
Noname manuscript No.
(will be inserted by the editor)

Privacy and Efficiency Guaranteed Social Subgraph Matching

Kai Huang · Haibo Hu · Shuigeng Zhou · Jihong Guan · Qingqing Ye ·
Xiaofang Zhou

Received: date / Accepted: date

Abstract Due to the increasing cost of data storage and
computation, more and more graphs (e.g., web graphs, so-
cial networks) are outsourced and analyzed in the cloud.
However, there is growing concern on the privacy of these
outsourced graphs at the hands of untrusted cloud providers.
Unfortunately, simple label anonymization cannot protect
nodes from being re-identified by adversary who knows the
graph structure. To address this issue, existing works adopt
the k-automorphism model, which constructs (k − 1) sym-
metric vertices for each vertex. It has two disadvantages.
First, it significantly enlarges the graphs, which makes graph
mining tasks such as subgraph matching extremely ineffi-
cient and sometimes infeasible even in the cloud. Second,
it cannot protect the privacy of attributes in each node. In
this paper, we propose a new privacy model (k, t)-privacy
that combines the k-automorphism model for graph struc-
ture with the t-closeness privacy model for node label gen-
eralization. Besides a stronger privacy guarantee, the paper
also optimizes the matching efficiency by (1) an approxi-
mate label generalization algorithm TOGGLE with (1 + ε)
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approximation ratio, and (2) a new subgraph matching algo-
rithm PGP on succinct k-automorphic graphs without de-
composing the query graph.

Keywords (k, t)-privacy · label generalization · subgraph
matching

1 Introduction

Attributed graph, a subtype of graph where each node con-
tains a set of attributes (as shown in Figure 1(a)), has be-
come increasingly popular to model web and social net-
works. Many graph queries are developed to analyze and
retrieve the rich semantic and structural information of these
graphs. Among them the subgraph matching, which retrieves
all subgraphs isomorphic to a given query graph, is funda-
mental to many graph data analytics [1]. However, as graph
data size continues to grow, storing and processing them im-
poses expensive upfront infrastructure costs on users. As
such, many cloud service providers such as Amazon, Al-
ibaba, and Microsoft Azure offer graph outsourcing services
by storing graphs owned by users and executing mining tasks
on behalf of them. GraphLab [2] even provides a graph-
based Software-as-a-Service (SaaS).

However, the cloud server is considered as “honest-but-
curious” (a.k.a., semi-honest), which is consistent with most
related works in the literature [3,43,4,5]. On the one hand,
the cloud server acts in an “honest” fashion, i.e., correctly
follows the designated protocol specification such as HIPAA
compliance 1 and always offers correct computations with-
out cheating. On the other hand, it is “curious” to infer the
sensitive information of the graph data by analyzing index
structures, requested queries, and query results. This assump-
tion does not reduce the need for storing and processing

1 https://aws.amazon.com/compliance/hipaa-c
ompliance/

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use 
(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post- 
acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00778-021-00706-0.

This is the Pre-Published Version.



2 Kai Huang et al.

Company Type: Internet

Occupation: Engineer
Expected Salary: 15,000

Occupation: Art Designer
Expected Salary: 7,000

Name: UIUC
Located in: Illinois

Company Type: Software    p:       Individual Entity
s:         School Entity
c:    Company Entity

p-c:    Work at Relation
p-p: Work together Relation 
p-s: Graduate from Relation 

Occupation: Manager
Expected Salary: 14,000

Name: MIT
Located in: Massachusetts

Occupation: Accountant
Expected Salary: 8,000

Graph G

p1

s1

p2

c1

p3 p4

c2

s2

(a) G

Company Type: Internet
Occupation: 

Engineer 
 Expected Salary: 

15,000

Query Q

Occupation: 
Art Designer

Expected Salary: 
7,000

Name: UIUC

p p

c

s

q1

q2

q4

q3

(b) Q

Fig. 1 Original data graph G and query Q.

graphs on the untrusted cloud provider. For example, Paysafe,
a Fintech company, needs to store and analyze the payments
data including attributes and interactions of customers and
their payments (which are modeled as a large graph), but it
is unwilling to spend expensive upfront infrastructure costs
on it. Hence, the company resorts to a graph-based cloud
service, Graph Database and Graph Analytics 2 provided
by ORACLE [44], even it is assumed that the cloud provider
is “honest-but-curious”. In general, cloud servers can learn
the attribute values (a.k.a., labels) and structural information
of the outsourced graphs. Privacy breaches on these graphs
are known to disclose sensitive information [3], which can
be grouped to two categories: content disclosure and iden-
tity disclosure. Content disclosure compromises sensitive la-
bel information, such as salary, social security number, or
medical history of a user. To guard against content disclo-
sure, three classic privacy preserving techniques have been
proposed, namely, k-anonymity [6], `-diversity [7] and t-
closeness [8]. They aim to generalize several labels into
a single one (also known as an equivalence class) to hide the
sensitive information of a single label so that the attacker can
only see the generalized label. In particular, k-anonymity re-
quires that each equivalence class contains at least k records
so that each record is indistinguishable with at least k − 1

other records. `-diversity requires that the distribution of a
sensitive attribute in each equivalence class has at least `
“well-represented” values. While t-closeness requires the la-
bel distribution in each equivalence class is no more than
t distance away from that in the whole set of labels. It is
known that t-closeness is able to resist more attacks (such
as similarity attack) than k-anonymity and `-diversity, and
is the most stringent privacy metric among the three.3 How-

2 https://www.oracle.com/database/graph/
3 One can argue that differential privacy [9] is more stringent than t-

closeness as the former is defined regardless of the underlying dataset
or apriori knowledge. However, it is infeasible in subgraph matching
where exact matchings are desirable.

ever, when it comes to protecting labels in attributed graphs,
while [3] and [10] adopt k-anonymity and `-diversity re-
spectively, there is no work that adopts t-closeness. Iden-
tity disclosure [11,12] compromises the location of a target
node in the graph even after removing the node’s identity.
This disclosure can be caused by various structural attacks
[13,11,14] such as degree attack, 1-neighbor-graph attack,
subgraph attack and hub-fingerprint attack. To guard against
these attacks, many structure-privacy-preserving techniques
[15–17] have been developed to enforce symmetry in an out-
sourced graph. In particular, [15] proposes the k-automorphism
model. Given a graphG, it transformsG into a k-automorphic
graph Gk by introducing some noise edges and vertices,
where each vertex has at least (k − 1) other symmetric ver-
tices. Hence, there are no structural differences between any
vertex and its (k−1) symmetric vertices. In other words, the
attacker can not distinguish a vertex from the other (k − 1)

symmetric vertices. And it is known that k-automorphism
strategy can defend against any structure-based attack [15].

Example 1 Consider the graphG in Figure 1(a) where each
vertex represents an entity. There are three entities, individ-
ual entity (p), school entity (s) and company entity (c). The
edges inG represent the relations between two entities, such
as “Work at” relation, “Work together” relation and “Grad-
uate from” relation. If an adversary knows that one person
has a 1-degree neighbor node in the graph G, he can im-
mediately know that node p4 is that person and the related
attributes of node p4 are revealed. k-automorphism model
can be applied to prevent such structure attack by introduc-
ing noise edges to construct a k-automorphic graphGk. For
example, Gk in Figure 2(a) is a k-automorphic graph of G
where k = 2. In this figure, the noise edges are shown by
black dashed lines. Note that each node contains a set of
attributes where sensitive information (e.g. salary) are con-
tained. In this case, the privacy model for structural pri-
vacy (e.g. k-automorphism) is not sufficient to protect the
label privacy of each node. For example, even for the k-
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automorphic graph Gk, if the labels are not anonymized,
the adversary can use some prior knowledge or background
knowledge (e.g. the “Occupation” attribute in the G, Fig-
ure 1(a)) to identify the location of an individual. Suppose
the adversary can identify an individual as the node p1 or
p4 of G in Figure 1(a), then he can conclude that this per-
son’s salary is high (“14000” or “15000”) without exactly
reidentifying the node. Therefore, when sensitive labels are
considered, the t-closeness should be adopted for graphs to
generalize each label into a generalized one as shown in
Figure 2(a).

The example above shows the necessity of preserving
both structural privacy and label privacy. However, except
for [3,59], which only support k-anonymity, all existing works
on attributed graphs consider either structural or label pri-
vacy. In this paper we propose (k, t)-privacy, an integrated
privacy model for outsourced graphs. Any graph that sat-
isfies (k, t)-privacy must satisfy both k-automorphism and
t-closeness for each generalized label of all node attributes.
Intuitively, the (k, t)-privacy model can preserve both struc-
tural privacy and label privacy.

Once the graphG is anonymized, a straightforward method
is to upload the k-automorphic graph Gk to the cloud and
perform subgraph queries overGk. However, there are some
major limitations. Firstly, a lot of noise edges and vertices
will be introduced to the original graph G when construct-
ing the k-automorphic graph Gk. This results in a much
larger graph on the cloud side, which leads to much more ex-
pensive storage cost and much higher query cost. Although
Chang et al. [3] propose to store only a succinct version of
k-automorphic graphs, query decomposition is adopted dur-
ing subgraph matching, which causes an extra result-joining
step and incurs a large number of false positive results. Sec-
ondly, while imposing t-closeness on the labels in a graph
G, different outputs of label generalization have different
impacts on not only the privacy strength but also the search
space (i.e. number of vertices or matchings to explore for
a query, see Section 4). Intuitively, the larger search space
will cause expensive query cost. The second drawback is il-
lustrated with the following example.

Example 2 Consider the attribute “Expected Salary” of the
graph G in Figure 1(a), the original set of labels l = (7000,
8000, 14000, 15000). There are two possible label general-
izations. The first generalizes (7000, 8000) as a generalized
label “A” and (14000, 15000) as another generalized label
“B”. In this case, given the query Q in Figure 1(b) and its
anonymized form, there are two matchings, (c1, p1, p2, s1)

and (c2, p3, p4, s2). The second generalization is to general-
ize (7000, 15000) as “A” and (8000, 14000) as “B”. In this
case, there is only one matching (c1, p1, p2, s1). Obviously,
the first generalization will lead to a false positive matching
(i.e., (c2, p3, p4, s2).).

