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Abstract End-to-end AutoML has attracted intensive

interests from both academia and industry which auto-

matically searches for ML pipelines in a space induced

by feature engineering, algorithm/model selection, and

hyper-parameter tuning. Existing AutoML systems,

however, suffer from scalability issues when applying

to application domains with large, high-dimensional

search spaces. We present VolcanoML, a scalable and

extensible framework that facilitates systematic explo-

ration of large AutoML search spaces. VolcanoML in-

troduces and implements basic building blocks that de-

compose a large search space into smaller ones, and al-

lows users to utilize these building blocks to compose an

execution plan for the AutoML problem at hand. Vol-

canoML further supports a Volcano-style execution
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model – akin to the one supported by modern database

systems – to execute the plan constructed. Our evalu-

ation demonstrates that, not only does VolcanoML

raise the level of expressiveness for search space decom-

position in AutoML, it also leads to actual findings of

decomposition strategies that are significantly more ef-

ficient than the ones employed by state-of-the-art Au-

toML systems such as auto-sklearn. This paper is the

extended version of the initial VolcanoML paper ap-

peared in VLDB 2021.

Keywords Applied Machine Learning for Data

Management · Scalable Data Science · Automatic

Machine Learning · Data Mining and Analytics

1 Introduction

In recent years, researchers in the database community

have been working on raising the level of abstractions

of machine learning (ML) and integrating such func-

tionality into today’s data management systems [95,

96], e.g., SystemML [25], SystemDS [8], Snorkel [71],

ZeroER [91], TFX [5,9], Query 2.0 [92], Krypton [66],

Cerebro [67], ModelDB [86], MLFlow [94], Deep-

Dive [14], HoloClean [72], EaseML [1], ActiveClean [48],

and NorthStar [47]. End-to-end AutoML systems [93,

97,33] have been an emerging type of systems that has

significantly raised the level of abstractions of build-

ing ML applications. Given an input dataset and a

user-defined utility metric (e.g., validation accuracy),

these systems automate the search of an end-to-end

ML pipeline, including feature engineering, algorith-

m/model selection, and hyper-parameter tuning. Open-

source examples include auto-sklearn [22], TPOT [69],

and hyperopt-sklearn [46], whereas most cloud ser-

vice providers, e.g., Google, Microsoft, Amazon, etc., all
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provide their proprietary services on the cloud. As ma-

chine learning has become an increasingly indispensable

functionality integrated in modern data (management)

systems, an efficient and effective end-to-end AutoML

component also becomes increasingly important.

End-to-end AutoML provides a powerful abstrac-

tion to automatically navigate and search in a given

complex search space. However, in our experience of ap-

plying state-of-the-art end-to-end AutoML systems in a

range of real-world applications [2], we find that such a

system running fully automatically is rarely enough —

often, developing a successful ML application involves

multiple iterations between a user and an AutoML sys-

tem to iteratively improve the resulting ML artifact.

Motivating Practical Challenge. One such type

of interaction, which inspires this work, is the

enrichment of search space. We observe that the de-

fault search space provided by state-of-the-art AutoML

systems is often not enough in many applications. This

was not obvious to us at all in the beginning and it is not

until we finish building a range of real-world applica-

tions that we realize this via a set of concrete examples.

For example, in one of our astronomy applications [75],

the feature normalization function is domain-specific

and not supported by most, if not all, AutoML systems.

Similar examples can also be found when searching for

suitable ML models via AutoML. In one of our me-

teorology applications, we need to extend the models

with meteorology-specific loss functions. We saw simi-

lar problems when we tried to extend existing AutoML

systems with pre-trained feature embeddings coming

from TensorFlow Hub, to include include models that
have been newly published on arXiv to enrich the Model

Base [52], or to support Cosine annealing as for tuning.

Technical Challenge: Scalability over the Search

Space. “Why is it hard to extend the search space, as

a user, in an end-to-end AutoML system?” The an-

swer to this question is a complex one that is not

completely technical: some aspects are less technical

such as engineering decisions and UX designs, however,

there are also more technically fundamental aspects.

An end-to-end AutoML system contains an optimiza-

tion algorithm that navigates a joint search space in-

duced by feature engineering, algorithm selection, and

hyper-parameter tuning. Because of this joint nature,

the search space of end-to-end AutoML is complex and

huge while the enrichment is only going to make it even

larger. As we will see, handling such a huge space is al-

ready challenging for existing systems, and further en-

riching it will make it even harder to scale.

(Algorithm, Feature, HP)

Joint Space

Algorithm

Feature, HP

Algorithm

Feature

HP

Feature

Alg, HP

...

Strategy 1 Strategy 2 Strategy 3

Fig. 1 Different decomposition choices.

Many existing systems such as auto-sklearn [22]

and TPOT [69] deal with the entire composite search

space jointly, which naturally leads to the scalability

bottleneck. Decomposing a joint space has been ex-

plored for some subspaces (e.g., only algorithm and

hyper-parameters as in [63,53]), however, none of them

has been applied to a search space as large as that of

end-to-end AutoML. One challenge is that there exist

many different ways to decompose the same space (See

Figure 1), as shown above, but only some of them can

perform well. Without a structured, high-level abstrac-

tion for search space decomposition to explore different

strategies, it is very hard to scale up an end-to-end Au-

toML system to accommodate the search space that will

only get larger in the future.

Summary of Contributions. The initial version of

this paper [59] appeared in VLDB 2021, where we fo-

cused on designing the system, VolcanoML, which is

scalable to a large search space. In this paper, we make

the following four additional contributions: First, we

provide the automatic execution plan generation mod-

ule (in Section 4.2) to enrich the proposed framework,

and discuss the advantages and underlying problems

in this direction. Second, we propose the meta-learning

based components for the building blocks (in Section 5)

to further speed up VolcanoML. Third, we conduct

a comprehensive set of experiments (in Section 6) to

demonstrate the effectiveness and efficiency of Vol-

canoML, and provide the results about automatic plan

generation and meta-learning based acceleration. Fi-

nally, we provide more details about system compo-

nents, implementations (interfaces) and search spaces

in Section A of the appendix. Our technical contribu-

tions are as follows.

C1. System Design: A Structured View on Decomposi-

tion. The main technical contribution of VolcanoML

is to provide a flexible and principled way of decom-

posing a large search space into multiple smaller ones.

We propose a novel system abstraction: a set of Vol-

canoML building blocks (Section 3), each of which
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takes charge of a smaller sub-search space whereas a

VolcanoML execution plan (Section 4) consists of a

tree of such building blocks — the root node corre-

sponds to the original search space and its child nodes

correspond to different subspaces. Under this abstrac-

tion, optimizing in the joint space is conducted as op-

timization problems over different smaller subspaces.

The execution model is similar to the classic Volcano

query evaluation model in a relational database [24]

(thus the name VolcanoML): the system asks the

root node to take one iteration in the optimization pro-

cess, which recursively invokes one of its child nodes

to take one iteration on solving a smaller-scale opti-

mization problem over its own subspace; this recursive

invocation procedure will continue until a leaf node is

reached. This flexible abstraction allows us to explore

different ways that the same joint space can be decom-

posed. Together with the meta-learning based optimiza-

tions (Section 5), VolcanoML can often support more

scalable search process than the existing AutoML sys-

tems such as auto-sklearn and TPOT.

C2. Large-scale Empirical Evaluations. We conducted

intensive empirical evaluations, comparing Vol-

canoML with state-of-the-art systems including

auto-sklearn and TPOT. We show that (1) under

the same search space as auto-sklearn, VolcanoML

significantly outperforms auto-sklearn and TPOT —

over 30 classification tasks and 20 regression tasks —

VolcanoML outperforms the best of auto-sklearn

and TPOT on a majority of tasks; concretely, Vol-

canoML could achieve a higher balanced accuracy

for classification tasks and a smaller mean square er-
ror for regression tasks given the same time bud-

get; (2) using an enriched search space with addi-

tional feature engineering operators, VolcanoML

performs significantly better than auto-sklearn; (3)

using an enriched search space with an additional

data processing stage and functionalities beyond what

auto-sklearn and TPOT currently support (i.e., an ad-

ditional embedding selection stage using pre-trained

models on TensorFlow Hub), VolcanoML can deal

with input types such as images efficiently; and (4)

VolcanoML is at least comparable with and often

outperforms four industrial AutoML platforms on six

Kaggle competitions.

Moving Forward. The VolcanoML abstraction en-

ables a structured view of optimizing a black-box func-

tion via decomposition. This structured view itself

opens up interesting future directions. For example, one

may wish to automatically decompose a search space

given a workload, just like what a classic query opti-

mizer would do for relational queries. For constrained

optimizations, we also imagine techniques similar to

traditional “push-down selection” could be applied in

a similar spirit. We explore the possibility of automati-

cally searching for the best plan in Section 4 and discuss

the limitations of this simple strategy and the exciting

line of future work that could follow. While the full

treatment of these aspects are beyond the scope of this

paper, we hope the VolcanoML abstraction can serve

as a foundation for these future endeavors.

2 Related Work

AutoML is a topic that has been intensively studied

over the last decade. We briefly summarize related

work in this section and readers can consult latest sur-

veys [33,93,97,29] for more details.

End-to-End AutoML. End-to-end AutoML, the fo-

cus of this work, aims to automate the development

process of the end-to-end ML pipeline, including feature

preprocessing, feature engineering, algorithm selection,

and hyper-parameter tuning. Often, this is modeled

as a black-box optimization problem [34] and solved

jointly [22,82,69]. Apart from grid search and random

search [6], genetic programming [64,69] and Bayesian

optimization (BO) [7,32,79,20,77] has become prevail-

ing frameworks for this problem. One challenge of end-

to-end AutoML is the staggeringly huge search space

that one has to support and many of these methods

suffer from scalability issues [57,55]. In addition, meta-

learning [84,56,23] systematically investigates the in-

teractions that different ML approaches perform on

a wide range of learning tasks, and then learns from

this experience, to accomplish new tasks much faster.

Several meta-learning approaches [74,31,83,22,54] can

guide ML practitioners to design better search spaces

for AutoML tasks.

Many end-to-end AutoML systems have raised

the abstraction level of ML. auto-weka [82],

hyperopt-sklearn [46], and auto-sklearn [22] are the

main representatives of BO-based AutoML systems.

auto-sklearn is one of the most popular open-source

frameworks. TPOT [69] and ML-Plan [64] use genetic

algorithms and hierarchical task networks planning,

respectively, to optimize over the pipeline space, and

require discretization of the hyper-parameter space.

AlphaD3M [18] integrates reinforcement learning with

Monte Carlo tree search (MCTS) to solve AutoML

problems but without imposing efficient decomposi-

tion over hyper-parameters and algorithm selection.

AutoStacker [13] focuses on ensembling and cascading



4 Yang Li, Yu Shen, Wentao Zhang, Ce Zhang, Bin Cui

to generate complex pipelines, and solves the CASH

(Combined Algorithm Selection and Hyperparameters

optimization) problem [22] via random search. ML

Bazaar [78] is a general-purpose, multi-task, end-to-end

AutoML system, which pair ML pipelines with a hier-

archy of AutoML strategies – Bayesian optimization.

