
Unified route representation learning for multi-modal transportation 
recommendation with spatiotemporal pre-training

Liu, Hao; Han, Jindong; Fu, Yanjie; Li, Yanyan; Chen, Kai; Xiong, Hui

The VLDB Journal, 27 May 2022

Accepted Version

10.1007/s00778-022-00748-y

Springer

This version of the article has been accepted for publication, after peer review (when 
applicable) and is subject to Springer Nature’s AM terms of use, but is not the 
Version of Record and does not reflect post-acceptance improvements, or any 
corrections. The Version of Record is available online at: 
http://dx.doi.org/10.1007/s00778-022-00748-y



Noname manuscript No.
(will be inserted by the editor)

Unified Route Representation Learning for Multi-Modal Transportation
Recommendation with Spatiotemporal Pre-Training

Hao Liu · Jindong Han · Yanjie Fu · Yanyan Li · Kai Chen · Hui Xiong

Received: date / Accepted: date

Abstract Multi-modal transportation recommendation aims

to provide the most appropriate travel route with various

transportation modes according to certain criteria. After an-

alyzing large-scale navigation data, we find that route repre-

sentations exhibit two patterns: spatio-temporal autocorrela-

tions within transportation networks and the semantic coher-

ence of route sequences. However, there are few studies that

consider both patterns when developing multi-modal trans-

portation systems. To this end, in this paper, we study multi-

modal transportation recommendation with unified route rep-

resentation learning by exploiting both spatio-temporal de-

pendencies in transportation networks and the semantic co-

Hao Liu
The Thrust of Artificial Intelligence, The Hong Kong University of
Science and Technology (Guangzhou), Guangzhou, China and the De-
partment of Computer Science and Engineering, The Hong Kong Uni-
versity of Science and Technology, Hong Kong SAR, China.
E-mail: liuh@ust.hk

Jindong Han
The Thrust of Artificial Intelligence, The Hong Kong University of
Science and Technology (Guangzhou), Guangzhou, China
E-mail: jhanao@connect.ust.hk

Yanjie Fu
University of Central Florida, USA
E-mail: yanjie.fu@ucf.edu

Yanyan Li
Baidu Research, Beijing, China
E-mail: liyanyanliyanyan@baidu.com

Kai Chen
The Department of Computer Science and Engineering, The Hong
Kong University of Science and Technology, Hong Kong SAR, China.
E-mail: kaichen@cse.ust.hk

Hui Xiong
The Thrust of Artificial Intelligence, The Hong Kong University of
Science and Technology (Guangzhou), Guangzhou, China and the De-
partment of Computer Science and Engineering, The Hong Kong Uni-
versity of Science and Technology, Hong Kong SAR, China.
E-mail: xionghui@ust.hk

herence of historical routes. Specifically, we first transform

the multi-modal transportation network into time-dependent

multi-view transportation graphs and devise a graph-based

contextual encoder to impute the missing traffic condition

in transportation networks by leveraging various contextual

factors. Then we propose a hierarchical multi-task route rep-

resentation learning (HMTRL) framework for recommen-

dations, including (1) a spatiotemporal graph neural network

module to capture the spatial and temporal autocorrelation,

(2) a coherent-aware attentive route representation learning

module to explicitly model route coherence from histori-

cal routes, and (3) a hierarchical multi-task learning module

to differentiate route representations for different transport

modes by incorporating multiple auxiliary tasks equipped in

different network layers. Moreover, to improve the model

generalization capability, we further propose spatiotemporal

pre-training strategies to exploit rich self-supervision signals

hidden in transportation networks and historical trajectories.

Finally, extensive experimental results on two large-scale

real-world datasets demonstrate the effectiveness of the pro-

posed system against eight baselines.

Keywords Multi-modal transportation · Route represen-

tation · Recommendation system · Hierarchical multi-task

learning · Self-supervised learning

1 Introduction

The increasing prevalence of various transport modes (e.g.,
car, bus, shared-bike, ride-sharing, etc.) and the rapidly ex-

panding transportation networks (e.g., road network, bus net-

work, pedestrian network, etc.) have provided overwhelm-

ing alternatives for travelers to reach a destination. In recent

years, multi-modal transportation recommendation has be-

come an emerging routing service in many navigation and

ride-hailing applications, such as Baidu Maps [1], Here [2],
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and Didi Chuxing [3]. The target of multi-modal transporta-

tion recommendation is to help users find the most appro-

priate route from one place to another, by jointly consid-

ering one or more transport modes on a constrained trans-

portation network. Therefore, accurate and intelligent multi-

modal transportation recommendation can significantly help

reduce the traveler’s decision cost and ultimately improve

the user experience.

Existing studies on multi-modal transportation recom-

mendation mainly fall into two categories. (1) Searching
based multi-modal route recommendation aims to retrieve

the shortest path on the transportation network, with a pre-

defined distance metric (e.g., geographical distance, travel

time, etc.). Most methods in this category [4,5] focus on ex-

tending graph search algorithms (e.g., Dijkstra’s algorithm,

Bellman–Ford and contraction hierarchies [6]) to the multi-

modal transportation network [7]. Such approaches are highly

dependent on the pre-defined metric and overlook latent fac-

tors hidden in the data (e.g., mode and route preferences

under different situational contexts [8]). (2) Learning based
transport mode recommendation has partially addressed the

problem by inferring coarse-grained transport mode prefer-

ences based on supervised or unsupervised machine learn-

ing techniques. A common routine in such methods [8] is to

explicitly extract features (e.g., distance, estimated time of

arrival (ETA)) from user historical data, such as GPS trajec-

tories [9] and in-app clicks [10]. Such methods make rec-

ommendations based on empirically defined features, thus

highly rely on the comprehensiveness of feature engineer-

ing. More recent studies have applied deep learning [11]

and network embedding [12] for transport mode recommen-

dation. However, such methods focus on learning coarse-

grained vertex representations (e.g., origin-destination and

user pair) or forecasting future travel costs (e.g., ETA), and

are not capable of route-specific multi-modal transportation

recommendation.

Indeed, the recent emergence of representation learn-

ing and multi-task learning techniques provides great po-

tentials to overcome the above limitations. In this paper,

we investigate the multi-modal transportation recommen-

dation problem via the unified multi-task route represen-

tation learning, by exploiting both spatiotemporal depen-

dencies from transportation networks and the semantic co-

herence from historical routes. However, three non-trivial

challenges arise in achieving this goal. (1) Spatiotemporal
autocorrelation.The multi-modal transportation network of

various transport modes can be abstracted as a dynamic graph

(e.g., bus line maybe created or removed, traffic condition is

time varying). The dynamic graph contains rich structural

and contextual information in both vertices (e.g., the degree,

if it has a traffic light) and edges (e.g., distance, ETA, aver-

age speed). The first challenge is how to capture the spatial

and temporal autocorrelation in the dynamic transportation

network. (2) Route coherence representation. After study-

ing many routes traveled by users, we identify another im-

portant dependency in route representation learning, which

we call route coherence. We analogize a route with a sen-

tence, where each hub (e.g., road intersections, bus stations,

etc.) and link (e.g., road segments, bus lines, etc.) corre-

spond to a word. In this way, the representation of each

hub and link in the route should not only depend on the

transportation network but also semantically consistent with

the whole route. Besides, the route sequence is of arbitrary

length, and the importance of each vertex may vary. How

to learn fix-length route representations by incorporating se-

mantic information in historical routes is another challenge.

(3) Transport mode differentiation. In the real-world, a

route may be shared or partially shared by various transport

modes. For example, given a bicycle route planned by navi-

gation apps, it is with a high probability we can also travel by

walk, and vice versa. The last challenge is how to differen-

tiate the unified representation for various transport modes

for recommendations.

To tackle the above challenges, we did some preliminary

work [13], we proposed a Hierarchical Multi-Task Route
representation Learning (HMTRL) framework for multi-

modal transportation recommendations. Specifically, we first

discretize the multi-modal transportation network into a set

of graph snapshots over time and construct multi-view graphs,

including (1) the hub-centric graph which regards transporta-

tion hubs as vertices, and (2) the link-centric graph which re-

gards transportation links as vertices. After that, we propose

the spatiotemporal graph neural network module which in-

cludes a graph convolution network layer that captures the

non-linear spatial autocorrelation from multi-view graphs

and a recurrent neural network (RNN) layer that captures the

temporal autocorrelation across multiple graph snapshots.

