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Abstract

Embedded functional dependencies (eFDs) were recently introduced to tailor
relational schema design to data completeness requirements of applications. They
also facilitate data cleaning and data integration. A problem that is essential to
unlocking these applications is the discovery of all eFDs that hold on a given data
set. We show that the discovery problem of eFDs is NP-complete, W[2]-complete
in the output, and has a minimum solution space that is larger than the maximum
solution space for functional dependencies. Despite these computational challenges,
we use novel data structures and search strategies to develop row-efficient, column-
efficient, and hybrid algorithms that can efficiently solve the discovery problem for
eFDs on large real-world benchmark data sets. Our experiments also demonstrate
that the algorithms scale well in terms of their design targets, and that ranking
the eFDs by the number of redundant data values they cause can provide useful
guidance in identifying meaningful eFDs for applications. Finally, we demonstrate
the benefits of introducing completeness requirements and ranking by the number
of redundant data values for approximate and genuine functional dependencies.
Keywords: Discovery, Missing data, Embedded Functional Dependency
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1 Introduction

Data profiling computes interesting meta data for a given data set [1]. It is of great
importance to many applications such as data integration, data cleaning, and database
schema design. One of the most important tasks in data profiling is the discovery of
data dependencies that hold on the given data set. Somewhat surprisingly, profiling
data with missing values has not received much attention yet despite being the standard
case in the real-world. In this paper, we investigate the discovery problem of embedded
functional dependencies (eFDs) on data with missing values. The class of eFDs was
recently introduced to facilitate data-quality driven schema design for data with missing
values [30]. While the discovery of eFDs from legacy or sample data is essential to
determine which eFDs are good candidates to drive schema design and data cleaning,
this problem has not been investigated before.

An eFD is a statement E : X → Y where X, Y ⊆ E and X, Y are attribute sets from
a relation schema R. It states that the FD X → Y holds on the subset rE of those tuples
from the given relation r that have no missing values on any of the attributes in E. The
two major advantages of eFDs over FDs is their independence of the interpretation of null
markers, and their ability to accommodate data completeness requirements [30]. Hence,
eFDs hold on a data set independently of which information a null marker represents.
This means the validity of an eFD is beyond guesswork, and strongly supports data inte-
gration scenarios in which one must assume that different null marker occurrences may
represent different types of missing values, such as inapplicable information or unknown
values. Secondly, the ability to accommodate data completeness requirements enables
them to tailor relational schema design to application requirements [30].

As an illustration consider the sample r from [30] in Table 1. Here, the benefit that a
parent pays for the children is uniquely determined by the parent. Hence, the FD p→ b
should hold, but the third tuple causes violations with the first two tuples. In fact, the
FD p → b is only meaningful for tuples with no missing values on child (the benefit is
calculated based on known children), and on parent and benefit as well. This leads to
the eFD cpb : p→ b. Embedded FDs can identify redundant data values that cannot be
identified by prior work. In the example, both occurrences of 610 are redundant since
changing one of these values to any other value will violate the eFD c : p → b. As the
FD X → Y holds on the E-complete subrelation rE, rE can be decomposed into rE[XY ]
and rE[X(R−Y )] without loss of information. This eliminates redundant data values on
the application-relevant part rE. The reason why c : p→ b causes redundant data values
is because the embedded uniqueness constraint (eUC) cpb : p does not hold: The first
two tuples are complete on c, b, p but have matching values on p. Since eFDs cause data
redundancy on rE, we want to restructure rE such that the corresponding eUC becomes
valid and eliminates the data redundancy. The relations on the right column of Table 1
illustrates the decomposition on our example.

Indeed, the decomposition has turned the eFD cpb : p→ b on r into the eUC cpb : p
on r[pb] (the value 610 only occurs once). Similar to how keys prohibit redundant data
values while FDs cause them, eUCs prohibit redundant data values on the E-complete
part while eFDs cause them there. For this, however, we need completeness requirements.
Such requirements have not been considered in previous work on FDs. For instance, every
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Table 1: Sample r, lossless decomposition of rpbc into rpbc[pc] and rpbc[pb] (on the right),
& tuple in r − rpbc

sample r
p(arent) b(enefit) c(hild)
Homer 610 Bart
Homer 610 Lisa
Homer 915 ⊥

rpbc[pc]
p(arent) c(hild)
Homer Bart
Homer Lisa

application-irrelevant r − rpbc
p(arent) b(enefit) c(hild)
Homer 915 ⊥

rpbc[pb]
p(arent) b(enefit)
Homer 610

FD holds on any data set with some (approximation) error ratio, i.e. the ratio of pairs of
different tuples that violate an FD over all pairs of different tuples. In our example, the
aFD p → b has the ratio 2/3. Typically, aFDs are aimed at permitting small numbers
of errors to enable their discovery under dirty data. However, even if we did identify
p→ b during aFD discovery, it cannot give us any insight which part of the data can be
normalised. Even though completeness requirements are not part of aFD discovery, they
enable us to distinguish between errors in tuples that meet the completeness requirements,
and those that are caused by missing values. For instance, the error ratio of p → b on
rpbc is 0. Hence, errors come only from tuples that are not as complete as required.

Due to their strong applications for data with missing values [30], the problem of
discovering eFDs from given data arises. While the discovery of eUCs has been addressed
recently [28], no previous work has investigated eFD discovery. The discovery problem
is already challenging for traditional FDs: It’s decision variant is both NP- and W[2]-
complete in the output, and the number of independent FDs that may hold in a relation
with n attributes is exponential in the number of columns [8]. Despite these challenges,
there are algorithms that can efficiently solve the problem on large real-world data sets
[24, 23, 29]. It is tempting to apply a state-of-the-art FD discovery algorithm to discover
eFDs: one can apply such an algorithm to all subsets of tuples that meet any possible
completeness requirements, and then aggregate the results. Table 2 shows the discovery
times on some benchmark data sets, based on the FD discovery algorithm DHyFD [29].
Already on hepatitis this approach requires more than 32.5 hours to discover just over
11k eFDs, compared to discovering just over 8k FDs in under 0.2 seconds with DHyFD.
Hence, this is not a viable solution. As completeness requirements are a novel feature of
eFDs, and since there are exponentially many possibilities for them, it is unclear how to
efficiently cope with a search space that is much larger than that of FDs. For instance,
once the FD X → A is known to hold we do not need to check any FD XB → A as
it is implied by X → B. However, if the eFD E : X → A is known to hold, we still
need to check whether E ′ : XB → A holds unless E ′ contains E. Moreover, while eUC
discovery [28] must traverse all possibilities for E such that E : U holds for any given
U , eFD discovery must traverse all possibilities for E such that E : X → Y holds for
any fixed combination of X and Y . A second challenge is raised by pure combinatorial
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Table 2: Brute force eFD discovery with DHyFD
Data set #Cols #Rows #eFDs Time (s)

breast-cancer 11 691 48 14.867
bridges 13 108 169 18.95

echocardiogram 13 132 438 13.218
ncvoter 19 1000 1443 8775.43

hepatitis 20 155 11087 117165

arguments. The best known upper bound for the maximum number of independent FDs
on a schema with n attributes is 2n−1 [8]. However, we establish in this article the lower

bound of 1√
n
· (3
√

3
2

)n for the maximum number of independent eFDs on a schema with n
attributes. Hence, the solution space for eFDs is much larger than that for FDs can ever
be. For n = 2, . . . , 11 the best known lower (lFD and leFD) and upper (uFD) bounds for
FDs and eFDs are:

n 2 3 4 5 6 7 8 9 10 11
lFD 2 4 7 11 21 36 71 127 253 465
uFD 3 7 15 31 63 127 255 511 1023 2047
leFD 2 7 16 51 126 393 1016 3139 8440 25653

We point out an important difference between keys and FDs, and eUCs and eFDs.
While a relation over schema R will satisfy the key X if and only if it will satisfy the FD
X → R, a relation may satisfy the eFD E : X → E but violate the eUC E : X. The
equivalence between E : X → E and E : X only holds when E = R. For instance, the
following table

p(arent) b(enefit) c(hild)
Homer 610 Bart
Homer 610 ⊥

satisfies the eFD pb : p→ b but violates the eUC pb : p. Consequently, eUCs are not
special cases of eFDs.

In summary, we conclude that eFD discovery is an important problem and requires
dedicated algorithms with new search strategies and data structures that can efficiently
handle the large solution space. Our main contributions are: (1) We show that the deci-
sion variant of eFD discovery is NP- and W[2]-complete. (2) We establish a lower bound
for the maximum number of independent eFDs by providing a general construction of a
family with that bound. (3) We introduce a novel data structure called eFD-trees to store
and search eFDs. (4) We introduce the first row-efficient, column-efficient and hybrid al-
gorithms for eFD discovery. (5) We demonstrate the practicality of our algorithms based
on their performance on real-world data sets. (6) We show that completeness require-
ments and ranking by the number of redundant data values are useful for the analysis of
approximate and genuine FDs. This is done qualitatively and quantitatively. Data sets
are available at https://bit.ly/2N0pTOS?.
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2 Related Work

Since the 1980s many FD discovery algorithms have been developed for data sets with a
large number of either rows or columns. Row-efficient algorithms, going back to TANE
[13], model the search space of FDs as an attribute lattice. The lattice is traversed level
by level from smaller to larger sets of attributes. An attribute set is pruned if no at-
tributes are functionally dependent on the set. Subsequent algorithms such as FUN [22],
FD MINE [32] and DFD [2] introduced different pruning and lattice traversal strategies.
The authors of FUN [22] define embedded FDs as FDs that hold on a projection of a
given relation onto a subset of columns. These are different from our notion of embedded
FDs which are FDs embedded in complete fragments of a relation. Column-efficient al-
gorithms use agree sets, which is the collection of columns on which pairs of distinct rows
have matching values. By using either maximal agree sets [21] or minimal complements
of agree sets [31], column-efficient algorithms use hypergraph transversals. Flach and
Savnik used FD-trees to manage the FD set [9]. Examining agree sets iteratively, an
FD-tree is updated until it represents the output set after all pairs of rows have been
processed. These data structures cannot be efficient in handling the search space for
eFDs, since we would require exponentially many attribute lattices and also agree sets
in order to deal with all the possible subsets on which records are complete.

