The VLDB Journal (2022) 31:1365-1389
https://doi.org/10.1007/s00778-021-00681-6

SPECIAL ISSUE PAPER l‘)

Check for
updates

Maximum and top-k diversified biclique search at scale
Bingqing Lyu' - Lu Qin?® - Xuemin Lin3 . Ying Zhang? - Zhengping Qian’ - Jingren Zhou'

Received: 30 November 2020 / Revised: 14 May 2021 / Accepted: 4 June 2021 / Published online: 18 April 2022
© The Author(s) 2022

Abstract

Maximum biclique search, which finds the biclique with the maximum number of edges in a bipartite graph, is a fundamental
problem with a wide spectrum of applications in different domains, such as E-Commerce, social analysis, web services, and
bioinformatics. Unfortunately, due to the difficulty of the problem in graph theory, no practical solution has been proposed to
solve the issue in large-scale real-world datasets. Existing techniques for maximum clique search on a general graph cannot
be applied because the search objective of maximum biclique search is two-dimensional, i.e., we have to consider the size
of both parts of the biclique simultaneously. In this paper, we divide the problem into several subproblems each of which
is specified using two parameters. These subproblems are derived in a progressive manner, and in each subproblem, we can
restrict the search in a very small part of the original bipartite graph. We prove that a logarithmic number of subproblems is
enough to guarantee the algorithm correctness. To minimize the computational cost, we show how to reduce significantly the
bipartite graph size for each subproblem while preserving the maximum biclique satisfying certain constraints by exploring
the properties of one-hop and two-hop neighbors for each vertex. Furthermore, we study the diversified top-k biclique search
problem which aims to find k£ maximal bicliques that cover the most edges in total. The basic idea is to repeatedly find the
maximum biclique in the bipartite graph and remove it from the bipartite graph k times. We design an efficient algorithm that
considers to share the computation cost among the k results, based on the idea of deriving the same subproblems of different
results. We further propose two optimizations to accelerate the computation by pruning the search space with size constraint
and refining the candidates in a lazy manner. We use several real datasets from various application domains, one of which
contains over 300 million vertices and 1.3 billion edges, to demonstrate the high efficiency and scalability of our proposed
solution. It is reported that 50% improvement on recall can be achieved after applying our method in Alibaba Group to
identify the fraudulent transactions in their e-commerce networks. This further demonstrates the usefulness of our techniques
in practice.

Keywords Biclique search - Bipar title graph - Graph algorithms

1 Introduction

B Lu Qin
lu.qin@uts.edu.au

A bipartite graph is denoted by G = (U, V, E) where

1

2

3

Bingqing Lyu
bingqing.lbq @alibaba-inc.com

Xuemin Lin
Ixue @cse.unsw.edu.au

Ying Zhang
ying.zhang @uts.edu.au

Zhengping Qian
zhengping.qzp @alibaba-inc.com

Jingren Zhou

jingren.zhou@alibaba-inc.com

Alibaba Group, Hangzhou, China

The University of Technology Sydney, Ultimo, Australia
The University of New South Wales, Sydney, Australia

U(G) and V(G) denote the two disjoint vertex sets and
E(G) € U x V denotes the edge set. Bipartite graph is
a popular data structure, which has been widely used for
modelling the relationship between two sets of entities in
many real world applications. For example, in E-Commerce,
abipartite graph can be used to model the purchasing relation-
ship between customers and products; In web applications, a
bipartite graph can be used to model the visiting relationship
between users and websites; In bioinformatics, a bipartite
graph can be used to model the acting relationship between
genes and roles in biological processes.

A subgraph C is a biclique if it is a complete bipartite sub-
graph of G that for every pairu € U(C) and v € V(C), we

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00681-6&domain=pdf
http://orcid.org/0000-0001-6068-5062

1366

B.Lyu etal.

have (4, v) € E(C). Like a clique in general graph, biclique
is a fundamental structure in a bipartite graph, and has been
widely used to capture cohesive bipartite subgraphs in a wide
spectrum of bipartite graph applications. Below are several
representative examples.

(1) Anomaly detection [4,7] In E-commerce such as Ebay and
Alibaba, the behavior of a large group of customers purchas-
ing a set of products together is considered as an anomaly
because there is a high probability that the group of people
is making fraudulent transactions to increase the rankings of
their businesses selling the corresponding products. This can
be modeled as bicliques in a bipartite graph. Similarly, in
web services, bicliques can be used to detect a group of web
spammers who click a set of webpages together to promote
their rankings.

(2) Gene expression analysis [16,18,25,45,59] In gene
expression data analysis, different genes will respond in dif-
ferent conditions. The group of genes that have a number of
common responses over multiple conditions is considered as
a significant gene group.

(3) Social recommendation [23] In social analysis, there may
exist a group of users who have the same set of interests, such
as swimming, hiking, and fishing. Such groups and interests
can be naturally captured by a biclique, which is helpful in
social recommendation and advertising.