Moreover, a coherent-aware attentive route representation
learning module is introduced, including (1) a bi-directional

RNN layer that integrates the relatedness of historical routes

into the representation of hubs and links, and (2) a self-

attentive layer that projects the route sequence into a fixed-

length representation with explicit quantifying the contribu-

tion of each hub and link. Finally, we propose the hierarchi-
cal multi-task learning module to learn mode-specific rep-

resentations, and equip multiple correlated auxiliary tasks in

different network layers to guide the optimization of repre-

sentations for final recommendations. By incorporating struc-

tural dependencies in multi-view transportation graphs and

route coherence in historical routes under various supervi-

sion signals, the mode-specific route representation enables

more accurate route-level multi-modal transportation com-

parison and recommendation. Extensive experiments on two

large-scale real-world datasets from one of the world’s largest

navigation apps demonstrate HMTRL achieves the best per-

formance compared with eight baselines.
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In this paper, we further improve our HMTRL frame-

work, based on the following three observations. First, the

traffic conditions (e.g., traffic speed, ETA) in each time pe-

riod are highly sparse, which may degrade the recommen-

dation performance. Take Beijing for example, in each hour,

only 66% road segments are covered by at least one trajec-

tory at day time, and this coverage ratio is less than 37%

at night. The missing traffic conditions may induce biased

inputs and lead to unsatisfied recommendation results. Sec-

ond, there are rich structural and contextual correlations be-

tween different hubs and links in transportation networks,

which can be utilized to improve the recommendation per-

formance. Moreover, only a small portion of historical tra-

jectories are with transport mode labels, which may result in

over-fitting problem on labeled data. In this paper, we fur-

ther propose HMTRL+, which extends HMTRL for more

accurate and generalizable multi-modal transportation rec-

ommendations. Comparing with [13], we further made the

following four major contributions:

– We devise a dedicated graph-based contextual encoder

to impute missing traffic conditions throughout a city.

The contextual auto-encoder alleviates the data scarcity

problem by jointly incorporating historical traffic pat-

terns and partial real-time traffic conditions via a graph

massage passing component.

– We introduce spatiotemporal pre-training strategies to

exploit various self-supervised signals for multi-modal

transportation recommendation generalization. In partic-

ular, attribute prediction tasks exploit rich semantic in-

formation in transportation networks and the trajectory

contrastive learning task extracts transferable knowledge

for robust route representation.

– We provide a systematic complexity analysis of each

component of HMTRL+.

– We evaluate the effectiveness and efficiency of the pro-

posed method on two large-scale real-world datasets. The

results show HMTRL+ achieves the best recommenda-

tion performance compared with HMTRL as well as

eight baselines.

2 Preliminaries

2.1 Definitions and Problem Statement

Consider a set of transport modesM = {m1,m2, . . . ,mk},
where each mode corresponds to a transportation network

(e.g., road network, bus line network) that supports vehi-

cle or pedestrian movement. Generally, the transportation

network of each transport mode is composed of a set of

hubs (e.g., road intersection, bus or metro station) and a set

of links (e.g., road segment, bus line). We formally define the

multi-modal transportation network based on transportation

networks of each transport mode.

Definition 1 Multi-Modal Transportation Network (MMTN).
The multi-modal transportation network integrates multi-
ple mode-specific transportation networks into a unified at-
tributed directed graph G = (V,E,AV , AE ,M), where V

is the set of hubs, E is the set of links, M is a mapping func-
tion indicates the supported transport modes of each hub
and link, AV and AE are respectively hub and link features,
such as number of bus lines across the hub, spherical dis-
tance of the road segment, and ETA of the bus line.

We use M(vi) and M(eij) to denote the supported trans-

port modes of each hub vi ∈ V and eij ∈ E. Note each hub

and link may support more than one transport modes (e.g.,
walk and bicycle). We say two hubs are adjacent to each

other if and only if there is a link connecting them, two links

are adjacent if and only if a user can transfer from one to an-

other by one hub. Without loss of generality, we constraint

a user can only transfer to other links or transport modes in

a hub, and a link is the smallest movement unit in the trans-

portation network, e.g., a road segment between two adja-

cent road intersections, and a bus line between two adjacent

bus stations.

Definition 2 Route. A route is a triplet ri = 〈H,L, φ〉,
where H is a sequence of adjacent hubs, L is a sequence
of adjacent links, and φ is a mapping function that indicates
the corresponding transport mode of each hub and link in
the route.

Different from the mapping function M in G, φ(vi) and

φ(eij) identify the unique transport mode in the correspond-

ing route. In this work, we restrict a route start and terminate

at a hub, a route may consist of one or more transport modes.

Definition 3 Routing Query. A routing query is defined as a
triplet q = 〈o, d, t〉, where o and d are origin and destination
locations represented by a pair of longitude and latitude,
and t is the departure time.

Since the origin o and the destination d are arbitrary lo-

cations, we project them to nearby hubs for recommenda-

tion. We say a route ri is feasible for q if the route start from

o and terminate at d.

Problem 1 Multi-Modal Transportation Recommendation.
Given a MMTN G, a routing query q and a set of feasible
routes Γ for q, our problem is to recommend the most ap-
propriate route ri ∈ Γ based on the the conditional prob-
ability ŷi ← F(ri|q, Γ,G), where F is the unified mapping
function we aim to learn.

To reduce the computational complexity, we derive the

route candidate set Γ (typically less than 20 candidates) based

on existing routing engines [14,8]. To guarantee the utility

of recommendations, we restrict the maximum number of

mode transfer in each route candidate to three.
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(b) Time-dependent multi-view
graph imputation and pre-training

(c) Hierarchical multi-task route 
representation learning

(d) Multi-modal transportation
recommendation

(a) Transportation
Network construction

Fig. 1 An overview of unified route representation learning for multi-modal transportation recommendation.

2.2 Framework Overview

Figure 1 shows an overview of our approach, where the in-

puts are the multi-modal transportation network, historical

routes and its corresponding routing query, and context fea-

tures such as weather condition; the output is the recom-

mended route. Overall, there are five tasks in our approach,

(1) the construction of time-dependent multi-view transporta-

tion graphs, (2) the imputation of missing traffic conditions,

(3) the unified route representation learning, (4) the hier-

archical multi-task learning for mode-specific representa-

tion generation and route recommendation, and, (5) the spa-

tiotemporal pre-training for model generalization. To be spe-

cific, in the first task, we transform the multi-modal trans-

portation network to a set of time-dependent multi-view graphs

from both the hub-centric perspective and the link-centric

perspective. In the second task, we complement missing traf-

fic conditions based on MMTN via a graph-based contex-

tual encoder. In the third task, the unified route representa-

tion is obtained via (1) the joint spatiotemporal autocorrela-

tion modeling of the hub-centric graph and the link-centric

graph, and (2) the coherent-aware attentive route represen-

tation learning by exploiting historical routes. In the fourth

task, we differentiate representations for various transport

modes via multiple implicit tasks and boost the recommen-

dation performance by incorporating multiple related auxil-

iary tasks in different neural network layers. In the final task,

we improve the robustness of the recommendation system

by exploiting rich self-supervision signals in MMTN and

historical trajectories.

3 Constructing Time-Dependent Multi-View
Transportation Graphs

First of all, we construct time-dependent multi-view trans-

portation graphs to characterize dynamic structural and con-

textual information in MMTN.

(a) Hub-centric graph (b) Link-centric graph

Fig. 2 An example of multi-view transportation graphs.

The hub-centric view. The hub-centric graph is a direct

mapping of MMTN, where vertices and edges are respec-

tively transportation hubs and links. Specifically, we first

discretize the time-evolving graph into a sequence of snap-

shots, denoted by Gh = [Gh,t1 ,Gh,t2 , . . . ,Gh,tn ], where Gh,ti
is the hub-centric graph at time ti. Figure 2(a) gives an il-

lustrative example snapshot of time-dependent hub-centric

graph. For each vertex in the graph, we attach corresponding

hub features, including both time-invariant features (e.g., de-

gree, if have a traffic light) and dynamic features (e.g., traffic

volume). For two adjacent hubs vi and vj , we construct the

corresponding adjacency weight based on a Gaussian ker-

nel [15],

chij = exp(−dist(vi, vj)
2

δ2
), (1)

where dist(vi, vj) denote the spherical distance [16] between

vi and vj , and δ is the standard deviation of spherical dis-

tances. In consequence, chij demonstrates the geographical

distance distribution among adjacent hubs.

The link-centric view. The link-centric graph flips ver-

tices and edges in MMTN to preserve structural and contex-

tual information in transportation links. Similar to the hub-

centric graph, we discretize the time-evolving link-centric

graph into a sequence of snapshots, which is denoted by

Gl = [Gl,t1 ,Gl,t2 , . . . ,Gl,tn ], where Gl,ti indicates the link-

centric graph at time ti. Figure 2(b) shows an illustrative
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example of the time-dependent link-centric graph at a spe-

cific time slice. For each vertex (i.e., link) in the graph, we

attach corresponding time-invariant features (e.g., distance,

road level) and dynamic features (e.g., average speed, ETA).