A row-efficient hybrid algorithm for the discovery of minimal keys was introduced in
[11]. It traverses the attribute lattice simultaneously from the top and bottom, essentially
’halving’ the search space by faster pruning. A recent hybrid FD discovery algorithm [24]
switches between the column-efficient algorithm from [13] and the row-efficient algorithm
from [9]. The row-efficient part validates the FDs of an FD-tree [9] and switches to the
column-efficient algorithm when too many FDs are invalidated. The latter generates
FDs that do not hold on the input, and switches to the row-efficient part whenever too
few invalid FDs are found. The recent hybrid FD discovery algorithm from [29] uses a
novel hybridization strategy and the dynamic computation of stripped partitions. Here,
stripped partitions will only be updated whenever it is likely that many new FDs can be
validated. This balances runtime efficiency with memory consumption.

None of these previous techniques can help with the search of valid eFDs, since such
a search needs to accommodate not only (non-)matching values of records but also pay
attention to null marker occurrences. For example, the same FD (eg. A → B) could be
valid in many different complete data fragments (eg. ABC, ABD, ABE, . . .). Hence, new
data structures and strategies need to be developed to accommodate the larger search
and solution space. Our new Theorem 3 shows that the potential solution space for eFDs
is always larger than that for FDs can ever be.

Wei et al. [28] recently introduced row-efficient, column-efficient, and hybrid algo-
rithms for the discovery of eUCs. Table 3 shows a brief comparison between eUCs and
eFDs. This is similar to the difference between keys and FDs from relational databases,
but - as pointed out in the introduction - eUCs are not special cases of eFDs. In par-
ticular, the inference rules in the eUC (eFD) column show an axiomatization for the
individual class of eUCs (eFDs), and adding the two mixed rules from the last row gives
us an axiomatization for the combined class of eUCs and eFDs [30]. All discovery algo-
rithms for eUCs [28] work on eUC trees, that have distinct labels for the attributes of
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Table 3: Comparison between eUCs and eFDs
Property eUCs eFDs

Syntax E : U E : X → Y
Semantics no two different E-complete tuples no two different E-complete tuples with matching

have matching values on U values on X have matching values on Y
Example cpb : p cpb : p→ b

Schema design prohibit E-redundancy cause E-redundancy
Data cleaning finds errors as E-complete tuples with finds errors as E-complete tuples with

matching values on U matching values on X and different values on Y

Axiomatization
R : R

E : U

EE′ : UU ′ E : XY → X

E : X → Y

E : X → XY

E : X → Y E′ : Y → Z

EE′ : X → Z
E : X

E : X → E

E : XY E : X → Y

E : X

E, followed by attributes in U . Simply extending this data structure to eFDs would be
inefficient since too many candidate embeddings E would need to be generated for too
many different combinations of the left-hand and right-hand side attribute sets X and Y ,
respectively. The data structure of eFDs we introduce here uses a novel representation
that stores as many valid eFDs in a single path as possible. In contrast to eUC trees
we use here the concise form of eFDs which only represents attributes in E that are not
part of X or Y . This helps with the search, update, and induction of new candidates.
For the row-efficient algorithms, both eUC and eFD discovery must traverse embeddings
in contrast to previous work. However, the conditions characterizing when embeddings
exist, how the candidates for embeddings can be traversed efficiently, and how they can
be validated is much simpler for a given unique constraint than for a given FD, based
on the deeper semantics and interaction of eFDs. For column-efficient algorithms, both
eUC and eFD discovery are based on the generation of new candidates from data samples
that invalidate previous candidates. New eUC candidates are generated from embedded
non-uniques, but to generate new eFD candidates we need to introduce non-eFDs. Since
the interaction of non-eFDs is very different from that of embedded non-uniques, novel
techniques are required to generate new candidate eFDs effectively. For hybrid algo-
rithms, both eUC and eFD discovery use sampled violations from the column-efficient
part to reduce the search space in the row-efficient part, and both reduce the number
of new candidates in the column-efficient part by directly validating candidates in the
row-efficient part. However, for eFD discovery the sampled violations can only reduce
the local search space and a new technique is necessary to remove all implied non-eFDs
from the eFD tree.

Approximate FDs [19, 7] permit few violations of FDs to increase the recall of mean-
ingful FDs. In [19] the authors define an aFD as an FD X → A with its (approximation)
error ratio εr on a relation r, which is the ratio of those pairs of distinct tuples in r that
agree on X and differ on A over all pairs of distinct tuples in r. Note that aFDs are only
defined for singleton attributes on the right-hand side, and not for occurrences of null
markers. In general, every FD holds with some εr on any given relation r. In principle,
aFDs were not defined to include completeness requirements, and are thus different from
eFDs. For example, the FD p→ b may be discovered as an aFD with εr = 2/3 in Table 1,
but does not give us any hint whether the eFD cpb : p → b is satisfied. Vice versa, if
the eFD E : X → Y holds on r, then we have the strict upper bound εr < |rE|/|r| for
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the FD X → Y . Hence, eFDs tell us something about aFDs, while aFDs cannot tell us
anything about eFDs. Nevertheless, it is useful to think about the potential benefit that
eFDs may have on aFDs. We will show that completeness requirements and ranking the
number of redundant data values are beneficial for aFDs.

Genuine FDs (gFDs) [4] measure the impact of missing values on the validity of (exact
and approximate) FDs. The level of genuineness γ of an FD is informally the degree by
which the FD holds on the true completion of the data set. The authors compute gFDs
by comparing a clean and complete data set to a version of the data set where some
percentage of domain values were replaced by the null marker. Then they distinguish
between same FDs which are those FDs that hold on both data sets, fake FDs which
are those that hold on the dirty but not the clean data set, and ghost FDs which are
those that hold on the clean but not the dirty data set. Genuine FDs are formed by the
union of the sets of same and ghost FDs. Indeed, gFDs have been defined to estimate
the impact of nulls on FDs and aFDs, while eFDs drive schema design for incomplete
data. Similar to the case of aFDs, however, it is beneficial to think about the benefits of
incorporating completeness requirements in the analysis of gFDs. Indeed, the discovery
of E : X → Y on a relation r guarantees that rE is the largest subrelation of r on which
X → Y holds without doubt. In addition, if an eFD E : X → Y holds on the clean (and
possibly incomplete) data set r, then an introduction of any null markers in columns
from E will not violate the E : X → Y . In this sense, there will not be any ghost
FDs and the set of genuine FDs simply becomes the set of the same FDs. Of course, by
introducing null markers in columns from E we may still generate fake FDs. Hence, it
makes a lot of sense to pivot the computation of gFD along completeness requirements,
starting from the set of tuples that is complete on E, for instance. More fundamentally
and similar to our observations with aFDs, we can define the levels of genuineness with
respect to rE. Again, this would allow us to distinguish the levels of genuineness based
on tuples that meet the completeness requirements of an application, and based on any
tuples. Similar to aFDs, we will show that completeness requirements and ranking the
number of redundant data values are beneficial for gFDs.

Hence, we are the first to investigate the discovery and ranking of eFDs, raising new
challenges over previous work. Efficient solutions help with data-quality driven schema
design and other applications. Including completeness requirements and ranking by data
redundancy benefits other variants of functional dependencies.

3 Embedded FDs

We fix notions and notation in this section.
A relation schema is a finite, non-empty set R of attributes (also called column

(names)). With each attribute A we associate a domain dom(A) of values that can
occur in A. A tuple t over R (row or record) is a function that maps each A ∈ R to a
value in dom(A). Two records are equal if they have matching values on all the attributes
of R, and distinct otherwise. A relation r over R is a finite set of tuples over R. For finite
attribute sets X = {A1, A2, . . . Am} and Y , we write A1A2 . . . Am for X, and XY instead
of the set union X ∪ Y . Attribute sets may be called column combinations. For X ⊆ R
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and a tuple t over R, we write t(X) for the projection of t onto X. We use the symbol
⊥ to denote the null marker. While ⊥ is a marker and not a value, we abuse notation
for convenience and assume that ⊥ is a distinct element of each domain. We say a tuple
t over R is X-total if t(A) 6=⊥ for all A ∈ X. We use rX to denote the set of all X-total
tuples in a relation r, and call rX the scope of r with respect to X. A relation is complete
when it has no null marker occurrence, that is, when the scope rR and r coincide.

An embedded FD (eFD) over relation schema R is an expression of the form E : X →
Y where X, Y ⊆ E ⊆ R. We call E the embedding, X the left-hand-side (LHS), and Y
the right-hand-side (RHS). A relation r over R satisfies eFD E : X → Y , denoted by
r � E : X → Y , if and only if for all t, t′ ∈ rE, t(X) = t′(X) implies t(Y ) = t′(Y ). If
r does not satisfy E : X → Y , we also say r violates E : X → Y . The concise form of
E : X → Y is the expression E −XY : X → Y .

Stripped partitions are often used to validate FDs [13]. We now define an extension
of stripped partitions for the purpose of validating eFDs. Let r be a relation over R and
E ⊆ R. The E-equivalence class of tuple t ∈ r is the set [t]E = {s ∈ rE | s[E] = t[E]}.
The stripped partition of a relation r over E is πE(r) = {[t]E | t ∈ rE, |[t]E| ≥ 2}.

The discovery problem of eFDs is to compute a representation of all eFDs satisfied
by a given relation. In FD discovery, a LHS-reduced cover is widely utilized [23]. For
eFDs, our proposed algorithms compute a canonical cover for the given relation. That is,
eFDs contain one attribute on their RHS, and removing any attribute from their LHS
or embedding will cause a violation of the resulting eFD on the relation.

4 Computational Challenges

We settle the computational complexity of the following decision variant eFD for the
eFD discovery problem.

Problem: eFD
Input: relation r over schema R

positive integer k
Output: yes, if there is some E : X → A satisfied by r

where X ⊆ E ⊆ R, A ∈ E −X and |E| ≤ k
no, otherwise

We use the cardinality |E| as the size of eFD E : X → A because XA ⊆ E. Dis-
covering eFDs is at least as hard as discovering FDs in complete relations. The decision
variant FD of FD discovery, as defined in the box below, is NP-complete. By reducing
FD to eFD, we establish NP-hardness for eFD.

Problem: FD
Input: relation r over schema R

positive integer k
Output: yes, if there is some X → A satisfied by r

where X ⊆ R, A ∈ R−X and |XA| ≤ k
no, otherwise
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Theorem 1 The problem eFD is NP-complete.