In practice, we cannot directly enumerate the bicliques of
the bipartite graphs as the number of bicliques is prohibitively
large in the above applications. In this paper, we investigate
the problem of maximum biclique search, i.e., finding the
biclique with the largest number of edges, for the following
two reasons:

(1) Given the biclique model, it is a very natural problem to
find the maximum biclique, which is not only theoretically
interesting but also useful in many real-life scenarios. For
instance, the maximum biclique may represent the largest
suspicious click farm in the e-commerce networks, the most
significant gene group in a gene-condition bipartite graph,
and the user group with the largest potential market value in
the social network.

(2) In some scenarios, one may need to enumerate a set of
bicliques. For instance, the fraud transactions cannot be fully
covered by the maximum biclique in the e-commerce net-
work. To reduce the number of output bicliques, we may
consider the maximal bicligue where none of its superset
is also a biclique. Unfortunately, as shown in our initial
empirical study, the number of maximal biclique is still large
(e.g., over 10° maximal bicliques have been output after 24 h
running of maximal biclique enumeration algorithm on a
e-commerce bipartite graph obtained from Alibaba). Thus,
we have to consider the diversified top-k bicliques. Inspired
by the well-studied diversified top-k clique search problem
(e.g., [57]), we can follow the same procedure by repeatedly
removing the current maximum biclique from the bipartite

@ Springer

graph k times. Clearly, the efficient computation of maximum
biclique is the key of this problem.

Challenges and motivations Despite its wide range of appli-
cations, finding the maximum biclique is an NP-hard problem
[38]. In the literature, there are many solutions to solve
another related NP-hard problem: the maximum clique
search problem in a general graph [17,19,20,26,31,46-49].
The main idea is to use graph coloring and core decomposi-
tion to obtain an upper bound for the maximum clique size
and use this upper bound to prune vertices that cannot be
contained in the maximum clique.

A natural question raised is: can we use the above graph
coloring and core decomposition techniques to search the
maximum biclique in a bipartite graph? Unfortunately, the
answer is negative. First, in a bipartite graph, only two col-
ors are needed to color the whole bipartite graph. Obviously,
we cannot obtain an upper bound for the maximum biclique
size using graph coloring. Second, in a large biclique, it is
possible for a vertex to have a very small degree/core num-
ber. For example, suppose the maximum biclique C is a star
where |U(C)| = 1 and |V (C)| is large, we only require the
degree/core number for each vertex in V (C) to be > 1. Con-
sequently, even a vertex has a small degree/core number, it
still cannot be pruned. Therefore, the core decomposition
technique also fails in maximum biclique search.

The main reason for the challenges in maximum biclique
search is that the size of a biclique C depends on two factors:
|U(C)|and |V (C)|; so, itis difficult to find a one-dimensional
indicator, such as color number, degree, or core number,
to prune vertices that cannot participate in the maximum
biclique. Due to this challenge, existing solutions [38,59]
can only handle small bipartite graphs and will face seri-
ous efficiency issues when the bipartite graph scales up in
size. Motivated by this, in this paper, we tackle the above
challenges and aim to solve the maximum biclique search
problem on bipartite graphs at billion scale.

Furthermore, based on the maximum biclique search, we
can find the diversified top-k bicliques which is desired
in some applications such as fraudulent transaction detec-
tion. Instead of computing the top-k bicliques based on the
maximal biclique enumeration algorithm which may output
exponential number of bicliques and is not practical on large-
scale bipartite graphs, we adopt a simple but effective method
by removing the maximum biclique from the bipartite graph
k times to obtain the diversified top-k results. However, in
this way, we still need to compute the maximum biclique k
times independently, which is costly. One may wonder if we
can share the computation costs among the diversified top-k
bicliques. It is quite challenging because there is no overlap
among the k diversified results.

Our solution Based on the above discussion, existing color-
ing and core decomposition-based approaches cannot yield

Maximum and top-k diversified biclique search at scale

1367

effective pruning in maximum biclique search. Our paper
aims for a new way to solve the problem. Our main idea is
as follows: instead of finding the upper bounds for pruning,
we try to guess a lower bound of |U (C*)| as well as a lower
bound of |V (C*)| for the maximum biclique C*. If the guess
is correct and tight, we can search on a much smaller bipar-
tite graph by eliminating a large number of vertices based on
the two lower bounds. However, we cannot guarantee that
our guess is always correct. Therefore, instead of guessing
only once, we guess multiple times which results in a list of
lower-bound pairs (rg, 18), (tllj, rxl,), To gain high prun-
ing power, the list of pairs should satisfy four conditions: (1)
rg X 1:8 should be as large as possible but not larger than the
number of edges in the optimal biclique C*; (2) The pairs are

ad i : i i i—1 _i—1
derived in aprogressive mannersothatt;; X ty, > 7, X1y,

for any i > 0; (3) There exists at least one pair r{‘, and r{j
that are the true lower bounds of |U(C*)| and |V (C™*)|; and
(4) The number of pairs should be well-bounded.

To make this idea practically applicable, two issues need
to be addressed: (1) How to guess the list of lower-bound
pairs so that they satisfy the above four conditions; and (2)
Given a lower-bound pair, how to eliminate as many vertices
as possible while preserving the corresponding maximum
biclique to optimize the computational cost.