Furthermore, a growing number of commercial enter-

prises also export their AutoML services to their users,

e.g., H2O [49], Microsoft’s Azure Machine Learning [4],

Google Cloud’s AI Platform [27], Amazon Machine

Learning [61] and IBM’s Watson Studio AutoAI [35].

Automating Individual Components. Apart from

end-to-end AutoML, many efforts have been de-

voted to studying sub-problems in AutoML: (1) fea-

ture engineering [44,42,41,68,43], (2) algorithm se-

lection [82,46,22,19,63,53], and (3) hyper-parameter

tuning [32,79,7,51,36,21,57,80,45,39,70,30,76,90,37].

Meta-learning methods [89,26,23] for hyper-parameter

tuning can leverage auxiliary knowledge acquired from

previous tasks to achieve faster optimization. Several

systems offer a subset of functionalities in the end-

to-end process. Microsoft’s NNI [73] helps users to

automate feature engineering, hyper-parameter tun-

ing, and model compression. Recent work [63] lever-

ages the ADMM optimization framework to decompose

the CASH problem [22], and solves two easier sub-

problems. Berkeley’s Ray [65] and OpenBox [58] pro-

vide the tune module [60,57] to support scalable hyper-

parameter tuning tasks in a distributed environment.

Featuretools [40] is a Python library for automatic fea-

ture engineering. Unlike these works, in this paper, we

focus on deriving an end-to-end solution to the AutoML

problem, where the sub-problems are solved in a joint
manner.

Volcano Model. The Volcano model [28] (originally

known as the Iterator Model) is the classical evaluation

strategy of an analytical DBMS query: Each relational-

algebraic operator produces a tuple stream, and a con-

sumer can iterate over its input streams. The tuple

stream has three interfaces: open, next and close; all

operators own the same interface, and the implementa-

tion is opaque. It is a chain of iterators and data flows

through them when the topmost iterator calls next()

on the iterator below it. This results in propagation of

next() calls till the bottom-most iterator is called.

3 VolcanoML and Building Blocks

The goal of VolcanoML is to enable scalability with

respect to the underlying AutoML search space. As

a result, its design focuses on the decomposition of a

scaler balancer transformerpreprocessor

Std Robust PCA SVD PercentileRFE ……… …

Feature Engineering

Fig. 2 The search space of FE pipeline.

given search space. In this section, we first introduce

key building blocks in VolcanoML, and in Section 4

we describe how multiple building blocks are put to-

gether to compose a VolcanoML execution plan in

a modular way. Later in Section 5, we introduce addi-

tional optimizations for these building blocks.

3.1 Search Space of End-to-End AutoML

We describe the search space of end-to-end AutoML fol-

lowing the presentation in auto-sklearn[22]. The in-

put to the system is a dataset D, containing a set of

training samples. The user also provides a pre-defined

metric, e.g., validation accuracy or cross-validation ac-

curacy, to measure the utility of a given ML pipeline.

The output of an end-to-end AutoML system is an ML

pipeline that achieves good utility.

To find such an ML pipeline, the system searches

over a large search space of possible pipelines and

picks one that maximizes the pre-defined utility. This

search space is a composition of (1) feature engineering

operators, (2) ML algorithms/models, and (3) hyper-

parameters.

Feature Engineering. The feature engineering pro-

cess takes as input a dataset D and outputs a

new dataset D′. It achieves this by transforming

the input dataset via a set of data transforma-

tions. The pipeline for feature engineering is shown

in Figure 2. It comprises four sequential stages: pre-

processors (compulsory), scalers (5 possible opera-

tors), balancers (1 possible operators) and feature

transformers (13 possible operstors). For each stage,

the system chooses a single transformation to ap-

ply. For example, for feature transforming, the sys-

tem can choose among no processing, kernel pca,

polynomial, select percentile, etc.

ML Algorithms. Given a transformed dataset D′,

the system then picks an ML algorithm to train. Since

different ML algorithms are suitable for different types

of tasks, the system needs to consider a diverse range

of possible ML algorithms. Taking auto-sklearn

as an example, the search space for ML algorithms
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contains Linear Model, Support Vector Machine,

Discriminant Analysis, Random Forest, etc.

Hyper-parameters. Each ML algorithm has its own

sub-search space for hyper-parameter tuning — if we

choose to use a certain ML algorithm, we also have

to specify the corresponding hyper-parameters. The

hyper-parameters fall into three categories: continuous

(e.g., sub-sample rate for Random Forest), discrete

(e.g., maximal depth for Decision Tree), and categor-

ical (e.g., kernel type for Lib SVM).

(AutoML optimization.) If the system makes a

concrete pick for each of the above decisions, then it

can compose a concrete ML pipeline and evaluate its

utility. Concretely, given a pipeline configuration that

determines the details of feature engineering, algorithm

and hyperparameters, we could construct a specific ML

pipeline. Then we need to train a corresponding ML

model within this pipeline, and evaluate its perfor-

mance on the validation set to obtain the utility of this

pipeline configuration. This is often an expensive pro-

cess since it involves training an ML model. To find the

optimal ML pipeline, the system evaluates the utility of

different ML pipelines in an iterative manner following

a search strategy, and picks the one that maximizes the

utility. The candidates for search strategy can be ran-

dom search [6], grid search, genetic algorithms [64,69],

Bayesian optimization [7,32,79], bandits based meth-

ods [36,51], etc.

For example, auto-sklearn handles the above

search space jointly and optimizes it with Bayesian op-

timization (BO) [77]. Given an initial set of function

evaluations, BO proceeds by fitting a surrogate model

to those observations, specifically a probabilistic Ran-

dom Forest in auto-sklearn, and then chooses which

ML pipeline to evaluate from the search space by op-

timizing an acquisition function that balances explo-

ration and exploitation.

3.2 Building Blocks

Unlike auto-sklearn, VolcanoML decomposes the

above search space into smaller subspaces. (Key idea.)

Instead of searching over a huge pipeline space, it could

be easier for an algorithm to optimize over its sub-

spaces. Decomposing a joint space has been explored

in many domains [63,53]. The way how to decompose

the pipeline space into subspaces in field of AutoML

is still remains open. Next, we propose a structured

and high-level abstraction to support scalable search

space decomposition. One interesting design decision

in VolcanoML is to introduce a structured abstrac-

tion to express different decomposition strategies. A de-

composition strategy is akin to an execution plan in re-

lational database management systems, which is com-

posed of building blocks akin to relational operators.

A building block itself can be viewed as an atomic de-

composition strategy. We next present the details of the

building blocks implemented by VolcanoML, and we

will introduce how to use these blocks to compose Vol-

canoML execution plans in Section 4.

Goal. The goal of VolcanoML is to solve:

min
x1,...,xn

f(x1, ..., xn;D), (1)

where x1, ..., xn is a set of n variables and each of them

has domain Dxi for i ∈ [n]. Together, these n variables

define a search space (x1, ..., xn) ∈ ∏iDxi . D corre-

sponds to the input dataset, which is a set of input

samples. In AutoML, the variables x1, ..., xn are actu-

ally the pipeline hyperparameters, and the search space

is the complete pipeline search space, which is a compo-

sition of feature engineering operators, ML algorithm-

s/models, and hyper- parameters. The optimization ob-

jective f is to minimize the validation loss (e.g., classi-

fication error), i.e., the objective function f(·) in For-

mula 1. In our setting, f(·) is a black-box function that

we can only evaluate (but not exploiting the deriva-

tive), and the objective is to solve min f(·) as quickly as

possible. Given a fixed c (i.e., a concrete ML pipeline)

in the composite domain c ∈ ∏iDxi , we use the nota-

tion f(c;D) as the value of evaluating f by substituting

(x1, ...xn) with c.

Subgoal. One key decision of VolcanoML is to solve

the optimization problem on a search space by decom-

posing it into multiple smaller subspaces, each of which

will be solved by one building block. We define optimiz-

ing over each of these smaller subspaces as a subgoal of

the original problem. Formally, a subgoal g is defined

by two components: x̄g ⊆ {x1, ...xn} as a subset of vari-

ables, and c̄g ∈
∏
xi∈x̄g Dxi as an assignment in the do-

main of all variables in x̄g. Let x̄−g = {x1, ..., xn}− x̄g
be all variables that are not in x̄g.

Each subgoal defines a function fg over a smaller

search space, which is constructed by substituting all

variables in x̄g with c̄g:

fg =f [x̄g/c̄g] :

z ∈
∏

xi∈x̄−g

Dxi 7→ f({c̄g; z};D). (2)

Each subgoal is a sub-problem in the ML pipeline search

of AutoML such as feature engineering, algorithm se-

lection, etc.
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Building Block. Each subgoal g corresponds to one

building block Bg,D, whose goal is to solve

min
x̄−g

fg(x̄−g;D). (3)

A building block Bg,D imposes several assumptions on

g and D. First, given an assignment c̄−g to x̄−g, it is

able to evaluate the value of the function fg(c̄−g, D).

Second, given a dataset D, a building block has the

knowledge about how to subsample a smaller dataset

D̃ ⊆ D and then conduct evaluations on such a sub-

set x 7→ fg(x; D̃). Third, we assume that the building

block has access to a cost model about the cost of an

evaluation at x, Cg,D,x.

Interfaces. All implementations of a building block fol-

low an interactive optimization process. A building

block exposes several interfaces. First, one can initialize

a building block via

Bg,D ← init(f, x̄g, c̄g, D), (4)

which creates a building block (i.e., a new sub-

problem). Second, one can query the current best solu-

tion found in Bg,D by

x̂← get current best(Bg,D). (5)

Furthermore, one can ask Bg,D to iterate once via

do next!(Bg,D), (6)

where ‘!’ indicates potential change on the state of the

input Bg,D.

Last but not least, one can query a building block

about its expected utility (EU) if given K more budget

units (e.g., seconds) via

[l, u]← get eu(Bg,D,K). (7)

By adopting a similar design principle used in the ex-

isting AutoML systems [22,69,63], in VolcanoML we

estimate EU by extrapolation into the future with more

available budget. Given the inherent uncertainty in our

estimation method, rather than returning a single point

estimate, we instead return a lower bound l and an up-

per bound u. We refer readers to [53] for the details of

how the lower and upper bounds are established. More-

over, one can query a building block about its expected

utility improvement (EUI) via

δ ← get eui(Bg,D). (8)

Note that, different from EU, EUI is the expected im-

provement over the current observed utility if given K

more budget units. While sharing some similarity with

EI in BO, EUI works on the level of optimization pro-

cess (building blocks), while EI in BO is implemented

for one single iteration in BO. In VolcanoML, we esti-

mate EUI by taking the mean of the observed improve-

ments from history, following Levine et al [50].