To address subgraph matching efficiency problem due
to the enlarged graph size caused by k−automorphism and
the enlarged search space caused by the generalization using
t−closeness, we model the cost of subgraph matching and
reduce the problem of optimal generalization of labels for
t−closeness to the General Set Partitioning Problem [18].
Based on this, we propose an efficient approximation al-
gorithm TOGGLE with a bounded approximation ratio of
(1 + ε). Furthermore, as the cloud only stores a succinct
version of k-automorphic graphs, query decomposition is
adopted during subgraph matching [3], which causes an ex-
tra result-joining step and incurs a large number of false pos-
itive results. We design a new subgraph matching algorithm
PGP that can directly work on such graphs without decom-
position. To summarize, our main contributions are as fol-
lows:
(i) We propose (k, t)-privacy for outsourced graphs, which

is, to the best of our knowledge, the most stringent gen-
eralization based privacy model for both graph structure
and label generalization.

(ii) We propose a t-closeness label generalization algorithm
TOGGLE that optimizes costs for subgraph matching.
It is proved to have an approximation ratio of (1 + ε).

(iii) We also develop a partial-graph-based subgraph pro-
cessing algorithm PGP without query decomposition.
It exploits the symmetry of the outsourced graph and
limits search scope to a localized region.

(iv) We conduct an empirical study on our algorithms in all
three datasets ever experimented in the literature and
show their high efficiency under various parameter set-
tings.
The remainder of this paper is organized as follows. Sec-

tion 2 presents the background and problem statement. Sec-
tion 3 overviews the graph outsourcing and subgraph match-
ing framework with a baseline solution adapted from [3].
In Section 4, we present the label generalization algorithm
TOGGLE and in Section 5, we introduce the PGP sub-
graph matching algorithm. Experiments and related works
are presented in Sections 6 and 7, respectively, followed by
a conclusion in Section 8. Formal proofs of lemmas are in
the Appendix A.

2 Background and Problem Statement

In this section, we first introduce the background of two
privacy models in (k, t)-privacy, namely t-closeness and k-
automorphism. We then present the privacy attacks on graphs
and summarize them as the threat model for this paper. Fi-
nally, the formal definition of privacy-preserving subgraph
matching with (k, t)-privacy is presented. Table 1 lists the
key notations and acronyms used in this paper.
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Table 1 List of key notations.

Notation Description

G, Gk, G̃k a graph, k-automorphic graph, outsourced graph

LCT Label Correspondence Table

Q, Q̃ a query graph, outsourced query

EMD Earth Mover’s Distance

l, n labels, number of labels

yj , m label group, number of label groups

τ , nτ , mτ vertex type, number of labels and number of label groups of type τ

FG(τ), FQ(τ) probability of vertices in a graph G (resp. query Q) being the type τ
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2.1 t-Closeness

Generalization, which combines several values into a single
one (also known as an equivalence class), has been a popular
anonymization technique for labels [19,20,3]. The output of
a label generalization algorithm is a label correspondence
table which maps this correspondence. t-closeness [8] is a
privacy metric that imposes a constraint on each equivalence
class.

Definition 1 (t-closeness) An equivalence class satisfies t-
closeness if and only if the label distribution in this class

is no more than t distance away from that in the whole set
of labels. If all equivalence classes satisfy t-closeness, the
label generalization algorithm satisfies t-closeness.

The distance is measured by the Earth Mover’s Distance
(EMD) [21], which is based on the minimum workload to
transform one distribution to another. Specifically, each dis-
tribution is viewed as a mass of earth; and in each step of
the transformation, some earth is moved from one place to
another. The moved mass multiplied by the ground distance
of this move is the workload of this step and added to the
total workload. To find the minimum workload, the EMD

computation relies on the well-known combinational opti-
mization problem — balanced transportation. Formally, let
P = (p(v1), p(v2), ..., p(vn)) and P ′ = (p(v′1), p(v′2), ...,
p(v′m)) denote the two distributions, and di,j be the ground
distance between vi and v′j ,

4 the balanced transportation
finds a mass flow F = {fi,j}, i ∈ [1, n], j ∈ [1,m] such that∑n
i=1

∑m
j=1 di,j × fi,j is minimum, subjects to fi,j ≥ 0,

and
∑n
i=1

∑m
j=1 fi,j =

∑n
i=1 p(vi) =

∑m
j=1 p(v

′
j) = 1.

Solving the mass flow F , we can obtain the Earth Mover’s

4 We will directly use the notation (v1, v2, ...vi, ...vj ...vn) to de-
note the uniform distribution where each value is equally likely. For
sorted numerical values (v1, v2, ...vi, ...vj ...vn), the ground distance
of vi and vj is |i−j|

n−1
[8].
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Distance between distributions P and P ′ as: EMD(P,P ′)
=

∑n
i=1

∑m
j=1 di,j × fi,j .

Example 3 Figure 2(b) shows a label correspondence ta-
ble. For attribute “Expected Salary” of graph G in Figure
1(a), the original set of labels l = (7000, 8000, 14000,
15000). There are two possible label generalizations. The
first combines (7000, 8000) as a label group “A” and (14000,
15000) as another group “B”. In this case, EMD(l, A)

= (0/3 + 1/3 + 1/3 + 2/3) ∗ 1/4 = 1/3, where 0/3 is
the ground distance d0,0 and 1/4 is the mass f0,0. Similarly,
EMD(l, B) = 1/3. As such, this method satisfies 1/3-
closeness. The second generalization, as illustrated in Fig-
ure 2(b), combines (7000, 15000) as “A” and (8000, 14000)

as “B”. In this case, EMD(l, A) and EMD(l, B) are both
1/6. Therefore ,this method satisfies 1/6-closeness, which
preserves more privacy than the first generalization.

2.2 k-Automorphism

k-automorphism is a graph privacy model that can defend
existing structural attacks [15], including degree attack, 1-
neighbor-graph attack, subgraph attack and hub-fingerprint
attack [13,11,14]. The idea is to construct (k − 1) sym-
metric blocks for each block (i.e., a subset of vertices and
their corresponding edges) in a graph, so that a vertex can-
not be distinguished from other (k − 1) vertices in those
symmetric blocks. The resulted graph is a k-automorphic
graph. Converting a graph G to a k-automorphic graph Gk

involves three steps — graph partition, graph (block) align-
ment, and edge copy. First, the vertices in G are partitioned
into k blocks by adopting the METIS algorithm [22]. Sec-
ond, graph (block) alignment selects and aligns those ver-
tices which have the largest degree in each block, and then
aligns all other vertices in the same block with those vertices
in other blocks by their breath-first search (BFS) traversal
order. The result is an alignment vertex table (AVT) where
each column corresponds to one block and each row de-
notes the mapping of k vertices. The same mapping can also
be recorded by an Automorphic Function. Third and finally,
based on AVT, symmetry edges are inserted in other (k− 1)

blocks for each edge in one block. Crossing edges between
two blocks are also copied accordingly.

Example 4 Graph G in Figure 1(a) is first partitioned into
k = 2 blocks, B1={p1, p2, s1, c1} and B2={p4, p3, s2, c2}
(see Figure 2(a)). By graph alignment, each vertex in one
block is aligned with that in the other. For example, p1 is
aligned with p4, so (p1, p4) is inserted to the alignment ver-
tex table in Figure 3(a). Equivalently, their mapping is recorded
by a k-dimensional automorphic function F1. After all ver-
tices are aligned, the missing symmetry edges between p3
and p4, and between p3 and s2 (the dashed line in Figure

2(a)) are inserted. Finally, the crossing edge between s1 and
p3 is copied between p2 and s2. The resulted k-automorphic
graph Gk is shown in Figure 2(a).

2.3 Graph Privacy Attacks and Threat Model

In this paper, we study attributed graph, which is an undi-
rected graph with attributes on each node [3].

Definition 2 (Attributed Graph) An attributed graph is de-
fined as G = (V,E, T,Γ, L) where V is a vertex set; E is
an edge set; and T,Γ, L denote the sets of vertex types, at-
tributes and labels, respectively. Each vertex has a unique
type and one or more attributes (depending on the type).
Each attribute takes one from a set of labels as its value.

Example 5 The data graph G in Figure 1(a) is an attributed
graph with three vertex types, namely, “Individual”, “Uni-
versity” and “Company”. “Individual” contains two attributes,
namely “Occupation” and “Expected Salary”. The label
value of “Expected Salary” of vertex p1 is “15,000”.

In the literature, privacy attacks on outsourced graphs lead
to identity disclosure (structural attacks) and content disclo-
sure (label attacks). Structural attacks include degree attack,
1-neighbor-graph attack, subgraph attack and hub-fingerprint
attack [13,11,14]. Label attacks include background-knowledge
attack, homogeneity attack, skewness attack and similarity
attack [7,8]. A common approach in these attacks is to first
identify the target node and then unveil its sensitive labels.
The following definition abstracts the capability of all known
attacks as above, and serves as the threat model of this paper.

Definition 3 (Threat Model of Graph Privacy Attacks) An
attacker has the complete structure information about the
target node, including degree, neighbor list, and shortest-
distances from known nodes (a.k.a., hubs). She also has the
complete label information of all nodes except for the target
node. Based on such information, she attempts to match the
target node in the outsourced graph and then to unveil its
label.

2.4 Problem Statement

Our problem of privacy-preserving subgraph matching with
(k, t)-privacy involves two sub-problems.

Definition 4 (Graph Outsourcing Problem with (k, t)-Privacy)
Given a data graph G, to compute an outsourced graph to
the cloud that satisfies the following two privacy metrics.
(i) Preserving label privacy by enforcing t-closeness for its

labels,
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(ii) Preserving structure privacy by enforcing k-automorphism
for its structure.

Privacy Guarantee of (k, t)-Privacy. For any outsourced
graph that satisfies (k, t)-privacy, the probability that an at-
tacker correctly re-identifies a target node using any struc-
tural information is at most 1/k, as the k-automorphism
model ensures each node is structurally indistinguishable
from at least k − 1 other nodes. Even within the 1/k proba-
bility of which the attacker re-identifies the target node, she
can only learn limited information about the node’s true la-
bel as this label has been generalized to a label group whose
distribution of underlying labels is at most t distance away
from the distribution of all labels in this graph.

Definition 5 (Subgraph Matching Problem on Outsourced
Graph) Given a data graph G and its corresponding out-
sourced graph, for a query Q, to retrieve all subgraphs {gi}
of G, each of which is subgraph isomorphic to Q and vice
versa. Q = (V1, E1, T1,Γ1, L1) is subgraph isomorphic to
gi = (V2, E2, T2,Γ2, L2) if and only if there exists at least
one injection function f : Q→ gi such that
(i) ∀u ∈ V1,∃f(u) ∈ V2 such that T1(u) = T2(f(u)) and

L1(u) ⊆ L2(f(u)).
(ii) ∀(u, v) ∈ E1, (f(u), f(v)) ∈ E2.