Proof eFD is in NP because we can guess E : X → A with |E| ≤ k and verify in
polynomial time using Algorithm 4 (see Section 6). For the NP-hardness, we reduce FD
to eFD. Take an instance (r, k) of FD where r is a complete relation over relation schema
R, and k is positive integer. Let (r′, k′) be the instance of eFD where r = r′ and k = k′.
Now it follows that a non-trivial FD X → A where |XA| ≤ k is satisfied by r if and
only if the eFD X : X → A is satisfied by r′.

FD is W[2]-complete in the output [5]. We show that FD and eFD are FPT-
equivalent, so eFD is W[2]-complete in the output. As eFDs cannot express eUCs,
we cannot simply reduce the decision variant for eUC discovery [28] to eFD.

Theorem 2 (Fixed-parameter intractability)
The problem eFD is W[2]-complete in the size of the output.

Proof We show that eFD and FD are equivalent under FPT-reductions. The result
then follows from the W[2]-completeness of FD in [5]. For FD≤FPTeFD the PTIME
reduction is the same as the construction used for Theorem 1 since parameter k′ only
depends on k. It remains to show that eFD≤FPTFD holds. Take an instance (r, k) of
eFD. We transform (r, k) into an instance (r′, k′) by defining r′ as the result of replacing
null marker occurrences in r with unique column values in r′, and defining k′ to be k.
Clearly, this transformation is FPT. Now we claim that there is some eFD E : X → A
satisfied by r if and only if there is some FD E − A → A satisfied by r′ |E| ≤ k. If
there is an eFD E : X → A where |E| ≤ k that is satisfied by r, then rE satisfy X → A
furthermore rE � E → A; for any other tuples they satisfy E → A trivially in r′ because
for any tuple t, t′ 6∈ rE there is a null maker in t(E) and t′(E) hence t(E) 6= t′(E) with
respect to r′. If there is an FD E − A → A where A ∈ E and |E| ≤ k satisfied by r′,
then there is E : X → A where X ⊆ E −A satisfied by r since E : E −A→ A must be
satisfied by r. This concludes the proof.

Remarkably, recent algorithms can quickly solve large instances for the FD and can-
didate key discovery problems [24, 26]. However, the efficiency bar is raised even higher
for eFDs. This results from the solution space of the eFD discovery problem. For most
classes of constraints exact numbers for the maximum solution space are unknown, in-
cluding for FDs. For example, only lower and upper bounds are known for the maximum
cardinality of a non-redundant family of FDs over a schema with n attributes [8], and
the best known upper bound of 2n − 1 is very rough.

For each pair E,X with X ⊂ E ⊆ R we fix an attribute BE,X ∈ E − X, and let
m = dn/2e. Now we define

Σ := {E : X → Y | X ⊆ E ⊆ R, Y = XBE,X , |E| = m+ j,
|X| = m− j − 1, j = 0, 1, . . . ,m− 1} ,

which is the non-redundant family Σ of eFDs for which we can establish the lower bound
in the next theorem. Indeed, for each eFD E : X → Y in Σ we have |E|+ |X| = 2m− 1.
Using Vandemonde convolution, we can show the following.
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Theorem 3 For every positive integer n ≥ 2, there is a non-redundant family of eFDs
over a schema with n attributes, which has at least c · 1√

n
· (3
√

3
2

)n elements for some
constant c.

Proof We proceed in three stages.
Stage 1:

Fact. An eFD σ′ = F : V → W can be derived from a set of eFDs Σ′ if and only if
it can be derived from Σ′′ = {F : X → Y | ∃E : X → Y ∈ Σ′ s.t. E ⊆ F}

Fact. Let V ⊆ R be such that every eFD σ = E : X → Y in Σ satisfies either X 6⊆ V
or Y ⊆ V . Then the same property holds for every eFD in Σ+.

We show this by inspecting each of the inference rules. By the reflexivity axiom, an
eFD σ = E : X → Y holds when Y ⊆ X. Hence, X ⊆ V immediately yields Y ⊆ V .

By the extension rule, an eFD σ = E : X → Y implies an eFD σ′ = E : X → XY .
Assume σ has the property under inspection. Suppose X ⊆ V , then Y ⊆ V holds by
assumption. This yields XY ⊆ V . Hence, σ′ has the property, too.

By the transitivity rule, two eFDs σ = E : X → Y and σ′ = E ′ : Y → Z imply an
eFD σ′′ = EE ′ : X → Z. Assume σ and σ′ have the property under inspection. Suppose
X ⊆ V , then Y ⊆ V holds by assumption, and therefore Z ⊆ V holds by assumption,
too. Hence, σ′′ has the property, too.
Stage 2:

Fact. Σ is non-redundant.
Consider an eFD σ′ = F : V → W in Σ. We will demonstrate that σ′ cannot be be

derived from Σ′ = Σ − σ. Recall that σ′ can be derived from Σ′ if and only if it can be
derived from Σ′′ = {F : X → Y : ∃E : X → Y ∈ Σ′ s.t. E ⊆ F}. Let σ = E : X → Y
be an eFD in Σ′ = Σ − σ with E ⊆ F . We will show that σ satisfies either X 6⊆ V or
Y ⊆ V . Suppose X ⊆ V . Due to E ⊆ F we have |X| ≥ |V | which yields X = V . By
definition of Σ we obtain Y = XBE,X 6⊆ V = X. That is, σ has the property under
inspection. On the other hand, σ′ does not have this property since both, V ⊆ V and
Y = XBE,X 6⊆ V hold. Hence, σ′ cannot be derived from Σ′ = Σ− σ as claimed.
Stage 3: Next we study the cardinality of Σ. By the definition of Σ we have the following:

|Σ| =
m−1∑
j=0

(
n

m+ j

)(
m+ j

m− j − 1

)
(1)

=
m−1∑
j=0

n!

(n−m− j)! · (m− j − 1)! · (2j + 1)!
(2)

The cardinality of Σ gives us a lower bound for the maximum number of independent
eFDs.

We will now provide a straightforward lower estimate to show that the magnitude of
|Σ| is strictly larger than the magnitude of the maximum number of independent FDs.

For even n (that is, n = 2m) the sum in Eq. (1) can also be written as follows:
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|Σ| =
m−1∑
j=0

n!

(m− j)! · (m− j − 1)! · (2j + 1)!
(3)

=
m−1∑
j=0

n!

j! · (j + 1)! · (n− 1− 2j)!
(4)

=
m−1∑
j=0

(2m)!

j! · (j + 1)! · (2m− 1− 2j)!
(5)

Similarly, for odd n (that is, n = 2m−1) the sum in Eq. (1) can be written as follows:

|Σ| =
m−1∑
j=0

n!

(m− j − 1)! · (m− j − 1)! · (2j + 1)!
(6)

=
m−1∑
j=0

n!

j! · j! · (n− 2j)!
(7)

=
m−1∑
j=0

(2m− 1)!

j! · j! · (2m− 1− 2j)!
(8)

We can estimate the sum in Eq. (1) using the Vandemonde convolution (for x ≤
m− 1 + y), see [10]: (

m− 1 + y

x

)
=

m−1∑
j=0

(
m− 1

j

)(
y

x− j

)
(9)

In case of even n we use y := n and x := n− 1. This gives(
3m− 1

2m− 1

)
=

(
m− 1 + n

n− 1

)
=

m−1∑
j=0

(
m− 1

j

)(
n

n− 1− j

)
(10)

=
m−1∑
j=0

(2m)! · (m− 1)!

j! · (j + 1)! · (m− 1− j)! · (2m− 1− j)!
(11)

In the case of odd n we use y := n and x := n. This gives(
3m− 2

2m− 1

)
=

(
m− 1 + n

n

)
=

m−1∑
j=0

(
m− 1

j

)(
n

n− j

)
(12)

=
m−1∑
j=0

(2m− 1)! · (m− 1)!

j! · j! · (m− 1− j)! · (2m− 1− j)!
(13)

11



Now it is easy to verify that

(m− 1)!

(m− 1− j)! · (2m− 1− j)!
≤ 1

(2m− 1− 2j)!
(14)

for every j = 0, 1, . . . ,m− 1.
This implies

(
3m−1
2m−1

)
≤ |Σ| for even n = 2m and

(
3m−2
2m−1

)
≤ |Σ| for odd n = 2m− 1.

For even n = 2m we can further observe |Σ| ≥
(

3m−1
2m−1

)
= 2

3
·
(

3m
2m

)
. Similarly for odd

n = 2m−1 we can further observe |Σ| ≥
(

3m−2
2m−1

)
= 3m−2

2m−1
·
(

3m−3)
2m−2)

)
≥ 2 ·

(
3(m−1)
2(m−1)

)
. For good

lower and upper bounds of binomial coefficients of this particular form we refer to [27]
where, in particular, the following has been shown:(

3m

2m

)
≥ c · 1√

m
· (27

4
)m (15)

Using Eq. (15) we conclude the following estimate for the cardinality of Σ:

|Σ| ≥ c · 1√
n
· (3
√

3

2
)n (16)

This shows that the solution space for eFDs is guaranteed much larger than the
solution space for FDs can ever be.

5 eFD-Trees As Data Structures

FD discovery has benefited from special data structures to store and update intermediate
results, and provide efficient access, search, and pruning capabilities. Particularly, FD-
trees [9] have improved the runtime of FD discovery. For the larger search space that
eFDs require, we propose a novel data structure for eFD discovery, called eFD-tree.

Definition 1 (eFD-tree) Let R be a relation schema with a total order of attributes.
An eFD-tree is a tree with a unique l(eft-hand-side)-root, multiple e(mbedding)-roots,
e(mbedding)-nodes, l(eft-hand-side)-nodes and the following properties: (1) Every node,
except root nodes, is an attribute of R; (2) All children of an e-root are e-nodes; (3)
E-nodes only have e-node children; (4) eFD-nodes are the e-nodes labeled with RHS
attributes of an eFD; (5) L-nodes and the l-root can have l-node children and at most one
e-root child; (6) All child nodes, except e-roots, have larger attributes than their non-root
parents; (7) Each traversal of the tree from the l-root to an eFD-node represents an eFD
in its concise form.

Example 1 Figure 1 shows 3 choices to store {AB : A → B,AC : A → C}. Tree (a)
uses attributes in the embedding as the prefix of a path. Tree (b) reverses the construction
of (a) so that LHS attributes become the prefix of a path. Tree (c) is the eFD-tree
in Definition 1 which follows (b) but stores eFDs in their concise form: ∅ : A → B,
∅ : A→ C.