Following the idea of the maximum biclique search prob-
lem, in the diversified top-k biclique search, we try to share
the computation cost among the k results by taking advantage
of the derived subspaces with lower-bound pairs. Our main
idea is as follows: instead of guessing tight lower bounds
only for the maximum biclique, we try to preserve more
results within one list of lower-bound pairs by slightly relax-
ing the constraints in each lower bound pair. By doing this, we
can share the computation cost among the preserved results,
without computing lower-bound lists and eliminating ver-
tices w.r.t. each lower-bound pair independently for every
single result.

Contributions In this paper, we answer the above questions
and make the following contributions:

— The first work to practically study maximum biclique
search on big real datasets Although the maximum
biclique search problem is NP-hard, we aim to design
practical solutions to solve the problem in real-world
large bipartite graphs with billions of edges. To the best of
our knowledge, this is the first work to solve this impor-
tant problem on real datasets at billion scale.

— A novel progressive-bounding framework We propose a
progressive bounding framework to obtain the lower-
bound pairs (ré,, t{,). We analyze the framework by
projecting the problem into a two-dimensional space, and
we show that the set of lower-bound pairs forms a sky-
line in the two-dimensional space, and only logarithmic

lower-bound pairs are enough to guarantee the correct-
ness.

— Maximum-biclique preserved graph reduction Given a
certain pair of lower bounds, we study how to elimi-
nate vertices while preserving the maximum biclique. We
investigate the vertex properties and derive pruning rules
by exploring the one-hop and two-hop neighbors for each
vertex. Based on the pruning rules, we can significantly
reduce the size of the bipartite graph.

— Diversified top-k biclique search with computation shar-
ing We formalize the diversified top-k biclique search as
a problem to maximize the total number of edges cov-
ered by the top-k bicliques, which takes both size and
diversity into consideration. Instead of computing the k
results independently, we propose an efficient algorithm
by considering the computation sharing among them.
Based on the progressive bounding framework, we gen-
erate the subspaces by slightly relaxing the lower-bound
constraints to preserve more results within one subspace
set, such that we can share the computation among the
preserved results. Two optimizations are proposed to fur-
ther accelerate the computation by pruning search spaces
and lazy refining candidates.

— Extensive performance studies on billion-scale bipartite
graphs We conduct extensive performance studies using
18 real datasets from different application domains. The
experimental results demonstrate the efficiency and scal-
ability of our proposed approaches. Remarkably, in a
user-product bipartite graph from Alibaba with over 300
million vertices and over 1.3 billion edges, our approach
can find the maximum biclique within 15min. It is also
reported that 50% improvement on recall can be achieved
after applying our proposed method in Alibaba Group to
identify the fraudulent transactions.

Outline The remainder of this paper is organized as follows.
Section 2 provides the preliminaries that formally defines
the maximum biclique search problem and shows its hard-
ness. Section 3 introduces the baseline solution based on
the branch-and-bound framework. In Sect. 4, we analyze the
reason for the inefficiency of the baseline solution, and pro-
pose the progressive bounding framework. Section 5 presents
the maximum-biclique preserved graph reduction techniques
and its optimizations. In Sect. 6, we study the problem of
diversified top-k biclique search and propose an efficient
algorithm by sharing the computation cost among the k
results. In Sect. 7, we evaluate our proposed algorithms using
extensive experiments. We review the related work in Sect. 8
and conclude the paper in Sect. 9.

This paper is extended from our previous work [28] to give
a more comprehensive study. First, we add the introduction
and motivation of the diversified top-k biclique search prob-
lem. Then, we add algorithms TopKBasic and TopK to find the

@ Springer

B.Lyu etal.

Fig.1 An example of a bipartite graph and its maximum biclique

diversified top-k bicliques, with two optimizations to further
accelerate the computation. Finally, we add more experi-
ments on maximum and diversified top-k biclique search to
show the efficiency of the proposed algorithms.

2 Preliminaries

We consider an unweighted and undirected bipartite graph,
G = (U, V, E) where U(G) and V(G) denote the two dis-
jointvertex setsand E(G) € U x V denotes the edge setin G.
For each vertex u € U(G), we use N (u, G) to denote the set
of neighbors of u in G, i.e., N(u, G) = {v|(u, v) € E(G)}.
The degree of a vertex u € U (G), denoted as d(u, G), is the
number of neighbors of u in G, i.e., d(u, G) = |N(u, G)|.
We use dY, . (G) to denote the maximum degree for all ver-
tices in U(G), i.e., d\,, (G) = max,cy(c) d(u, G). We have
symmetrical definition for each vertex v € V(G). The size of
a bipartite graph G, denoted as |G|, is defined as the number
of edges in G, i.e., |G| = |[E(G)|.

Definition 1 (Biclique) Given a bipartite graph G = (U, V,
E), abiclique C is a complete bipartite subgraph of G, i.e.,
for each pair of u € U(C) and v € V(C), we have (u, v) €
E(C).