3.3 Three Types of Building Blocks

Decomposition is the cornerstone of VolcanoML’s

design. Given a search space, apart from exploring it

jointly, there are two classical ways of decomposition

— to partition the search space via conditioning on dif-

ferent values of a certain variable (in a similar spirit of

variable elimination [15]), or to decompose the problem

into multiple smaller ones by introducing equality con-

straints (in a similar spirit of dual decomposition [11]).

This inspires VolcanoML’s design, which supports

three types of building blocks: (1) joint block that sim-

ply optimizes the input subspace using Bayesian op-

timization; (2) conditioning block that further divides

the input subspace into smaller ones by conditioning on

one particular input variable; and (3) alternating block

that partitions the input subspace into two and opti-

mizes each one alternately. Note that both conditioning

block and alternating block would generate new build-

ing blocks with smaller subgoals. We next present the

implementation details for each type of building block.

3.3.1 Joint Block

A joint block directly optimizes its subgoal via Bayesian

optimization (BO) [77]. Specifically, BO based method

- SMAC [32] has been used by many applications where

evaluating the objective function is computationally ex-

pensive. It constructs a probabilistic surrogate model

M to capture the relationship between the input vari-

ables x̄ (i.e., hyperparamters in AutoML) and the ob-

jective function value ψ (e.g., the validation loss), and

this surrogate model is utilized to suggest a new promis-

ing configuration to evaluate for each iteration. It then

refines M iteratively using past evaluation observations

(x̄, ψ).

Based on the BO framework, the implementation

of do next! for a joint block consists of the following

three steps:

1. Use the surrogate model M to select a configura-

tion x̄ that maximizes an acquisition function. In

our implementation, we use expected improvement

(EI) [38] as the acquisition function, which has been

widely used in BO community.

2. Evaluate the selected configuration x̄ and obtain

its result about the objective function fg(x̄) (i.e.,

the subgoal). Due to the randomness of most ML

algorithms, we assume that f(x) cannot be ob-

served directly but rather through noisy observation

ψ = fg(x̄) + ε, with ε ∼ N (0, σ2), where N is the

normal distribution.

3. Refit the surrogate model M on the observed (x̄, ψ).
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Algorithm 1: The do next! of conditioning

block
Input: A conditioning block Bg,D, times to play

each arm L, total budget K.
1 Let B1, ..., Bm be all active (have not been

eliminated) child blocks;
2 for 1 ≤ i ≤ L do
3 for 1 ≤ j ≤ m do
4 do next!(Bj);

5 for 1 ≤ j ≤ m do
6 [lj , uj ]← get eu(Bj ,K);
7 Eliminate child blocks that are dominated by others,

using [lj , uj ] for 1 ≤ j ≤ m;

Early-Stopping based Optimization. For large

datasets, early-stopping based methods, e.g., Succes-

sive Halving [36], Hyperband [51], BOHB [21], MFES-

HB [57], etc, can terminate the evaluations of poorly-

performing configurations in advance, thus speeding

up the evaluations. VolcanoML supports MFES-

HB [57], which combines the benefits of Hyperband and

Multi-fidelity BO [90,81], to optimize a joint block, in

addition to vanilla BO.

3.3.2 Conditioning Block

A conditioning block decomposes its input x̄ into x̄ =

{xc}∪ ȳ, where xc is a single variable with domain Dxc .
It then creates one new building block for each possible

value d ∈ Dxc of xc:

min
ȳ
gd(ȳ;D) ≡ f({xc = d, ȳ};D). (9)

As a result, |Dxc | new (child) building blocks are cre-

ated.

The conditioning block aims to identify optimal

value for xc, and many previous AutoML researchers

have used Bandit algorithms for this purpose [63,36,

53,57]. In VolcanoML, we follow these previous work

and model it as a multi-armed bandit (MAB) prob-

lem, while our framework is flexible enough to incor-

porate other algorithms when they are available. There

are |Dxc | arms, where each arm corresponds to a child

block. Playing an arm means invoking the do next!

primitive of the corresponding child block.

Algorithm 1 illustrates the implementation of

do next! for a conditioning block. It starts by play-

ing each arm L times in a Round-Robin fashion (lines

2 to 4). Here, L is a user-specified configuration param-

eter of VolcanoML. In our current implementation,

we set L = 5. We then obtain the lower and upper

bounds of the expected utility of each child block by

invoking its get eu primitive (lines 5 to 6), and elimi-

nate child blocks that are dominated by others (line 7).

Algorithm 2: The init of alternating block

Input: An alternating block Bg,D with search space
x̄ = ȳ ∪ z̄.

1 Initialize ȳ and z̄ with default values ȳ0 and z̄0;
2 B1 ← init(f, z̄, z̄0, D);
3 B2 ← init(f, ȳ, ȳ0, D);
4 for 1 ≤ i ≤ L do
5 do next(B1);
6 ȳi ← get current best(B1);
7 set var(B2, ȳ, ȳi);
8 do next(B2);
9 z̄i ← get current best(B2);

10 set var(B1, z̄, z̄i);

The elimination works as follows. Consider two blocks

Bi and Bj : if the upper bound ui of Bi is less than the

lower bound lj of Bj , then the block Bi is eliminated.

An eliminated arm/block will not be played in future

invocations of do next!.

Remark: We have simplified the above elimination cri-

terion by using the lower and upper bounds calculated

given K budget units for each arm. In fact, these K

budget units are shared by all the arms, and as a re-

sult, each arm actually has fewer budget units than K.

Our assumption is that, K is sufficiently large so that

one can play all arms until (the observed distribution of

rewards of) each arm converges. Otherwise, the lower

and upper bounds obtained may be over-optimistic, and

as a result, may lead to incorrect eliminations. Fortu-

nately, our assumption usually holds in practice, where

arms converge relatively fast.

3.3.3 Alternating Block

An alternating block decomposes its input search space

into x̄ = ȳ ∪ z̄, and explores ȳ and z̄ in an alternat-

ing way. Similarly, we also model the optimization in

alternating block as an MAB problem. Algorithm 2 il-

lustrates how its init primitive works. It first creates

two child blocks B1 and B2, which will focus on opti-

mizing for ȳ and z̄ respectively (lines 1 to 3). It then

(again) views B1 and B2 as two arms and plays them

using Round-Robin (lines 4 to 10). Note that, when B1

optimizes ȳ (resp. when B2 optimizes z̄), it uses the

current best z̄ found by B2 (resp. the current best ȳ

found by B1). This is done by the set var primitive

(invoked at line 7 for B2 and line 10 for B1).

One problem of our alternating MAB formulation

is that the utility improvements of the two building

blocks often vary dramatically in practice. For example,

some applications are very sensitive to the features be-

ing used (e.g., normalized vs. non-normalized features)

while hyper-parameter tuning will offer little or even

no improvement. In this case, we should spend more
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Algorithm 3: The do next! of alternating

block
Input: An alternating block Bg,D with budget K.

1 δ1 ← get eui(B1);
2 δ2 ← get eui(B2);
3 if δ1 ≥ δ2 then
4 z̄best ← get current best(B2);
5 set var(B1, z̄, z̄best);
6 do next(B1);

7 else
8 ȳbest ← get current best(B1);
9 set var(B2, ȳ, ȳbest);

10 do next(B2);

resources on looking for good features instead of tun-

ing hyper-parameters. Our key observation is that, the

expected utility improvement (EUI) decays as optimiza-

tion proceeds. As a result, we propose to use EUI as an

indicator that measures the potential of pulling an arm

further. Algorithm 3 illustrates the details of this idea

when used to implement the do next! primitive.

Specifically, Algorithm 3 starts by polling the EUI of

both child blocks (lines 1 and 2). Recall that the EUI is

estimated by taking the mean of historic observations.

It then compares the EUIs and picks the arm/block

with larger EUI to play next (lines 3 to 10). Before

pulling the winner arm, again it will use the current

best settings found by the other arm/block (lines 4 to

6, lines 8 to 10).

3.3.4 Discussion: Pros and Cons of Building Blocks

While the joint block is the most straightforward way

to solve the optimization problem associated, it is dif-

ficult to scale Bayesian optimization to a large search

space [88,53]. The alternating block addresses this scal-

ability issue by decomposing the search space into two

smaller subspaces, though with the assumption that

the improvements of the two subspaces are condition-

ally independent of each other. As a result, the alter-

nating block is a better choice when such an assump-

tion approximately holds. The advantage of alternating

block with this assumption can solve the optimization

problem efficiently by decomposing the huge and joint

search space into two smaller subspaces (efficiency).

While the issue behind this lies in that the alternat-

ing block cannot converge to the optimal solution (ef-

fectiveness) when the two subspaces are highly depen-

dent. We expect this assumption approximately hold;

if not, the alternating block still has its position when

dealing with the “efficiency vs. effectiveness” trade-off

when the search space is large. The conditioning block

is capable of pruning the search space as optimization

proceeds, when bad arms are pulled less often or will

not be played anymore, with the limitation that it can

only work for conditional variables that are categori-

cal. For non-categorical variables, one possible way to

use conditioning blocks is to split the value range of

variables. For example, given a numerical variable that

ranges from 1 to 3, we split it into two ranges, which

are [1, 2) and [2, 3). During the optimization iteration,

we first choose one sub-range and then optimize the

splitted space along with its corresponding subspace.

In addition, VolcanoML uses bandit-based al-

gorithms from the existing literature [50,53] as de-

fault in both the alternating and conditioning block,

and other bandit-based algorithms, such as successive

halving [36], Hyperband [51], BOHB [21] and MFES-

HB [57], can also be used in these blocks.

3.3.5 Discussion: Comparing Different Building Blocks

Joint blocks are the default blocks that can be ap-

plied to all problems. When the search space is rather

large, conditioning and alternating blocks can be help-

ful. If the search space contains a categorical hyper-

parameter, under which the subspace of each choice is

conditionally independent with each other, the condi-

tioning block can be used instead of exploring the en-

tire space. If the search space can be decomposed into

two approximately independent subspaces, the alter-

nating block can be applied to this case. As a result,

a scalable system needs to be able to decompose the

problem in different ways and pick the most suitable

building blocks. This forms a VolcanoML execution

plan, which we will describe in the next section. In

Section 4, we explore the possibility of automatically

choosing building blocks to use by maximizing the em-

pirical accuracy of different execution plans, given a

pre-defined set of datasets.

3.3.6 Discussion: Continue Tuning in Conditional

Block

As introduced in Section 3.3.2, in the conditional

block of VolcanoML, we store the lower and upper

bounds of the expected utility of each child block. Vol-

canoML eliminates those potentially bad blocks based

on the two bounds. When new algorithms are added

into the search space, we extend the previously sur-

vived candidate algorithm set in the conditional block

with those new algorithms and play each candidate in a

round-robin fashion as described in Section 3.3.2. After

VolcanoML evaluates those new algorithms with suf-

ficient budget, the conditional block follows the bandit

algorithm and eliminates bad candidates with low up-

per bounds from the candidate set. This process still fol-

lows Algorithm 1, only with a difference that the child
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Joint

(x, y, z, w)

Cond on x

(x, y, z, w)

Joint

(y, z, w)

Joint Joint

(y, z, w) (y, z, w)

min
(",$,%,&)

𝑓(𝑥, 𝑦, 𝑧, 𝑤; 𝐷)

Plan 1

Plan 2

Fig. 3 Two different execution plans for the same optimiza-
tion problem. Each plan corresponds to a different way to
decompose the same search space (x, y, z, w).

blocks are extended with new algorithms. Therefore,

it’s quite natural and easy to support continue tuning

in VolcanoML.