Example 6 Figure 1(b) presents a query Q. A UIUC spin-
off company wants to hunt two employees in a professional
social network. The searching criteria are as follows: (1)
they both graduated from UIUC, (2) they are working for the
same Internet company, and (3) one is an engineer whose
expected salary is 15, 000/mo, and the other is an art de-
signer whose expected salary is 7, 000/mo.

Theorem 1 Both graph outsourcing problem with (k, t)-privacy
and subgraph matching problem on outsourced graph are
NP-Hard.

3 Solution Overview

In this section, we overview our solution to graph outsourc-
ing and subgraph matching on outsourced graphs. The work-
flow of our solution is depicted in Figure 4. Given a data
graphG, the client user anonymizes it to satisfy (k, t)-privacy
(step 1©). The result consists of a k-automorphism graph
Gk and a label corresponding table LCT. Since each ver-
tex inGk has (k−1) symmetric vertices in the other (k−1)

blocks, the client user only needs to upload a succinct ver-
sion of k-automorphism graph G̃k to cloud (step 2©), which
is also called an outsourced graph [3]. G̃k comprises of ver-
tices and edges in one block together with their 1-hop neigh-
bouring vertices and edges. For example, the one inside red
dashed circle in Figure 2(a) is the succinct G̃k.

~

~       

t-closeness 

k-automorphism
Graph

G

Matching Result

Matching  
Request

Outsource 

     Outsource 
Succinct Gk

Client Cloud

Refining

Query 
Q

GkGk

LCT LCT

Query Q

Graph Outsourcing with 
(k,t)-Privacy

11

15

12

13

14

Subgraph 
Matching

Coarse
Results

Final
Results

Fig. 4 Workflow of subgraph matching on outsourced graph

Upon receiving a matching query Q̃ (step 4©) transformed
from the client’s original query Q (e.g., Figure 3(b) from
Figure 1(b)), the cloud evaluates it based on G̃k and LCT.
The results are sent back to the client (see step 5©) for further
refining to filter those false positive results. In the rest of this
paper, we only focus on two key components highlighted in
Figure 4, namely, graph outsourcing with (k, t)-privacy
and subgraph matching.

In the rest of this section, we propose a baseline solution
by adapting existing work [3] to generalize labels into la-
bel groups. Then we discuss its limitations, based on which
we propose two new algorithms for label generalization and
subgraph matching in Sections 4 and 5, respectively.

3.1 Baseline Solution

3.1.1 Graph Outsourcing with (k, t)-Privacy

The idea is to work on k-automorphism and t-closeness sep-
arately. We first transform the original graph G to a k auto-
morphic graph Gk, and then adapt existing label generaliza-
tion algorithm in [3] to satisfy t-closeness metric. Given a
vertex type that contains n vertex labels l = (l1, l2, ..., ln),
we propose Algorithm 1 to generalize n labels intom groups.
It first permutates the set of labels into P = (lp1 , lp2 , ..., lpn)

and then sequentially dividesP intom groups, each of which
contains n/m labels and satisfies t-closeness.

In particular, Algorithm 1 initializes the globalminScore
and the permutation {yj} (Lines 2 and 3) where yj is a label
group and j ∈ {1, 2, ...,m}. Then the function groupEnum
is called recursively to find the optimal permutation by grad-
ually expanding the candidate permutation P (Line 4).

In this groupEnum function, it first checks whether the
current P is a complete permutation of size n (Line 6). If
so, its cost (e.g., a estimated search space) is calculated by
getCost(P ) (Line 7). After that, P is updated to {yj} if the
cost is lower than the current lowest (Lines 8 and 9). Oth-
erwise, it greedily enumerates n/m labels as a label group
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Algorithm 1 A Baseline Method for Label Generalization
Input: Labels l, number of labels n, group number m,

threshold t
Output: An optimal label generalization into m label

groups
1: procedure BASSOL(l, n,m, t)
2: minScore← +∞;
3: {yj} ← {∅};
4: groupEnum({yj}, P ← ∅, l, n,m, t);

5: function groupEnum({yj}, P , l, n, m, t)
6: if |P |== n then
7: if getCost(P ) < minScore then
8: minScore← getCost(P );
9: {yj} ← P ;

10: return {yj};
11: enumerate n/m labels from l to Ps;
12: while y′j ∈ Ps do
13: if checkTclo(y′j , t) then
14: move y′j from l to P ;
15: groupEnum({yj}, P, l, n,m, t);
16: move y′j from P to l;
17: return {yj};

from l and records them in the set Ps (Line 11). For each
label group y′j in this set, a checkTclo routine calculates
EMD by solving a transportation problem [21] and then
checks whether y′j satisfies t-closeness (Line 13). If it is true,
y′j will be appended to the candidate permutation P and re-
moved from the labels l (Line 14).

Complexity Analysis. The space complexity of Algo-
rithm 1 is O(n). As for time complexity, let t1 denote the
time complexity of checkTclo, which is invoked at most

n!
((n/m)!)m times. As such, the time complexity isO( n!t1

((n/m)!)m ),
which is exponential to n.

3.1.2 Subgraph Matching

As described in [3], for a subgraph matching query Q at the
client, the client first generalizes its vertex labels by the la-
bel correspondence table and sends the generalized query Q̃
to the cloud. Since the cloud can only access the succinct
graph G̃k, which consists of one block of Gk together with
its 1-hop neighbours, it uses a special star-based subgraph
matching algorithm. On the cloud side, the algorithm con-
sists of three steps.
(i) Query decomposition. The cloud first decomposes query

Q̃ (e.g., Figure 3(b)) into a set of star shapes {Si} (see
Figure 3(b)), each of which has a root vertex together
with its adjacent edges and neighbouring vertices.

(ii) Star matching. The cloud then retrieves matchings for
each decomposed star Si in succinct graph G̃k, denoted

by R(Si, G̃
k), and leverages the symmetry of Gk to re-

trieve the matchings for Si inGk, denoted byR(Si, G
k).

(iii) Star joining. The cloud starts with aR(Si, G
k) and iter-

atively computes its natural join with R(Sj , G
k), until

all j 6= i are joint up. The results R(Q̃,Gk) are the
matchings for Q̃ over Gk.
On the client side, the algorithm filters false positives

in R(Q̃,Gk) using the original graph G and query Q, and
obtains the final subgraph matchings R(Q,G).

3.2 Limitations

Though the baseline solution can support privacy-preserving
subgraph matching with (k, t)-privacy, it has two main draw-
backs. First, the time complexity of label generalization is
exponential to the number of labels as all permutations need
to be considered. Second, the star-based subgraph matching
is also inefficient because: (1) due to query decomposition it
cannot narrow down the search scope of the query to a local-
ized region in the graph; and (2) the natural join is compu-
tationally intensive. We illustrate the second drawback with
an example.

Example 7 Figure 3(b) shows a generalized query graph
Q̃. The baseline algorithm decomposes Q̃ into two stars, S1

and S2. Three matchings are found for S1 on G̃k, namely,
(p1, c1, s1, p2), (p2, c1, s1, p1) and (p2, c1, s2, p1). Similarly,
three matchings are found for S2 on G̃k, namely, (c1, s1, p1)

, (c1, s1, p2) and (c1, s2, p2). As such, the natural join needs
to join all six matchings for both stars. Since each matching
of S1 should join with all matchings of S2, nine join opera-
tions are needed.

To overcome the first drawback, in Section 4, we pro-
pose the TOGGLE algorithm (T-closeness-Optimized Graph
Generalization on Label Extension) for label generalization.
It significantly reduces the search space for (sub)-optimal la-
bel generalization. For the second drawback, we present the
PGP algorithm (Partial-Graph-based subgraph Processing)
in Section 5. It exploits the symmetry of the outsourced
graph and eliminates the need for query decomposition.

4 TOGGLE for Label Generalization

As we discussed in Section 1, different outputs of label gen-
eralization have different impacts on the search space and
the larger search space will cause expensive query cost. Hence,
TOGGLE aims to generalize labels into groups to mini-
mize the search space, which refers to the total number of
vertices to explore for a query. To this end, we first study
how to estimate the search space of subgraph matching (Sec-
tion 4.1). We then introduce the optimal TOGGLE for la-
bel generalization that minimizes the search space by formu-
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lating the minimization problem into a combinational opti-
mization problem with constraints (i.e., TOGGLE problem,
Section 4.2). We further present an approximate TOGGLE
algorithm with a bounded error in Section 4.3.

4.1 Estimating Search Space for Subgraph Matching

To estimate the search space for a query Q̃ over an out-
sourced graph G̃k, we assume a general expansion-based
graph search [28,3] as follows. The first vertex q of Q̃ is
selected based on degree and neighborhood signature. q is
then matched on G̃k with any vertex that contains the same
vertex type and label group as q. After that, other vertices of
Q̃ are matched with neighbours of those already matched in
G̃k. For the first vertex q, the number of vertices to explore
can be estimated by the number of vertices in G̃k multiplied
by the probability of these vertices being the same types and
having the same labels as q. For other vertices of Q̃, the num-
ber of vertices to explore in G̃k are limited to neighbours of
those already matched in G̃k. In the end, the search space of
Q̃ over G̃k is the product of all these numbers. Formally, for
the τ -th vertex type, let nτ , mτ and prτ (j−1)+i denote the
number of labels, the number of label groups, and the i-th
position in the j-th label group, respectively. rτ = nτ/mτ .
We also use FG(τ) to denote the probability of vertices in a
graph G (e.g., Gk, Q̃) being the type τ . Similarly, F lG(τ, i)

and F gG(τ, j) denote the probability of the i-th label and the
j-th label group (after the label generalization) being this
type, respectively.

For first vertex q, its number of matchings can be esti-
mated by the number of vertices in G̃k (approximately |V (Gk)|

k )
multiplies the matching probability of q over G̃k. Formally,

|V (Gk)|
k

T∑
τ=1

[
FGk(τ)FQ̃(τ)

mτ∑
j=1

F g
Gk

(τ, j)F g
Q̃

(τ, j)
]

(1)

where T is the number of vertex type.
For other vertices, their matches are restricted to neigh-

bours of those already matched in G̃k. Let |Q̃| denote the
number of vertices in Q̃, and the average degree D(Gk) ap-
proximately represent the number of neighbours of the ver-
tex in Gk, the number of matches for the other |Q̃|−1 ver-
tices can be estimated as follows.