In this paper, given a bipartite graph G, we aim to find
a biclique C* in G with the maximum size. Considering
that many real applications (e.g., fraud transaction detection)
require that the number of vertices in each part of the biclique
C* is not below a certain threshold, we add size constraints
ty and Ty on |U(C*)| and |V (C*)| s.t. |U(C*)| > 7y and
|V (C*)| > ty. Such a size constraint can also provide the
users with more flexibility to control the size of each side of
the biclique or avoid generating a too skewed biclique (e.g.,
a biclique with a single vertex of the highest degree at one
side and all its neighbors at the other side). As a special case,
when 7y = 1 and ty = 1, the problem will find the maxi-
mum biclique without any constraint. The maximum biclique
problem studied in this paper is defined as follows:

Problem statement Given a bipartite graph G = (U, V, E),
and a pair of positive integers Ty and ty, the problem of
maximum biclique search aims to find a biclique C* in G,
$.t.|U(C*)| = tyand |V (C*)| > 1y, and |C*|is maximized.

We use C7, ;, (G) to denote such a biclique.

@ Springer

Example 1 Figure 1ashows a bipartite graph G with U (G) =
{uy, up, ..., u7}, V(G) = {vy, vy, ..., vg}. Given thresholds
7y = 1 and Ty = I, the maximum biclique C| ,(G) = C;
is shown in Fig. 1b, where U (Cy) = {u3, u4, }45, ug} and
V(C1) = {v2, v3, v4, vs}. Given thresholds 7y = 1 and
ty = 5, the maximum biclique CT,S(G) = (, is shown in
Fig. Ic, where U(C3) = {us, ua} and V(Cs) = {v1, v, ...,
v6}.

NP-hardness and inapproximability As shown in [38], the
maximum biclique problem is NP-hard, and as proved in [5]
and [30], it is difficult to find a polynomial time algorithm
to solve the maximum biclique problem with a promising
approximation ratio. Due to the inapproximability, in this
paper, we aim to find the exact maximum biclique and will
propose several techniques to make our algorithm practical
in handling large real-world bipartite graphs.

3 The baseline solution

In the literature, the state-of-the-art algorithm proposed in
[59] resorts to the branch-and-bound framework, aiming to
list all maximal bicliques by pruning non-maximal candi-
dates from the search space. To obtain a reasonable baseline,
in this section, we extend the algorithm proposed in [59],
and design an algorithm to compute the maximum biclique
by adding some pruning rules in the branch-and-bound pro-
cess.

The branch-and-bound algorithm We briefly introduce the
branch-and-bound algorithm. The algorithm maintains a par-
tial biclique (U, V, U x V) and recursively adds vertices into
V. When V is fixed, U can be simply computed as the set of
common neighbors of all vertices in V, i.e.,

U = {u|(u,v) € E(G)Vv e V} @))

Therefore, we only need to consider V to determine the
biclique. Based on this idea, the key to reducing the cost is
to prune the useless vertices to be added into V. According
to Eq. 1, when V is expanded, U will be contracted.

The pseudocode of the algorithm is shown in Algorithm 1.
The input of the algorithm includes the bipartite graph G, the
thresholds 7y and ty, and an initial biclique C. Here, C is

Maximum and top-k diversified biclique search at scale

Fig.2 An example of MBC
searching

Algorithm 1: MBC(G, ty, Ty, C)
Input : Bipartite graph G, tyy and ty, initial biclique C
Output : The maximum biclique C*

1 C* <« C;

2 BranchBound(U (G), @, V(G), 9);

3 return C*;

4 Procedure BranchBound(U, V, Cy, Xy)
5if |V| >ty and |U| x |V| > |C*| then
6 | C* < (U,V,UxV)

7 while Cy # ¢ do

8 v* < Cy.pop();

9 U <« {ueU|u,v* e EG)};

10 V <« VUP*IU{veCylU C N®w,G)};

11 Cy, <~ {weCy\V|[INw,GNU'| = y};

12 X, < {veXy|INw, G)NU'| =}

13| iU = tyand|V/|+|C)| >ty and U] x (V| +|C)
>|C*land v e Xy st. U’ € N(v, G) then

14 L BranchBound(U’, V', C},, X}));

15 | Xy < Xy U{*);

used when a biclique is obtained before invoking the algo-
rithm, or can be set as ¥ otherwise. The algorithm initializes
C* as C (line 1), invokes the BranchBound procedure to
update C* (line 2), and returns C* as the answer (line 3).
The recursive procedure BranchBound has four parame-
ters U, V, Cy, and Xy, initialized as U (G), @, V(G) and @,
respectively. Here, (U, V, U x V) defines a partial biclique.
Cy is the set of candidate vertices that can be possibly added
to V, and Xy is the set of vertices that has been used and
should be excluded from V. The procedure BranchBound
updates C* using (U, V, U x V) if itis larger than the current
C* and satisfies the threshold constraints (line 5-6). Then, it
iteratively adds vertex v* from Cy to expand V (line 7-8).
Then, U’ is updated by selecting the vertices from U that
are neighbors of v*; V’ includes vertices in V, v*, and vertices
in Cy that are neighbors of all vertices in U’; C (, includes
the vertices in Cy by excluding the vertices in V' as well as
the vertices with number of neighbors in U’ no larger than
Ty, X Q/ includes all vertices in Xy by excluding the vertices
with number of neighbors in U’ no larger than ty (line 9-12).