4 VolcanoML Execution Plan

Given a pre-defined search space, the input of Vol-

canoML is (1) a dataset D, (2) a utility metric (e.g.,

cross-validation accuracy) which defines the objective

function f , and (3) a time budget. VolcanoML then

decomposes a large search space into an execution plan,

following some specific decomposition strategy.

4.1 Execution Plan

VolcanoML Execution Plan. Due to the space limi-

tation, we omit the formal definition of a VolcanoML

execution plan. A VolcanoML execution plan is a

tree of building blocks. The root node corresponds to

a building block solving the problem f with the en-

tire search space, which can be further decomposed

into multiple sub-problems. For each generated sub-

problem, a building block (from the three candidates)
is applied to solve the corresponding problem. In addi-

tion, all the leaf nodes must be the joint blocks. Since

joint block does not decompose the search space, it can

not be in any paths from the root node to leaf node. As

an example, Figure 3 illustrates two possible execution

plans for f(x, y, z, w;D). Plan 1 contains only a sin-

gle root building block as a joint block, whereas Plan 2

first introduces a conditioning block on x, and then cre-

ates one lower level of building blocks for each possible

value of x (in Figure 3, we assume that |Dx| = 3).

VolcanoML Execution Model. To execute a Vol-

canoML execution plan, we follow a Volcano-style exe-

cution that is similar to a relational database [28] — the

system invokes the do next! of the root node, which

then invokes the do next! of one of its child nodes,

propagating until the leaf node. At any time, one can

invoke the get current best of the root node, which

returns the current best solution for the entire search

space.

Alter. (𝐴!)

(Feature, HP)

Alter. (𝐴")

(Feature, HP)

Joint (HP fixed)

(𝐴".Feature)

Joint (FE fixed)

(𝐴".HP)

Cond. on Alg={𝐴!,…, 𝐴"}

(Alg, Feature, HP)

Joint (HP fixed)

(𝐴!.Feature)

Joint (FE fixed)

(𝐴!.HP)

Alter. (𝐴#)

(Feature, HP)

...

Plan

(Algorithm, Feature, HP)Search Space:

...

𝐴!: Liblinear SVC
𝐴": Adaboost
…
𝐴#: Random Forest

Fig. 4 VolcanoML’s execution plan for the same search
space as explored by auto-sklearn. Here ‘Alg’ and ‘HP’ cor-
respond to Algorithm and hyper-parameters respectively.

VolcanoML Plan for auto-sklearn. Figure 4

presents a VolcanoML execution plan for the same

search space explored by auto-sklearn, which consists

of the joint search of algorithms, features transfor-

mations operators, and hyper-parameters. Instead of

conducting the search process in a single joint block,

as was done by auto-sklearn, VolcanoML first de-

composes the search space via a conditioning block on

algorithms — this introduces a MAB problem in which

each arm corresponds to one particular algorithm. It

then decomposes each of the conditioned subspaces via

an alternating block between feature engineering and

hyper-parameter tuning. The whole subspace of feature

engineering (resp. that of hyper-parameter tuning) is

optimized by a joint block. Note that this execution

plan is similar to the regular plan of human experts,

in which experts usually try different algorithms and

optimize the feature engineering operations and hyper-

parameters alternatively for specific well-performing

algorithms.

Concretely, Figure 4 shows a search space for Au-

toML with K choices of ML algorithms. During each

iteration, starting from the root node, VolcanoML

selects the child node to optimize until it reaches a leaf

node and then optimizes over the subspace in the leaf

node. As shown by the red lines in Figure 4, in this it-

eration, VolcanoML only tunes the feature engineer-

ing pipeline of algorithm A1 while fixing its algorithm

hyper-parameters.

Alternative Execution Plans. Note that the execution

plan in Figure 4 is not the only possible one. Our flex-

ible and scalable framework in VolcanoML allows us

to explore different execution plans before reaching the

proposed one, and in the next section 4.2 we introduce

the way of automatic plan generation. The reason why

we choose this plan is due to the fundamental prop-

erty of the AutoML search space — we observe that,

the optimal choices of features are different across algo-

rithms, which implies that we can first decompose the
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Cond. on Alg
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(Feature, HP)
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(Feature, HP)

Joint

(Embedding
, Feature)

Joint

(HP)
...

(Embedding, Algorithm, Feature, HP)Search Space: 

Plan

Fig. 5 VolcanoML’s execution plan for a larger search
space enriched by an additional embedding selection stage.

search space along ML algorithms. The improvements

introduced by feature engineering and hyper-parameter

tuning are largely complementary (See A.1.2 for more

details), and thus we can optimize them alternately. For

feature engineering (resp. hyper-parameter tuning), the

subspace is small enough to be handled by a single joint

block efficiently. In Section 4.2, we will list the possible

plans of the coarse-grained level and further discuss the

opportunity of automatic plan generation.

VolcanoML Plan for Enriched Search Space. We

can easily extend VolcanoML and enable functional-

ities that are not supported by most AutoML systems.

For example, Figure 5 illustrates an execution plan for

a search space with an additional stage — embedding

selection. Given an input, e.g., image or text, we first

choose embeddings based on a collection of TensorFlow

Hub pre-trained models and then conduct algorithm

selection, feature engineering, and hyper-parameter

tuning. We use an execution plan as illustrated in

Figure 5, having the embedding selection step jointly

optimized together with the feature engineering.

4.2 Automatic Plan Generation

In principle, the design of VolcanoML opens up the

opportunity for automatic plan generation — given a

collection of benchmark datasets, one could automati-

cally search for the best decomposition strategy of the

search space and come up with a physical plan auto-

matically. While the complete treatment of this prob-

lem is beyond the scope of this paper, we illustrate the

possibility with a straightforward strategy. We auto-

matically enumerate all possible execution plans in a

coarse-grained level and find that our manually speci-

fied execution plan in Figure 4 outperforms the alter-

natives. The five execution plans are as follows:

– Plan 1 - J(Joint). Optimize over the entire space

using a joint block.

– Plan 2 - C(Conditioning). Use a conditioning block

on the choice of machine learning algorithms, and

then optimize each subspace using joint blocks.

– Plan 3 - A(Alternating). Use an alternating block

to separate the entire space into feature engineering

space and combined algorithm selection and hyper-

parameter tuning (CASH) space.

– Plan 4 - AC(Alternating then Conditioning). Use an

alternating block to separate the entire space into

feature engineering and CASH space, and then use

a conditioning block on the choice of algorithm.

– Plan 5 - CA(Conditioning then Alternating). Use a

conditioning block on the choice of machine learn-

ing algorithms, and then optimize the subspace of

feature engineering and algorithm hyperparameters

alternately. See Plan 5 in Figure 6 for more details.

– TPOT - TPOT. In essence, the execution plan of TPOT

also uses a single joint block. The difference between

TPOT and Plan 1 is that TPOT uses the evolutionary

algorithm while Plan 1 uses the Bayesian optimiza-

tion.

– AUSK - autosklearn. The execution plan of

autosklearn also uses a single joint block. The dif-

ference between autosklearn and Plan 1 is their

ensemble strategy. Concretely, autosklearn build

the ensemble model over all the evaluated models

while Plan 1 builds it over a fixed number of well-

performed models as VolcanoML does.

Indeed, automatic plan generation can find the opti-

mal solutions with techniques like reinforcement learn-

ing. However, one critical problem behind the auto-

matic plan generation is the overhead introduced by

constructing and searching for a new execution plan.

Here, generating execution plans may take a massive

amount of training cost, and automatic plan genera-

tion may involve building and evaluating an extremely

large volume of plans. Moreover, if the user only has

a limited budget, automated plan generation can eas-

ily run out of the budget while not providing a decent

execution plan.

It is still an open question of whether we can support

finer-grained partition of the search space (e.g., differ-

ent plans for different subspace of features), and more-

over, whether we can conduct efficient automatic plan

optimization without enumerating all possible plans.

These are exciting future directions, and we expect the

endeavor to be non-trivial. We hope that this paper sets

the ground for this line of research in the future (e.g.,

rule-based heuristics or reinforcement learning).

Further Discussion. We abstract a VolcanoML ex-

ecution plan as a tree of building blocks. The root
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Fig. 6 Five execution plans in the task granularity.

node corresponds to a building block solving the prob-

lem with the entire search space, which can be further

decomposed into multiple building blocks if necessary.

Three kinds of building blocks can be used to build the

tree-structured execution plan. Reinforcement Learn-

ing (RL) could be a straightforward solution to gen-

erate execution plans automatically. The key decisions

involve how to define the states, rewards, and actions.

We can define the current state by encoding the cur-

rent structure of the tree and the optimization prob-

lem to decompose. When all leaf nodes in the tree are

joint blocks, we can execute the current decomposition

plan. And we can take the validation accuracy as the

reward. Each action corresponds to apply a decompo-

sition strategy to an optimization problem by adding
a building block to the tree’s some leaf node. The RL

agent builds and evaluates each execution plan itera-

tively by trying different actions. The goal of the agent

is to find the plan that achieves the optimal evaluation

result.

4.3 Progressive Optimization Methods

Unlike the optimization strategy used in Figure 4, the

progressive methods [62] can optimize the search space

in a top-down manner. Take the default tree-structured

space (Plan 5) shown in Figure 6 as an example, a pro-

gressive method first tries different algorithms in the

conditional block while keeping all other hyperparam-

eters by default. After evaluating all algorithm candi-

dates, it fixes the best algorithm and enters the search

space under this algorithm. Then, it optimizes the space

of feature engineering while keeping the algorithm hy-

perparameters by default. Finally, by fixing the best

found feature engineering operators, it optimizes the

algorithm hyperparameters and obtains the final con-

figuration. The main advantage of progressive methods

is that, they enjoy high efficiency in exploring the space

because they only need to optimize the blocks following

a path from the root to the leaves. However, they also

have two weak points: (1) While the best algorithm is

chosen by keeping other hyperparameters by default,

there is a risk that the algorithm found progressively

may not be the optimal one; (2) Only one algorithm is

explored in the optimization process, and it leads to a

lack of diversity in the model pool for the final ensem-

ble. The original optimization strategy deals with the

weak points by applying the bandit-based algorithm. It

evaluates each algorithm by trying different combina-
tions of other hyperparameters so that it can further

compute the expected utility of each algorithm. Mean-

while, since all algorithms are evaluated for some given

budget, the evaluation history is diverse, which helps

generate a better model ensemble.