{
D(Gk)

T∑
τ=1

[
FGk(τ)FQ̃(τ)

mτ∑
j=1

F g
Gk

(τ, j)F g
Q̃

(τ, j)
]}|Q̃|−1

(2)

Therefore, the search space of subgraph query Q̃ is the
product of Expressions (1) and (2), which directly corre-
lates with FGk(τ)FQ̃(τ)

∑mτ
j=1 F

g
Gk

(τ, j)F g
Q̃

(τ, j). Notably,

each vertex in Gk has the union of label groups of all its

(k − 1) symmetric vertices, which implies that F g
Gk

(τ, j)

will increase by a factor of no more than k − 1. In other
words, assuming that the j-th label group of the τ -th ver-
tex type contains rτ labels, {lτ,prτ (j−1)+i

|i ∈ [1, rτ ]}, where
lτ,prτ (j−1)+i

is the label locating at position i of this label
group, F g

Gk
(τ, j) ≤ k

∑rτ
i=1 F

l
G(τ, prτ (j−1)+i) is therefore

obtained. Additionally,F g
Q̃

(τ, j) =
∑rτ
i=1 F

l
Q(τ, prτ (j−1)+i)

can be easily derived.FGk(τ)FQ̃(τ)
∑mτ
j=1 F

g
Gk

(τ, j)F g
Q̃

(τ, j)

is therefore bounded by the product of kFGk(τ)FQ̃(τ) and

mτ∑
j=1

[ rτ∑
i=1

F lG(τ, prτ (j−1)+i)
][ rτ∑

i=1

F lQ(τ, prτ (j−1)+i)
]
. (3)

Given a vertex type τ , kFGk(τ)FQ̃(τ) is a constant.

4.2 Optimal TOGGLE for Label Generalization

Given the vertex labels l = (lτ,1, lτ,2, ..., lτ,nτ ) for the τ -
th vertex type, label generalization combines them into mτ

groups, each with rτ labels. It is equivalent to finding a per-
mutation P = (lτ,p1 , lτ,p2 , ..., lτ,pnτ ) of l and then sequen-
tially dividing the permutated labels into mτ groups, each
satisfying t-closeness. Formally,

EMDj(l, {lτ,prτ (j−1)+i
|i ∈ [1, rτ ]}) ≤ t, ∀j ∈ [1,mτ ].

Meanwhile, we want TOGGLE to minimize Expression (3)
so that this label generalization can lead to a minimum search
space. Combining the above, TOGGLE can be formulated as
a combinational optimization problem with constraints.

TOGGLE argmin
P

mτ∑
j=1

[ rτ∑
i=1

F lG(τ, prτ (j−1)+i)
]2

subjects to

EMDj(l, {lτ,prτ (j−1)+i
|i ∈ [1, rτ ]}) ≤ t, j ∈ [1,mτ ].

Note that the objective function as above is a simplified ver-
sion of Expression (3) by assuming query graphs and data
graphs are independent and identically distributed. And the
vertex type τ is omitted whenever it is fixed.

This optimization problem is challenging as there are
a huge number of permutations, and in each permutation
the Earth’s Mover Distance of all mτ label groups need to
be calculated. To address this, we reduce our optimization
problem to the General Set Partitioning Problem (GSPP)
[18]. Given a universe of n elements (1, 2, ..., n), there is a
rule Y that generates feasible subsets yj of these elements,
J = {yj}. Each subset yj has a cost c(yj), and GSPP divides
all elements into subsets with the minimum cost. Formally,
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Definition 6 (General Set Partitioning Problem) Let λj ∈
{0, 1} denote whether subset yj is a result subset. yi,j=1
if yj contains element i, and 0 otherwise. Then GSPP finds
argmin

∑
yj∈J c(yj)λj subjects to

∑
yj∈J yi,jλj = 1, i =

1, 2, ..., n.

In TOGGLE, the universe has n labels denoted as l. Each
permutation P partitions the labels into label groups, each
has r=n/m labels. The j-th label group {lpr(j−1)+i

|i ∈ [1, r]}
is a subset yj . The rule Y is t-closeness, EMDj(l, yj)≤ t.
The cost is the search space, i.e., c(yj) = (

∑n
i=1 F

l
G(yi,j))

2,
where F lG(yi,j) is the probability of label i in yj . Specifi-
cally, if yi,j = 1, F lG(yi,j) = F lG(i), otherwise F lG(yi,j) =

0.
Therefore, the optimization problem of TOGGLE can be

reduced to GSPP as follows:

TOGGLE under GSPP min
∑
yj∈J

λj c(yj)︸ ︷︷ ︸
(
∑n
i=1 F

l
G(yi,j))2

(4)

subjects to
∑
yj∈J yi,jλj = 1, i = 1, 2, ..., n, and λj ∈

{0, 1}. The original TOGGLE problem has n!
((n/m)!)m per-

mutations, wherein the GSPP reduction effectively shrinks
the size |J| to n!

(n/m)!(n−n/m)! .

4.3 Sub-Optimal TOGGLE for Label Generalization

Since the asymptotic size of GSPP is still exponential in
terms of n, finding the optimal partition is only feasible for
small n.5 In what follows, we propose a sub-optimal solu-
tion with a theoretical guarantee. In particular, we first trans-
form the original GSPP optimization problem in Expres-
sion (4) into Linear Programming Master (LPM) problem
by relaxing the integer constraint. Then, the initial solution
for LPM problem is obtained, based on which an iterative
process consisting of a master problem and sub problem is
presented. The process terminates until the desirable solu-
tion is derived.

Algorithm 2 outlines the sub-optimal solution. Inspired
by Column Generation [18], the algorithm first transforms
the original GSPP optimization problem, denoted by OP,
into LPM problem (Line 1) by relaxing the integer con-
straint λj ∈ {0, 1} to λj ∈ [0, 1].

LPM Problem min
∑
yj∈J

cjλj

subjects to
∑
yj∈J yi,jλj = 1, i = 1, ..., n and λj ∈ [0, 1],

where cj = c(yj) = (
∑n
i=1 F

l
G(yi,j))

2 and yj is a subset
and is also called a column.

5 When n is small, we can enumerate all feasible subsets and relax
the constraint yi,j ∈ {0, 1} to yi,j ∈ [0, 1]. Then we apply the Sim-
plex method to solve this linear programming problem. Finally, we em-
ploy the Branch-and-Bound method to obtain the integer solution [29].

Algorithm 2 Sub-Optimal TOGGLE for Label Generaliza-
tion
Input: Original optimization problem (OP), labels l, num-

ber of labels n, group number m and threshold t
Output: A sub-optimal partition of labels

1: LPM ← reform(OP, ∅);
2: if t ≥ m−1

2(n−1) then
3: for j ∈ [m] do
4: y′j ← {lj , lj+m, ..., lj+(n/m−1)m};
5: yj ← genCol(y′j);

6: else
7: {yj} ←ModifiedBasSol(l, n,m, t);
8: return {yj};
9: y∗j ← ∅;

10: δ ← +∞;
11: while δ ≥ 1.0e− 4 do
12: RLPM ← reform(LPM, {yj} ∪ y∗j );
13: {λj}, µ← Simplex(RLPM);
14: QKP ← conSubP (µ);
15: y∗j , δ ← QKPSolver(QKP );

16: {yj} ← Branch(RLPM);
17: return {yj};

Since it is impossible to obtain all |J| feasible columns
at once for LPM problem, the algorithm first generates |J′|
(≤ |J|) feasible columns as an initial solution (Lines 2 to
8). With these columns, a master problem is formulated and
solved by the Simplex method (Lines 12 to 13). The optimal
solution is then used to formulate a dual sub problem, gener-
ate a new feasible column y∗j (Lines 14 to 15), and append it
to the resulted columns (Line 12). The algorithm then itera-
tively solves the master problem and sub problem until there
is no column with a desired reduced cost (Line 11). Finally,
it applies the branch and bound algorithm [29] to obtain the
integer solution to the partition of labels (Line 16).

In what follows, we elaborate them and prove the theo-
retical error bound of this approximation algorithm.

4.3.1 Initial Solution (Lines 2 to 8)

Let l = (l1, l2, ..., ln) be n labels sorted by their values and
(1/n, 1/n, ..., 1/n) be their distribution masses. Each feasi-
ble column yj should contain n/m labels (e1, ..., eα, ..., en/m)

with evenly distributed mass (m/n,m/n, ..., m/n). So it
should generate m feasible columns “aligned” with l to cal-
culate EMD. Here, “aligned” means eα transports distribu-
tion mass to li. We further define an Alignment Group as a
group of consecutive li in l. If both l and eα are sorted by
their values, Lemma 2 shows their alignment relationship.

From Lemma 2, we can derive that if we select an ele-
ment eα for yj from one of the positions [(α−1)m+1, αm]
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of l, the ground distance between eα and alignment group α
is at most n2−n(n/m)

2(n/m)2(n−1) . Based on this lemma, we propose
the following heuristic to obtain the initial solution. When
t < m−1

2(n−1) , we design a procedure ModifiedBasSol to
find the exact optimal partition that satisfies t-closeness by
exhaustive search (Line 7). The procedure is similar to the
baseline solution in Algorithm 1 but it uses Lemma 2 to cal-
culate EMD. When t ≥ m−1

2(n−1) , we group {lj , lj+m, ...,
lj+(n/m−1)m} into a label group y′j and further generate yj
based on y′j by setting yi,j = 1 if li ∈ y′j , otherwise yi,j = 0

(Lines 2 to 6).

4.3.2 Master Problem (Lines 12 to 13)

With the generated |J′| columns, we further reformulate the
LPM problem to a Restricted Linear Programming Master
(RLPM) problem and obtain an optimal solution to it and
its dual problem (Lines 12 and 13).

RLPM Problem min
∑
yj∈J′

cjλj

subjects to
∑
yj∈J′ yi,jλj = 1, i = 1, ..., n and λj ∈ [0, 1],

where cj = c(yj) = (
∑n
i=1 F

l
G(yi,j))

2 and yj is a column
generated from the rule Y. Note that yj is limited to J′ in-
stead of J.

RLPM problem is a simple linear programming problem
with only |J′| feasible columns, so it can be easily solved by
employing the Simplex method (Line 13).

4.3.3 Sub Problem (Lines 14 to 15)

Let µ denote the dual optimal solution to the RLPM prob-
lem. Sub problem is to find a new feasible column y∗j that
minimizes the reduced cost {c(yj)−µyj} and meets the rule
Y, or formally

y∗j = argmax
yj

{µyj − c(yj)}

subjects toEMD(l, yj) ≤ t, where c(yj)= (
∑n
i=1 F

l
G(yi,j))

2.
The sub problem is obviously NP-hard. We propose a

sub-optimal solution by reducing the sub problem to a 0− 1

Quadratic Knapsack Problem (QKP) (Line 14):

0 – 1 QKP max{µyj − c(yj)}

subjects to

QKP Constraints
m∑
β=1

y(α−1)m+β,j = 1, α = 1, ...,
n

m

The 0 − 1 QKP can be solved by CPLEX optimizer [30] as
a quadratic programming problem (Line 15).