U(CY={us,u4,us,us}, V(C*)={vz,vs,v4,vs}

s vertex in U
. s vertex in V
@ : vertex in Cv
O vertex in Xv

U(CY={uz,us,us,us,us}, V(C*={vz,vs,vs}

(V' =Vs l !
(b) Search Branch Starting from Vs !

Fig.3 Drawbacks of MBC

A Bipartite Graph G

The new search branch by including v* will be created after
considering the following pruning conditions (line 13—14):

(1) ty pruning The size of U’ should be > 1y since U will
only be contracted in the branch.

(2) Ty pruning The size of V' U C}, should be > ty.

(3) Size pruning The value of |U’| x (|V'| + |C},|) should
be > |C*|. Without it, exploiting the current branch will not
result in a larger biclique.

(4) Non-maximality pruning The non-maximality pruning is
based on the fact that a maximum biclique should be a max-
imal biclique. If there is a vertex v in the exclusion set Xy
that are neighbors of all vertices in U’ (i.e., U' C N (v, G)),
the resulting biclique cannot be maximal and thus the branch
can be pruned.

After searching bicliques with v*, we add v* into X, (line 15).

Example 2 Given the bipartite graph G in Fig. 1a and thresh-
olds 7y = 1 and Ty = 1, we show the search tree of MBC in
Fig. 2a. The vertices in V are processed in non-descending
order of degree [59], and each tree node represents v*
selected in the branch. We illustrate the details in search
branch from vs in Fig. 2b. At first, we have Xy = {ve, v1},
Cv = {vs,v2,v4,v3}, U(C*) = {u3z,ug}, and V(C*) =
{v1, v2, V3, V4, V5, Ve}. Instep (1), we select v*= vs5 and refine
U’ = {uy, uz, ug, us, ug}. V' is the vertices in Cy that con-
nect to all vertices in U’, i.e., V' = {v2, v3, vs}. Then, we
refine C}, = {v4} and X/, = {v1, vs}. By now, we update
U(C*) =U', V(C*) = V' and |C*| = 15. In step (2), we
further select v* = vy, refine corresponding sets in a similar
way as shown in Fig. 2, and update |C*| = 16.

@ Springer

1370

B.Lyu etal.

4 A progressive bounding method

In this section, we first analyze the reason for the large
search space of the baseline solution, and then introduce
our approach using search space partitioning based on a
progressive bounding framework to significantly reduce the
computational cost.

4.1 Problem analysis

Why costly? Although four pruning conditions are used to
reduce the search space for maximum biclique search in
Algorithm 1, it will still result in a huge search space in real
large bipartite graphs due to the following two drawbacks:

— Drawback 1: loose pruning bounds Most pruning con-
ditions in Algorithm 1 rely on tyy and 7y . However, ty
and ty are user given parameters which can be small. In
this way, the pruning power by ty and 7y can be rather
limited. For size pruning, the constraint of |[U’| x (|V’|
+|Cy) > |C*| can be very loose because Cy, is filtered
using Ty and thus |CY,| can be large when 7y is small.

— Drawback 2: large candidate size The size of a biclique
C, calculated as |U(C)| x |V(C)|, depends on two
factors: |U(C)| and |V (C)|. It is possible that the opti-
mal solution C* is unbalanced, i.e., either with a large
|U(C*)| and a small |V (C*)| or with a small |U(C*)|
and a large |V (C*)|. Therefore, during the branch-and-
bound process, even if the degrees of all candidates in Cy
are small (where |U| is small), we cannot stop branch-
ing when V U Cy is large, because we may still generate
a large biclique in this situation. Similarly, we cannot
remove a vertex from U when its degree is small. This
canresultin ahuge search space on alarge bipartite graph.

Example 3 Figure 3 shows a bipartite graph G with U =
{ur,us, ...,u100} and V = {vy, va, ..., v100}. Specifically, u
connects to all vertices in V and v connects to all vertices in
U.Given ty = 1 and Ty = 1, the size of maximum biclique
C* is 100. By adopting MBC, we firstly select vj into V'. As
vy connects to all vertices in U, U’ = {uy, us, ..., u100}-
Furthermore, as u; connects to all vertices in V, C {, =
{va, v3, ..., v100}. However, we cannot prune any vertices
with 7y = 1 and ty = 1, and neither can we prune search
branches with size constraint since |U’| x (|V'| 4+ |C},]) is
larger than |C*|. Moreover, we can not prune candidate ver-
ticesin C Q/, though the degrees of vertices are 1s, which leads
to large candidate size and a huge search space.

Our idea Based on the above analysis and to significantly
improve the algorithm, we consider two aspects:

@ Springer

— To resolve drawback 1, we need to improve the pruning
bounds to achieve the stop conditions in early stages of
the branch-and-bound process;

— To resolve drawback 2, we need to remove as many ver-
tices as possible from the graph to reduce the number of
candidates that may participate in the optimal solution.