5 Further Optimization with Meta-learning

One class of optimizations that we support is meta-

learning [84,87] — given previous runs of the system

over similar workloads, to transfer the knowledge and

better help the workload at hand. Depending on the

type of different building blocks, we support different

meta-learning strategies.
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5.1 Meta-learning for Conditioning Blocks

For conditioning block on variable x, it introduces a

multi-armed bandit problem with |Dx| arms, and its

objective is to identify the optimal arm. One natural

meta-learning strategy is to learn, given the dataset D,

a much smaller subset of arms A ⊆ Dx that includes

the optimal arm. This could explicitly reduce the search

space in the conditioning block from Dx to A. We use

a meta-learning strategy based on RankNet [10].

During the training process, we are given a train-

ing history over multiple previous datasets D1, ..., Dn.

We are given the relative relationships between different

arms on different datasets

T = {(Aj , Ak, Di) : Aj , Ak ∈ Dx}, (10)

where (Aj , Ak, Di) ∈ T means that Aj performs bet-

ter than Ak on dataset Di. We are also given a meta-

feature extractor hD for dataset and a meta-feature ex-

tractor hA for arms. Both types of extractors will map a

dataset (resp. an arm) to an m-dimensional real-valued

vector. The model that we are trying to learn is a multi-

layer perceptron (MLP) model taking as input a dataset

embedding and an arm embedding, with the following

learning objective:

min
Θ

∑
(Di,Aj ,Ak)∈T

l+

(
σ(r

(i)
j − r

(i)
k )
)

+ l−

(
σ(r

(i)
k − r

(i)
j )
)

where r
(i)
j = MLP (hD(Di), hA(Aj);Θ),

r
(i)
k = MLP (hD(Di), hA(Ak);Θ),

(11)

where σ is the sigmoid function, l+ is the hinge loss with

positive label, and l− is the hinge loss with negative

label.

During inference, the MLP with parameter Θ takes

the vector that consists of hD and hA as input, and

outputs a score. The best subset of arms can then be

selected based on these scores.

5.2 Meta-learning for Joint Blocks

A joint block uses BO method that can be slow

when the underlying search space is large. An

intuitive optimization is to leverage BO history

H1 = {(x1j , y1j )}n1

j=1, ...,Hn from n previous datasets

D1, ..., Dn. This motivates the meta-learning based BO

that can speed up the convergence of search in the cur-

rent joint block.

When executing joint block on a new dataset, we

are given the historical observations H1, ...,Hn from n

previous datasets on the same search space, and the ob-

servations in the current task is HT . We use a scalable

meta-learning method, RGPE [23], to accelerate BO.

First, for each previous dataset Di, we train a Gaus-

sian process model Mi on the corresponding observa-

tions from Hi. Then we build a surrogate model Mmeta

to guide the search in this joint block, instead of the

original surrogate MT fitted on HT only. The predic-

tion of Mmeta at point x is given by

y ∼ N (
∑
i

wiµi(x),
∑
i

wiσ
2
i (x)), (12)

where wi is the weight of base surrogate Mi, and µi and

σ2
i are the predictive mean and variance from base sur-

rogate Mi. The weight wi reflects the similarity between

the previous task and current task. Therefore, Mmeta

carries the knowledge of search on previous tasks, which

can greatly accelerate the convergence of the search in

current joint block. We then use the following ranking

loss function L, i.e., the number of misranked pairs, to

measure the similarity between previous tasks and cur-

rent task:

L(Mi, HT ) =

nT∑
j=1

nT∑
k=1

1((Mi(xj) <i (xk)⊕ (yj < yk)),

(13)

where ⊕ is the exclusive-or operator, nT = |HT |, xj and

yj are the sample point and its performance in HT , and

Mi(xj) means the prediction of Mi on point xj . Based

on the ranking loss function, the weight wi is set to

the probability that Mi has the smallest ranking loss

on HT , that is, wi = P(i = argminj L(Mj , HT )). This

probability can be estimated using MCMC sampling.

Example. When applied to end-to-end AutoML, the

joint block is used to select configurations from a joint

search space, e.g., the search of hyper-parameter con-

figurations or features given a specific ML algorithm.

Although the optimal configuration may be different

across tasks, the performance surface of configurations

in current task may be similar to some in previous tasks

due to the relevancy between tasks. In this case, BO his-

tory on previous datasets can be utilized to guide the

configuration search via the above meta-learning based

BO method.

6 Experimental Evaluation

We compare VolcanoML with state-of-the-art Au-

toML systems. In our evaluation, we focus on three per-

spectives: (1) the performance of VolcanoML given
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the same search space explored by existing systems,

(2) the scalability of VolcanoML given larger search

spaces, and (3) the extensibity of VolcanoML to inte-

grate new components into the search space of AutoML

pipelines.

6.1 Experimental Setup

AutoML Systems. We evaluate VolcanoML

as well as two open-source AutoML systems:

auto-sklearn [22] and TPOT [69]. In addition, we also

compare VolcanoML with four commercial AutoML

platforms from Google, Amazon AWS, Microsoft Azure,

and Oracle. Both VolcanoML and auto-sklearn

support meta-learning, while TPOT does not. For fair

comparison with TPOT, we also use VolcanoML− and

AUSK− to denote the versions of VolcanoML and

auto-sklearn when meta-learning is disabled. Our im-

plementation of VolcanoML is available at https:

//github.com/PKU-DAIR/mindware.

Datasets. To compare VolcanoML with academic

baselines, we use 60 real-world ML datasets from the

OpenML repository [85], including 40 for classification

(CLS) tasks and 20 for regression (REG) tasks. 10 of the

40 classification datasets are relatively large, each with

20k to 110k data samples; the other 30 are of medium

size, each with 1k to 12k samples. In addition, we also

use datasets from six Kaggle competitions (See Table 3

for details) to compare VolcanoML with four com-

mercial platforms.

AutoML Tasks. We define three kinds of real-world

AutoML tasks, including (1) a general classification

task on 30 medium datasets, (2) a general regression

task on 20 medium datasets, and (3) a large-scale clas-

sification task on 10 large datasets.

To test the scalability of the participating systems,

we design three search spaces that include 20, 29, and

100 hyper-parameters, where the smaller search space

is a subset of the larger one. We run VolcanoML and

the baseline AutoML systems against each of the three

search spaces. The time budget is 900 seconds for the

smallest search space and 1,800 seconds for the other

two, when performing the general classification task (1);

the time budget is increased to 5,400 and 86,400 sec-

onds respectively, when performing the general regres-

sion task (2) and the large-scale classification task (3).

Utility Metrics. Following [22], we adopt the metric

balanced accuracy for all classification tasks — com-

pared with standard (classification) accuracy, it assigns

equal weights to classes and takes the average of class-

wise accuracy. For regression tasks, we use the mean

squared error (MSE) as the metric.

In our evaluation, we repeat each experiment 10

times and report the average utility metric. In each ex-

periment, we use four fifths of the data samples in each

dataset to search for the best ML pipeline and report

the utility metric on the remaining fifth.

Methodology for Comparing AutoML Systems.

To compare the overall test result of each AutoML sys-

tem on a wide range of datasets, we use the average

rank as the metric following [3]. For each dataset, we

rank all participant systems based on the result of the

best ML pipeline they have found so far; we then take

the average of their ranks across different datasets. In

addition, we use statistical testing to determine ties and

adjust the rankings [16].

Training Data for Meta-learning. The results for

meta-learning are obtained from running Bayesian opti-

mization on 90 classification datasets and 50 regression

datasets collected from OpenML. For classification, we

collect the results by optimizing the balanced accuracy,

accuracy, f1 score and AUC. For regression, we collect

the results by optimizing the mean squared error, mean

absolute error and r2 value. When VolcanoML re-

ceives a new task and the optimization target is one of

the above metrics, VolcanoML will use all the evalua-

tion results with this metric to train the RankNet in the

conditional block and RGPE in the joint block. In our

experiments, to ensure the current task does not occur

in the results for meta-learning, we apply the leave-one-

out strategy. For example, when we optimize Dataset A,

we will use all other results except A for meta-learning.

More Details. We include the details of search space

and programming API in Appendix A.2, experiment

datasets in Appendix A.3.

6.2 End-to-End Comparison

We first evaluate the participant AutoML systems

given the search space explored by auto-sklearn. Fig-

ure 7 presents the results of VolcanoML compared

to auto-sklearn (AUSK) and TPOT on the 30 clas-

sification tasks and the 20 regression tasks, respec-

tively. For classification tasks, we plot the classifica-

tion accuracy improvement (%); for regression tasks,

we plot the relative MSE improvement ∆, which is de-

fined as ∆(m1,m2) = s(m2)−s(m1)
max(s(m2),s(m1))

, where s(·) is

MSE on the test set. Overall, VolcanoML outper-

forms auto-sklearn and TPOT on 25 and 23 of the 30

classification tasks, and on 17 and 15 of the 20 regres-

sion tasks, respectively.

We also conduct experiments to evaluate Vol-

canoML with different time budgets. Figure 8 presents

the results on four large classification datasets. We

https://github.com/PKU-DAIR/mindware
https://github.com/PKU-DAIR/mindware
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Fig. 7 End-to-End results on 30 OpenML classification (CLS) datasets and 20 OpenML regression (REG) datasets.
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Fig. 8 Average test errors on four large datasets with different time budgets.
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Table 1 Average ranks on 30 classification (CLS) datasets and 20 regression (REG) datasets with three different search
spaces. (The lower is the better)

Search Space - Task TPOT AUSK− AUSK VolcanoML− VolcanoML
Small - CLS 3.09 3.07 3.01 2.94 2.89
Medium - CLS 3.2 3.32 3.27 2.78 2.43
Large - CLS 3.29 3.77 3.57 2.72 1.65
Small - REG 2.98 3.02 3.0 3.02 2.98
Medium - REG 2.95 3.3 3.12 2.75 2.88
Large - REG 3.1 3.85 3.82 2.15 2.08

observe that VolcanoML exhibits consistent perfor-

mance over different time budgets. Notably, on Higgs,

VolcanoML achieves 27.2% test error within 4 hours,

which is better than the performance of the other two

systems given 24 hours. Furthermore, we also design

additional experiments to evaluate the consistency of

system performance given different (larger) time bud-

gets and search spaces, and more details can be found

in the following sections.

We further study the scalability of the partic-

ipant systems on the three aforementioned search

spaces. Without meta-learning, VolcanoML achieves

the best average rank for both the classification and

regression tasks — on the small search space (with

20 hyper-parameters), VolcanoML performs slightly

better than auto-sklearn and TPOT, and it performs

significantly better on the medium (with 29 hyper-

parameters) and large (with 100 hyper-parameters)

search spaces. For meta-learning, we present more em-

pirical results and discussions in Section 6.6.

6.3 Search Space Enrichment

We now evaluate the extensibility of VolcanoML via

two experiments with enriched search spaces.