12



Figure 1: Representing eFDs AB : A→ B and AC : A→ C

By using the concise form of eFDs, eFD-trees need only one path to represent as
many eFDs as possible, which improves search and update time. The eFD-tree (c) in
Example 1 captures different eFDs by a single path.

During eFD discovery newly discovered eFDs may be implied by previously discovered
eFDs. For example, if eFD AB : A→ B is satisfied, then ABC : A→ B is also satisfied.
In fact, the first and the third rule of the axiomatization in the eFD column of Table 3
show that the FD AB : A→ B and the trivial FD ABC : B → B imply ABC : A→ B.
Such implications should be efficiently managed by an eFD-tree.

Algorithm 1 reduces the size of an eFD tree by eliminating eFDs that are implied
by eFDs with smaller LHS or embedding. To check if eFD E : X → A is implied,
Algorithm 1 recursively traverses an eFD tree in a depth-first search (DFS). Starting
with the l-root node, eFD ∅ : ∅ → A is checked for existence (step 5 - 7). After that,
subsets of X will be examined recursively by traversing to any child l-node in X (step
13 - 20). Before the next l-node (step 17 - 20), we check if the current node also has
an e-root node attached. If it does, subsets of E will be checked for all l-nodes in the
current path by traversing any child e-node from the e-root in E (step 8 - 12). During
DFS, if any e-node or e-root node contains attribute A as its RHS label, an implied eFD
has been found (step 5 - 7). Otherwise, no eFD in the eFD-tree implies the given eFD.

6 Row-efficient Discovery

In this section, we introduce a row-efficient (column-based) discovery algorithm for eFDs,
whose runtime mainly depends on the number of the given columns.

In FD discovery, a row-efficient algorithm models the LHSs of FDs as an attribute
lattice (see the left of Figure 2) and uses the FD validation algorithm to find the satisfiable
RHS for a given LHS. Classical approaches such as [13] cannot directly be adapted
to discover eFDs. To discover eFDs in a row-efficient manner, there are three main
challenges to overcome. Firstly, the search space of eFDs including both embeddings and
LHSs is much larger than a single attribute lattice. Secondly, discovering eFDs needs to
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Algorithm 1

1: Input: E : X → A, l root of eFD-tree for eFD set Σ
2: Output: true if there is some E ′ : X ′ → A ∈ Σ(E ′ ⊆ E ∧X ′ ⊆ X)
3: return implied(l root, E,X,A)
4: function implied(node, E, X, A)
5: if node is eFD-node then
6: if A ∈ RHS(node) then
7: return true
8: if node is e-node then
9: for all child e-node child of node do

10: Let B be the attribute of child
11: if B ∈ E and implied(child, E,X,A) then
12: return true
13: if node is l-node then
14: if node has an e-root node e root then
15: if implied(e root, E,X,A) then
16: return true
17: for all child l-node child of node do
18: Let B be the attribute of child
19: if B ∈ X and implied(child, E,X,A) then
20: return true
21: return false

search through all possible combinations of embeddings and LHSs. An efficient strategy
must be devised to traverse and prune the search space of eFDs. Thirdly, eliminating
eFDs with redundant embeddings must examine eFDs discovered at all lower levels,
unlike the row-efficient discovery algorithms for FDs which only need to inspect valid
FDs from one level lower.

As shown on the top of Figure 2, each attribute subset of the lattice for LHSs
generates a filter in the attribute lattice for the possible embeddings. We therefore
propose a nested traversal strategy for the row-efficient discovery of eFDs. The nested
traversal starts with an l-traversal which will examine the attribute lattice of LHSs
from lower to higher levels. For each LHS, an e-traversal will be used to traverse all
possible embeddings for a given pair of LHS and RHS. During an e-traversal, eFDs
are examined for validity and implication. If an eFD is valid and non-implied, it will be
stored in our eFD-tree. Since e-traversals are nested in an l-traversal, classical pruning
strategies are no longer valid. For example, the validity of E : X → A does not imply
the validity of E ′ : XB → A since E is not necessarily a subset of E ′. Hence, finding
suitable embeddings for a given LHS may not reduce the attribute lattice of LHSs. For
improving the runtime performance of row-efficient eFD discovery we avoid unnecessary
e-traversals and reduce attribute lattices of embeddings using the following propositions.

Proposition 1 Let Σ be the canonical cover of eFDs that hold on the relation r over
R. R(⊥) is the set {A ∈ R | ∃t ∈ r : t(A) =⊥}. For any eFD E : X → A ∈ Σ,
E −XA ⊆ R(⊥).
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Figure 2: Bottom: the attribute lattice of LHSs over R = {A,B,C}. Top: the attribute
lattice (within the parallelogram) of LHS {A}’s embeddings

Proof Let r be a relation over relation schema R and R(⊥) = {A ∈ R | ∃t ∈ r : t(A) =⊥
}. Take any E : X → A ∈ Σ where XA ⊂ E and B ∈ E − XA. Assume B 6∈ R(⊥).
By the definition of eFDs, t1(X) = t2(X) implies t1(A) = t2(A) for any t1, t2 ∈ rE. If
B 6∈ R(⊥), then t(B) 6=⊥ for all t ∈ r. In other words, rB = r. Furthermore, we can
derive rE−B = rE ∪ (rE ∩ rB). Namely, rE−B = rE. However, r � E − B : X → A and
E − B : X → A must be in the canonical cover Σ instead of E : X → A, which draws a
contradiction. Therefore, B must be in R(⊥).

Proposition 1 restricts our search for suitable embeddings to attributes on which nulls
occur. Due to the concise form of eFDs, an e-traversal for X → Y over R only needs to
traverse the lattice over R(⊥)−X.

Proposition 2 Let r be a relation over relation schema R. For any X ⊆ R and A ∈
R − X, there is some E ⊆ R where XA ⊆ E such that r � E : X → A if and only if
t1(A) = t2(A) for all t1, t2 ∈ S ∩ rR and for all S ∈ πX .

Proof Let r be a relation over relation schema R an. Take any X ⊆ R and A ∈ R−X.
πX is the stripped partition of X over r.

Case ⇒: Suppose there exists E ⊆ R where XA ⊆ E such that r � E : X → A.
Take any S ∈ πX . Assume there exists t1, t2 ∈ S ∩ rR where t1(A) 6= t2(A). However,
t1(X) = t2(X) and t1, t2 ∈ rR ⊆ rE, which contradicts r � E : X → A.

Case ⇐: Suppose t1(A) = t2(A) for all t1, t2 ∈ S ∩ rR and for all S ∈ πX . Therefore,
t1(X) = t2(X) implies t1(A) = t2(A) if t1, t2 ∈ rR. In other words, r � R : X → A.

Proposition 2 characterizes when an entire e-traversal for X → Y can be skipped
since any possible embeddings will lead to invalid eFDs.
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Algorithm 2 L-traversal

1: Input: relation r over R, the l-root l root of an eFD-tree
2: Output: eFDs satisfied by r
3: l = 0
4: candidates = {∅}
5: rhs[∅] = R
6: while |candidates| > 0 do
7: for all X ∈ candidates do
8: Y ′ = {A ∈ rhs[X] | r � XA : X → A}
9: Y ′′ = {A ∈ rhs[X] | r � R : X → A} − Y ′

10: if |Y ′′| > 0 then
11: e traversal(r, R, l root,X, Y ′′, πX)

12: rhs[X] = rhs[X]− Y ′

13: l = l + 1
14: candidates = {X ⊆ R | |X| = l}
15: for all X ∈ candidates do
16: Y ′ =

⋂
{rhs[X ′] | X ′ ⊆ X ∧ rhs[X ′] 6= ∅} −X

17: Y ′ = {A ∈ Y ′ | XA : X → A is not implied}
18: if |Y ′| > 0 then rhs[X] = Y ′

19: else Remove X from candidates

Algorithm 3 E-traversal

1: Input: relation r over R, the l root of an eFD-tree, LHS attributes X, RHS
attributes Y , stripped partition πX

2: Output: updates on the eFD-tree of l root with all E ⊆ R such that r � E : X → Y
not implied

3: l = 0
4: candidates = {∅}
5: rhs[∅] = Y
6: while |candidates| > 0 do
7: for all E ∈ candidates do
8: Y ′ = {A ∈ rhs[X] | r � EXA : X → A}
9: if |Y ′| > 0 then

10: Insert E −XY ′ : X → Y ′ into l root
11: rhs[X] = rhs[X]− Y ′

12: l = l + 1
13: candidates = {E ⊆ R(⊥)−X | |E| = l}
14: for all E ∈ candidates do
15: Y ′ =

⋂
{rhs[E ′] | E ′ ⊆ E ∧ rhs[E ′] 6= ∅} − E

16: Y ′ = {A ∈ Y ′ | E : X → A not implied in l root}
17: if |Y ′| > 0 then rhs[E] = Y ′

18: else Remove E from candidates

16



Algorithms 2 and 3 form the foundation of the row-efficient algorithm. We first use
the l-traversal algorithm to search through all possible LHSs. Each LHS candidate has a
set of possible RHS attributes. As the level goes up in the l-traversal, sizes of LHS can-
didates become larger but the size of the RHS assigned to a LHS becomes smaller. For
each pair of LHS and RHS candidates, an e-traversal considers all possible embeddings.
E-traversals are similar to l-traversals but only examine and validate embeddings with
a fixed LHS. Following e-traversals (step 11), the l-traversal will generate new pairs of
LHS and RHS candidates for the next level. A new LHS candidate must be a superset
of some LHS candidate at the current level (step 14). The new RHS candidate of a new
LHS must be the intersection of all the RHSs whose corresponding LHSs are a subset
of the new LHS (step 15). For example, if a RHS attribute is not in the intersection,
the attribute belongs to the RHS of some eFD that has been validated at a lower level.

Prior to e-traversals, we use two heuristics to reduce the eFD search space. Firstly,
we verify which RHS attributes can lead to valid eFDs (step 8). If there is a non-empty
subset of the given RHS that leads to a valid eFD, any search for larger LHSs for this
RHS are unnecessary (step 12). Indeed, supersets of the LHS will lead to valid eFDs
with the same RHS. Secondly, we verify which attributes from the given RHS meet the
conditions in Proposition 2 (step 9). Hence, e-traversal will find at least one valid eFD.