Consider two links ei = (v1, v2) and ej = (v3, v4), we set

the adjacency constraint as

clij =

{
1, v2 = v3 and i �= j

0, otherwise
. (2)

There is a directed edge from ei to ej if and only if v2 =

v3 in the corresponding MMTN. In other word, an edge in

the link-centric graph forms a 2-hop route in the MMTN.

Different with the hub-centric graph, clij ∈ {0, 1} preserves

the connectivity information.

In the same time slice, the link-centric graph is an edge-

to-vertex dual of the hub-centric graph. We can re-construct

the MMTN from either the hub-centric graph or the link-

centric graph [17]. The time-dependent multi-view graphs

therefore preserves the temporal dynamics and the struc-

tural integrity of MMTN for subsequent graph representa-

tion learning.

4 Graph-based Missing Traffic Condition Inference

In urban transportation networks, the real-time traffic con-

dition is spatiotemporally sparse due to the unbalanced dis-

tribution of vehicle trajectories. Imputing the missing real-

time traffic conditions for hubs and links can further improve

the recommendation performance by providing more side

information for the recommendation system. However, sim-

ply imputing missing traffic conditions by default values or

averaging neighbor traffic conditions may introduce biased

and noisy inputs and lead to undesired performance degrada-

tion. Recent years we have witnessed the powerful capabil-

ity of graph learning for handling data sparsity in trajectory

data mining [18–22]. To this end, in this work, we propose to

infer missing traffic conditions via a graph-based contextual

encoder, based on various contextual factors.

Let D ∈ R
N×K be a traffic condition matrix consisting

of N road segments and K dynamic traffic condition fea-

tures (e.g., traffic speed and ETA) at time slot t. We define

an indication matrix M ∈ {0, 1}N×K , where M[n, k] = 0

if the traffic condition of D[n, k] is missing and M[n, k] = 1

otherwise. We formulate the traffic condition inference as a

regression task on transportation graphs, where the goal is

to estimate the missing values D[n, k] where M[n, k] = 0.

Contextual feature construction. Intuitively, the traffic

condition is correlated with various urban factors, which can

be leveraged to improve the real-time traffic condition im-

putation accuracy. Specifically, consider a hub-centric/link-

centric transportation graph Gt at time t, we construct four

categories of contextual features for traffic condition impu-

tation. First, we associate each node on the graph with a

set of attribute features Xs (e.g., road level, speed limit),

to encode rich physical information of links and hubs. Sec-

ond, we extract temporal features Xe to quantify the tem-

poral patterns of traffic patterns, such as time of day, day

of week, holidays. Moreover, as the current traffic condi-

tion can be affected by previous traffic patterns, we extract

historical traffic conditions Xp ∈ R
N×KT from previous

T time steps as input features. In addition, to handle the

missing data, we simply replace the missing values in Xp

by using the average traffic conditions calculated based on

corresponding hubs/links and time slot. Finally, as the traffic

condition shows strong periodicity [23], we further construct

a long-term traffic condition matrix Xl ∈ R
N×K to aug-

ment dynamic traffic information. In particular, we calculate

the averaged traffic condition at time slot t in a day based

on historical trajectory data in a longer time period(e.g.,, 3

months). The accumulated long-term traffic data in a simi-

lar time slot can provide additional hints for current traffic

conditions and can be adopted to alleviate the data sparsity

problem.

Graph-based inference with node dropout. Besides

contextual features, the available real-time traffic condition

of neighbor nodes can also provide strong contextual signals

for missing traffic condition imputation. For instance, a traf-

fic jam on a road segment can propagate to adjacent road

segments and lead to subsequent traffic congestion. We con-

struct a graph-based encoder with node dropout to harness

the information hidden in the partially observed real-time

traffic conditions.

Let Xu denotes the combination of four categories of

contextual features and traffic condition matrix

Xu = Xs ‖ Xp ‖ Xl ‖ Xe ‖ D, (3)

where ‖ is the concatenation operation. We capture the spa-

tial correlation between different nodes via the graph convo-

lution operation

x′
i = σ((

∑
j∈Ni

cijWox
u
j ) ‖ xu

i ), (4)

where xu
j is the features of node i, x′

i is the updated ver-

tex representation, σ is a non-linear activation function, cij
is the adjacency weight, Wo ∈ Rd×d is learnable weighted

matrix shared by all vertices in Gt, andNi is the set of neigh-

boring vertices of vi in Gt. We stack l layers to model long-

range spatial dependencies. Finally, we use a linear regres-

sion model to estimate the missing traffic conditions.

To fully utilize the information hidden in observed real-

time traffic conditions, we devise a node dropout strategy

for the imputation task. Specifically, in each iteration, we

randomly mask a set of nodes on the transportation graph
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Algorithm 1: Missing Traffic Condition Imputa-

tion
Input: time slot t, traffic condition matrix D, indication

matrix M, transportation graph Gt, number of layers
L, node dropout rate p, neighborhood function N ,
activation function σ

Output: output estimated traffic condition matrix D̂
1 Xs, Xp, Xl, Xe ←FeatureAugmentation(t, Gt);
2 if training==True then
3 D′ ←NodeDrop(D, M, p)
4 else
5 D′ = D�M

6 Xu ← Xs ‖ Xp ‖ Xl ‖ Xe ‖ D′;
7 X0 ← Xu;
8 for l = 1 to L do
9 for xl−1

i ∈ Xl−1 do
10 xl

i = σ((
∑

j∈Ni
cijWsx

l−1
j ) ‖ xl−1

i )

11 D̂ ←LinearRegression(Xl−1);

12 return D̂

with a pre-defined dropout rate p. We construct a mask ma-

trix Mdrop, where each entry Mdrop[n, k] is set to 1 with

probability p and 0 otherwise. We update the indication ma-

trix M′ as follows

M′ = M�Mdrop, (5)

Then, we randomly mask nodes with real-time traffic condi-

tions by using node dropout,

D′ = D�M′. (6)

In the training phase, we use the masked traffic conditions

D′ as features in (3), and predict the rest traffic conditions.

The graph based contextual encoder aims to optimize the

mean square error between the ground-truth traffic condi-

tions and predictions

Lm =
1

Nm

N∑
n=1

K∑
k=1

(M[n, k]−M′[n, k])(D̂[n, k]−D[n, k])2.

(7)

where D̂[n, k] is the estimated traffic condition using the

graph based contextual encoder, Nm denotes the number

of non-zeros entries in (M −M′). Note we impute vari-

ous traffic conditions, e.g., traffic speed and traffic volume.

The traffic condition imputation task follows the multi-task

learning paradigm with hard parameter sharing. Overall, the

complete computation of missing traffic condition inference

is summarized in Algorithm 1.

5 Hierarchical Multi-Task Route Representation
Learning

Based on time-dependent multi-view transportation graphs,

we obtain mode-specific route representation and make multi-

modal transportation recommendations with the following

intuitions.

Intuition 1: Graph autocorrelation preservation. The

time-dependent multi-view transportation graphs contain rich

structural and contextual information that varies over time.

The vertex (i.e., hub and link) in each graph at different time

slices is both spatially and temporally autocorrelated with

other vertices, and can contribute to the overall route repre-

sentation. Therefore, the model should be able to collabora-

tively learn the spatial and temporal autocorrelation for both

hubs and links.

Intuition 2: Coherent-aware route representation. The

routes are arbitrary-length sequences and different hubs and

links are playing different important roles in different routes.

The fixed-length route representation should pay different

attention to hubs and links in the sequence to distill salient

features of each route. Besides, each hub and link is semanti-

cally coherent with its historical routes. Therefore, the repre-

sentation of hubs and links should reflect a higher relevance

with historical routes it involved in.

Intuition 3: Multi-modal route representation differ-
entiation. A transportation hub or link may be shared by

various transport modes. Correlating tasks such as link ETA

prediction and route preference inference offer potential aux-

iliary signals to help differentiate mode-specific representa-

tions. In consequence, the proposed method should be capa-

ble of integrating various auxiliary tasks in different granu-

larity (e.g., vertex level and route level) for route represen-

tation differentiation and recommendation.

5.1 Spatiotemporal Autocorrelation Modeling

We first introduce the spatiotemporal graph neural network
module to capture spatiotemporal autocorrelations based on

time-dependent multi-view transportation graphs.

Modeling spatial autocorrelation. We employ Graph

Neural Network (GNN) [24] to capture spatial autocorrela-

tion at each time step. By iteratively aggregating and trans-

forming neighbor representations [25], GNN obtains locally

smoothed representations where spatially adjacent hubs and

links tend to be close in the latent space.