4.3.4 Analysis on TOGGLE

In this sub-section, we give a detailed theoretical analysis
for correctness, performance guarantee and complexity.

Correctness Analysis: We can theoretically prove that
the generalized labels generated by TOGGLE satisfy t-
closeness. To this end, we need to prove that any general-
ized label in the initial solution (i.e., yj) and that in the sub
problem (i.e., y∗j ) achieve t-closeness.

Theorem 2 When t ≥ m−1
2(n−1) , the column yj or y∗j gen-

erated as above satisfies t-closeness, where n and m are
number of labels and label groups, respectively.

To sketch this proof, we first introduce two lemmas. In par-
ticular, Lemma 1 paves the way for the proof of Lemma 2
and the latter proves the range of the ground distance. Their
proofs are given in the Appendix A.

Lemma 1 The α-th element eα of yj is aligned with α-th
alignment group of l, and eα needs to transport 1/n distri-
bution mass to each element in alignment group α.

Lemma 2 The ground distance between eα and the align-
ment group α (denoted by gα) is

Dist(eα, gα) =
1

n− 1

m∑
β=1

|i− (α− 1)m− β|.

For ∀i ∈ [(α − 1)m + 1, (α − 1)m + m], if m is odd,

Dist(eα, gα) ∈ [
n2− n

m
2

4(n−1) nm 2 , n2−n2

m

2(n−1) nm 2 ]. Otherwise,Dist(eα,

gα) ∈ [ n2

4(n−1) nm 2 , n2−n2

m

2(n−1) nm 2 ].

Performance Guarantee: We can also prove that the
(sub-)optimal TOGGLE have a theoretical guarantee. In
particular, if t < m−1

2(n−1) , (sub-)optimal TOGGLE can find
the exact solution. Otherwise, it can provide a (1 + m/5)-
near optimal solution.

Theorem 3 When t ≥ m−1
2(n−1) , sub-optimal TOGGLE pro-

vide a (1 + ε)-approximate solution to the original problem
where ε is approximately m/5.

To sketch this proof, we introduce two lemmas. The first
gives an approximation bound to the initial solution, the sec-
ond gives an approximation bound to the sub problem.

Lemma 3 When t ≥ m−1
2(n−1) , the initial solution has an ap-

proximation ratio (1 + m2−m+2
(m+1)(ln(n)+0.5772+1/(2n)) ) to the

optimal solution.

Lemma 4 When t ≥ m−1
2(n−1) , the reduction to 0 − 1 QKP

provides a 4
(ln(n)+0.5772+1/(2n))m -approximate solution to

the original subproblem.
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Complexity Analysis: We can also prove that the space
complexity is linear to number of labels n, and worst case
time complexity is directly proportional to n!

(n/m)!(n−n/m)! .

In particular, the space complexity is O(n). As for time
complexity, if t ≥ m−1

2(n−1) , let ω, t1 and t2 denote the num-
ber of iterations, the time cost for one Simplex invocation,
and the time cost for one QKP solver, respectively. Then the
total time complexity of TOGGLE is O(ω(t1 + t2)). Oth-
erwise, the time complexity is n!t3

(n/m)!(n−n/m)! , where t3 is
the time cost to calculate EMD using Lemma 2. Note that
the time complexity of (sub-)optimal TOGGLE is far less
that of the baseline solution (i.e., O( n!t1

((n/m)!)m ), see Sec-
tion 3), which is exponential to n. Moreover, the value of

n!
(n/m)!(n−n/m)! is relatively small as n is the number of la-
bels in a single attribute whose value is small in real-world
dataset (see Section 6).

5 PGP Subgraph Matching Algorithm

Although subgraph matching has been intensively studied
[31,32,1], the only algorithm that can work on an outsourced
succinct graph G̃k is the star-based algorithm [3] described
in Section 3. However, this algorithm needs to decompose
the original query into multiple sub-queries, which is sig-
nificantly inefficient. In this section, we propose the partial-
graph-based subgraph processing algorithm PGP that no
longer needs query decomposition. In the outsourced graph
G̃k, boundary nodes are those “1-hop neighboring nodes”
and interior nodes are the others. The challenge in process-
ing query on G̃k is to retrieve those neighbors for boundary
nodes whose neighbors are partially in the succinct graph.
To address this problem, PGP exploits the symmetry of the
outsourced graph to retrieve matchings for those nodes. Its
pseudo-codes are shown in Algorithm 3. Note that T and Tp
denote the final matched subgraphs and the partial embed-
ding of a single complete matching, respectively.

In Algorithm 3, it first initializes T and Tp with empty
sets, and marks all data nodes in G̃k as unvisited (Line 2).
Then all matching candidates are generated for each query
node of Q̃ by comparing their labels, degrees, and neigh-
bours’ labels with those of interior nodes in G̃k, and ex-
panding them to Gk (Line 3). Specifically, for each query
node u of Q̃, its interior-node candidate v is selected if all
three conditions are met: (1) v contains the same vertex type
and label group as u, (2) u’s degree is no more than that of
v, and (3) labels of u’s neighbours are subset of those of v’s
neighbours. Next, the algorithm expands the candidates to
the other blocks of Gk and forms the candidate set. After
that, it generates a sorted list Lq to store the access order for
each query node of Q̃ according to its selectivity, the ratio
between the number of candidate nodes and its degree (Line

Algorithm 3 PGP Algorithm for Subgraph Matching

Input: Outsourced query Q̃, outsourced data graph G̃k

Output: All matched subgraphs T
1: procedure PGP (Q̃, G̃k)
2: Initialize T , Tp and G̃k;
3: Generate candidate vertices for vertices of Q̃;
4: Generate an ordered list Lq and father nodes for ver-

tices of Q̃;
5: PartialSQ(0, Tp);

6: function PartialSQ(d, Tp)
7: if |Tp|== |Q̃| then
8: add Tp to T ;
9: return T ;

10: Find current vertex u and its father node uf ;
11: Cs ← refineV (u, uf , Tp);
12: for candidate v ∈ Cs do
13: if derJoin(u, v, Tp) then
14: Add pair < u, v > to Tp;
15: PartialSQ(d+ 1, Tp)

16: Remove pair < u, v > from Tp;
17: return Tp;

4). Finally, it triggers the sub-routine PartialSQ to retrieve
all matched subgraphs.

This sub-routine first determines whether the partial em-
bedding Tp is a complete matching by comparing the size of
Tp with that of Q̃. If so, Tp is inserted to T (Lines 7 to 8).
Then it recursively processes the query (Lines 10 to 17) as
follows. It finds the query node u in depth d from Lq with
its farther node uf , and refines the candidates for match-
ing with u by calling subroutine refineV (Lines 10 to 11).
refineV confines u′s candidate v to the neighbours of vf
which is already matched with uf . Specifically, if vf is an
interior node, v is selected as the candidate vertex when v is
one of neighbours of vf . If vf is a boundary node, there are
three steps: (1) finding the symmetry vertex v′f from interior
nodes for vf , (2) retrieving all neighbours of v′f ; (3) deter-
mining if v can be mapped with one of those neighbours by
automorphic function (if so, v is a candidate vertex of u).
Then for each candidate v ∈ Cs, it determines whether v
can be matched with u in current partial embedding Tp by
judging whether all paired vertices of u’s neighbours in Tp
are also the neighbours of v (Lines 12 to 13). If v can be
matched, the paired u and v will be inserted into Tp (Line
14). Then PartialSQ is recursively called to access the next
vertex in Q̃ (Line 15).

Utility Analysis. As for the utility, two metrics should
be considered. One is recall, i.e., the fraction of correct re-
sults among all true results for the query. Fortunately, all
matchings retrieved by PGP can cover all true matchings
of Q over G, as (k, t)-privacy model does not drop any edge
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Table 2 Datasets

Dataset |V | |E| Nt Na Nl

Web-NotreDame 0.3M 1.1M 1 1 200

DBpedia 3.2M 8.6M 86 101 6300

UK-2002 18M 261M 2500 2500 20000

or node. As such, the recall is always 100%. The other is
precision, i.e., the fraction of correct results among the re-
trieved matchings. The precision of all matchings retrieved
by PGP is the same as that of the baseline solution.

Complexity Analysis. The space complexity is O(|T |)
where |T | is the number of matchings. The time complexity
is O(|Cs||V (Q̃)|) where V (Q̃) denotes the set of vertices of
query Q̃.

6 Experimental Results

6.1 Experimental Setup

We evaluate the performance of proposed TOGGLE (de-
noted by TOG) and PGP algorithms against the baseline
solution for label generalization (denoted byBAS) and star-
based subgraph processing (denoted by SGP ) described in
Section 3 (codes provided by courtesy of the authors of [3]).
To evaluate the privacy and utility, we further compare our
methods with state-of-the-art techniques. All algorithms are
written in C++ except for TOGGLE, which is implemented
in Matlab. The client is a desktop computer with Intel(R)
Core(TM) i5-6600 CPU machine and 16GB RAM running
Windows 10 Pro. The cloud server is a Windows Server
2016 Datacenter with 4 CPU cores and 64GB RAM.

Datasets. We use three real graph datasets with increas-
ing sizes: Web-NotreDame, DBpedia and UK-2002. Their
statistics are given in Table 2 where Nt, Na and Nl indicate
number of types, attributes and labels, respecitvely. In par-
ticular, the maximum numbers of labels in a single attribute
are 200, 985 and 1000, respectively. Query graphs are gen-
erated from the data graph by the random walk scheme [33].
For each dataset, 1000 query graphs with sizes in the range
of [4–30] are randomly generated.

Performance Metrics. In each experiment, we measure
the Time Cost, Model Cost, and Approximation ratio. Time
Cost is the clock time to complete the experiment. Model
Cost is the value of the objective function (Expression (4))
for a label generalization algorithm. Approximation ratio is
the ratio of Model Cost of a sub-optimal solution to that of
the optimal solution.

Parameter Settings. Unless otherwise stated, we use
the default parameter values in Table 3. We choose 4 values
ti, i ∈ {1, 2, 3, 4} for t in order to cover all possible cases of
approximation ratio as stated in the proof of Theorem 2.

Table 3 Parameter Settings for Experiments

Parameter Symbol Default Value

#-automorphism k 2

# of labels, groups, group size n, m, n
m

12, n/2, 2

#-closeness

t1 0.9 ∗ t2

t2
m−1

2∗(n−1)

t3 t2 + 0.5(t4 − t2)

t4
2mn−2n−mm+m

2(n−1)m
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Fig. 5 Time Cost and Model Cost on UK-2002(12).