Adding Data Balancing Operator. In the first ex-

periment, we implement the feature engineering oper-

ator “smote balancer” – a popular over-sampling te-

chinique proposed for the overfitting problem, and in-

corporate it into the aforementioned balancing stage

of feature engineering (FE) (Section 3.1). Note that

auto-sklearn cannot support this fine-grained enrich-

ment of the search space. Table 2 presents the results

of auto-sklearn, VolcanoML without enrichment,

and VolcanoML with enrichment, on five imbalanced

datasets. We observe that enriching the search space

brings further improvement, e.g., VolcanoML with

enrichment outperforms auto-sklearn by 3.57% (bal-

anced accuracy) on the dataset pc2.

Supporting Embedding Selection. In the second ex-

periment, we add a new stage “embedding selection”

into the FE pipeline, with two candidate embedding-

extraction operators (i.e., two pre-trained models). This

allows VolcanoML to deal with images, which is dif-

ficult for auto-sklearn and TPOT to support using ex-

isting code. We implement two pre-trained models to

generate embeddings for images, and we evaluate Vol-

canoML with the enriched search space on the Kaggle

dataset dogs-vs-cats. We observe that VolcanoML

achieves 96.5% test accuracy, which is significantly bet-

ter than 70.4% obtained by VolcanoML without con-

sidering embeddings.

Table 2 Test accuracy (%) of VolcanoML with and with-
out the enrichment of “smote balancer” operator.

Dataset AUSK VolcanoML− VolcanoML

sick 97.29 97.31 97.34
pc2 86.70 86.91 90.27
abalone 66.86 65.97 67.32
page-blocks(2) 94.70 95.29 96.69
hypothyroid(2) 99.62 99.64 99.64

6.4 Comparison with 4 Industrial Platforms

We run additional experiments on six Kaggle competi-

tions (See Table 3 for dataset statistics) over four com-

mercial baselines (AutoML services from Google, AWS,

Azure and Oracle) as follows:

– Google Cloud AutoML on unknown running envi-

ronment (not transparent to users).

– AWS Sagemaker AutoPilot on an instance

‘ml.m5.4xlarge’ with 16 Intel Xeon® Platinum

8175M processors and 64G memory.

– Azure Automated ML on two instances ‘STAN-

DARD D12’ with totally 8 unknown processors and

56G memory.

– Oracle Data Science on an instance

‘VM.Standard2.2’ with 2 2.0 GHz Intel® Xeon®
Platinum 8167M processors and 30G memory.

– VolcanoML on an Ali-cloud instance

‘ecs.hfc6.2xlarge’ with 8 3.10 GHz Intel® Xeon®
Platinum 8269CY processors and 30G memory.
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Fig. 9 Test error on Kaggle competitions compared with commericial baselines.

Table 3 Kaggle dataset information.

Datasets Classes Samples Features
Influencers in Social Networks 2 5500 22
West-Nile Virus Prediction 2 10506 11
Employee Access Challenge 2 32769 9
Santander Customer Satisfaction 2 76020 369
Predicting Red Hat Business Value 2 2197291 12
Flavors of Physics 2 38012 49

Due to the different design principles (different

hardware and parallelism) of commercial manufactur-

ers, it is very hard to set up exactly the same environ-

ment settings. We set the the maximal time budget as

10 hours and use cost as an additional metric. Here,

we anonymously refer to these platforms as Platform

1-4. Figure 9 show the results of VolcanoML and

the platforms. We observe that VolcanoML- (with-

out meta-learning) achieves satisfactory results com-

pared with those cloud solutions on the six tasks. Due to

the large initial search space, VolcanoML- performs

slightly worse than VolcanoML (with meta-learning)

in the beginning on Influence Network, Virus Predic-

tion, and Business Value. Given more time budget (i.e.,

fix the x-axis to some time budget), VolcanoML and

VolcanoML- show similar results and often outper-

form the considered commercial platforms. This demon-

strates VolcanoML’s effectiveness against the com-

mercial AutoML baselines.

6.5 Scalability on Different Search Space

To evaluate the scalability of each system, we design

three search spaces of different sizes. The small search

space only contains four feature selectors (select per-

centile, select generic univariate, extra trees preprocess-
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Table 4 Average ranks on 30 classification (CLS) datasets
and 20 regression (REG) datasets with three different search
spaces (The lower is the better). The budget is 1800 seconds
for classification and 5400 seconds for regression.

Search Space - Task TPOT AUSK VolcanoML
Small - CLS 2.03 1.98 1.98
Medium - CLS 1.95 2.21 1.83
Large - CLS 1.97 2.43 1.60
Small - REG 2.00 2.00 2.00
Medium - REG 2.05 2.30 1.65
Large - REG 2.10 2.20 1.70

Table 5 Average ranks on 30 classification (CLS) datasets
and 20 regression (REG) datasets with three different search
spaces (The lower is the better). The budget is 3600 seconds
for classification and 10800 seconds for regression.

Search Space - Task TPOT AUSK VolcanoML
Small - CLS 2.03 1.97 2.0
Medium - CLS 1.90 2.27 1.83
Large - CLS 2.03 2.53 1.43
Small - REG 1.95 2.00 2.05
Medium - REG 1.95 2.30 1.75
Large - REG 1.98 2.28 1.75

Table 6 Average ranks on 30 classification (CLS) datasets
and 20 regression (REG) datasets with three different search
spaces (The lower is the better). The budget is 7200 seconds
for classification and 21600 seconds for regression.

Search Space - Task TPOT AUSK VolcanoML
Small - CLS 2.00 2.00 2.00
Medium - CLS 1.97 2.23 1.80
Large - CLS 1.92 2.40 1.68
Small - REG 2.00 2.00 2.00
Medium - REG 1.95 2.23 1.83
Large - REG 2.00 2.10 1.90

ing, and liblinear SVM preprocessing) and uses random

forest as the ML algorithm. The medium search space

contains the same four feature selectors as the small one

and uses linear svc(r), random forest, and AdaBoost as

the ML algorithms. The large search space is the entire

search space described in Section 3.1. The three spaces

include 20, 29, and 100 hyper-parameters, respectively,

and the smaller space is a subset of the larger one.

To further investigate the result of VolcanoML

over 1) different time budgets and 2) different search

spaces, we conducted additional experiments to run

each system given 1800 / 5400 seconds, 3600 / 10800

seconds and 7200 / 21600 seconds for classification / re-

gression tasks over the small, medium and large search

spaces respectively. These numbers are chosen by fol-

lowing the settings in papers of auto-sklearn and

TPOT. The experiments include 50 AutoML tasks (30 for

classification and 20 for regression), and we use the met-

ric — average rank to measure each system. Tables 4, 5

and 6 show the results over three different search spaces

given different time budgets. We can observe that, with

the increase of time budget and search space, Vol-
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Fig. 10 The result of the first 50 evaluations on ‘quake’
and ‘space ga’ using LibSVM. VolcanoML− refers to Vol-
canoML with meta-learning based BO disabled.

canoML still achieves the best average rank, and per-

forms better compared with auto-sklearn and TPOT.

6.6 Results about Meta-Learning based Optimization

Meta-learning in Joint Block. Figure 10 shows

the improvement of meta-learning in a joint block.

Compared with VolcanoML−, the validation error

drops significantly in the first 10 evaluations on Vol-

canoML, which indicates that meta-learning captures

the information of the historical tasks and performs an

effective warm-start. When achieving the same valida-

tion error as vanilla VolcanoML−, VolcanoML re-

duces the number of evaluations by eight-fold on quake

and two-fold on space ga.

Meta-learning in Conditioning Block. To com-

pare the performance of RankNet, we also used Light-

GBM to model the relationship between algorithm per-

formance and tasks by transforming the ranking prob-

lem into a binary classification problem. The input to

both LightGBM and RankNet is the same. We adopted

10-fold validation mechanism to evaluate each method;

the meta-learner is learned on the training set, and

validated on the validation set. In addition, we mea-

sured the performance of each method using the met-

ric ‘mAP@5 ’, which is the mean Average Precision

to predict the top-5 algorithms. RankNet and Light-

GBM gets 0.87 and 0.62 mAP@5 score respectively.
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This demonstrates the more powerful expressiveness of

neural networks (RankNet) than traditional ML algo-

rithms (LightGBM ).

Table 1 also summarizes the performance of meta-

learning in terms of the average ranks. With meta-

learning, the average rank of VolcanoML is dramati-

cally improved compared with auto-sklearn. Overall,

VolcanoML with meta-learning achieves the best re-

sult over large search space.

6.7 Evaluations on Different Execution Plans

To address the inefficiency of automated plan genera-

tion, we apply the execution plan that performs well

on most tasks. Since there are lots of ways to decom-

pose AutoML space, enumerating and evaluating each

execution plan is impossible. To avoid enumerating the

entire search space, we list all the execution plans (a

small plan set) in the coarse-grained level — sub-task,

and this small plan set covers both the frameworks in

existing AutoML systems and the strategies used by

human experts. Concretely, we can obtain this small

plan set by decomposing the search space according to

the sub-tasks in AutoML: feature engineering, hyper-

parameter tuning and algorithm selection. There are in

total five execution plans (See Figure 6) — J, C, A, AC,

and CA. If we decompose the search space in a more

fine-grained level, the plan set will be larger. Note that,

most of the existing open-source AutoML systems, e.g.,

auto-sklearn and TPOT correspond to the execution

plan — plan 1 (J ). We evaluate each of them on 20

classification tasks and 10 regression tasks, and the re-

sults can be found in Tables 7 and 8. We can have that

the proposed execution plan used in VolcanoML (i.e.,

plan 5 - CA) outperforms the other alternatives on most

tasks (a smaller average rank). This demonstrates the

effectiveness of the proposed execution plan over the

potential competitors.

Furthermore, if we look at the performance

of the existing open-source AutoML systems, i.e.,

auto-sklearn and TPOT, which fall into the execution

plan 1 - J. As shown in Tables 7 and 8, we find that the

execution plan used in VolcanoML (i.e., CA) outper-

forms the two AutoML systems on most tasks (a smaller

average rank).

The test results are shown in Tables 7 and 8. We can

have that the best execution plan varies over datasets.

Surprisingly, we find that Plan 5, which is the execu-

tion plan introduced in VolcanoML, achieves the first

place on 16 of the total 30 tasks with an average rank

of 2.45 (the lower, the better). TPOT and autosklearn

that use a single joint block achieves an average rank

of 3.83 and 4.98 respectively. Therefore, the proposed

execution plan (Plan 5) in VolcanoML sets up a very

competitive AutoML baseline for our further research

on VolcanoML, e.g., automatic plan generation.

6.8 Additional Experiment Results

Comparison with early-stopping methods. Ta-

ble 9 show the results for VolcanoML compared

with early-stopping based methods on five classifica-

tion datasets and five regression datasets in Table 9.