Formally, consider a transportation graph Gt at time t, let

xi denotes the d-dimensional representation of vertex vi ∈
Gt, we define the graph convolution operation (GConv) as

x′
i = GConv(xi) = σ((

∑
j∈Ni

cijWsxj) ‖ xi), (8)

where x′
i is the updated vertex representation, σ is a non-

linear activation function, cij is the adjacency weight, Ws ∈
Rd×d is learnable weighted matrix shared by all vertices in

Gt, ‖ is the concatenation operation, and Ni is the set of

neighbor vertices of vi in Gt. Note that we can repeat l times



Unified Route Representation Learning for Multi-Modal Transportation Recommendation with Spatiotemporal Pre-Training 7

graph convolution operations to capture l-hop spatial depen-

dencies. We update representations of vp,ti ∈ Gp,t and vl,tj ∈
Gl,t by x′p,t

i = GConv(xp,t
i ) and x′l,t

j = GConv(xl,t
j ),

respectively.

Modeling temporal autocorrelation. The representa-

tions of hubs and links are not only correlated with neighbor-

ing vertices in Gp and Gl, but also influenced by their status

in previous time periods. We extend GNN by Gated Recur-

rent Unit (GRU) [26], a simple yet effective variant of RNN,

for temporal autocorrelation modeling. Consider represen-

tations of vi in previous T steps (xt−T
i ,xt−T+1

i , . . . ,xt
i),

where xt
i is the output of the graph convolution operation at

time t. We denote the status of vi at time step t− 1 and t as

ht−1
i and ht

i, respectively. The GRU operation is defined as

ht
i = GRU(ht−1

i ,xt
i) = (1− zti) ◦ ht−1

i + zti ◦ h̃t
i, (9)

where zti and h̃t
i are defined as⎧⎪⎪⎨⎪⎪⎩

rti = σ(Wr[h
t−1
i ‖ xt

i] + br)

zti = σ(Wz[h
t−1
i ‖ xt

i] + bz)

h̃t
i = tanh(W

˜h[r
t
i ◦ ht−1

i ‖ xt
i] + b

˜h)

, (10)

where W r, W z , W
˜h, br, bz , b

˜h are learnable parameters,

‖ is the concatenation operation, and ◦ denotes Hadamard

product. The hidden state ht
i reflects both the spatial and

temporal autocorrelation of vertex vi in corresponding time-

dependent graphs. For each hub and link in corresponding

views, we respectively derive hh,t
i = GRU(hh,t−1

i ,xh,t
i )

and hl,t
i = GRU(hl,t−1

i ,xl,t
i ) for route representation learn-

ing.

5.2 Route Representation Learning

Then we present the coherent-aware attentive route repre-
sentation learning module, including (1) the Bi-directional

RNN based route coherence modeling block first incorpo-

rates route coherence constraints in historical routes to hub

and link representations, and (2) the self-attentive route rep-

resentation learning block further projects arbitrary-length

routes into fixed-length representation vectors by automat-

ically learning the importance of each hub and link in the

corresponding route.

Bi-directional RNN based route coherence modeling.

The insight of route coherence modeling is to incorporate

the relatedness of prefix and suffix sub-routes into the cur-

rent hub and link representations. Figure 3(a) shows an illus-

trative example of the prefix sub-route coherence on a road

network, where the orange arrows form a historical route

traveled by a user, the yellow arrow is the current link, and

the green arrows are candidate links. Given a historical route

[e1, e4, e9, e12], consider e9 as the current link, there is an-

other candidate link e7 for prefix sub-route [e1, e4] and a

(a) Coherence on road network (b) Coherence in vector
space

Fig. 3 An illustrative example of route coherence modeling.

candidate link e11 for suffix sub-route [e12]. Based on the

historical route, e9 is more relevant with the prefix sub-route

[e1, e4] and the suffix sub-route [e12]. Therefore, the repre-

sentation of e9 should reflect not only graph dynamics in the

MMTN, but also the historical route dependency. We adopt

the Bi-directional GRU (BiGRU) operation to integrate the

route coherence dependency into both hub and link repre-

sentations from both forward direction and backward direc-

tion.

Specifically, we reuse the GRU operation in Equation (9)

for hub and link representation update. Formally, for vertex

vi, consider its prefix sub-route [· · · , vi−2, vi−1] and suf-

fix sub-route [vi+1, vi+2, · · · ], we obtain the forward coher-

ent dependency and backward coherent dependency of vi by−→
h c

i = GRU(
−→
h i−1,xi) and

←−
h c

i = GRU(
←−
h i+1,xi), and

define the BiGRU operation as

hc
i = BiGRU(

−→
h c

i ,
←−
h c

i ) = Wc[
−→
h c

i ‖
←−
h c

i ], (11)

where Wc ∈ R2d×d is the learnable parameter project-

ing the concatenated representation to d-dimensional vec-

tor. Take Figure 3(b) for example, denote the representa-

tion of the historical route as hc
i , and the representations of

e7 and e9 as h7, h9, the route coherence modeling forces

dist(hc
i ,h9) < dist(hc

i ,h7), where dist(·, ·) is a distance

function in the latent vector space, e.g., the Euclidean Dis-

tance. Specifically, we aim to simultaneously minimize the

distance between hc
i and h9 and maximize the distance be-

tween hc
i and h7. Here we leverage triplet loss to achieve

this goal, the details are elaborated in Section 5.4. The up-

dated vertex representation incorporates both prefix and suf-

fix sub-route information and is more informative for multi-

modal transportation recommendations.

Self-attentive route representation learning. There are

still two problems to obtain unified route representation learn-

ing: (1) the length of each route may vary, and (2) the im-

portance of each hub and link in the route may be differ-

ent. Simply averaging representations of hubs and links can

not capture the diversified importance of each hub and link,

while the RNN in Equation (11) suffers from the gradient

vanishing problem [27]. Inspired by the recent success of the

attention mechanism [28] on modeling weighted dependen-

cies of long sentences. We analogize multi-modal routes as
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sentences and employ a self-attention mechanism to trans-

form arbitrary-length routes to fixed-length route represen-

tation vectors, with explicit quantifying the importance of

both hubs and links in each route.

Given a hub or route sequence of n vertices, we devise K

independent self-attentive operations to stabilize the learn-

ing process. Specifically, we define the k-th attentive score

of vi as

αi,k =
exp(Wa,ktanh(Wb,khi), )∑n
j=1 exp(Wa,ktanh(Wb,khj), )

, (12)

where hi and hj are representations of vi and vj , Wa,k and

Wb,k are learnable weights in the k-th attentive operation.

Then, we derive the sequence representation by

h′ =‖Kk=1 (

n∑
i=1

αi,kWr,khi), (13)

where ‖ is the vector concatenation operation and Wr,k ∈
Rd×d is the learnable parameter corresponding to k-th self-

attentive operation. Based on Equation (13), we derive the

corresponding hub sequence representation hr,h and link se-

quence representation hr,l, and derive the unified route rep-

resentation as

hr = hr,h ‖ hr,l. (14)

5.3 Hierarchical Multi-Task Learning

Finally we introduce the hierarchical multi-task learning
module for multi-modal route representation differentiation

and recommendation optimization. By jointly learning mul-

tiple related tasks, multi-task learning shares common knowl-

edge in each task and, therefore, improves the generality

of the model [29]. Incorporating auxiliary tasks in different

granularity has been proved beneficial in many tasks such

as document parsing and synonym prediction [30,31]. In

HMTRL, we introduce various auxiliary tasks as comple-

ment supervision signals, where different tasks are equipped

at different neural network layers.

Specifically, we employ the hard parameter sharing [32]

in HMTRL, where different tasks are sharing part of the

model but have individual output layers. In HMTRL, the

learning tasks can be categorized into two classes, (1) the

Vertex-level MTL that corresponds to representation learning

of vertices (i.e., hubs and links) in time-dependent multi-

view graphs, (2) the Route-level MTL that corresponds to

route representation optimization and recommendation.

Vertex-level MTL. Let {T v,i}τ1i=1 denote a set of aux-

iliary vertex tasks, where each task T v,i corresponds to a

set of labels {yij}ni
j=1 if any, where yij ∈ R. We first intro-

duce transport mode differentiation tasks to generate mode-

specific representations for hubs and links. Specifically, for

each transport mode mi ∈ M, we define a corresponding

task T mi to obtain the mode-specific representation after

the spatiotemporal graph neural network, hmi
j ← Fmi(hj),

where Fmi is a mode-specific function implemented by a

fully connected multi-layer neural network. Note that be-

cause not all hubs and links are feasible for all transport

modes (e.g., a bus link does not support walk), we mask

infeasible transport modes in optimization. Different from

other auxiliary tasks, transport mode differentiation tasks do

not have direct supervision signals. Instead, all such tasks

are optimized based on higher-level task feedbacks (e.g.,
the link type classification, the route distance prediction and

multi-modal transportation recommendation) via the back-

propagation.