6.2 Performance of Sub-Optimal TOGGLE

We first compare the performance of TOGGLE with that
of BAS under default settings. As we will see, since BAS
is very time-consuming, we use only 12 labels in our default
settings. Figure 5(a) shows the time cost on UK-2002 with
12 labels (denoted by UK-2002(12)). From this figure, we
find that the time cost of TOG is far less than that of BAS
regardless of t. In addition, we observe a dramatic increase
of time cost of BAS as t increases from t1 to t4. This is
because the number of label groups satisfying t-closeness
increases when t is relaxed from t1 to t4. From Figure 5(b),
we observe that the model cost of TOG is the same as that
of BAS, which indicates that approximation ratio of TOG
on UK-2002(12) can reach 1. Figure 6 shows similar results
on the Dbpedia(12) dataset. This shows that TOGGLE not
only has a theoretical approximation bound, but is also close
to the optimal in practice. In what follows, we further eval-
uate its performance by varying group size and number of
labels.

Impacts of group size. Figure 7 shows the time cost on
UK-2002(12) by varying the group size. In this figure, we
use TOG1 to denote the time cost of TOG when t = t1; for
t = t2, t3 or t4, we use TOG as it acts the same. Similarly,
BASi denotes the time cost of BAS when t = ti. We ob-
serve that the time cost of TOG is far less than that of BAS
especially for t = t3 and t4. When the group size increases,
the time of BAS decreases because its search space is pro-
portional to the number of different permutations. On the
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Fig. 6 Time Cost and Model Cost on Dbpedia(12).

 0.1

 1

 10

 100

 1000

 10000

2 4 6

T
im

e 
C

o
st

 (
s)

Group Size

TOG1
TOG

BAS1
BAS2

BAS3
BAS4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 (1,1.05] (1.05,1.1] (1.1,1.2]

F
re

q
u

en
cy

Approximation Ratio

TOG

Fig. 7 Time Cost vs. Group Size
on UK-2002(12).
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other hand, TOG fluctuates within a narrow range within 1
second.

Figure 9 presents the corresponding model costs on UK-
2002(12). There is one missing result at (6, t1) because there
is no feasible label group in this setting. It can be seen from
this figure that increasing group size will lead to the increase
of model cost. Nonetheless, the model cost of TOG is al-
most identical to that of BASi.

We also plot the frequency distribution of approximation
ratio (denoted by Freq) on various group sizes and t setting
for both datasets in Figure 8. Overall even the worst case
leads to an approximation ratio lower than 1.1. As for the
best case, more than 50% of cases can achieve a ratio equal
to 1.

Impacts of label size. We vary the number of labels
from 10 to 1000 (i.e., the maximum number of labels in a
single attribute) on UK-2002 and compare their results. As
shown in Figure 10, the time cost of BAS is rising expo-
nentially with respect to the number of labels, and it already
becomes prohibitively costly (e.g., more than 1.5 days) for
only 16 labels at t ≥ t3. On the other hand, TOG is less
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Fig. 12 Model Cost vs. Number of Labels on UK-2002.

sensitive to the increase of number of labels. In fact, the
time cost of TOG reaches its peak at 400 and slowly de-
creases afterwards, which indicates that TOG can easily
scale to even more labels. Figure 12 presents the correspond-
ing model costs on UK-2002. It can be seen from this figure
that the model cost of TOG is almost equivalent to that of
BAS. This shows TOG can achieve robust and desirable
performance irrespective of label size.

As for the approximation ratio, we plot the frequency
distribution of approximation ratios (denoted by Freq) of
TOG for both UK-2002 and Dbpedia in Figure 11. We find
the approximation ratios are no more than 1.1 and 80% of
them are exactly 1.

To sum up, our privacy-preserving label generalization
algorithm TOGGLE achieves high efficiency, effectiveness
and scalability.

6.3 Performance of PGP Algorithm

We compare our PGP algorithm with SGP , the star-based
subgraph processing algorithm. Figure 13(a) presents the
time cost for the Web-NotreDame dataset. We observe that
as the query size increases, the time cost of PGP grows
much slower than that of SGP . This is because the num-
ber of star matchings undergoes a huge rise as shown in Ta-
ble 4. We then fix the query size to 6 and vary the value
of k from 2 to 6. As shown in Figure 13(b), the time cost
increases with k, because a larger k introduces more redun-
dant edges to the k-automorphic data graph, which leads to
more matchings for a single query. Nonetheless, PGP takes
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Table 4 # of Star Matchings on Web-NotreDame (k=2)

Query Size |V (Q)| 6 8 10 12

Number of Star Matchings 880 5280 24999 59967
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Fig. 13 Time Cost vs. |V (Q)| and Time Cost vs. k.

Table 5 Success ratio under similarity attack and majority attack

k
Similarity Attack Majority Attack

BAS[3] TOG BAS[3] TOG

2 53% 0% 1.1% 1.2%

4 48% 0% 1.3% 1.1%

6 52% 0% 0.9% 1.0%

less time cost than SGP , since the latter incurs significant
time to compute natural join for a large number of matched
stars. Figures 13(c) through (f) show similar results for the
other two datasets. As such, we conclude that PGP always
outperforms SGP under various k and query sizes. Further-
more, the gain of PGP becomes more evident for larger k
or query sizes.
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6.4 Performance of Privacy-Utility

We further compare our work with some existing techniques
in terms of privacy and utility on Web-NotreDame.

Power of Privacy Protection. We compare anonymized
graphs produced by our work (TOG) and other classical
anonymization methods [11,13,3] under different attacks such
as degree attack, subgraph attack and similarity attack. For
any vertex degree d of the anonymized graph produced by
our work, we report its frequency of vertices with degree
d. As depicted in Figure 14, the minimal degree frequency
is k, which indicates that our method can guarantee privacy
under degree attack. We further test our method under sub-
graph attacks. To this end, we randomly extract some sub-
graphs from the original graph as query graphs, and retrieve
the matchings for each query to determine if the number of
matching is at least k. As shown in Figure 15, the number
of matchings for each subgraph query over the anonymized
graph produced by our work is at least k. This indicates that
our method can make the anonymized graph defend against
subgraph attack. Similarly, we can also find that Deg [11]
andNei [13] suffer from subgraph attack. The reason is that
these two algorithms only consider a single type of attack,
i.e. degree-attack or 1-neighbor-graph attack, respectively.
We further compare TOG with BAS [3] under similarity
attack and majority attack (i.e., simply predict the target
node’s label based on the majority label of the neighbors).
Table 5 presents the success ratios under similarity attack
and majority attack (denoted by SucRatio(SimAttack) and
SucRatio(MajAttack)), which refer to the ratios of that
one attacker can infer the sensitive label using the attack
techniques. We find that the success ratio of the similarity at-
tack on anonymized graph produced by TOG is 0, while that
on anonymized graph produced by BAS is close to 50% .
We can also find that SucRatio(MajAttack) of both TOG
and BAS are close to 1.0% , which equal to the probability
that randomly selecting a label (from 100 labels) as the label
of a target node. Therefore, we can conclude that TOG can
guarantee privacy under degree attack, subgraph attack and
similarity attack.
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Fig. 17 Degree frequencies
on SFNet.
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Table 6 Success ratio under similarity attack and majority attack on
ERNet

k
Similarity Attack Majority Attack

BAS[3] TOG BAS[3] TOG

2 49% 0% 1.1% 1.0%

4 51% 0% 1.0% 1.1%

6 50% 0% 1.1% 1.0%

In addition, we further evaluate our methods using syn-
thetic data sets, and compare them with the existing state-of-
the-art techniques. We use a software called Pajek (http://
vlado.fmf.unilj.si/pub/networks/pajek/) to generate two kinds
of random graphs, Erdos Renyi Graph and Scale-Free Graph.

1. Erdos Renyi Graph (denoted by ERNet): This graph
can be generated by a random graph model, which de-
fines a random graph as N vertices connected by M

edges that are chosen randomly from theN(N−1) pos-
sible edges. Pajek can generate it by setting the number
of vertices N and average degree d. In our experiments,
we set N = 1000 and d = 10.

2. Scale-Free Graph (denoted by SFNet): A scale-free net-
work is a network whose degree distribution follows or
asymptotically follows a power law. In our experiments,
we set the number of vertices to be 1049.

As depicted in Figure 16 and 17, for any vertex degree
d of the anonymized graph produced by our method, its fre-
quency of vertices with degree d is at least k. It indicates
that our method can defend against degree attack. We fur-

Table 7 Running Time and Storage Space (PGP V.S. SQ)

k
Running Time (S) Storage Space (MB)

PGP SQ [33] PGP SQ [33]

2 0.01 0.12 19.18 37.80

3 0.19 0.48 19.56 54.92

4 5.60 6.19 20.00 72.41

5 7.47 12.36 21.25 91.22

6 26.69 65.57 21.82 107.95

ther test our method under subgraph attacks by retrieving
the matchings for each query. As presented in Figure 18 and
19, the number of matchings for each subgraph query over
the anonymized graph produced by our work is at least k.
This indicates that our method can make the anonymized
graph defend against subgraph attack. Similarly, we can also
find that both Deg [11] and Nei [13] suffer from subgraph
attack. We further compare TOG with BAS [3] under sim-
ilarity attack and majority attack on our synthetic data set
ERNet. Table 6 presents the success ratios under similarity
attack and majority attack (denoted by SucRatio(SimAttack)

and SucRatio(MajAttack)). We find that the success ra-
tio of the similarity attack on anonymized graph produced
by TOG is 0, while that on anonymized graph produced by
BAS is close to 50% . Observe that SucRatio(MajAttack)

of both TOG and BAS are close to 1.0% , which equal to
the probability that randomly selecting a label (from 100 la-
bels) as the label of a target node. Therefore, we can con-
clude that TOG can guarantee privacy under degree attack,
subgraph attack and similarity attack.