Note that eFDs are discovered in their concise form. During l-traversal, RHS candi-
dates do not intersect with LHS candidates. For example, if X = ABC and Y ′ = CD,
then E : ABC → C is trivial for any E. Similarly, during e-traversal, RHS candidates
do not intersect with candidate embeddings. For example, E = ABC and Y ′ = CD are
equivalent to E = AB and Y ′ = CD, which were examined at lower levels of the lattice
for embeddings.

Finally, we comment on how to generate candidates for a level of an attribute lattice
(LHSs or embeddings), and how to validate eFDs. Candidate attribute sets for given
levels are generated efficiently by using prefix blocks [13]. Step 14 in Algorithm 2 and
step 13 in Algorithm 3 describe which candidates occur at each level, but these are
implemented by prefix blocks. Stripped partitions can be efficiently utilized to validate
eFDs, as shown in Algorithm 4. As LHS candidates are generated level by level, the
stripped partition of a LHS can be computed incrementally by Algorithm 5.

Algorithm 4 Validation

1: Input: relation r over R, eFD E : X → A, stripped partition πX(r)
2: Output: true, if r � E : X → A
3: for all S ∈ πX(r) do
4: SE = ∅
5: for all t ∈ S do
6: if ∀A ∈ E : t(A) 6=⊥ then SE = SE ∪ {t}
7: if |SE| > 0 then
8: Let SE = {t1, . . . , tn}
9: for all ti ∈ SE where i > 1 do

10: if ti(A) 6= t1(A) then return false

11: return true

17



Algorithm 5 Stripped partition

1: Input: relation r over R, stripped partition πX(r), attribute A ∈ R−X
2: Output: stripped partition πX(r)
3: πXA(r) = ∅
4: for all S ∈ πX(r) do
5: V = ∅
6: Let M be a mapping from dom(A) to sets of tuples
7: for all t ∈ S do
8: if t(A) does not exist in V then
9: M [t(A)] = {t}, V = V ∪ {t(A)}

10: continue
11: M [t(A)] = M [t(A)] ∪ {t}
12: for all v ∈ V do
13: if |M [v]| > 1 then πXA(r) = πXA(r) ∪ {M [v]}
14: return πXA(r)

In summary, Algorithm 2 enumerates all possible eFDs by traversing lattices of LHSs
and embeddings, and validates resulting eFDs on the input relation. An l-traversal
traverses all possible LHSs from small to large size. Hence, eFD with larger LHS are
pruned whenever they are impled by an eFD with smaller LHS. Given a LHS, an e-
traversal traverses all possible embeddings for a given LHS. Eventually, every possible
eFD will be either validated, violated, or implied. A validated eFD is stored and helps
detect implied eFDs later; a violated eFD increments its LHS or embedding; and implied
eFDs are discarded. Algorithm 2 terminates once the remaining search space becomes
redundant, or the l-traversal has examined the maximum level of the LHSs’ lattice.

Theorem 4 Algorithm 2 computes the canonical cover of all eFDs that are satisfied by
the given relation.

7 Column-efficient Discovery

Column-efficient algorithms extract counter-examples from a given relation and use them
to derive valid constraints. We introduce a column-efficient (row-based) discovery algo-
rithm for eFDs. Firstly, we define embedded non-FDs to represent violations of eFDs in
a given relation.

Definition 2 An embedded non-FD (non-eFD) over relation schema R is an expression
E : X 6→ Y where X, Y ⊆ E and X ∩ Y = ∅. We say a non-eFD E : X 6→ Y is valid in
relation r over R if and only if there are tuples t1, t2 ∈ rE such that t1(X) = t2(X) and
t1(B) 6= t2(B) for all B ∈ Y .

A valid non-eFD E : X 6→ Y provides a counter-example for the validity of several
eFDs. Firstly, for all E ′ ⊂ E and XY ⊆ E ′, the eFD E ′ : X → Y cannot be valid.
Secondly, for all X ′ ⊂ X, the eFD E : X ′ → Y cannot be valid. Thirdly, for all Y ′ ⊆ Y ,
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the eFD E : X → Y ′ cannot be valid. Hence, we say a non-eFD E : X 6→ Y contradicts
the eFD E ′ : X ′ → Y ′ if and only if E ′ ⊆ E, X ′ ⊆ X and Y ′ ⊆ Y . We require Y ′ ⊆ Y
(as opposed to Y ′ ∩ Y 6= ∅) since we only a get counter-example for the validity of
E ′ : X ′ → Y ′ ∩ Y but not for the validity of E ′ : X ′ → Y ′ − Y . Given a set of eFDs, if a
non-eFD contradicts some eFD, the eFD is augmented to generate new eFD candidates.
Proposition 3 shows that valid eFDs can be found when all valid non-eFDs no longer
contradict any of the new eFD candidates.

Proposition 3 Let r be a relation over R and Σ−1 the set of all non-eFDs valid in r. An
eFD E : X → Y is satisfied by r if and only if there is no non-eFD E ′ : X ′ 6→ Y ′ ∈ Σ−1

such that E ⊆ E ′, X ⊆ X ′, and Y ⊆ Y ′.

Proof Let r be a relation over R and Σ−1 the set of all non-eFDs in r.
Case ⇒: Suppose r satisfies eFD E : X → Y . Assume there is a non-eFD E ′ : X ′ 6→

Y ′ ∈ Σ−1 where E ⊆ E ′, X ⊆ X ′ and Y ⊆ Y ′. Then, there must be tuples t1, t2 ∈ rE
′

such that t1(X ′) = t2(X ′) and t1(A) 6= t2(A) for all A ∈ Y ′. However, t1(X) = t2(X)
and t1(A) 6= t2(A) for all A ∈ Y since t1, t2 ∈ rE

′ ⊆ rE, X ⊆ X ′ and Y ⊆ Y ′, which
contradicts to r � E : X → Y .

Case ⇐: Suppose r does not satisfy eFD E : X → Y . There must exist tuples
t1, t2 ∈ rE such that t1(X) = t2(X) and t1(A) 6= t2(A) for all A ∈ Y .

Example 2 illustrates the generation of new candidate eFDs from eFDs that are
contradicted by a valid non-eFD.

Example 2 Let ABC : A → BC be a candidate eFD over relation schema R =
ABCDE. Suppose ABCD : A 6→ B is a valid non-eFD. This non-eFD shows that
the eFD ABC : A → B cannot hold. We can augment this eFD to obtain new candi-
dates for valid eFDs. This can be done by adding attributes from R − ABC to the eFD
embedding ABC while keeping the original LHS, resulting in ABCE : A → B; or by
adding attributes from R − A to the eFD LHS A while keeping the original embedding,
resulting in ABC : AC → B.

The next example illustrates that some non-eFDs are better than others when gen-
erating new candidates for valid eFDs.

Example 3 Let ABC : A 6→ B and ABC : AC 6→ B be non-eFDs over R = ABCD.
Both contradict AB : A → B. If the non-eFD ABC : A 6→ B augments the eFD first,
the new candidate eFD ABC : AC → B emerges. However, the second non-eFD still
contradicts the new candidate. Since the first non-eFD is implied by the second, the
second non-eFD can generate better eFD candidates.

Just like eFDs imply one another, non-eFDs imply one another, too. Given non-
eFD E : X 6→ Y , the non-eFDs E ′ : X ′ 6→ Y where E ′ ⊆ E and X ′ ⊆ X need not
be considered. Ignoring those implications will result in redundant candidate eFDs, as
Example 3 demonstrates. Fortunately, implied non-eFDs can be easily eliminated using
eFD-trees. Algorithm 6 demonstrates how non-implied non-eFDs are computed. The
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algorithm firstly sorts all the unique non-eFDs extracted from a relation by the size of
their embeddings and LHSs (step 13). By inserting smaller non-eFDs first, it facilitates
insertion of larger non-eFDs later (step 16) to remove smaller but implied non-eFDs by
utilizing the fast search capabilities of the eFD-tree (step 15). The removal process can
be easily adapted from Algorithm 1.

Algorithm 6 non-implied non-eFD

1: Input: relation r over R
2: Output: the set of all non-implied non-eFDs
3: Let r = {t1, t2, . . . tn}
4: Σ−1 = ∅
5: Let T be an empty eFD-tree
6: for all ti ∈ r do
7: Let E = ∅, X = ∅, Y = ∅
8: for all tj ∈ r where i+ 1 ≤ j ≤ n do
9: E = {A ∈ R | ti(A) 6=⊥6= tj(A)}

10: X = {A ∈ E | ti(A) = tj(A)}
11: Y = E −X
12: Σ−1 = Σ−1 ∪ {E : X 6→ Y }
13: Sort Σ−1 in ascending size of LHSs, then by that of embeddings
14: for all E : X 6→ Y ∈ Σ−1 do
15: Remove all E ′ : X ′ 6→ A ∈ T for all A ∈ Y with E ′ ⊆ E ∧X ′ ⊆ X
16: Insert E : X 6→ Y into T

17: return {E : X 6→ Y ∈ T}

Algorithm 7 summarizes our column-efficient strategy. All eFDs and non-eFDs appear
in their concise form. First, we compute the set of non-eFDs from the given relation by
Algorithm 6. To initialize the eFD-tree, only the most general eFD ∅ : ∅ → R is
inserted. Next, each non-eFD is applied iteratively to the eFD-tree to generate new eFD
candidates. Any eFD candidate that contradicts a valid non-eFD is removed from the
tree. The new candidate eFDs are inserted in the eFD-tree only if they are not implied
by eFDs already in the tree. Proposition 4 shows that the augmentation of eFDs will
always produce a canonical cover of the valid eFDs based on the valid non-eFDs found
so far.

Proposition 4 Let Γ−1 = Σ−1 ∪ {E : X 6→ A} contain all non-eFDs of relation r over
R. Γ and Σ are the canonical covers of eFDs for Γ−1 and Σ−1, respectively. For all
E ′ : X ′ → A′ ∈ Σ, either (1) E ′ : X ′ → A′ ∈ Γ, or all of (2)-(6) hold: (2) E ′B : X ′ → A′

is implied by Γ for all B ∈ R−E, (3) E ′B : X ′B → A′ is implied by Γ for all B ∈ E−X,
(4) E ′B : X ′ → A′ 6∈ Γ for all B ∈ E, (5) E ′B : X ′B → A′ 6∈ Γ for all B ∈ X, and (6)
E ′B : X ′B → A′ is implied by Γ for all B ∈ R− E.