Thereafter, we extract various vertex attributes as su-

pervision signals and facilitate multiple auxiliary task spe-

cific layers. Concretely, we integrate regression tasks includ-

ing the distance prediction and forecasting ETA of the next

time step, and integrate classification tasks including hub

type (road intersection, bus station, etc.) and link type (road

segment, bus line, etc.) inference.

Route-level MTL. Similarly, we define a set of auxil-

iary route tasks {T r,i}τ2i=1. Specifically, we first integrate the

route coherence modeling task, by leveraging the intermedi-

ate prefix sub-route and suffix-route representation derived

by Equation (11). Rather than set explicit labels, we opti-

mize the representation in a self-supervised manner, to allow

the vertex representation hi in the latent space to approx-

imate the corresponding sub-route representation hc
i more

closely. After that, we incorporate various route related re-

gression tasks, including route distance prediction and fu-

ture ETA prediction. Besides, for each route rj , we facilitate

the transport mode prediction task by applying a multi-class

classifier.

Finally, we define the main recommendation task. Con-

sider the route representation hr
i , we define the output layer

as

ŷi = σ(wmain[h
r
i ‖ xcontext

i ] + bmain), (15)

where ŷi is the estimated travel likelihood of route ri, σ is a

non-linear activation function, wmain are the learnable pa-

rameters of the main task, and bmain is the bias. Similar

to [8], we also concatenate a context vector xcontext
i to in-

corporate the situational context, including features such as

weather condition and time periods. To facilitate the read-

ability and reproducibility, we provide detailed settings of

auxiliary tasks in the supplementary material.

5.4 Optimization

In HMTRL, we optimize both the main task as well as aux-

iliary tasks in different layers jointly. For the main task and
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auxiliary classification tasks, we employ the cross-entropy
loss for optimization. For regression tasks such as distance

and ETA prediction, the objective is to minimize the mean
square error loss. Please refer to supplementary material

for detailed auxiliary losses. Additionally, we introduce the

triplet loss for the optimization of route coherence,

Lc = −
1

nk

n∑
i=1

k∑
j=1

max{(‖hc
i−hi‖2−‖hc

i−hj‖2+γ), 0},

(16)

where hj is the representation of the negative sample, γ is a

margin constant between positive pair (hc
i ,hi) and negative

pair (hc
i ,hj). We draw adjacent vertices vj ∈ N (vi) in the

corresponding time-dependent transportation graph as neg-

ative samples, and force the representation of the vertex in

the route hi is closer to the coherent state hc
i than negative

samples hj .

Overall, we aim to optimize the following objective,

L = Lmain + β1

τ1∑
i=1

Lv
i + β2

τ2∑
i=1

Lr
i , (17)

whereLv
i andLr

i are auxiliary vertex and route tasks, β1 and

β2 are hyper-parameters control the importance of auxiliary

tasks. We employ Adam optimizer [33] for training with an

exponential decay.

6 Spatiotemporal Pre-Training

The multi-modal transportation network and historical tra-

jectories contain rich contextual and functional information.

Inspired by the success of deep neural network pre-training

techniques for improving generalization capability in com-

puter vision and nature language processing, we propose

spatiotemporal pre-training to learn robust and transferable

model parameters by introducing additional self-supervised

signals. Previous works [34,35] have examined that self-

supervised pre-trained models are more robust to adversar-

ial examples and noises, and can be easily transfer to en-

hance the performance of unseen downstream tasks [36,35].

The key insight of our method is to exploit the transporta-

tion network and massive unlabeled historical trajectories

for self-supervised representation learning. Specifically, in

this work, our approach comprises two parts: masked at-

tribute prediction and trajectory contrastive learning.

6.1 Masked Attribute Prediction

In masked attribute prediction, we aim to capture the seman-

tic knowledge and attribute patterns underlying the multi-

view transportation graphs. The intuition behind masked at-

tribute prediction is to fully exploit easily obtained (i.e., with

Fig. 4 Illustration of spatiotemporal pre-training tasks, including
(1) the attribute prediction, and (2) the trajectory contrastive learning.

little extra labeling cost) attributes on the graph to learn bet-

ter feature representations. For the transportation graph at

time step t, we first mask target attributes and then predict

the masked features based on the observed attributes and

graph structure. Specifically, we randomly remove available

attributes on the graph by replacing the masked features with

default values (e.g., zero). After that, we adopt the graph

convolutional network introduced in Section 5.1 to generate

the hidden representation x′
i for node vi in the correspond-

ing graph. Finally, a linear model fdecoder(·) is devised to

reconstruct the masked attributes of node i by taking x′
i as

input. In this task, we aim to minimize the Mean Square Er-

ror (MSE) between the predicted and masked attributes,

Lattr = ‖fdecoder(x′
i)�mi − xi �mi‖22 (18)

where xi denotes input attributes of node vi, mi is an indi-

cation vector, we denote mi[j] = 1 if the j-th input feature

is masked and mi[j] = 0 otherwise.

In this way, we obtain a neural encoder to preserve la-

tent characteristics and correlations of nodes in multi-view

transportation graphs. The pre-trained network can be uti-

lized as a better low-level neural network initialization of

the HMTRL framework for downstream route recommen-

dation task.

6.2 Trajectory Contrastive Learning

Prior works [37,38] have shown that GPS trajectories can

reflect important functional patterns of transportation net-

work, i.e., functional distributions. The key insight of trajec-

tory contrastive learning is to enforce hub and link represen-

tations in the same trajectory to have higher correlation with

each other. In this way, we can capture intra-trajectories de-

pendencies from massive unlabeled trajectories to improve

the effectiveness of multi-modal route recommendation. In
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this work, we achieve this goal by contrasting the trajectory

and its local parts based on mutual information maximiza-

tion [39].

Formally, consider an entire trajectory sequence e1:N =

{e1, e2, ..., eN} and a randomly clipped sub-trajectory ei:j =

{ei, ..., ej} from e1:N . We first employ map-matching algo-

rithm [40] to project raw trajectories to corresponding time-

ordered node (i.e., hub and link) sequences {x1,x2, ...,xN},
where each node is associated with a set of hub or link fea-

tures. Similar to the masked attribute prediction task, we first

adopt the graph convolution network to derive node rep-

resentation hi for each node vi. For a trajectory e1:N , we

can learn representations {h1,h2, ...,hN} from scratch or

reuse the learned representation from the masked attribute

prediction task. To maximize the mutual information be-

tween the entire trajectory and the sub-trajectory, we ag-

gregate sequence of node representations {h1,h2, ...,hN}
and {hi, ...,hj} into unified trajectory-level representations

s and s0. For efficiency concern, we obtain trajectory repre-

sentations via average pooling

s = MEAN({h1,h2, ...,hN}) = σ(
1

N

N∑
i=1

hi), (19)

where σ is the sigmoid activation function. Note other ad-

vanced pooling operations can also be applied.

Mutual information measures how much the uncertainty

reduced in a random variable Y when knowing another vari-

able X, it can be defined as follows

I(X,Y ) = H(X)−H(X | Y ). (20)

Since optimizing the mutual information is usually intractable,

we leverage contrastive loss [39,41], a lower bound of I(X,Y )

that works well in practice, to attain the goal of maximizing

mutual information. The contrastive loss is defined as

Ltcl = − log
exp(f(s, s0)/τ)∑M
i=0 exp(f(s, si)/τ)

, (21)

where τ denotes the temperature coefficient, M is the num-

ber of negative sub-trajectories sampled from other trajec-

tories, f(·, ·) is implemented as a linear scoring function

f(s, si) = σ(s�i Wcs), indicating the likelihood of si be-

long to the target trajectory. By using the above contrastive

loss, we can increase the similarity between the entire tra-

jectory and sub-trajectory, and meanwhile, the similarities

between different trajectories are decreased. Therefore, the

model can effectively maximize the mutual information be-

tween local and global parts of a specific trajectory.

In this way, two distant nodes in a same trajectory are en-

forced to be similar by preserving the mutual information. In

addition, rich implicit information (e.g., functional patterns)

of unlabeled trajectories can be incorporated into our model

for route recommendation.

6.3 Learning Strategy and Discussion

In this work, our pre-training module works sequentially by

first performing masked attribute prediction and then trajec-

tory contrastive learning. When the pre-training is done, we

can fine-tune the entire model based on pre-trained low-level

model parameters on transportation recommendation task in

an end-to-end manner. The spatiotemporal pre-training can

learn both contextual information and sequential patterns

by utilizing both transportation network structure and un-

labeled historical trajectory data.