Utility Evaluation. To evaluate the utility of our method
(PGP ), we further compare it with classical subgraph match-
ing methods over the entire graph. Since both of G̃k and
Alignment Vertex Table (AVT) are outsourced to the cloud
during pre-processing, the cloud actually knows all the in-
formation of the original k−automorphic graph Gk. Hence,
most subgraph matching algorithms [25,34,33] can be ex-
tended to work on the outsourced graph G̃k by following
steps: 1) Graph Extensions. Given a vertex p of G̃k, its sym-
metric vertices P on other blocks can be found by retrieving
from Alignment Vertex Table (AVT). Similarly, the sym-
metric vertices Q of another vertex q of G̃k can be easily
found. If there is an edge between p and q, an edge should
be inserted between vertices pair of p′ and q′ where p′ ∈ P
and q′ ∈ Q. 2) Index Construction. Then the indices for de-
gree and neighborhood signature filtering for candidates as
in previous works such as [28] can be constructed. 3) Sub-
graph Matching. Given the extended graph of G̃k and the
indices, classical subgraph matching algorithms such as [25,
34,33] can be applied to retrieve subgraph matchings. The
results of PGP and that of the classical subgraph match-
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Table 8 Recall

Methods k = 2 k = 3 k = 4 k = 5 k = 6

PGP 100% 100% 100% 100% 100%

SQ 100% 100% 100% 100% 100%

SGP 100% 100% 100% 100% 100%
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Fig. 20 Precision.

ing algorithm [33] (denoted by SQ) on Web-NotreDame are
shown in Table 7. Under the same privacy (the same k), we
can find that PGP outperforms SQ w.r.t both running time
and storage space. In particular, the time and space savings
are up to 10 and 5 folds, respectively.

We further evaluate the recall and precision of PGP ,
SQ, and SGP . Recall that recall is the fraction of correct
results among all true results for the query and precision is
the fraction of correct results among the retrieved matchings.
As reported in Table 8, recall are always 100% since none
of edges and nodes are dropped in the generalization pro-
cess. As for precision, these methods obtain the same per-
formance due to that all of them can be deemed as subgraph
processing on a k−automorphic graph Gk (Figure 20). In
addition, the precision decreases as the value of k increases,
since more dummy edges will be introduced as the value of
k increases. The observations further justify the utility anal-
ysis in Section 5 (Utility Analysis). In general, more strin-
gent privacy will be obtained as the value of k increases.
Meanwhile, more running time and storage space are taken
for subgraph processing, and worse precision is obtained.

7 Related Work

The most germane to this research is privacy-preserving graph
data publication and anonymization, and privacy-preserving
graph query processing in the cloud, which is summarized
in Table 9.

Privacy preserving graph data publication and anony
mization. Many structural privacy-preserving mechanisms
have been developed [15–17] by exploiting the symmetry of
the graph data to guard against various attacks such as de-
gree attack, subgraph attack and hub-fingerprint attack [13,
11,14]. In particular, the k-automorphism method by Zou et
al. constructs (k − 1) symmetric vertices for each existing

vertex and is claimed to defend against any graph structural
attacks [15]. When sensitive labels are considered, the k-
anonymity and `-diversity have been adopted for graphs [10,
3]. In addition, they can also preserve the structure privacy.
However, [10] can only defend against some specific struc-
tural attack (e.g., degree attack) or label attack on simple
labels. They are both vulnerable to advanced attacks, such
as similarity attack. Differential privacy (DP) [9] as a more
stringent privacy model has been widely studied to protect
against the privacy disclosure of statistical databases. It en-
sures that query results on a dataset are insensitive to the
change of a single record. Owing to its unique strengths,
it has been applied to graph data analysis, which can be
grouped into two categories: edge-DP [45–48] and node-
DP [51–53,50] based methods. In edge-DP (resp. node-DP),
two graphs are neighboring if they differ on a single edge
(resp. node). In particular, [45] publishes degree sequence of
a graph under edge-DP by adopting the Laplace mechanism
where sensitive is 2. [46,47] have also considered publishing
the degree sequence or distribution by extending the tech-
nique to synthetic generation. [48] proposes a framework
for graph metric estimation with local differential privacy.
When the setting moves to node-DP, the sensitivity of de-
gree distribution becomes 2(|V |−1) since removing a node
may have effect on other |V |−1 nodes. Hence, [53] explores
the projection approach to reduce the sensitivity when pub-
lishing the degree distribution of a graph under node-DP.
While [52] adopts a truncation approach to reduce the sensi-
tivity. Instead of publishing degree sequence or distribution,
differentially private subgraph counting queries under node-
DP have been studied [51,53]. For example, [53] develops
a novel method for differentially private triangle counting
in large graphs. Recent efforts have investigated the prob-
lem of publishing statistics of attributed graphs or spatio-
temporal graphs [35,49,54]. The neighboring data in [35]
is the records that differ in the presence of a single edge or
in the attribute vector associated with a single node. In con-
trast, neighboring data in [54] is defined on infinite series
data. As the perturbation is required to satisfy differential
privacy, noises such as Laplace noise [54,45] needs to be
injected into graphs or their statistics. This makes DP-based
techniques insufficient or even infeasible in subgraph match-
ing where exact matchings are desirable.

There are a lot of other graph data anonymization and
publication techniques [36–38,14]. For example, to protect a
graph from link re-identification, Zheleva & Getoor propose
five different privacy preservation strategies, which vary in
terms of the amount of data removed and the amount of pri-
vacy preserved [36]. While Campan & Truta tries to mask
the graph data according to the k-anonymity model, in terms
of both nodes’ attributes and nodes’ associated structural
information [37]. However, they can not apply to our case
since 1) some of them can not protect both structural and
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Table 9 Summary on Related Work

Topic Ref Focuses Cons

Privacy preserving
graph data publication

and anonymization

[15–17] Exploiting the symmetry of the graph data to guard against
various attacks such as degree attack, subgraph attack and
hub-fingerprint attack [13,11,14].

Can not protect label privacy since only
structure privacy is considered.

[10,3] Adopting the k-anonymity and `-diversity for labels of
graphs. In addition, they can also preserve the structure pri-
vacy.

Can only defend against some specific
structural attack (e.g., degree attack) or la-
bel attack on simple labels.

[45–54,35] Utilizing differential privacy for publishing graph statistics
without disclosing graph privacy.

Insufficient or even infeasible in subgraph
matching where exact matchings are de-
sirable since data perturbation is required.

[36–38,14] Some other techniques on graph data anonymization and
publication.

Some of them can not protect both struc-
tural and label privacy, or need to delete
edges from the original data graph.

Privacy preserving
graph query

processing in cloud

[39] An asymmetric structure-preserving subgraph query pro-
cessing method which is the first practical private approach
for subgraph query services.

The data graph is publicly known.

[42,40,56,57] Privacy-preserving schemes for (approximate) shortest
path queries or top-k critical vertices query on shortest
path.

Can not process subgraph matching stud-
ied in this paper.

[43] Exploring the problem of processing subgraph matching
over a set of encrypted small graphs in cloud.

Support only subgraph matching over a
set of small graphs instead of a single
large attributed graph.

[58] A novel k-decomposition algorithm and a new information
loss matrix designed for utility measurement in massively
large graph datasets.

Can not protect label privacy since only
structure privacy is considered.

[3,59] Privacy preserving subgraph matching on large attributed
graphs in cloud.

Vulnerable to similarity attack and suffer-
ing from low efficiency.

[60,61] Techniques on other privacy-preserving graph queries such
as reachability query and kNN query.

Can not be adapted to subgraph matching
on a single large attributed graph.

label privacy (e.g., [36] can only protect the graph from link
re-identification). 2) some of them need to delete edges from
the original data graph [36,37]. Hence, they are infeasible in
subgraph matching where exact matchings are desirable.

Privacy preserving graph query processing in cloud.
There are a lot of privacy-preserving methods or frameworks
for diverse queries. In particular, Fan et al. [39] proposes
an asymmetric structure-preserving subgraph query process-
ing method which is the first practical private approach for
subgraph query services, where the data graph is publicly
known and the query structure/topology is kept secret. [40]
develops specific schemes for shortest path queries, which
achieve much better performance and scalability with a strong
privacy property in practical scenarios. [42] proposes a method
to efficiently compute the shortest distance in large outsourced
graphs without compromising their sensitive information.
Ma et al. [56] investigate the shortest path sketch by defining
a top-k critical vertices query on the shortest path. A novel
graph encryption scheme that enables approximate constrained

shortest distance querying is studied in [57]. However, all
of them are privacy-preserving schemes for (approximate)
shortest path queries or top-k critical vertices query on short-
est path, which do not apply to our case where the goal is
to find subgraph matches on a single large attributed graph.
[43] presents a method to answer the subgraph matching
over a set of encrypted small graphs instead of a single large
graph. [58] develops a novel k-decomposition algorithm and
a new information loss matrix designed for utility measure-
ment in massively large graph datasets. However, it cannot
protect label privacy since only structure privacy is consid-
ered. The most germane to this research is [3,59] which
develop privacy-preserving subgraph matching methods on
large attributed graphs in cloud. Unfortunately, they are vul-
nerable to similarity attack and suffer from low efficiency.
Other techniques on other privacy-preserving graph queries
such as reachability query [60] and kNN query [61]. Never-
theless, they cannot be adapted to subgraph matching on a
single large attributed graph.
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8 Conclusion

In this paper, we propose a graph label generalization algo-
rithm and an efficient subgraph matching algorithm in cloud
with t-closeness and k-automorphism privacy. The former
achieves a theoretically guaranteed approximation ratio of
(1 + ε) where ε is approximately 0.2 times the number of
label groups. The latter exploits the symmetry of the gen-
eralized graph and limits the search scope to a localized re-
gion. As for future work, we plan to extend this solution
framework to a wide range of classic graph queries, such as
maximal clique search and best region search.
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Appendix A Proofs

In this section, we present the formal proofs of theorems and
lemmas.

A.1 Proof of Theorem 1

Given a data graphG, the graph outsourcing problem with t-
closeness and k-automorphism is to compute an outsourced
graph G′, where t-closeness for its labels is required. Since
t-closeness is a known NP-Hard problem [55] and can be
reduced to our graph outsourcing problem, the graph out-
sourcing problem with t-closeness and k-automorphism is
NP-Hard. In addition, our subgraph matching problem is
NP-Hard since it involves subgraph isomorphism testing,
which is a classical NP-Hard problem [25–27]. Overall, both
graph outsourcing problem with (k, t)-privacy and subgraph
matching problem on outsourced graphs are NP-Hard.

