reduction
techniques for computingmaximum induced bicliques.Algorithms
10(4), 113 (2017)

44. Tahoori, M.B.: Application-independent defect tolerance of recon-
figurable nanoarchitectures. ACM J. Emerg. Technol. Comput.
Syst. 2(3), 197–218 (2006)

45. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically sig-
nificant biclusters in gene expression data. In: Proceedings of the
Tenth International Conference on Intelligent Systems for Molec-
ular Biology, August 3–7, 2002, Edmonton, Alberta, Canada, pp.
136–144 (2002)

46. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm
for finding a maximum clique with computational experiments. J.
Global Optim. 37(1), 95–111 (2007)

47. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for
finding a maximum clique. In: Discrete Mathematics and Theoret-
ical Computer Science, pp. 278–289. Springer (2003)

48. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.:
A simple and faster branch-and-bound algorithm for finding a
maximum clique. In: International Workshop on Algorithms and
Computation, pp. 191–203. Springer (2010)

49. Tomita, E., Yoshida, K., Hatta, T., Nagao, A., Ito, H., Wakat-
suki, M.: A much faster branch-and-bound algorithm for finding a
maximum clique. In: InternationalWorkshop on Frontiers in Algo-
rithmics, pp. 215–226. Springer (2016)

50. Tong, Y., Chen, L., Ding, B.: Discovering threshold-based frequent
closed itemsets over probabilistic data. In: IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC,
USA (Arlington, Virginia), 1–5 April, 2012, pp. 270–281 (2012)

51. Vieira, M.R., Razente, H.L., Barioni, M.C.N., Hadjieleftheriou,
M., Srivastava, D., Trania, C., Tsotras, V.J.: On query result diver-
sification. In: Abiteboul, S., Böhm, K., Koch, C., Tan, K. (eds.)
Proceedings of the 27th International Conference on Data Engi-
neering, ICDE 2011, April 11–16, 2011, Hannover, Germany, pp.
1163–1174. IEEE Computer Society (2011)

52. Wang, J., Han, J., Pei, J.: Closet+: searching for the best strategies
for mining frequent closed itemsets. In: Proceedings of the Ninth
ACMSIGKDDInternationalConference onKnowledgeDiscovery
and Data Mining, pp. 236–245. ACM (2003)

53. Wang, Y., Cai, S., Yin,M.: New heuristic approaches for maximum
balanced biclique problem. Inf. Sci. 432, 362–375 (2018)

54. Wu, J., Li, C., Jiang, L., Zhou, J., Yin, M.: Local search for diversi-
fied top-k clique search problem. Comput. Oper. Res. 116, 104867
(2020)

55. Yuan, B., Li, B.: A fast extraction algorithm for defect-free sub-
crossbar in nanoelectronic crossbar. JETC10(3), 25:1-25:19 (2014)

56. Yuan, B., Li, B., Chen, H., Yao, X.: A new evolutionary algorithm
with structure mutation for the maximum balanced biclique prob-
lem. IEEE Trans. Cybern. 45(5), 1040–1053 (2015)

57. Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: Diversified top-k
clique search. VLDB J. 25(2), 171–196 (2016)

58. Zhang, F., Lin, X., Zhang, Y., Qin, L., Zhang, W.: Efficient com-
munity discovery with user engagement and similarity. VLDB J.
28(6), 987–1012 (2019)

59. Zhang, Y., Phillips, C.A., Rogers, G.L., Baker, E.J., Chesler, E.J.,
Langston, M.A.: On finding bicliques in bipartite graphs: a novel
algorithm and its application to the integration of diverse biological
data types. BMC Bioinform. 15, 110 (2014)

60. Zhou, Y., Hao, J.-K.: Combining tabu search and graph reduction
to solve the maximum balanced biclique problem. arXiv preprint
arXiv:1705.07339 (2017)

61. Zhou, Y., Rossi, A., Hao, J.-K.: Towards effective exact methods
for the maximum balanced biclique problem in bipartite graphs.
Eur. J. Oper. Res. 269(3), 834–843 (2018)

62. Zhu, X., Guo, J., Cheng, X., Du, P., Shen, H.: A unified framework
for recommending diverse and relevant queries. In: Srinivasan,
S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E.,
Kumar, R. (eds.) Proceedings of the 20th International Confer-
ence on World Wide Web, WWW 2011, Hyderabad, India, March
28–April 1, 2011, pp. 37–46. ACM (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1705.07339

	Maximum and top-k diversified biclique search at scale
	Abstract
	1 Introduction
	2 Preliminaries
	3 The baseline solution
	4 A progressive bounding method
	4.1 Problem analysis
	4.2 The progressive bounding framework

	5 MBC-preserved graph reduction
	5.1 One-hop graph reduction
	5.2 Two-hop graph reduction
	5.3 The overall reduction strategy

	6 Diversified top-k biclique search
	6.1 Baseline solution
	6.2 Advanced diversified top-k search
	6.2.1 Problem analysis
	6.2.2 Advanced top-k biclique search

	6.3 Optimization strategies

	7 Performance studies
	7.1 Graph reduction and optimizations
	7.2 MBC * versus baseline algorithms
	7.3 TopK versus TopKBasic
	7.4 Case study

	8 Related work
	9 Conclusion
	References