Our idea is as follows: instead of using the thresholds 7y
and ty for pruning, we enforce two new thresholds 7;; and
Ty, for U(C*) and V(C*), respectively, with 7, > 7y and
Ty > ty. To tighten the bounds, we try to make 7/, x 7},
as large as possible but ensure that 7/, x 7}, is no larger
than the size of the optimal solution. With rl’j and r‘*}, we
are able to obtain a smaller bipartite graph G* by removing
as many vertices as possible that will not participate in the
maximum biclique. On the smaller graph G* with tighter
bounds rl*, and 7};, the algorithm will be much more efficient.
Suppose C* is the optimal solution, if we can guarantee that
7y < |U(C*)|and tj; < [V(C*)|,the algorithm on graph G*
with thresholds z;; and 7y, will output the optimal solution.

However, to make our idea practically applicable, the fol-
lowing two issues need to be addressed:

— First, we do not know the size of the maximum biclique
C* before the search.

— Second, it is difficult to find a single pair 7}, and 7y, to
guarantee that tj; < [U(C*)| and 7, < |V(C")|.

In the following, we will introduce a progressive bounding
framework to resolve the two issues.

4.2 The progressive bounding framework

We propose a progressive bounding framework to address
the two issues raised as follows:

— To address the first issue, instead of using the size of
the optimal solution |C*|, we use a lower bound [b(C*)
of |C*|, i.e., Ib(C*) < |C*|. The lower bound can be
quickly initialized and will be updated progressively to
make the thresholds 7;; and 7, tighter.

— To address the second issue, instead of using a single
pair 7;; and 7y;, we use multiple pairs (tllj, r‘l,), (112], 1‘2,),
e (rl'j, r{ﬁ). We will guarantee that for any possible
biclique C with U(C) x V(C) > [b(C*), there exists
a pair (‘L’lij,t{,) for 1 <i < kst rb < |U(C)| and
t(, < |V(C)]. Then, for each (rl’/, Ty) for1 <i <k, we
compute abiclique C;* withmaximumsize s.t. |U (C})| >
7, and |[V(C/)| > ty,. Among the computed bicliques,
the biclique with the maximum size is the answer for the
original problem.

Maximum and top-k diversified biclique search at scale

1371

Algorithm 2: MBC* (G, ty, tv)
Input
Output

1 C0 <~ InitMBC(G, 1y, tv);

2 1y < di (G);

3 k <~ 0;

4 while r"ﬁ > 7y do

k+1 \C \ .
T < max(| = |, w);

: Bipartite graph G, thresholds tyy and ty
: The maximum biclique C*

5 T

p ‘[‘I;+1 <« max(\jzi ,TV)S

7 | Giy1 < Reduce(G, tit!, o6y,

8 | Ci, < MBC(Gsr, r"“ ooy
9 | k<k+1;

10 return C;;

The algorithm framework The progressive bounding frame-
work is shown in Algorithm 2. For any valid biclique C with
|U(C)| = ty and |V (C)| > 1y, |C] is a lower bound of the
optimal solution C*. Based on this, we first use InitMBC to
obtain an initial biclique, denoted as Cj, s.t. |Cy| < |C*|
(line 1). Then, we set rg to be an upper bound of |V (C)|
for any possible biclique C. Here, a natural upper bound is
the maximum degree for any nodes in U(G), i.e., mal,((G)
(line 2). k is used to denote the number of iterations and ini-
tialized as O (line 3). The progressive bounding framework
will finish in logarithmic iterations. Each iteration will gener-
ate a pair rLk/‘H and t‘]jH based on the values of fv and the the
lower bound of the optimal solution |C,f|. When rk+1 (rk‘H
resp.) is smaller than ty (ty resp.), it will be set to be Ty (ty
resp.) (line 5-6). We will analyze the rationale later. With

Z‘]H and ‘L'k+l we aim to obtain a graph G4 that is much
k1 k+1) and

the maximum biclique w.r.t. thresholds 7, and rk‘H is pre-

served in G4+ (line 7). After this, we ﬁnd the maximum
biclique w.r.t. rk+1 and r(j“ on Gy41 with C}} as an initia-

tion in MBC (lme 8).

smaller than G using procedure Reduce(G, t;;
k+1

The rationale Next, we address the rationale of the progres-
sive bounding framework. Note that the size of a biclique C
is determined by |U(C)| and |V (C)|. Therefore, to analyze
the problem, we define a two-dimensional space as follows:

Definition 2 (Search Space S(G)) Given a bipartite graph
G, atwo-dimensional space S(G) has two axes |U| and |V]|.
Given any biclique C in G, we can represent it as a two-
dimensional point (|U (C)|, |V (C)|) in the space S(G).

Given the search space S(G), the i-th search in line 7-8
of Algorithm 2 can be considered as to cover a certain sub-
space ([rli], +00), [r"',, 400)) in S(G). To show the search
preserves the optimal solution, we define the optimal curve

in S(G):

Definition 3 (Optimal Curve) Given a bipartite graph G and
parameters Ty and Ty, suppose C* is the maximum biclique
w.rt. Ty and Ty, we call the curve |U| x |V| = |C*| the
optimal curve in the two-dimensional space S(G).

Note that the optimal curve is unknown before the search.
However, it can be used to analyze the correctness of the
progressive bounding framework as followers.