Both the hierarchical multi-task learning module and the

pre-training module exploit semantic and auxiliary informa-

tion in the transportation network as well as historical tra-

jectories, where the hierarchical multi-task learning mod-

ule follows the joint training paradigm, and the pre-training

module follows the pre-train and fine-tune paradigm. In prac-

tice, the pre-training can leverage large-scale unlabeled tra-

jectories and further improve the transportation recommen-

dation effectiveness.

7 Complexity Analysis

In this section, we analyze the computational complexity of

each component of HMTRL+, including the traffic condi-

tion inference, the hierarchical multi-task route representa-

tion learning, and the spatiotemporal pre-training.

Complexity of traffic condition inference. Let |V h|,
|Eh|, |V l|, and |El| denote the number of nodes and edges in

hub-centric and link-centric graphs, respectively. We adopt

sparse matrix multiplication to efficiently implement graph

convolution operation. For each time slot, the complexity of

the inference component is

Tinfer = O(F 2l(|Eh|+ |El|)), (22)

where F and l respectively represent the number of input

features and stacked convolutional layers. Here we derive

|V | = |V h ∪ V l| and |E| = |Eh ∪ El|. The complexity

of traffic condition inference can be written as Tinfer =

O(F 2l|E|), i.e., linear in the number of graph edges.

Complexity of HMTRL. For each user query, we gener-

ate a candidate route set Γ based on existing routing engine

and rank these routes by using HMTRL. The computational

cost comes from three modules, i.e., spatiotemporal graph

neural network, route representation learning and hierarchi-

cal multi-task learning. Same as traffic condition inference,

the complexity of spatial autocorrelation modeling module

at each time step is O(F 2l|E|). Additionally, GRU block is

used in temporal autocorrelation modeling module. For each

time step, the GRU operation has complexity O(F 2|V |).
Assume we adopt previous T step features as model input,
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the total complexity of the spatiotemporal graph neural net-

work is

Tst = O(TF 2(l|E|+ |V |)). (23)

Here we set the input length T = 2 to reduce the compu-

tational cost. Then we analyze the complexity of route rep-

resentation learning, which comprises of two blocks, route

coherence modeling block and self-attention block. On the

one hand, the complexity of route coherence modeling block

(i.e., bi-directional GRU) is O(|Γ |RmaxF
2), where Rmax

denote the maximum length of candidate routes, |Γ | is the

number of routes in candidate set. On the other hand, the

complexity of the self-attention block (i.e., multi-head self-

attentive operation) is O(|Γ |KR2
maxF ), where K denote

the number of self-attention operations in our model. There-

fore, the total complexity of route representation learning

can be written as

Troute = O(|Γ |RmaxF (KRmax + F )). (24)

Moreover, the complexity of the hierarchical multi-task learn-

ing module is

Tmt = O(F |V |τ1 + F |Γ |τ2), (25)

where τ1 and τ2 are the number of vertex-level and route-

level auxiliary tasks. To summarize, the overall complexity

of HMTRL is the combination of the above three modules,

which can be written as follows

Thmtrl = O(TF 2(l|E|+ |V |) + F (|V |τ1 + |Γ |τ2)
+|Γ |RmaxF (KRmax + F )).

(26)

Since the real-world transportation networks are usually ex-

tremely large, the number of vertices and edges of trans-

portation graph is the major bottleneck in HMTRL. How-

ever, once we obtain all the node representations by using

spatiotemporal autocorrelation modeling component at a spe-

cific time slot, we can directly reuse these node representa-

tions to answer user queries. Therefore, we only need to run

the low-level spatiotemporal component once in the same

time period, and the computational complexity can be sig-

nificantly reduced. In practice, the proposed model is effi-

cient and applicable on large-scale transportation networks.

Complexity of spatiotemporal pre-training. We pre-

train low-level layers of HMTRL, i.e., the spatiotemporal

graph neural network. The complexity of spatiotemporal pre-

training component is similar with Equation 23. Besides, the

complexity of masked attribute prediction isO(F 2|V |). The

complexity of trajectory contrastive learning is O(F 2M),

where M denotes the number of negative trajectories. There-

fore, the overall complexity of spatiotemporal pre-training

can be written as

Tpre = O(TF 2(l|E|+ |V |) + F 2(|V |+M)). (27)

Table 1 Statistics of datasets.

Data description BEIJING SHANGHAI

# of routing queries & trajectories 2,804,274 2,101,028

# of road intersections 334,421 333,163

# of road segments 420,889 426,247

# of bus lines 22,364 25,652

# of bus stations 9,651 11,587

8 Experiments

8.1 Data Description

We conduct experiments on two real-world datasets, BEI-

JING and SHANGHAI. Both datasets are provided by one of

the world’s largest navigation applications in the world. The

datasets include: (1) transportation networks of car, bus, cy-

cle and walk, (2) routing query data extracted from user in-

app logs, (3) historical trajectory data collected from user

navigation events, (4) context data including weather condi-

tions and user demographic attributes. The raw data of BEI-

JING and SHANGHAI are 4.13 TB and 4.36 TB, respectively.

Both datasets are ranged from August 1, 2019 to October 30,

2019. The Minimum Boundary Rectangle (MBR) of BEI-

JING and SHANGHAI are (116.21, 39.76), (116.56, 40.03)

and (121.35, 31.12), (121.65, 31.38). The statistics of each

dataset are summarized in Table 1. We chronologically order

each data set, take the first 80% as training set, the following

10% for validation and the rest 10% for testing.

We use the route that user traveled in the real world as

the ground truth. First, we match routing queries and histori-

cal trajectories based on anonymized user ID and timestamp,

so that each routing query corresponds to a GPS trajectory

from the origin to destination. Therefore, each matched record

indicates a real-world trip after a routing query, reflecting

the practical user preference. For each record, we use unse-

lected routes generated by Baidu Maps as negative samples

to recover the real context when users issue routing queries.

For example, given origin and destination as well as some

candidate routes r1, r2, r3, if user traveled from origin to

destination via route r1 in the real-world trajectory dataset,

we set the label of route r1 to 1, and the other two routes r2
and r3 to 0.

8.2 Implementation Details

HMTRL settings. We initialize all trainable parameters ran-

domly with the uniform distribution. We apply an embed-

ding operation to project each categorical features to 16-

dimensional embedding vectors and concatenate them with

continuous features. The dimension of hidden state d is fixed

to 64. We stack two layers of graph convolution to capture

spatial autocorrelation, and choose LeakyReLU (α = 0.2)

as the activation function in graph convolution operation.
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Table 2 Overall performance comparison using six metrics on BEIJING and SHANGHAI.

Method
BEIJING SHANGHAI

Hit@1 Hit@3 Hit@5 NDCG@3 NDCG@5 NDCG@10 Hit@1 Hit@3 Hit@5 NDCG@3 NDCG@5 NDCG@10

RBT 0.1337 0.3874 0.5794 0.3515 0.4278 0.4713 0.1596 0.4121 0.5609 0.3119 0.3730 0.4569

RBD 0.3647 0.6212 0.7339 0.4801 0.5583 0.6116 0.3178 0.4437 0.6096 0.4068 0.4337 0.5051

LR 0.7188 0.8329 0.8705 0.7864 0.8018 0.8203 0.6687 0.8010 0.8423 0.7468 0.7638 0.7827

GBDT 0.7370 0.8474 0.8851 0.8021 0.8176 0.8341 0.6814 0.8083 0.8524 0.7563 0.7745 0.7950

DeepWalk 0.5213 0.6642 0.7587 0.5955 0.6344 0.6731 0.4916 0.6591 0.7591 0.5886 0.6297 0.6687

DeepFM 0.7658 0.8538 0.8853 0.8166 0.8295 0.8452 0.7068 0.8209 0.8592 0.7743 0.7901 0.8096

Hydra 0.7604 0.8508 0.8827 0.8139 0.8270 0.8434 0.7292 0.8324 0.8713 0.7854 0.8177 0.8251

MURAT 0.7892 0.8654 0.8993 0.8345 0.8467 0.8631 0.7508 0.8415 0.8889 0.8009 0.8297 0.8334

HMTRL 0.8545 0.8946 0.9184 0.8735 0.8856 0.8990 0.8115 0.8823 0.9111 0.8533 0.8652 0.8761

HMTRL+ 0.8716 0.9091 0.9235 0.8907 0.8983 0.9082 0.8326 0.8974 0.9163 0.8735 0.8829 0.8904
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Fig. 5 Ablation study of HMTRL+ on BEIJING.