Proof Let Γ−1 = Σ−1 ∪ {E : X 6→ A} be the set of all non-eFDs of relation r over
R. Γ and Σ are the canonical cover of eFDs with respect to Γ−1 and Σ−1. Take any
E ′ : X ′ → A′ ∈ Σ
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If A 6= A′ or E ′ 6⊆ E or X ′ 6⊆ X, then E ′ : X ′ → A′ ∈ Γ because E ′ : X ′ → A′ is
already a canonical eFD in Σ and it does not imply non-eFD E : X → A.

Suppose A = A′ and E ′ ⊆ E and X ′ ⊆ X. Take any B ∈ R − E. Since E ′ : X ′ →
A′ ∈ Σ, there exists no E ′′ : X ′′ 6→ A′ ∈ Σ−1 by Proposition 3 where E ′ ⊆ E ′′ and
X ′ ⊆ X ′′. Knowing E ′ ⊂ E ′B, hence, E ′B : X ′ → A′ is a satisfiable eFD with respect
to Σ−1. Furthermore, E ′B : X ′ → A′ is a satisfiable eFD with respect to Γ−1 because
B 6∈ E and E ′B 6⊆ E. If there exists E ′′ : X ′′ → A′ ∈ Σ where E ′′ ⊆ E ′B and X ′′ ⊆ X ′,
then E ′′ 6⊆ E because B must be in E ′′. If B 6∈ E ′′ and E ′′ ⊆ E ′, then E ′′ : X ′′ → A′ and
E ′ : X ′ → A′ are both in Σ and redundant to each other, which draws a contradiction.
So, E ′′ 6⊆ E and E ′′ : X ′′ → A′ ∈ Γ. Namely, E ′B : X ′ → A′ is redundant to Γ.
Otherwise, E ′B : X ′ → A′ ∈ Γ if it is not implied by other eFD in Σ. Hence, claim 2 is
proven.

Take any B ∈ E−XA′. Since E ′ : X ′ → A′ ∈ Σ, there exists no E ′′ : X ′′ 6→ A′ ∈ Σ−1

where E ′ ⊆ E ′′ andX ′ ⊆ X ′′ by Proposition 3. Knowing E ′ ⊆ E ′B andX ′ ⊂ X ′B, hence,
E ′B : X ′B → A′ is a satisfiable eFD with respect to Σ−1. Furthermore, E ′B : X ′B → A′

is a satisfiable eFD with respect to Γ−1 because B 6∈ X and X ′B 6⊆ X. Suppose there
exists E ′′ : X ′′ → A′ ∈ Σ where E ′′ ⊆ E ′B and X ′′ ⊆ X ′B.

Case B ∈ X ′′: X ′′ 6⊆ X implies E ′′ : X ′′ → A′ ∈ Γ. Therefore, E ′B : X ′B → A′

becomes redundant to Γ.
Case B 6∈ X ′′: we can conclude that E ′′ ⊆ E ′B ⊆ E and X ′′ ⊆ X ′ ⊆ X,X ′B. Since

E ′′ ⊆ E and X ′′ ⊆ X, E ′′ : X ′′ → A′ is not in Γ but E ′′B : X ′′B → A′ is satisfiable
with respect to Γ−1. Since Σ is finite, we can always choose E ′′ and X ′′ where there
exits no E ′′′ ⊆ E ′′B or X ′′′ ⊆ X ′′B such that E ′′′ : X ′′′ → A′ ∈ Σ. To choose such
E ′′ : X ′′ → A, we can keep replacing E ′′′ : X ′′′ → A′ with E ′′ : X ′′ → A′ if E ′′′ : X ′′′ → A′

where E ′′′ ⊆ E ′′B and X ′′′ ⊆ X ′′B are found in Σ because E ′′′ ⊆ E ′′B ⊆ E ′B and
X ′′′ ⊆ X ′′B ⊆ X ′B. By choosing such E ′′ and X ′′ with respect to B, it is guaranteed
that E ′′B,X ′′B → A ∈ Γ, which further concludes that E ′B : X ′B → A′ is redundant
to Γ. Otherwise, E ′B : X ′B → A′ ∈ Γ if it is not implied by other eFDs in Σ. Hence
claim 3 is proven.

Take any B ∈ E. Since E ′B ⊆ E, E ′B : X ′ → A′ is not a satisfiable eFD with respect
to Γ−1 so it is not in Γ. Hence, claim 4 is proven.

Take any B ∈ X. Since E ′B ⊆ E and X ′B ⊆ X, E ′B : X ′B → A′ is not a satisfiable
eFD with respect to Γ−1 so it is not in Γ. Hence, claim 4 is proven.

Take any B ∈ R − E. If E ′B : X ′B → A′ is not implied by any other eFDs in Σ, it
is still implied by E ′B : X ′ → A′ as B 6∈ E ′. In other words, E ′B : X ′B → A′ 6∈ Γ for all
B ∈ R− E. Hence, claim 5 is proven.

Algorithm 7 builds up all the valid eFDs starting from the most general eFD by itera-
tively augmenting embeddings and LHSs of invalidated eFDs. Correctness is guaranteed
by Proposition 4: The output is a canonical cover of eFDs with respect to all non-eFDs
that are valid on the input relation.

Theorem 5 Algorithm 7 computes the canonical cover of all eFDs that are satisfied by
the given relation.
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Algorithm 7 Column-efficient algorithm

1: Input: relation r over R
2: Output: a cover of all eFDs satisfied by r
3: Let Σ−1 be the set of all non-redundant non-eFDs
4: Let T be an empty eFD-tree
5: Insert eFD ∅ : ∅ → R into T
6: Sort Σ−1 by descending size of LHSs, then by that of embeddings
7: for all E : X 6→ Y ∈ Σ−1 do
8: for all E ′ : X ′ → Y ′ ∈ T where E ′X ′ ⊆ EX, X ⊆ X ′, Y ′ ⊆ Y do
9: Remove E ′ : X ′ → Y ′ from T

10: for all A ∈ R− EXY do
11: if E ′A : X ′ → Y ′ is not implied by T then
12: Insert E ′A : X ′ → Y ′ into T
13: for all A ∈ EY do
14: E ′′ = E ′, Y ′′ = Y ′

15: if A 6∈ Y ′ then
16: E ′′ = E ′′A
17: else
18: Y ′′ = Y ′′ − {A}
19: if Y ′′ = ∅ then continue

20: if E ′′ : X ′A→ Y ′′ is not implied by T then
21: Insert E ′′ : X ′A→ Y ′′ into T
22: return {E : X → Y ∈ T}
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Figure 3: Hybrid discovery algorithm

8 Hybrid Discovery

The row- and column-efficient algorithms are designed for data sets with a large number
of either rows or columns. However, real-world data sets typically exhibit larger numbers
of rows and columns. We combine the row- and column-efficient algorithms to introduce
a hybrid eFD discovery algorithm that can handle such real-world data sets.
Overview. Both row- and column-efficient algorithms suffer from drawbacks when
handling large data sets. For instance, the row-efficient algorithm does not only need to
traverse a large attribute lattice, but also utilize large memory resources to store stripped
partitions during the traversal. The column-efficient algorithm needs to process a number
of implied non-eFDs that can be quadratic in the number of rows. The trick is to combine
the merits of each algorithm to compensate for their drawbacks. In fact, the row-efficient
algorithm can use non-eFDs to smartly generate candidate eFDs for the next level, instead
of blindly enumerating all candidates. Furthermore, the column-efficient algorithm can
directly validate an eFD using the corresponding stripped partition, without checking all
non-eFDs.

Figure 3 illustrates how our proposed hybrid algorithm effectively orchestrates the
row- and column-efficient algorithms. The hybrid algorithm takes a relation r over schema
R as input. Then, it initializes an eFD-tree and a stripped partition based on R and r.
At the beginning of an iteration, all of the LHS and RHS candidates at level l of the
eFD-tree are retrieved. Meanwhile, a set of stripped partitions for the LHS candidates
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Figure 4: Hybrid e-discovery algorithm

is computed using the stripped partitions from the previous iteration. Next, a hybrid
e-discovery run is initiated for each pair of LHS and RHS candidates. Once a run has
completed, all the embeddings for a given LHS are discovered, the LHSs at level l + 1
are updated, and all the used non-eFDs are saved. After the non-eFDs are collected
from all the runs, they will be refined further by cleaning up implied non-eFDs (similar
to Algorithm 6). At the end of an iteration, efficient updates will be made to the eFD-
tree using non-eFDs after they have been cleaned up. Eventually, the hybrid algorithm
terminates when it has iterated through all levels of the eFD-tree and no more updates
can be made.
Hybrid e-discovery. As shown in Figure 3, embeddings of a given pair of LHS and
RHS candidates are computed by a separate process called hybrid e-discovery. The
process discovers the embeddings of a given LHS in a hybrid manner as well. The
algorithm iteratively validates candidates for embeddings while updating its local search
space (an attribute lattice of embeddings), as shown in Figure 4. The search space of a
hybrid e-discovery is a subtree that starts from an e-root. The e-root is easily retrieved
since the LHS candidate in the global eFD-tree is given. At the beginning of an iteration,
candidate embeddings are retrieved and validated using the given stripped partition. If
any violations are detected, the validation process will pass on the valid non-eFDs that
cause contradictions to the subsequent processes. After validation, the hybrid e-discovery
algorithm decides whether more non-eFDs should be sampled from the stripped partition
in order to prune the current search space. This decision depends on the percentage of
invalidated eFDs over all the examined candidates. If too many eFDs are invalid, e.g.
over 1%, hybrid e-discovery will run a completeness-driven non-eFD sampler. At the end
of each iteration, all of the non-eFDs from validation and sampling will be used by the
local induction process to update the local eFD-tree. The induction process during a
hybrid e-discovery is local. That is, it only uses non-eFDs to update embeddings of the
given LHS and possibly to generate new eFDs whose LHSs have one more attribute
than the given LHS candidate.