The datasets are of medium size, each of which con-

tains 8192 samples. The settings follow Section 6.1, and

the compared baselines are Hyperband [51], BOHB [21],

and MFES-HB [57]. Remind that VolcanoML uses

SMAC [32] in the joint block by default. While the ex-

ecution plan in VolcanoML is independent of opti-

mization algorithms, we also implement VolcanoML

+, which applies the MFES-HB algorithm in the joint

block. From Table 9, we observe that VolcanoML

with SMAC outperforms the three early-stopping meth-

ods, and the performance is further improved when we

combine the benefits of both VolcanoML execution

plans and early-stopping optimization methods.

Results on large datasets. Table 10 shows the re-

sults on ten large datasets with a budget of 18,000

seconds. VolcanoML is the best on eight of them.

Figure 11 shows the validation errors on four of those

datasets. When achieving the same validation error

compared with TPOT and auto-sklearn, VolcanoML

obtains a speed-up of 4.3-10.5× and 4.8-11×, respec-

tively.

Continue tuning in conditional block. To show

the process of continue tuning, we present a case study

on the dataset pc4. We add three algorithms (Light-

GBM, Extra Trees, and Liblinear SVC) after tuning

7 other algorithms in VolcanoML for 1200 seconds.

The total budget is 1800 seconds. The trend of the

number of active blocks is plotted in Figure 12. When

new algorithms come, VolcanoML with restarting re-

optimizes the extended search space, and it takes an-

other 540s to reduce the number of active algorithms to

6. For VolcanoML with continue tuning, the number

of active algorithms is 4 (1 survived + 3 added) when

new algorithms are added, and it takes another 220 sec-

onds to reduce the number to 1, which is LightGBM

in the added algorithms. As continue tuning avoids

exploring the search space of those eliminated algo-

rithms, VolcanoML with continue tuning improves

the test accuracy on pc4 to 86.44% compared with

84.74% achieved by VolcanoML with restarting.

Comparison with progressive methods. We also

compare the progressive strategies with original ones on



Efficient End-to-End AutoML via Scalable Search Space Decomposition (Extended Paper) 19

Table 7 Test accuracy with different execution plans for classification.

Dataset Plan 1 Plan 2 Plan 3 Plan 4 Plan 5 TPOT AUSK
puma8NH 0.8275 0.8312 0.8271 0.8280 0.8303 0.8306 0.8325
kin8nm 0.8808 0.8886 0.8886 0.8654 0.8910 0.8706 0.8834
cpu cmall 0.9122 0.9126 0.9126 0.9027 0.9127 0.9121 0.9106
puma32H 0.8849 0.8864 0.8848 0.8835 0.8894 0.8955 0.8830
cpu act 0.9303 0.9315 0.9305 0.9302 0.9309 0.9312 0.9298
bank32nh 0.7896 0.7889 0.7838 0.7891 0.7957 0.7593 0.7957
mc1 0.8796 0.8904 0.8722 0.8721 0.8975 0.8835 0.8896
delta elevators 0.8763 0.8760 0.8779 0.8766 0.8790 0.8835 0.8743
jm1 0.6718 0.6721 0.6581 0.6473 0.6692 0.6415 0.6772
pendigits 0.9932 0.9936 0.9929 0.9945 0.9937 0.9931 0.9944
delta ailerons 0.9235 0.9240 0.9242 0.9225 0.9259 0.9278 0.9259
wind 0.8587 0.8589 0.8566 0.8583 0.8593 0.8542 0.8494
satimage 0.8961 0.8954 0.8965 0.8946 0.8981 0.8961 0.8793
optdigits 0.9889 0.9889 0.9883 0.9889 0.9889 0.9902 0.9818
phoneme 0.8799 0.8832 0.8808 0.8791 0.8866 0.8812 0.8770
spambase 0.9401 0.9406 0.9379 0.9387 0.9386 0.9385 0.9358
abalone 0.6688 0.6679 0.6618 0.6614 0.6680 0.6748 0.6751
mammography 0.8740 0.8783 0.8577 0.8755 0.8787 0.8568 0.8762
waveform 0.8948 0.8961 0.8900 0.8835 0.8952 0.8955 0.9040
pollen 0.4934 0.5013 0.5012 0.5013 0.5013 0.4961 0.4896
Average Rank 4.30 2.98 4.80 5.13 2.58 3.83 4.40

Table 8 Test mean square error with different execution plans for regression.

Dataset Plan 1 Plan 2 Plan 3 Plan 4 Plan 5 TPOT AUSK
bank8FM 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0009
bank32nh 0.0071 0.0069 0.0070 0.0071 0.0069 0.0069 0.0070
kin8nm 0.0067 0.0068 0.0073 0.0076 0.0066 0.0092 0.0148
puma8NH 10.3020 10.0822 10.1293 10.1091 10.1698 10.1043 10.2109
cpu small 7.3994 7.0854 7.0069 7.1741 7.0051 7.4058 8.7286
wind 8.9650 8.9636 8.8993 9.2930 8.6976 8.8618 9.2261
cpu act 5.0067 4.8762 4.7950 4.7983 4.7790 4.8373 6.4232
puma32H 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001
sulfur 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003
space ga 0.0115 0.0093 0.0098 0.0099 0.0098 0.0098 0.0108
Average Rank 4.95 3.00 3.40 4.30 2.20 4.00 6.15

(a) Classification

Dataset (ID) VolcanoML VolcanoML + HyperBand BOHB MFES-HB
puma8NH (816) 83.03 83.12 83.01 82.91 82.96
kin8nm (807) 89.10 89.14 88.28 88.70 89.12
cpu small (735) 91.27 91.33 90.97 91.08 91.14
puma32H (752) 89.55 89.61 89.34 89.43 89.73
cpu act (761) 93.12 93.01 92.88 92.96 92.97
Average Rank 2.2 1.4 4.6 4.2 2.6

(b) Regression

Dataset (ID) VolcanoML VolcanoML + HyperBand BOHB MFES-HB
puma8NH (225) 10.1698 10.1642 10.1843 10.1654 10.2619
kin8nm (189) 0.0066 0.0069 0.0081 0.0073 0.0072
cpu small (227) 7.0051 7.1341 7.4657 7.5272 7.5363
puma32H (308) 0.0000 0.0000 0.0000 0.0000 0.0000
cpu act (573) 4.7790 4.7524 4.8778 5.2856 5.1506
Average Rank 2.0 1.8 3.6 3.6 4.0

Table 9 Test accuracy (%) and test mean squared error of
VolcanoML compared with early-stopping methods. Vol-
canoML + refers to the combination of VolcanoML with
MFES-HB.

five classification tasks and five regression tasks. The

settings follow Section 6.1 and the results are shown in

Table 11. We observe that the original strategy outper-

forms the progressive one on 8 of the 10 tasks. As a

Table 10 Test balanced accuracy on 10 large datasets.

Datasets TPOT AUSK VolcanoML

mnist 784 0.9724 0.9701 0.9795
letter(2) 0.9969 0.9939 0.9969
kropt 0.8656 0.8267 0.8669
mv 0.9997 0.9994 0.9997
a9a 0.8129 0.8250 0.8215
covertype 0.7124 0.7098 0.7152
2dplanes 0.9291 0.9297 0.9293
higgs 0.7235 0.7258 0.7279
electricity 0.9327 0.9226 0.9329
fried 0.9296 0.9280 0.9300

result, we apply it as the original strategy by default

for VolcanoML.

7 Conclusion

In this paper, we have presented VolcanoML, a

scalable and extensible framework that allows users
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Fig. 11 Test errors on four medium datasets given different time budgets.
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Fig. 12 The trend of the number of active algorithms in the
conditional block on pc4.

(a) Classification

Dataset (ID) Original Progressive
puma8NH (816) 83.03 82.99
kin8nm (807) 89.10 88.72
cpu small (735) 91.27 91.27
puma32H (752) 89.55 88.97
cpu act (761) 93.12 93.09

(b) Regression

Dataset (ID) Original Progressive
puma8NH (225) 10.1698 10.2437
kin8nm (189) 0.0066 0.0065
cpu small (227) 7.0051 7.2181
puma32H (308) 0.0000 0.0001
cpu act (573) 4.7790 4.8321

Table 11 Test accuracy (%) and test mean squared error for
two optimization strategies on classification and regression
tasks.

to design decomposition strategies for large AutoML

search spaces in an expressive and flexible manner.

VolcanoML introduces novel building blocks akin

to relational operators in database systems that en-

able expressing search space decomposition strategies

in a structured fashion – similar to relational execution

plans. Moreover, VolcanoML introduces a Volcano-

style execution model, inspired by its classic counter-

part that has been widely used for relational query

evaluation, to execute the decomposition strategies

it yields. Experimental evaluation demonstrates that

VolcanoML can generate more efficient decomposi-

tion strategies that also lead to performance-wise bet-

ter ML pipelines, compared to state-of-the-art AutoML

systems.
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A Appendix

In this section, we describe more details about the back-
ground, system design and implementations.

A.1 AutoML Formulations and Motivations

A.1.1 Formulations

Definition and Notation. There are K candidate algo-
rithms A = {A1, ..., AK}. Each algorithm Ai has a corre-
sponding hyper-parameter space Λi. The algorithm Ai with
hyper-parameter configuration λ and new feature set F is de-
noted by Ai(λ,F ). Given the dataset D = {Dtrain, Dvalid}
of a learning problem, the AutoML problem is to find the
joint algorithm, feature, and hyper-parameter configuration



Efficient End-to-End AutoML via Scalable Search Space Decomposition (Extended Paper) 21

50 60 70 80 90 100
Number of Hyperparameters

8

10

12

14

16

V
al

id
at

io
n

er
ro

r
(%

)

AUSK

Ideal
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structed by 30 FE and HPO configurations on fri c1 using
Random Forest. For FE configurations, the performance in-
creases from top to down; for HPO configurations, the perfor-
mance increases from left to right (The deeper, the better).

A∗(λ∗,F ∗) that minimizes the loss metric (e.g., the validation

error on Dvalid):

A∗(λ∗,F ∗) = argmin
Ai∈A,λ∈Λi,F∈Fi

L(Ai(λ,F );D), (14)

where Fi = Gen(Ai, D,op) is the feature space of Ai that
can be generated from the raw feature (data) set D, and op
is the set of available FE operators.

Challenge: Ever-growing Search Space. Enriching the
search space can lead to performance improvement since the
enriched search space may bring better configurations. How-
ever, an ever-growing search space can significantly increase
the complexity of searching for ML pipelines. Existing Au-
toML systems usually can only explore very limited config-
urations in a huge search space, and thus suffer from the
low-efficiency issue [53] that hampers the effectiveness of Au-
toML systems. In Figure 13, we provide a brief example of
auto-sklearn, one state-of-the-art system AutoML system.
Its search algorithm cannot scale to a high-dimensional search
space [53]. To alleviate this issue, in this paper we focus on
developing a scalable AutoML system.

A.1.2 Observations and Motivations about AutoML

We now present several important observations that inspired
the design of VolcanoML.