We employ a sigmoid function in the final output layer. The

hyper-parameters K, β1, β2, T , γ are set to 8, 0.3, 0.1, 3,

0.5, respectively. We set the learning rate lr = 0.0001 and

the batch size 256. We fix the length of the sub-route to

6 for coherence modeling. We evaluate our model as well

as all baselines on a powerful Linux server with 26 Intel

Xeon Gold 5117 CPUs, 8 NVIDIA Tesla P40 GPUs, 256GB

memory and 10TB disk. For a fair comparison, we care-

fully fine-tuned the hyper-parameters for all baselines on our

datasets via grid search based on settings in their original pa-

per. Please refer to source code1 for more details.

8.3 Metrics

We employ Hit@k and Normalized Discounted Cumulative

Gain (NDCG@k) [42], two widely used metrics in recom-

menders, to evaluate the recommendation effectiveness. In

the following experiments, we report Hit@1, Hit@3, Hit@5,

and NDCG@3, NDCG@5, NDCG@10.

8.4 Baselines

We compare HMTRL+ with two rule-based methods and

six learning methods.

– RBT is a rule-based method that recommends the fastest

route, in which we rank route candidates by ETA.

– RBD is another rule-based method that recommends the

shortest route, in which we rank route candidates by road

network distance.

1 https://github.com/hanjindong/HMTRL-Pytorch

– LR uses logistic regression [43] for recommendation.

The inputs are same as raw features used in HMTRL+.

– GBDT adopts the Gradient Boosting Decision Tree for

recommendation, which is widely used in both academia

and industry. We implement the baseline based on XG-

boost [44]. The input features are the same as LR.

– DeepWalk [45] is a unsupervised network embedding

method that learns vertex representations of a graph. We

apply random walks on the MMTN to generate vertex

representations, and apply average pooling on route se-

quences to obtain route representation. We further apply

a LR layer for recommendation.

– DeepFM [46] is a deep recommendation model that com-

bines the factorization machine and deep neural network

to model both first-order and higher-order feature inter-

actions. The input is the same as HMTRL+.

– Hydra [8] is the state-of-the-art multi-modal transport

mode recommendation method based on multi-sourced

urban data. It is fed both handcrafted features as well

as pre-trained latent embedding features to a gradient

boosting tree-based model. We extend it by adding a re-

gression layer to enable multi-modal route recommen-

dation.

– MURAT [47] is a novel multi-task graph representation

learning framework for travel time estimation. We also

use our multi-view graphs as the input and devise the the

output layer to fit our recommendation task.
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8.5 Overall Performance

Table 2 shows the overall performance of our method and all

the compared baselines on two datasets with respect to six

evaluation metrics. Overall, HMTRL+ outperforms all the

baselines on both datasets using all metrics, which demon-

strate the advance of our model. To be specific, HMTRL+

achieves (10.4%, 5.0%, 2.7%) Hit@k and (6.7%, 6.1%, 5.2%)

NDCG@k improvement compared with the state-of-the-art

approach (MURAT) on BEIJING. Similarly, the improve-

ment of Hit@k and NDCG@k on SHANGHAI dataset are

(10.9%, 6.6%, 3.1%) and (9.1%, 6.4%, 6.8%). We also ob-

serve HMTRL+ consistently outperforms HMTRL in terms

of all metrics, indicates the effectiveness of the traffic con-

dition inference and spatiotemporal pre-training. Compared

with HMTRL, HMTRL+ achieves (2.0%, 1.6%, 0.6%) and

(1.9%, 1.4%, 1.0%) improvements on Hit@k and NDCG@k

on the BEIJING dataset, and the improvement on SHANG-

HAI is consistent.

Moreover, we can make the following observations. (1)

The performance of RBT is much worse than RBD. This

observation indicates that travel distance is a more signif-

icant indicator than ETA for user trip decision. (2) Deep-

Walk achieves a better performance than rule-based meth-

ods, but performs worse than other learning-based methods.

The main reason is that DeepWalk can leverage the struc-

tural information but it fails to consider contextual features.

Besides, due to its unsupervised property, DeepWalk ne-

glects the user preference signal in historical data. (3) Hydra

outperforms all other non-deep learning models by incorpo-

rating fine-grained handcrafted features and high-order em-

bedding features. However, compared with deep learning-

based methods, including DeepFM and MURAT, the manu-

ally extracted features limit the recommendation capability

of the model. (4) MURAT consistently outperforms all other

baselines, which demonstrate the effectiveness of multi-task

graph representation learning. However, MURAT neglects

the information in link-centric graphs as well as the low

level supervision signals, therefore performs worse than our

approach.

8.6 Ablation Study

Then we conduct ablation study on HMTRL+.

Effect of multi-view graphs. We first examine the ef-

fectiveness of multi-view graphs by evaluating three variants

of HMTRL+, (1) hc-view only uses the hub-centric graph,

(2) lc-view uses the link-centric graph only, and (3) hl-view
uses both graphs for recommendation. As shown in Fig-

ure 5(a), the performance of hl-view outperforms hc-view
and lc-view by (9.6%, 3.4%, 2.5%) and (4.4%, 1.2%, 0.9%)

on (Hit@1, Hit@3 and Hit@5), respectively. Moreover, the

lc-view performs better than hc-view, which demonstrate the

structural and contextual information in transportation links

plays a more important role for multi-modal transportation

recommendation.

Effect of coherent-aware attentive route representa-
tion learning. We further construct and evaluate the fol-

lowing variants, (1) AP uses average pooling to aggregate

hub and link representations, (2) SAR derives route repre-

sentation by self-attention only, (3) SAF removes backward

GRU in BiGRU, and (4) SARNN includes both self-attentive

operation and the BiGRU to integrate route coherence. As

shown in Figure 5(b), self-attentive based route aggregation

achieves a better performance than AP. Moreover, by in-

tegrating the route coherence, SARNN achieves significant

improvement compared with SAR. Additionally, compared

with SAF, we observe SARNN achieves consistent improve-

ment by incorporating backward sub-route coherence, demon-

strate the effectiveness of bi-directional RNN.

Effect of hierarchical multi-task learning. We com-

pare the following variants, (1) RAW directly learns route

representation without auxiliary tasks, (2) HMTL only in-

corporates vertex-level hub-related tasks, (3)VMTL incor-

porates both vertex-level hub-related and link-related tasks,

and (4) VRMTL integrates both vertex-level tasks and route-

level tasks. As reported in Figure 5(c), we observe consistent

improvement by respectively adding vertex level and route

level auxiliary tasks, validate the effectiveness of different

supervision signals for multi-modal transportation recom-

mendation. In particular, VMTL achieves more significant

improvement over HMTL than HMTL over RAW, indicating

link related auxiliary tasks plays a more important role in

multi-modal transportation recommendations.

Effect of traffic condition inference. To validate the ef-

fect of traffic condition inference, we exam (1) AVE uses

average values to interpolate the missing traffic conditions,

(2) MF imputes missing values by applying a collabora-

tive matrix factorization method [48], (3) TCI infers traf-

fic condition through the proposed context encoder. As re-

ported in Figure 5(d), the proposed approach achieves the

best performance in recommendation task than other imput-

ing methods, either average interpolation or matrix factor-

ization. Overall, real-time traffic conditions are strong sig-

nals for transportation recommendation, accurate traffic con-

dition inference can further provide more information to im-

prove model performance.

Effect of spatiotemporal pre-training. Finally, we ver-

ify the spatiotemporal pre-training used in our framework.

Specifically, we compare three variants of HMTRL+: (1)

STA excludes trajectory contrastive learning, (2) STC with-

out attribute prediction, (3) STAC incorporates both attribute

prediction and trajectory contrastive learning tasks for pre-

training. As shown in Figure 5(e), we observe only perform-

ing attribute prediction during pre-training stage gives lim-

ited performance improvement, while trajectory contrastive
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(a) Effect of d. (b) Effect of K. (c) Effect of β1. (d) Effect of β2.

Fig. 6 Parameter sensitivities on BEIJING.

(a) Group by OD distance. (b) Group by time period. (c) Group by transport mode. (d) Group by candidate route size.

Fig. 7 Robustness check on BEIJING.

learning have significantly better performance gain than at-

tribute prediction task. This finding confirms unlabeled tra-

jectories introduce additional crucial information and pat-

terns, which can be utilized to make our model more gener-

alizable and improve the total recommendation performance.

8.7 Parameter Sensitivity

We further study the parameter sensitivity of HMTRL. Each

time we vary a parameter, we set others to their default val-

ues.

First, we vary the dimension d from 32 to 512. The re-

sults are reported in Figure 6(a). As the dimension increases,

the performance first increases and then remains stable. How-

ever, too large d will induce a higher training cost. There-

fore, set the dimension to 64 is enough to capture represen-

tation information.