Hybrid e-discovery implements two heuristics that enable the hybrid algorithm to
efficiently handle large data sets (see Section 9). Firstly, non-eFDs are extracted with
a completeness-driven sampling method. The core idea is that larger embeddings of a
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Algorithm 8 Completeness-driven sampling

1: Input: a stripped partition πX(r), offset i, relation r over R
2: Output: non-eFDs
3: Σ−1 = ∅
4: for all S ∈ πX(r) do
5: Let S = {t1, . . . , tn}
6: if i > 1 and t1(A) 6=⊥ for A ∈ R then continue

7: for each j > i and j ≤ n do
8: E = {A ∈ R | ti(A) 6=⊥6= tj(A)}
9: X ′ = {A ∈ E | ti(A) = tj(A)}

10: Y = {A ∈ E | ti(A) 6= tj(A)}
11: Σ−1 = Σ−1 ∪ {(E ′, X 6→ Y )}
12: return Σ−1

non-eFD generate fewer eFD candidates when eFDs with a fixed LHS are updated, as
shown in Example 2. In fact, non-eFDs with larger embeddings and LHSs generate
better candidates for valid eFDs. Since the LHS candidate is fixed and the stripped
partition of the LHS is provided, one can easily find efficient non-eFDs to update the
given embeddings by examining the pairs of tuples with fewer missing values. Algorithm 8
demonstrates a single run of completeness-driven sampling. As mentioned in Figure 3, all
tuples in π∅(r) are sorted by the number of null marker occurrences, that is tuples with
fewer missing values will be sampled first. Although stripped partitions are generated
incrementally, tuples in the stripped partitions will remain in the same order. Therefore,
Algorithm 8 always finds non-eFDs with larger embeddings first. If the non-eFD sampler
is invoked during hybrid e-discovery, it keeps running until the number of newly sampled
non-eFDs is below a certain threshold, where the initial threshold is 1.0. Such threshold
represents a point when there are sufficiently many non-eFDs to update the current
search space effectively. If the non-eFD sampler is invoked again during the same run of
hybrid e-discovery, the previous sampling is not sufficient and the current threshold will
be halved before the non-eFD sampler is executed. In this way, more new non-eFDs can
be used for pruning when there are too many invalidated candidates that will blow up
the search space. Secondly, there is no absolutely good way to find non-eFDs that can
efficiently update LHSs of eFD candidates because LHSs of eFDs are normally domain
dependent. In order to improve the efficiency of updating LHSs, hybrid e-discovery will
not update eFDs globally using valid non-eFDs. Instead, all hybrid runs of e-discovery in
the same iteration will be coordinated by a cleaning method (as shown in Figure 3) which
removes all the implied non-eFDs. Overall, the first heuristics dramatically reduces the
number of steps to discover valid eFDs, and the second heuristics saves memory costs by
preventing excessive updates on the global eFD-tree.

The hybrid algorithm, as illustrated in Figure 3, performs a breath-first search to
traverse all eFDs. During the traversals, eFDs are validated along the way using the
row-efficient algorithm. When invalid eFDs are identified, the eFD-tree will be updated
according to a set of validated non-eFDs. The correctness of the hybrid algorithm follows
from that of the row- and column-efficient algorithms from Section 6 and 7.
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9 Experiments

In this section, we present our experimental results about the performance of the proposed
algorithms on real-world benchmark data. Particularly, we will show an in-depth analysis
of the runtime, memory consumption, and scalability of our algorithms. We implemented
all algorithms in Visual C++, and ran all the experiments on an Intel Xeon 3.6 GHz, 256
GB RAM, Windows 10 Dell workstation. The benchmark data is from the UCI machine
learning data repository1 and previous work on discovery algorithms [23]. The data sets
are available at https://bit.ly/2N0pTOS?.
Runtime. Table 4 shows the runtime of our eFD discovery algorithms on the benchmark
data. For each data set, we show its numbers of rows (#R), columns (#C), rows (#IR)
and columns (#IC) with null marker occurrence, null marker occurrences (#⊥), eFDs in
the canonical cover (#eFDs), and the runtimes. While eFDs are different from FDs and
from eUCs (none of them are competitors), we still show the number of FDs (#FDs)
and the runtime of state-of-the-art algorithms for FD discovery [24, 29], and similar for
eUCs [28]. For data with few rows, the column-efficient algorithm typically performs
better. Particularly, this algorithm yields much better performance for large numbers of
columns, such as plista, flight. Although the row-efficient algorithm does not perform
better than others in any case, it can still process a large data set with over 260, 000 rows
(china) much faster than the column-efficient algorithm. The hybrid algorithm does not
always outperform the other two since it is primarily designed to handle large data sets,
such as diabetic, china, uniprot. As expected, the performance of the hybrid algorithm
are satisfying. For example, it takes less than 15 minutes to process uniprot with half a
million rows and 30 columns. The comparison to FDs shows how many more eFDs there
can be, and that the additional time that our algorithms require to discover eFDs is well
justified by the higher number of eFDs that hold on the data sets. These observations
are very true for eUCs, too.
Memory use. We also show the memory resources (in MB) consumed by the algorithms
in Table 4. The row-efficient algorithm is not memory-friendly since it uses many stripped
partitions for eFD validation. On the other hand, the hybrid algorithm takes advantage
of the heuristics implemented for hybrid e-discovery runs, so that it is quite memory-
friendly even though stripped partitions are used. For example, the hybrid algorithm’s
memory use is either less or only slightly more than that of the column-efficient algorithm.
The higher memory use over eUC discovery algorithms is fully justified by the output
size alone.
Runtime scalability. To further demonstrate the practicality of the three algorithms,
the left of Figure 5 shows how each of the algorithms scale in terms of the numbers
of rows and columns. The data sets china and ncvoter both start with 1, 000 rows.
The hybrid algorithm and the row-efficient algorithms have comparable performance in
both experiments up to 60, 000 rows. The column-efficient algorithm is dramatically
outperformed by the other two after 10, 000 rows. To demonstrate column-scalability,
we use the data set diabetic with only 10, 000 rows, but where the number of columns
ranges from 5 to 45. The row-efficient algorithm performs only well up to 20 columns.

1https://archive.ics.uci.edu/ml/
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Table 4: Runtime of eFDs, FD, and eUC discovery from real-world benchmark data
Data Sets and their Properties

Name #R #C #IR #IC #⊥
bridges 108 13 38 9 77

echo 132 13 71 12 132
hepatitis 155 20 75 15 167

horse 300 28 294 21 1605
breast 691 11 16 1 16
plista 996 63 996 34 23317

ncvoter 1000 19 1000 5 2863
flight 1000 109 1000 69 51938

diabetic 101766 30 100732 7 192849
china 262920 18 157895 12 418580

uniprot 512000 30 192849 19 3759296
pdbx 17305799 13 683410 6 2035242

Data Sets eFD FD eUC
Name #eFDs Alg. 2 Alg. 7 Hybrid #FDs HyFD DHyFD #eUCs Best

bridges 169 0.021 0.014 0.035 142 0.1 0.003 3 0.002
echo 438 0.034 0.013 0.028 527 0.1 0.002 45 0.006

hepatitis 11087 322.107 0.287 0.431 8250 0.6 0.189 446 0.082
horse 1182385 >4H 56.371 72.704 128727 7.1 2.595 5040 1.046
breast 48 0.029 0.167 0.044 46 0.2 0.009 2 0.009
plista 298806 >4H 27.569 55.818 178152 21.8 15.403 2337 3.369

ncvoter 1443 0.132 0.514 0.082 758 0.4 0.029 147 0.067
flight 2597244 >4H 9.698 40.88 982631 53.4 9.934 26652 49.367

diabetic 407767 >4H >4H 7596.09 40195 N/a 847.582 20130 1239.25
china 8320 751.277 >4H 131.247 918 N/a 49.839 615 77.365

uniprot 194742 >4H >4H 727.108 3703 N/a 75.442 9480 529.478
pdbx 114 ML >4H 635.754 68 240 100.906 15 512.492
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Table 5: Memory use (MB) of eFD, FD, eUC discovery
Data Set Alg. 2 Alg 7 Hybrid FD eUC
bridges 0.87 0.92 0.79 0.73 1

echo 1.1 0.76 0.70 0.76 1
hepatitis 111 15.6 16.9 14 3

horse N/a 1126.4 1228.8 268 15
breast 5 1.3 0.86 1 1
plista N/a 507 783.5 2048 23

ncvoter 8 4 3 3 5
flight N/a 1024 1433.6 2048 179

diabetic N/a N/a 20480 4300 1024
china 15974.4 N/a 649 1024 819

uniprot N/a N/a 6246.4 4608 4403
pdbx N/a N/a 4096 6451 35532

The hybrid algorithm starts gaining more advantage than the column-efficient algorithm
after the data sets with more than 35 columns. Interestingly, the runtime of the hybrid
algorithm exhibits a similar but less steep pattern as the number of eFDs that hold on
the data sets.
Memory scalability. In addition, we show the memory scalability of the algorithms
in the right of Figure 5 for the same data sets. The hybrid algorithm is more memory-
friendly. On one hand, it reduces much more search space and uses fewer stripped
partitions than the row-efficient algorithm. On the other hand, the hybrid algorithm
efficiently samples non-eFDs from the data while the column-efficient algorithm computes
all the non-eFDs from the data. Table 4 shows that the number of non-eFDs grows
quadratically in the number of rows of the given data set, which increases the memory
consumed by the column-efficient algorithm.
Summary. Our experiments with real-world benchmark data illustrate that our different
eFD discovery algorithms perform well for the purpose they have been designed for.
Specifically, the hybrid algorithm is able to combine the strengths of the row- and column-
efficient algorithms to efficiently process larger data sets, and scale well in terms of
growing numbers of rows, columns, and eFDs as far as runtime and memory consumption
are concerned.

10 Helping aFD and gFD Analysis

We provide quantitative evidence that i) pivoting along the data completeness dimension,
and ii) ranking by the number of redundant data values, helps with aFD and gFD analysis
on data with missing values.
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Figure 5: Time/Memory scalability for discovery
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10.1 Pivoting along data completeness

It is very natural to pivot aFD and gFD analysis along the data completeness require-
ments by an application. For data with missing values it is helpful to distinguish approx-
imation error ratios ε and levels of genuineness γ by applying them to sets of tuples that
meet the requirements, and to those that do not. Hence, in addition to the measures
under ⊥=⊥ (EQ) and ⊥6=⊥ (NEQ) null semantics applied to the data set r (denoted by
εEQ
r , εNEQ

r , γEQ
r , γNEQ

r , respectively), we are also interested in those measures applied to
the application-relevant part rE and the application-irrelevant part r− rE. In fact, if all
the attributes of the FDs under consideration are part of E, then εEQ

rE
= εNEQ

rE
(= εEr )

and γEQ
rE

= γNEQ
rE

(= γEr ). In this case, the measures quantify the errors from complete
values on rE, from nulls under different semantics on r − rE, and their interaction on r.