Theorem 1 (Algorithm Correctness) Given a bipartite graph
G and parameters ty and ty, for any point (sy,sy) on
the optimal curve with sy € |1y, max(G)] and sy €
[Ty, dmaX(G)], there exists a certain (rU, ‘L'V) generated by
Algorithm 2 s.t. (sy, sy) € ([t];, +00), [t},, +00)).

Proof Sketch: In Algorithm 2, 7)) is set to be d¥,, (G), and

when k increases, t"ﬁ will be iteratively divided by 2 until it
is smaller than ty. Therefore, we can always find a certain
i > 0s.t.

o <sy <7yt

- ; [
Based on Algorithm 2, we have 17, = max(\‘ﬂf—ll » TU)-
|4
We consider two cases:
— Case I: tli] = 1. In this case, we have:
Sy = Ty = ‘L’llj

Therefore, (sy, sy) € ([rb, +00], [r{,, +00]) holds.

|,1|

— Case?2: rli] = J Note that |C}"_, | is alower bound

of the optimal Valrle |C*|i.e.,

|Gyl < 1C7|

Since (sy, sy) is a point on the optimal curve, we have
sy x sy = |C¥|

Consequently, we can derive the following inequalities:
i Gl _] 1%
A e
v v
- {I *IJ
< = lsul =su
sy

Therefore, (sy, sy) € ([rb, +o00], [r{,, +00]) holds.

According to the analysis above, Theorem 1 holds. O

Theorem 1 shows that all the points in the optimal curve
within the range ([ty, dY,,(G)], [tv, dY,,(G)]) are cov-
ered by the search spaces in Algorithm 2. Note that for any

@ Springer

B.Lyu etal.

Suppose the initial solution is C§

Search space to obtain Cj

[UIx V[=IC}]
|U| x |V| =|C*| (the optimal curve)
Search space to obtain C}

Ul x |v|=IC;|

(77 R b —
T Th T
Fig.4 Illustration of algorithm rationale
biclique C in G, we can guarantee that |U(C)| < dn‘iax(G)

and |V(C)| < dn({ax(G). Therefore, Algorithm 2 obtains the
optimal solution.

The rationale of the progressive bound framework is
shown in Fig. 4. Here, we draw the two-dimensional space
S(G), and show the search spaces of the first three itera-
tions of Algorithm 2 on S(G). We generate three search
spaces using (tllj, r‘]/), (ILZ,, ‘L'\z,), and (rgj, 1:‘3,), which obtains
the bicliques C}, C3, and C3, respectively. We use red,
green, and blue colors to differentiate the three spaces respec-
tively. As shown in Fig. 4, when i increases, the curve
|U|x|V| = |C}| progressively approaches the optimal curve
|U| x |V| = |C*|, and the optimal curve |U| x |V | = |C*| in
S(G) for |V| > 1‘3, is totally covered by the three search
spaces. This illustrates the correctness of the progressive
bounding framework.

Example 4 Given the bipartite graph G in Fig. 1a and thresh-
olds 7y = 1 and 7y = 1, we adopt Algorithm 2 to find
the maximum biclique. Suppose we initiate biclique Cy; as
shown in Fig. 1c that we have |Cj| = 12 and 18 = 6. Then,
we search the optimal solution progressively:

(1) 7}, = 2, t), = 3. We adopt Reduce to filter vertices
in G, e.g., we filter u7 as d(u7, G) = 2 and it cannot
be involved in a biclique with), = 3. We will explain
Reduce in detail later. We search for C{ on G, and get
U(CY) = {u3,usq,us,ue}, V(CY) = {v2,v3, v4, v5}.
Thus |C| = 16.

2) rlzj =5, 1‘2, = 1. Since we cannot find any larger biclique
on reduced graph G, |Cik | = 16. As shown above, we
progressively use multiple strict tlk/ and r‘lj threshold
pairs to approach the optimal solution.

The effectiveness of the progressive bounding framework
is further verified in our experiments. For example, Table 2

@ Springer

shows that the graph compression ratio in the bounding iter-
ations varies from 0% (omitted in the table) to 2.05%. This
reduces significantly the search space and computation cost
in the maximum biclique search procedure.

To realize the algorithm framework MBC* in Algorithm 2,
we still need to solve the following two components:

— The initial biclique computation algorithm InitMBC. We
use a greedy strategy to obtain the initial biclique. Specif-
ically, we initialize an empty biclique and iteratively
add the vertex that can maximize the size of the current
biclique until no vertex can be added. The biclique with
the maximum size among the process is returned.

— The graph reduction algorithm Reduce. We will discuss
the details of Reduce in the next section.

5 MBC-preserved graph reduction

As shown in Algorithm 2, one of the most important pro-
cedures is to reduce the size of the bipartite graph given
certain t{, and ‘L"i/ while preserving the maximum biclique.
In this section, we show how to reduce the bipartite graph
size by exploring some properties of the one-hop and two-
hop neighbors for a certain vertex. We first introduce the
MBC-preserved graph below.