Then, we vary the number of self-attentive operations K

from 1 to 32. The results are reported in Figure 6(b). We ob-

serve a performance improvement when increasing K from

1 to 8, but a slight performance degradation by further in-

creasing K from 8 to 32. Using 8 self-attentive operations

is good enough to capture diversified vertex importance for

route representation learning.

After that, we vary vertex-level multi-task weight β1 from

0 to 3. The results are reported in Figure 6(c). We observe

a significant performance gain when increasing β from 0 to

0.3, and then the performance degrades when we further in-

crease β from 0.3 to 3. Above results prove incorporating

low-level supervision signals is beneficial to the main rec-

ommendation task, but may introduce more noises with too

large task weight.

Finally, to test the impact of route-level auxiliary tasks

weight, we vary β2 from 0 to 3. The results are reported in

Figure 6(d). HMTRL achieves the best performance when

β2 = 0.1, and we observe a performance degradation when

we increase or decrease β2. This is possibly because too

small β2 cannot fully take advantage of the common in-

formation in route level auxiliary tasks, whereas too large

β2 makes the auxiliary tasks dominate the optimization and

weakens the importance of the main recommendation task.

8.8 Robustness Check

A robust transportation recommendation model should per-

form evenly well in different routing query subgroups. We

evaluate the robustness of HMTRL+ from the following three

perspectives. First, we group queries by OD pair distance,

i.e., less than 1Km, 1Km to 3Km, 3Km to 10Km, and more

than 10Km. Second, we split routing queries by day us-

ing four time intervals, i.e., the morning peak hour (7,9],

the evening peak hour (17,19], and two off-peak intervals

(19,7], (9,17]. Third, we group queries based on the selected

transport mode, including bus, cycle, walk, car and mixed (i.e.,
route with more than one transport modes). Finally, we split

routing queries based on the size of route candidate set Γ ,

i.e., 6 to 10, 11 to 15, and 16 to 20. Figure 7 shows the re-

sults of HMTRL+ on different subgroups on BEIJING. For

different OD distance intervals, we observe the performance
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Fig. 8 Efficiency analysis.

difference is smaller than 10.9%. Besides, our model per-

forms better on longer distance transportation recommen-

dations, which is perhaps because routes of walk and cycle

are no longer attractive for long distance trip, therefore ease

the recommendation. For different time periods, we observe

the difference is smaller than 10.2%. Besides, we observe a

more accurate recommendation result at night, and a worse

result in morning rush hour. This is possibly because the

traffic condition during the morning rush hour is more com-

plex and hard to predict. For different transport modes, we

observe the performance of mixed group is notably lower

than others. This may be induced by the scarcity of mixed

historical routes, and the route representation with combined

transport mode is more sophisticated to learn. Note that the

performance of HMTRL+ on mixed routes still significantly

higher than all baselines, please refer to supplementary ma-

terial for details. The above results suggests us to pay more

attention on mixed routes in the further work to obtain a bet-

ter overall performance. For different size of route candidate

set Γ , we observe a performance degradation when increas-

ing size of Γ from 6-10 to 16-20. The reason perhaps is that

the proposed model is confused by similar routes, as a large

size will introduce more diverse candidate routes and raise

the difficulty to find the appropriate route.

8.9 Efficiency Analysis

Finally, we present the efficiency of each approach, which

was evaluated on a server with single NVIDIA Tesla P40

GPU. We first randomly test 1000 user queries and report the

average running time of our model as well as each baseline.

As shown in Figure 8(a), we observe rule-based methods

are fastest, while learning-based methods run much slower.

In addition, deep learning based methods, such as DeepFM

and MURAT, take longer time than other models. Although

HMTRL is more time-consuming, it achieves nearly 10%

accuracy improvement than MURAT. We also test the online

latency of HMTRL+, which consists of three components,

low-level routing, traffic condition inference and HMTRL

recommendation. The results are reported in Figure 8(b).

On average, we can infer city-wide traffic conditions by us-

ing the proposed component in 362ms. Moreover, when we

vary the number of queries from 1 to 10000, the low-level

routing latency increased from 220ms to 671ms, while the

recommendation latency increased from 466ms to 2515ms.

We observe the latency gap is relatively small for HMTRL

at the beginning, and goes larger when we further increase

the queries from 1000 to 10000. According to the efficiency

study, we find HMTRL is the major bottleneck of our model.

In the future, we will further optimize the recommendation

component to reduce the total latency.

9 Related Work

Route Recommendation has become a core component in

map services (e.g., Google Maps, Baidu Maps) and has grad-

ually received more research attention [49,50]. With the ubiq-

uity of mobile devices and location-based services, mas-

sive historical data (e.g., GPS trajectory data [9] and mo-

bile check-in data [51,52]) has been leveraged to improve

the quality of route recommendation. For example, Chen

et al. [53], Wang et al. [54], and Yang et al. [55] leverage his-

torical trajectories for better routing, but cannot be directly

generalized to multi-modal recommendations. Liu et al. [14]

proposes a general framework for public transportation rout-

ing. Nevertheless, it focuses on uni-modal route recommen-

dation and fails to model the relationship between differ-

ent transport modes. Recently, a few machine learning based

multi-modal transportation recommendation techniques has

been introduced. For instance, FAVOUR [56] proposed a

probabilistic model for multi-modal route recommendation

based on a series of user-provided profile and survey data.

Trans2vec [12] learns network embedding of users, OD pairs

for transport mode recommendation, but it cannot gener-

alize well when there exists massive cold-start users with

sparse data. Besides, Hydra [8,57] constructed various con-

text features and MTRecS-DLT [10] developed a convolu-

tional neural network based model for personalized trans-

port mode recommendation. However, the above studies ig-

nore rich semantic information in the transportation network

and historical routes, which lead to unsatisfactory multi-modal

route recommendations.

Graph Representation Learning extends the convo-

lutional neural network for capturing spatial dependencies

on non-Euclidean graph structures [24,25]. Recently, graph

representation learning has been widely used in many spa-

tiotemporal mining tasks, such as flow prediction [15,58],

region representation [59], and parking availability predic-

tion [60]. Beyond vertex classification, a few studies inves-

tigate the classification problem of sequences on dynamic

graphs [61]. However, none of the above works are dedi-

cated to multi-modal transportation recommendations.

Multi-Task Learning is a learning paradigm that aims

to improve the performance of multiple correlated tasks by

sharing common information. Based on information sharing
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strategy, multi-task learning can be categorized into hard pa-

rameter sharing based and soft parameter sharing based [62].

Recent studies [31,63,30] have successfully facilitated mul-

tiple tasks in lower neural network layers to guide the over-

all optimization. In this paper, we employ the hierarchical

multi-task learning framework by using hard parameter shar-

ing to integrate auxiliary tasks in different network layers.

Self-Supervised Learning aims at learning transferable

and generalizable feature representations based on various

auxiliary supervised signals extracted from the data itself.

The paradigm of self-supevised learning in deep neural net-

works can be categorized into two classes: pre-training and

joint training. On the one hand, pre-training first learn model

parameters with self-supervised signals as pretext tasks then

fine-tune the neural network based on downstream tasks [64–

66]. On the other hand, joint training simultaneously train

self-supervised pretext tasks together with target downstream

task [67,35]. Due to its effectiveness, self-supervised learn-

ing has been applied in many fields, such as computer vi-

sion [41], natural language processing [68], graph mining [36],

and trajectory data mining [69]. In this paper, we propose the

spatiotemporal pre-training to fully exploit the information

hidden in the dynamic road networks and massive historical

trajectories.

10 Conclusion

In this paper, we proposed HMTRL+, a unified route rep-

resentation learning framework for multi-modal transporta-

tion recommendation. We first constructed time-dependent

multi-view transportation graphs to characterize the struc-

tural and contextual information of both hubs and links. Then,

we devised a graph-based contextual encoder for missing

traffic condition imputation. Furthermore, we proposed a spa-

tiotemporal graph neural network for collaborative learning

of spatial and temporal autocorrelation. After that, a coherent-

aware self-attentive route representation learning module is

introduced to project arbitrary-length routes into fixed-length

route representation vectors, with explicit modeling of route

coherence from historical routes. Moreover, a hierarchical

multi-task learning module is proposed to derive transport

mode-specific route representations for recommendation by

integrating various supervision signals in different network

layers. Finally, we introduced spatiotemporal pre-training

strategies to enhance the robustness of the recommendation

system by exploiting various self-supervision signals in the

multi-modal transportation network and unlabeled histori-

cal trajectories. Extensive experimental results on two real-

world datasets demonstrated the performance of HMTRL+

consistently outperforms eight state-of-the-art baselines. In

future work, we will further reduce the error on mixed route

recommendation and optimize the framework to improve the

model efficiency.
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