As illustration consider the FD city, full phone num→ zip code from the perspective
of aFDs and gFDs. As an aFD it has εEQ

r = 0.00598 and εNEQ
r = 0.000198, which

would rank it at positions 1184 and 252, respectively. As a gFD it has γEQ
r = 0.896

and γNEQ
r = 0.991, which rank it at positions 562 and 106, respectively. However, if the

completeness requirements E consist of attributes name suffix, city, full phone num, and
zip code, then εrE = 0 and γrE = 1, and the aFD/gFD ranks at position 1, respectively.
This illustrates how completeness requirements can inform the analysis of aFDs and
gFDs.

We have also conducted quantitative experiments to illustrate the impact of the dif-
ferent measures for both aFDs and gFDs. Using the output of our discovery algorithms
in the form of eFDs E : X → Y , we removed attributes from the LHS X of the FD
X → Y until the error ratio of the resulting FD X ′ → Y met a given threshold θ on rE.
In the experiments θ started from 0.001, 0.02, 0.04, . . . , 0.1. Figure 6 shows the average
number of violations in the y-axis for the FDs that meet threshold θ on the x-axis. Here
we distinguish between violations on rE, and on r and r − rE based on EQ and NEQ
semantics. The results show that null markers themselves, but also the way they are
interpreted, have a large impact on the measures. The results suggest that violations are
less caused within the application-relevant part rE or within the application-irrelevant
part r − rE, but more so across those parts between nulls and domain values.

Similarly, Figure 7 shows the level of genuineness in the y-axis for the FDs that meet
the threshold θ on the x-axis. Whenever the level is lower on r than on rE, the number of
null marker occurrences must exceed that of some domain value. Indeed, the genuineness
for NEQ is typically smaller than that for EQ, on both r and r − rE alone. Under EQ
semantics, occurrences of ⊥ result likely in underestimations of the actual levels. If
genuineness is higher on r than on rE it means that by adding r − rE to rE, less errors
occur relative to all the tuples under consideration. In particular, ⊥ occurrences do not
result in errors when compared to one another (NEQ). Hence, pivoting aFD and gFD
analysis along data completeness requirements is helpful for applications, such as data
cleaning.

30



Figure 6: Difference in numbers of violations on benchmarks for various measures of
approximation
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Figure 7: Difference in levels of genuineness on benchmarks for various measures of
genuineness
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Figure 8: Neither top-a- nor top-g-ranked FDs can identify bottom-e-ranked FDs

10.2 Ranking Data Redundancy

We will provide some quantitative evidence that ranking the number of redundant data
values adds another dimension to aFD and gFD analysis. A qualitative example for this
is given in the next section on applications.

In general it is clear from the definition of approximation error ratios and levels of gen-
uineness that small error ratios or high levels of genuineness do not imply high numbers
of redundant data values, and vice versa. In our experiments we will quantify experimen-
tally that even top-ranked aFDs (gFDs) cannot distinguish between FDs according to
the number of redundant data values they cause. For the eFDs E : X → Y we discovered
on the benchmarks, we rank the FDs X → Y based on the number of redundant data
values they cause in rE (e-ranking), and based on their various error ratios (a-ranking)
and levels of genuineness (g-ranking) in r and r − rE. We further refer to the top-20%
and the bottom-20% of FDs in the e-ranking by te and be, and to the top-20% of the FDs
in a- and g-rankings by ta and tg, respectively.

In the first experiment we are interested in how many of the bottom-e-ranked FDs
and top-a-ranked FDs overlap, that is, how many of the FDs in be ∪ ta are in be ∩ ta. We
compare this to how many of all the e-ranked FDs are contained in both the bottom-e-
ranked and the top-a-ranked FDs, that is, how many of the FDs in the e-ranking are in
be ∩ ta. As it turns out, the first ratio |be ∩ ta|/|be ∪ ta| is very similar to the second ratio
|be ∩ ta|/|e-ranking|, which suggests that even the top-a-ranked FDs cannot distinguish
between the bottom-e-ranked FDs and any e-ranked FDs. In the second experiment,
we compute similar ratios for the top-e-ranked FDs. The ratios |te ∩ ta|/|te ∪ ta| and
|te ∩ ta|/|e-ranking| are very similar again, suggesting that top-a-ranked FDs cannot
distinguish between bottom-e-ranked and any e-ranked FDs.

Figure 8 shows the various ratios for the first experiment on four benchmarks. Figure 9
shows the same for the second experiment. A common observation is that top-a-ranked
and top-g-ranked FDs can identify neither bottom-e-ranked nor top-e-ranked FDs. A
difference is that the former occur frequently among top-a-ranked and among top-g-
ranked FDs, while the latter occur sparingly among those.

The experiments provide quantitative evidence that ranking by the number of redun-
dant data values adds a new dimension to aFD and gFD analysis.
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Figure 9: Neither top-a- nor top-g-ranked FDs can identify top-e-ranked FDs

11 Applications

We describe in general how discovered eFDs can be applied to schema design for data
with missing values and data cleaning, and provide illustrative examples from the ncvoter
data set.

11.1 Schema Design for Incomplete Data

We show how some of the eFDs discovered from the real-world census data set North
Carolina Voters (ncvoters) can help with schema design for data with missing values [15,
16, 20, 30]. The data set suffers from missing values such as phone numbers and addresses,
and eFDs are targeted at such data. In general, an eFD E : X → Y on R can horizontally
decompose a given relation into its application-relevant part rE, consisting of all the
tuples that meet the completeness requirements in E, and into the application-irrelevant
part r − rE. Since the FD X → Y holds on rE, this part can be vertically decomposed
into rE[XY ] and rE[X(R − Y )] without loss of information. For illustration purposes
let us only consider the attributes i(d), a(ddress), c(ity), z(ip), and p(hone). The eFD
cpz : z → c constitutes an interesting output of our discovery algorithms because it
ranks 23rd with respect to the 259,453 redundant data values it causes on ncvoter with
19 columns and over 1 million rows. The completeness requirements on E = cpz shift our
focus on the set rcpz of those records from any database instance r that have no missing
values on c, p, and z. Since the FD z → c holds on rcpz we can vertically decompose
it into rcpz[zc] andrcpz[iazp], thereby eliminating redundant data value occurrences on c
caused by this FD. So far, this is an example for normalizing a schema. For illustrative
purposes, Figure 10 shows how the normalization is applied to a small snippet of ncvoter.
As aFD z → c has rank 2848 with error ratio 0.00005477234 on rE, and as gFD it has
rank 2149 with genuineness 0.992475 on rE.

11.2 Data Cleaning

Another interesting application for eFDs is data cleaning. The eFDs E : X → Y that
we discover hold exactly on the given data set r. This means there are no violations
of the FD X → Y on rE. Our discovery algorithms return eFDs where the LHS X
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Figure 10: Snippet over unnormalized schema

Figure 11: Decomposition with cpz : z → c into application-relevant part

is minimal for the embedding E. That is, for any proper subsets X ′ of X the re-
sulting FD X ′ → Y will have some violations on rE. FDs X ′ → Y that cause a
high number of redundant data values are more likely to be meaningful FDs, which
means violations of it constitute dirty data. As we have seen, a small number of er-
rors (that is, a small error ratio or a high level of genuineness) is no guarantee that
the FD causes a high number of redundant data values. In fact, for any redundant
data value to occur we require different tuples with matching values on the LHS X ′ of
an FD, but this is not guaranteed by high ranked aFDs or gFDs. Hence, ranking by
redundant data values is also very interesting for aFDs and gFDs. Consider the eFD
birth place : gender, street address, zip code, full phone num → city for illustration. It
holds on Ncvoter1m with 1, 024, 000 rows and 19 columns. The eFD only causes 4,642
redundant data values. However, the eFD birth place : street address, zip code → city
exhibits 378, 950 redundant data values and is only violated by 64 records. Upon exam-
ination, incorrect data values are found in colum city. For example, the table

voter gender street zip city birth full phone
id address code place num

741992 f 8374 NC 304 28515 Bayboro nc 2527457099
403835 f 8374 NC 304 28515 Mesic nc 2527453967
226136 m 8374 NC 304 28515 Bayboro nc ⊥

shows inconsistent information. In fact, the street address is located in Mesic and not

Figure 12: Application-irrelevant part of snippet
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in Bayboro. The eFD birth place : street address, zip code → city ranks number 18 with
378,944 redundant data value occurrences on rE. The following table lists the various
levels of genuineness and error ratios for the FD street address, zip code → city. It rank
much lower for these measures, and is likely not considered for cleaning.

measure value of measure rank by measure
γrE 0.9999613648251976 879
γEQ
r 0.99996679686259 857

γNEQ
r 0.99996679686259 1602
εrE 1.1804353519410762e-10 920
εEQ
r 7.24793188274598e-11 850

εNEQ
r 7.24793188274598e-11 1594

We conclude that dirty data can be identified by computing eFDs E : X ′ → Y that
cause high numbers of redundant data values, and where X ′ is a proper subset of X
for an eFD E : X → Y discovered by our algorithms. Alternatively, we can also apply
our ranking by redundant data values to identify aFDs and gFDs that help with data
cleaning.

12 Conclusion and Future Work

Embedded FDs address schema design for data with missing values, and incorporate
completeness requirements of applications. They provide a robust semantics for FDs in
real-world data sets, since it does not depend on how missing values are interpreted. The
discovery of eFDs from a given data set is a core task of data profiling and fundamental
to the success of applications. Due to the large search space of eFDs, new search strate-
gies and data structures are necessary to derive efficient solutions to the eFD discovery
problem. We have introduced the first three algorithms that solve eFD discovery. The
algorithms work as a toolkit in practice: The row- and column-efficient algorithms work
well when there are few rows or columns, and the hybrid algorithm scales well in terms
of time and space on data sets with many rows and columns. The eFDs in the output
of our algorithms are ranked to identify those that are more meaningful for applications,
such as schema design and data cleaning. We have demonstrated that adding complete-
ness requirements and ranking by redundant data values adds new dimensions to the
analysis of other notions of relaxed FDs, such as approximate and genuine FDs. In the
future, we will explore automatic database and data warehouse designs based on eFDs.
Similarly, we envision a data quality management framework based on eFDs and other
dependencies, including other notions of relaxed uniqueness constraints and functional
dependencies [3, 4, 6, 12, 14, 17, 18, 19, 25, 28].
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