Definition 4 (MBC-Preserved Graph) Given a bipartite
graph G, and thresholds 7/, and tj,, a bipartite graph G is
called a MBC-preserved graph w.r.t. 7;; and ty,, if U(G") €
U(G). V(G) € V(G). E(G) € E(G)and [C*, , (G')] =
utv
|C :,- o (G)|. In other words, the maximum biclique for G is
u°tv

preserved in G'. We use G’ =
MBC-preserved graph of G.

" G to denote that G’ is an

We can easily derive the following lemma:

Lemma 1 (Transitive Property)
Go c,i
s

If Gy C {/ Gy and

.t
;i Gz, wehave G1 Ei i Gs.
v vTv

5.1 One-hop graph reduction

To reduce the size of the bipartite graph, we first consider a
simple case by exploring the one-hop neighbors for each ver-
tex. Specifically, we use the number of neighbors to reduce
the bipartite graph. Besides, we eliminate a vertex u by
removing u and all its adjacent edges from G, denoted as
G © u. We derive the following lemma:

Lemma 2 Given a bipartite graph G, thresholds r{, and r{,,
we have:

(1) Vu e U(G):du,G) <1}, = GOuC, . G,
uv

Maximum and top-k diversified biclique search at scale

1373

Algorithm 3: ReducelHop(G, 1},, t},)

Input : Bipartite graph G, thresholds r[i] and r{,
Output : Agraph G;s.t. G;C.i i G

—_i i
Tu-tv

1 G; < G; finish < false;

2 while finish = false do

3 finish < true;

4 | ifexistsu € U(G))st.d(u, G;) < T}, then
5 L G; < G; ©u; finish < false;

6 | ifexistsv € V(G;)st.d(v, Gj) < 1}, then
7 L G; < G; ©v; finish <« false;

8 return G;;

(2) Vv e V(G):d(v,G) <1, = GO C. o G

Ty

Proof Sketch: We only prove (1), and (2) can be proved
similarly. Given a certain vertex u € U(G) with d(u, G) <
r{,, we need to prove that for any biclique C in G with
[UC)| = 7, and |[V(C)| > 1y, C is also a biclique in
G © u. That is, we only need to prove u ¢ U(C). Next, we
prove u ¢ U (C) by contradiction. Suppose u € U(C), since
C is abiclique with |V (C)| > r{',, u has at least r{, neighbors
in G,ie.,du,G) > t{,. This contradicts with the fact that
du, G) < ‘C‘i/. Therefore, the lemma holds. |
Lemma 2 provides a sufficient condition for a vertex to be
eliminated s.t. the maximum biclique is preserved. Based on
the Lemma 1, Lemma 2 can be iteratively applied to reduce
the graph size until no vertices can be eliminated.

The one-hop graph reduction is shown in Algorithm 3.
Given a bipartite graph G and thresholds 1:{, and r{,, the
algorithm aims to compute a bipartite graph G; s.t. G; ETE} <
G by applying the one-hop reduction rule in Lemma 2. We
first initialize G; to be G (line 1), and then we iteratively
remove vertices from G; that satisfy either case (1) (line 4-5)
or case (2) (line 6-7) in Lemma 2. The algorithm terminates
until no such vertices can be found in G;. The following
lemma shows the time complexity of Algorithm 3.

Lemma 3 Algorithm 3 requires O (|G|) time.

Proof Sketch: To implement Algorithm 3 efficiently, we
can use a queue Q to maintain the set of vertices satisfy-
ing Lemma 2. Each vertex is pushed into and poped from
the queue Q at most once. For each vertex v, after removing
it from G;, we need to maintain the degrees of its neigh-
bors and put those neighbors that can be eliminated using
Lemma 2 due to decreasing of the degree into the queue
Q. This requires O(d(v, G)) time. Therefore, the overall
time complexity of Algorithm 3 is O(3_,cy(g)du, G) +
Zvev(G)d(v, G)) = 0(|G)). O

5.2 Two-hop graph reduction

Next, we explore the two-hop neighbors to further reduce
the size of the bipartite graph. For each vertex u, suppose u’
is a two-hop neighbor of u, i.e., N(u', G) N N(u, G) # @.
To eliminate u by fully using the information involved within
the two-hop neighbors, instead of only considering the degree
of u/,i.e., |N(u', G)|, we consider the number of common
neighbors of # and «/, i.e., [N (u’, G) N N(u, G)|. To do so,
we define the t-neighbor and t-degree as follows:

Definition 5 (t-Neighbor and t-degree) Given a bipartite
graph G and a parameter 7, for any u € U(G) and u’ €
U(G), u' is a t-neighbor of u iff

INW',G)NN@u,G)| >t

For any u € U(G), the set of T-neighbors of u is defined as
N:(u, G),ie.,

Ne(u,G) = {u' [IN@', G) N N(u, G)| > 7}

and the t-degree of u is defined as the number of vertices in
N:(u, G),ie.,

de(u, G) = [N (u, G)|

Similarly, we can define the t-neighbor set N (v, G) and the
t-degree d. (v, G) for any v € V(G).

Obviously, the T-neighbor of any vertex u is a subset of a
union of u itself and the two-hop neighbors of u. For example,
in Fig. 5b, when 7 = 4, N;(v{, G') = {v1, v, v3}, because
both vy and v3 have > 4 neighbors with v;.

T