Observation 1. The search space can be partitioned ac-
cording to ML algorithms. The entire search space is the
union of the search spaces of individual algorithms, i.e.,
Ω = {S1, ..., SK}, where Si is the joint space of features
and hyper-parameters, i.e., Si = (Λi ×Fi).
Observation 2. The sub-space of algorithm Ai can be very
large, e.g., in auto-sklearn, Si usually includes more than
50 hyper-parameters. When exploring the search spaces via
extensive experiments, we observe the following:

– If hyper-parameter configuration λ1 performs better than
λ2, i.e., λ1 ≤ λ2, then it often holds that (λ1, F ) ≤
(λ2, F ) for the joint configuration (λ, F ) with F fixed;

– If FE pipeline configuration F1 performs better than F2,
i.e., F1 ≤ F2, then it often holds that (λ, F1) ≤ (λ, F2)
for the joint configuration (λ, F ) with λ fixed.

Figure 14 presents an example for these observations. This
motivates us to solve the joint FE and HPO problem via
alternating optimization. That is, we can alternate between
optimizing FE and HPO, and we can fix the FE configuration
(resp. HPO configuration) when optimizing for HPO (resp.
FE). This alternating manner is indeed similar to how human
experts solve the joint optimization problem manually. One
obvious advantage of alternating optimization is that each
time only a much smaller subspace (Λi or Fi) needs to be
optimized, instead of the joint space Si = (Λi ×Fi).
Observation 3. The sensitivity of ML algorithms to FE and
HPO is often different. Taking Figure 14 for example, com-
pared to HPO, FE has a larger influence on the performance
of ‘Random Forest ’ on ‘fri c1’; in this case, optimizing FE
more frequently can bring more performance improvement.

Observation 4. The above observations motivate the use of
meta-learning. We can learn (1) the algorithm performance
across ML tasks and (2) the configuration selection of each
ML algorithm across tasks. Such meta-knowledge obtained
from historical tasks can greatly improve the efficiency of ML
pipeline search.

Therefore, a scalable AutoML system should include two
basic components: (1) an efficient framework that can navi-
gate in a huge search space, and (2) a meta-learning module
that can extract knowledge from previously ML tasks and
apply it to new tasks.

A.2 VolcanoML Components and Implementations

A.2.1 Compenents and Search Space

Feature Engineering. The feature engineering pipeline is
shown in Figure 2. It comprises four sequential stages: pre-
processors (compulsory), scalers (5 possible operators), bal-
ancers (1 possible operators) and feature transformers (13
possible operstors). For each of the latter three stages, Vol-
canoML picks one operator and then execute the entire
pipeline. Table 13 presents the details of each operator. The
total number of hyper-parameters for FE is 52.

We follow the design of the search space for feature en-
gineering in the existing AutoML systems, e.g., autosklearn
and TPOT. It limits the search space for feature engineering
by adopting a fixed pipeline including different stages, and
each stage is equipped with an operation (featurizer) that
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is selected from a pool of featurizers. The pool of featur-
izers at each stage is relatively small, and Bayesian opti-
mization can be used to choose the proper featurizers for
each stage. When the pool of featurizers is very large, high-
dimensional Bayesian optimization algorithms could work
better. In many real-world cases, though this architecture is
not good enough for feature engineering (effectiveness), there
still remains space to explore to conduct feature engineer-
ing effectively and efficiently. To support real scenarios, Vol-
canoML provides API for user-defined feature engineering
operators and we recommend users to add domain-specific
feature engineering operators to the search space for better
search performance. In addition, users can replace the original
feature engineering part in VolcanoML with other iterative
feature engineering methods easily.

ML Algorithms. VolcanoML implements 11 algorithms
for classification and 10 algorithms for regression, with a to-
tal of 50 and 49 hyper-parameters respectively. The built-
in algorithms include linear models, support vector machine,
discriminant analysis, nearest neighbors, and ensembles. Ta-
ble 12 presents the details.

Ensemble Methods. Ensembles that combine predictions
from multiple base models have been known to outperform
individual models, often drastically reducing the variance of
the final predictions [17]. VolcanoML provides four ensem-
ble methods: bagging, blending, stacking, and ensemble se-
lection [12]. During the search process, the top Ntop con-
figurations for each algorithm are recorded and the corre-
sponding models are stored. After the optimization budget
exhausts, the saved models are treated as the base models
for the ensemble method. We use ensemble selection as the
default method and build an ensemble of size 50.

Table 12 Hyper-parameters of ML algorithms in Vol-
canoML. We distinguish categorical (cat) hyper-parameters
from numerical (cont) ones. The numbers in the brackets are
conditional hyper-parameters.

Type of Classifier #λ cat (cond) cont (cond)

AdaBoost 4 1 (-) 3 (-)
Random forest 5 2 (-) 3 (-)
Extra trees 5 2 (-) 3 (-)
Gradient boosting 7 1 (-) 6 (-)
KNN 2 1 (-) 1 (-)
LDA 4 1 (-) 3 (1)
QDA 1 - 1 (-)
Logistic regression 4 2 (-) 2 (-)
Liblinear SVC 5 2 (2) 3 (-)
LibSVM SVC 7 2 (2) 5 (-)
LightGBM 6 - 6 (-)

Type of Regressor #λ cat (cond) cont (cond)

AdaBoost 4 1 (-) 3 (-)
Random forest 5 2 (-) 3 (-)
Extra trees 5 2 (-) 3 (-)
Gradient boosting 7 1 (-) 6 (-)
KNN 2 1 (-) 1 (-)
Lasso 3 - 3 (-)
Ridge 4 1 (-) 3 (-)
Liblinear SVC 5 2 (2) 3 (-)
LibSVM SVC 8 3 (3) 5 (-)
LightGBM 6 - 6 (-)

Table 13 Hyper-parameters of FE operators in Vol-
canoML.

Type of Operator #λ cat (cond) cont (cond)

One-hot encoder 0 - -
Imputer 1 - 1 (-)

Minmax 0 - -
Normalizer 0 - -
Quantile 2 1 (-) 1 (-)
Robust 2 - 2 (-)
Standard 0 - -

Weight Balancer 0 - -

Cross features 1 - 1 (-)
Fast ICA 4 3 (1) 1 (1)
Feature agglomeration 4 3 (2) 1 (-)
Kernel PCA 5 1 (1) 4 (3)
Rand. kitchen sinks 2 - 2 (-)
LDA decomposer 1 1 (-) -
Nystroem sampler 5 1 (1) 4 (3)
PCA 2 1 (-) 1 (-)
Polynomial 2 1 (-) 1 (-)
Random trees embed. 5 1 (-) 4 (-)

SVD 1 - 1 (-)
Select percentile 2 1 (-) 1 (-)
Select generic univariate 3 2 (-) 1 (-)
Extra trees preprocess-
ing

5 2 (-) 3 (-)

Linear SVM preprocess-
ing

5 3 (3) 2 (-)

A.2.2 Programming Interface

Consider a tabular dataset of raw values in a CSV file, named
train.csv, where the last column represents the label. We
take a classification task as an example. With VolcanoML,
only six lines of code are needed for searching and model
evaluation.

from ... import DataManager , Classifier

dm = DataManager ()

train_node = dm.load_train(’train.csv’)

test_node = dm.load_test(’test.csv’)

clf = Classifier (** params ).fit(train_node)

predictions = clf.predict(test_node)

By calling load train and load test, the data manager
automatically identifies the type of each feature (continuous,
discrete, or categorical), imputes missing values, and converts
string-like features to one-hot vectors. By calling fit, Vol-
canoML splits the dataset into folds for training and val-
idation, evaluates various configurations, and generates an
ensemble from each individual configuration. For users who
need to customize the search process, Classifier provides
additional parameters to specify:

– time limit controls the total runtime of the search pro-
cess;

– include algorithms specifies which algorithms are in-
cluded (if not specified, all built-in algorithms are in-
cluded);

– ensemble method chooses which ensemble strategy to use;
– enable meta determines whether to use meta-learning to

accelerate the search process;
– metric specifies the metric used to evaluate the perfor-

mance of each configuration.

Customized Components. VolcanoML provides APIs
to easily enrich the search space, such as the stage in FE
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pipeline, FE operators, and ML algorithms. The following is
the syntax of defining customized components:

from ... import add_classifier

from ... import update_FEPipeline

from ... import BaseModel , BaseOperator

# Add new ML algorithm.

class CustomizedModel(BaseModel ):

def fit(x,y): ...

def predict(x): ...

def get_search_space (): ...

add_classifier(CustomizedModel)

# Add new FE operator.

class CustomizedOP(BaseOperator ):

def operate(x): ...

def get_search_space (): ...

# Customize FE pipeline.

update_FEPipeline ([‘ new_stage ’, ...],

    {‘new_stage ’: [CustomizedOP],

...})

It is important to note that, auto-sklearn does not sup-
port adding a new stage or updating the existing stages in
the FE pipeline. In addition, auto-sklearn cannot add an
operator for any stage (e.g., adding smote balancer to the
stage balancer), while VolcanoML supports this.

A.3 Experiment Datasets

In our experiments, we splitted each dataset into five folds.
Four are used for training and the remaining one is used for
testing. The 60 OpenML datasets used are presented as fol-
lows (in the form of “dataset name (OpenML id)”):

Classification Datasets. kc1 (1067), quake (772), seg-
ment (36), ozone-level-8hr (1487), space ga (737), sick
(38), pollen (871), analcatdata supreme (728), abalone
(183), spambase (44), waveform(2) (979), phoneme (1489),
page-blocks(2) (1021), optdigits(28), satimage (182), wind
(847), delta ailerons (803), puma8NH (816), kin8nm (807),
puma32H (752), cpu act (761), bank32nh (833), mc1 (1056),
delta elevators (819), jm1 (1053), pendigits (32), mammog-
raphy (310), ailerons (734), eeg (1471), letter(2) (977), kropt
(184), mv (881), fried (901), 2dplanes (727), electricity (151),
a9a (A2), mnist 784 (554), higgs (23512), covertype (180).

Regression Datasets. stock (223), socmob (541), Money-
ball (41021), insurance (A1), weather izmir (42369), us crime
(315), debutanizer (23516), space ga (507), pollen (529),
wind (503), bank8FM (572), bank32nh (558), kin8nm
(189), puma8NH (225), cpu act (573), puma32H (308),
cpu small (227), visualizing soil (668), sulfur (23515), rain-
fall bangladesh (41539).

Since the datasets insurance and a9a are not collected in
OpenML, we use A1 and A2 as their OpenML ID instead.
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lenstein, N., Jiang, J., Karlaš, B., Lemmin, T., Li, T., Li,
Y., et al.: Ease. ml: A lifecycle management system for

machine learning. In: Proceedings of the Annual Con-
ference on Innovative Data Systems Research (CIDR),
2021. CIDR (2021)

2. Bai, Y., Li, Y., Shen, Y., Yang, M., Zhang, W., Cui, B.:
Autodc: an automatic machine learning framework for
disease classification. Bioinformatics (2022)

3. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collab-
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