A.2 Proof of Lemma 1

Let l = (l1, l2, ..., ln) be ordered labels and (1/n, 1/n, ..., 1/n)

their distribution masses. We define α-th Alignment Group
(denoted by gα) as m consecutive labels in l, i.e., gα =

(l(α−1)m+1, l(α−1)m+2, ...,l(α−1)m+β ,...,lαm)(Figure 21).
In addition, let feasible column yj be ordered labels (e1, ...,eα,
..., en/m) with evenly distributed mass (m/n,m/n, ..., m/n).
Since labels are ordered, according to [8], the minimal work-
load of EMD(l, yj) can be achieved by satisfying all ele-
ments of l sequentially, i.e., sequentially move distribution

mass of l 1/n ... 1/n ... 1/n ... 1/n ... 1/n ... 1/n

l l1 ... lm ... l(α-1)m+1 ... lαm ... l(n/m-1)m+1 ... ln

yj e1 ... e ... en/m

mass of yj m/n ... m/n ... m/n

1-st Alignment  group α-th Alignment  group (n/m)-th Alignment  group

α

1/n1/n 1/n 1/n1/n 1/n 1/n1/n 1/n

Fig. 21 Alignment Group

masses from yj to l. In particular, as depicted in Figure
21, eα should transport 1

n distribution mass to each label
in gα = (l(α−1)m+1, l(α−1)m+2, ...,l(α−1)m+β ,...,lαm). In
short, each element eα in yj should be “aligned” with the
α-th alignment group (i.e., transport distribution mass to el-
ements in α-th alignment group), and eα should transport 1

n

distribution mass to each element of α-th alignment group.

A.3 Proof of Lemma 2

According to Lemma 1, each element eα in yj is aligned
with α-th alignment group (i.e., gα). In addition, observe
that the subscripts of elements in alignment group α are (α−
1)m+1, (α−1)m+2, ..., (α−1)m+β, ..., (α−1)m+m,
respectively, and the ground distance between eα and β-th
element in alignment group α is |i−(α−1)m−β|n−1 where i is
the position of eα in l. Therefore, we derive that the ground
distance between eα and α-th alignment group is

1

n− 1

m∑
β=1

|i− (α− 1)m− β|

where i is e′αs position in l. To estimate its domain, three
cases should be considered:

(1) If i ≤ (α− 1)m+ 1,

Dist(eα, gα) =
1

n− 1
((α− 1)m2 +

(1 +m)m

2
− im)

=
2n2α− 2(n2/m)i− 2n2 + (n/m+ n)n

2(n− 1)(n/m)2
.

Dist(eα, gα) ∈ [ n2−n2/m
2(n−1)(n/m)2 ,

2n3/m−2n3/m2−n2+n2/m
2(n−1)(n/m)2 ].

(2) If (α− 1)m+ 1 ≤ i ≤ (α− 1)m+m,

Dist(eα, gα) =
1

n− 1
(

β∑
β1=1

(β − β1) +

m−β∑
β2=1

β2)

=
2β2α− 2(1 +m)β +m+m2

2(n− 1)
.

If m is odd, Dist(eα, gα) ∈ [ n2−n2/m2

4(n−1)(n/m)2 , n2−n2/m
2(n−1)(n/m)2 ],

otherwise, [ n2

4(n−1)(n/m)2 ,
n2−n2/m

2(n−1)(n/m)2 ].



Privacy and Efficiency Guaranteed Social Subgraph Matching 19

(3) If i ≥ (α− 1)m+m,

Dist(eα, gα) =
1

n− 1
(im− (α− 1)m2 − (1 +m)m

2
)

=
2n2

mi − 2( nm )2n− 2n2α+ 2n2 − ( nm + n)n

2(n− 1)(n/m)2
,

Dist(eα, gα) ∈ [ n2−n2/m
2(n−1)(n/m)2 ,

2n3/m−2n3/m2−n2+n2/m
2(n−1)(n/m)2 ].

Therefore, for ∀i ∈ [(α − 1)m + 1, (α − 1)m + m],

Dist(eα, gα) ∈ [
n2− n

m
2

4(n−1) nm 2 , n2−n2

m

2(n−1) nm 2 ] (if m is odd) or

Dist(eα, gα) ∈ [ n2

4(n−1) nm 2 , n2−n2

m

2(n−1) nm 2 ] (if m is even).

A.4 Proof of Theorem 2

Lemma 2 proved that ∀i ∈ [(α− 1)m+ 1, (α− 1)m+m],

if m is odd, Dist(eα, gα) ∈ [
n2− n

m
2

4(n−1) nm 2 , n2−n2

m

2(n−1) nm 2 ]. Other-

wise, Dist(eα, gα) ∈ [ n2

4(n−1) nm 2 , n2−n2

m

2(n−1) nm 2 ]. Each element
eα of yj generated by initial solution is selected from the i-
th position of l, where i ∈ [(α− 1)m+ 1, (α− 1)m+m].
In addition, Lemma 1 shown that each element eα in yj is
supposed to transport 1/n distribution mass to each element
in α−th alignment group. Based on those two observations,
we derive that EMD(l, yj) ≤

∑n/m
α=1

n2−n2/m
2(n−1)(n/m)2 ×

1
n=

mn2−n2

2(n−1)n2 = m−1
2(n−1) . Therefore, when t ≥ m−1

2(n−1) , the col-
umn yj satisfies t−closeness. Similarly, each column gener-
ated in sub problem also satisfies t−closeness. By the way,
we can adopt the similar way to prove that the EMD be-
tween l and any other column is bounded by 2mn−2n−m2+m

2(n−1)m .

A.5 Proof of Lemma 3

Let l=(l1, l2, ..., ln) be n labels ordered by their values, and
a the Euler-Mascheroni constant (≈ 1

ln(n)+0.5772+1/2n ), the
frequency of l can be represented by (a1 ,

a
2 , ...,

a
n ), since the

frequencies of labels roughly obey the Zipf’s law [3]. When
t ≥ m−1

2(n−1) , sub-optimal TOGGLE generates the initial
partition {yj |j ∈ [1,m]} where yi,j = 1 if i locates in
{j, j + m, ..., j + (n/m − 1)m} or yi,j = 0, otherwise.
Let the sum of label frequencies of yj be

sj =
a

j
+

a

j +m
+ ...+

a

j + (n/m− 1)m
,

the cost of yj is obviously s2j . Therefore, the total cost of the
initial solution is s21+s22+...+s2m where s1+s2+...+sm =

1 and s1 >s2 >...> sm. Due to

s1 =
a

1
+

a

1 +m
+ ...+

a

1 + (n/m− 1)m

≤ a

1
+
a

m
+ ...+

a

(n/m− 1)m

≤ 1

m
+

(m2 −m+ 2)a

m2 +m
,

we can derive that 1
m + (m2−m+2)a

m2+m ≥ s1 > s2 > ... > sm,
and

m∑
i=1

s2i = (

m∑
i

si)
2 − s1(

m∑
i 6=1

si)− s2(

m∑
i6=2

si)− ...− sm(

m∑
i 6=m

si)

≤ 1

m
+

(m2 −m+ 2)a

m2 +m
.

Therefore, the model cost of initial solution under t−closeness
constraints is at most 1

m + (m2−m+2)a
m2+m . To estimate the ap-

proximate ratio R1 of our model cost to the exact model
cost, we first relax the t−closeness constraint to find the
minimum model cost. Formally, for any {Xi} subjecting
to

∑m
i=1Xi = 1, we need to estimate the lower bound of∑m

i=1X
2
i . According to Cauchy-Schwarz inequality, for

Xi, Yi ∈ R, (
∑m
i=1XiYi)

2 ≤ (
∑m
i=1X

2
i )(

∑m
i=1 Y

2
i ). Let

Yi = 1, we derive that 1
m ≤

∑m
i=1X

2
i . Therefore, the min-

imum model cost, s21 + s22 + ... + s2m, is no less than 1
m .

The approximate ratio R1 ≤ 1/m+(m2−m+2)a/(m2+m)
1/m ≤

1 + (m2−m+2)a
m+1 . The approximation is good since the ap-

proximate ratio is approximately liner to m · a.

A.6 Proof of Lemma 4

From Lemma 3, we observe that the sum of labels frequen-
cies of yj is sj = a

j + a
j+m + ... + a

j+(n/m−1)m where
s1 + s2 + ... + sm = 1 and s1 >s2 >...> sm. If we de-
note the first dual solution of the master problem as µ =

[s21, s
2
2, ..., s

2
m, 0, 0, ..., 0], the objective values of the origi-

nal sub problem and the reduced problem can be formulated
as J2 = min(c(yj) − µyj), s.t., EMD(l, yj) ≤ t and
J2
′ = min(c(yj)−µyj), s.t., QKP Constraints, respectively.

Intuitively, we can derive that

J2
J2
′ ≤

∑n
i=1 s

2
i yi,j − (

∑n
i=1

ayi,j
i )2

s21 − (a1 +
∑n/m
i=2

a
im )2

≤
∑n
i=1 s

2
i yi,j

s21 − (a1 +
∑n/m
i=2

a
im )2

≤
∑n
i=1 s

2
i yi,j

2s1 × (a1 +
∑n/m
i=2

a
im )

≤
∑n
i=1 s

2
i yi,j

2s1 × sm
≤

∑n/m
i=1 s2i

2s1 × sm
=

∑n/m
i=1 si × s1
2s1 × sm

=
1

2
(
s1
s1

s1
sm

+
s2
s1

s2
sm

+ ...+
sn/m

s1

sn/m

sm
)

≤ 1

2
(
s1
s1

s1
sm

+
s2
s1

s1
sm

+ ...+
sn/m

s1

s1
sm

)

≤ 1

2
(
s1
s1

+
s2
s1

+ ...+
sn/m

s1
)
s1
sm

≤ 1

2
(
s1 + s2 + ...+ sn/m

s1
)
s1
sm
≤ 1

2

1

s1

s1
sm
≤ m

4a
.

Therefore, the approximate ratio of J2′ to J2 is no less than
4a/m where a is the Euler-Mascheroni constant.
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A.7 Proof of Theorem 3

Let the optimal solution to original problem be OPT, and
the initial solution R1× OPT, if the first reduced cost of the
column generation method is J2, then OPT = R1 × OPT −
γ × J2 where γ ≥ 1 and γ = (R1 − 1) OPT/J2. Similarly,
if the first reduced cost of the sub optimal method is J2′, we
can derive the objective value X = R1 × OPT − γ′ × J2′.

On the basis of those two lemmas we can prove that if
γ ≤ γ′, the approximate ratio is OPT/X ≥ OPT/(R1 ×
OPT− γ × J2′) = OPT/(R1 × OPT− ((R1 − 1)OPT/J2)×
J2
′) ≥ 1/(1+(m3−5m2+6m−8)a/(m2+m)). Otherwise,

OPT/X = OPT/(R1 × OPT − γ′ × J2
′) ≥ OPT/(R1 ×

OPT) ≥ 1/(1+(m2−m+2)a/(m+1)). Therefore, OPT ≤
X ≤ (1 + (m3 − 5m2 + 6m − 8)a/(m2 + m))OPT or
(1 + (m2 −m+ 2)a/(m+ 1))OPT ≈ (1 + 0.2m)OPT.
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