Structured Document Storage and Refined

Declarative and Navigational Access Mechanisms in

HyperStorM*!

Klemens Bohm, Karl Aberer, Erich J. Neuhold, and Xiaoya Yang
GMD-IPSI, Dolivostrafie 15, 64293 Darmstadt, Germany
{kboehm, aberer, neuhold, yangx}@Qdarmstadt.gmd.de

Abstract

The combination of SGML and database technology allows to refine
both declarative and navigational access mechanisms for structured
document, collection: with regard to declarative access, the user can
formulate complex information needs without knowing a query lan-
guage, the respective document-type definition or the underlying mod-
elling. Navigational access is eased by hyperlink-rendition mechanisms
going beyond plain link-integrity checking. With our approach, the
database-internal representation of documents is configurable. It al-
lows for an efficient implementation of operations, because DTD knowl-
edge is not needed for document structure recognition. We show how
the number of method invocations and the cost of parsing can be sig-

nificantly reduced.

Keywords: OODBMSs, SGML, document query languages, navigation

*‘HyperStorM’ is an acronym for ‘Hypermedia Document Storage and Modelling’
TThis article has been accepted for publication in VLDB Journal, Volume 6 (1997),

Issue 4

1 Introduction

1.1 Objective of this Work

With open systems, such as the World-Wide Web (WWW), and document-
exchange formats where markup can be placed within the document at ease,
notably HTML [HTM], there neither is control over the structure of individ-
ual documents nor over consistency of the document collection. With the
combination of SGML (‘Standard Generalized Markup Language’) [ISO86]
and database technology, on the other hand, one can specify the logical
structure of documents, make assumptions about their structure and en-
sure the consistency of the document collection. This allows to refine both

declarative and navigational access mechanisms.

Declarative access. With regard to declarative access to a document
collection, the prevailing question in literature in the past few years has
been: which is the most expressive query language? However, the more
expressive the query language, the more complex it is. In addition to having
an interface allowing the formulation of complex queries, ease of use of the
search mechanisms has a high priority for a lot of users. In this article, we
describe mechanisms for declarative access, so-called query templates. They
allow the user to search with a fairly high expressive power without having
to know a query language, the respective document-type definition, or the
underlying modelling. Different query templates can be made available for
individual user groups.

A query template is a document-type-specific query form that is gen-
erated automatically from the corresponding document-type definition and
an additional query-template specification. With a query template, only a
limited set of element- and attribute types is made available for querying.
Hence, the query template can be seen as a view mechanism. The query-

template specification is administered by the database application. This

ensures consistency of the query template with the respective document-
type definition. In consequence, only meaningful queries can be generated
from the user input.

With regard to query templates, we exploit the fact that there is a
document-type definition, i.e., a schema that documents of a certain type
must conform to. On the contrary, if HTML-documents were to be adminis-
tered, the following problems would be in the way of having query templates

and making proper use of them:

e No support for individual document types. While trying to
provide coverage for all kinds of documents, HTML is highly generic.
SGML, however, has been developed to reflect the particularities of dif-
ferent application scenarios by using different document types. Queries
can be much more specific if the document type may be taken into ac-

count.

e Meta-information is not available or may not be consistent.
With appropriate document-type definitions, any kind of metadata'
might be seamlessly included into documents to cover users’ infor-
mation needs [KSS95]. With HTML 3.2, consistency of metadata in
different documents is not ensured. The HTML-DTD does not contain

any guidelines how meta-information should be modelled.

e Difficult to consider documents’ internal structure. As opposed
to SGML-DTDs specified for a particular application scenario, HTML
allows to model documents’ logical structure only in a generic way.
In consequence, search mechanisms are only a subset of the ones for

full-fledged SGML documents.

'Throughout this article, the terms ‘metadata’ and ‘metainformation’ are used

interchangeably.

Navigational access. Another aspect of applying both SGML and database

technology is support for navigation. The following problems are addressed:

e “Navigation Failure”. Navigation to a document may fail for a
variety of reasons: links to other documents may be outdated, i.e.,
the document referenced may have been removed or moved to another
location in the meantime. Navigation to a document referenced may
not be possible because the reader is not entitled to access it, or be-
cause the client is unable to present the (multimedia) document. E.g.,
a viewer for the respective format may not be available at the client

site.

e “Expectations vs. Actual Content”. Frequently, the reader has
no meaningful information on the document referenced by a hyperlink
within the current document or on the set of documents to be reached
by following a hyperlink anchor. Experience shows that, quite often,
expectations awakened by the context of a link anchor are not matched
when actually viewing the document. In other words, in order to find
out more about the target of the link, there seems to be no alternative

to bringing the document to the client site.

e “Lost in Hyperspace”. Traversing several hyperlinks may have the
effect that the reader looses orientation in the document collection.
Being “lost in hyperspace” [Con87] stems from the fact that hyperme-
dia objects, e.g., the WWW pages, are arranged in a non-linear way.
The reader may have to inspect several such objects to satisfy his in-
formation need. He may not be able to find all the relevant objects by

navigation or to avoid the irrelevant ones.

These problems are alleviated by our approach. With WWW-based ac-
cess to the document base, a document is converted to HI'ML according to a

conversion specification before presentation. This specification is contained

alliances, goose and duck pate de foie gras, truffles.. the Perisord (LANGUAGE: FRENCH) has
“a fragrant soul" Sarlat with its medieval authenticity, is its capital.

Figure 1: example for hyperlink rendition

in a style-sheet. Conversion takes place within the database. Namely, rendi-
tion of a hyperlink anchor pointing to another document may depend on that
document’s characteristics.? In particular, metadata on the document refer-
enced as well as documents indirectly referenced may be used for link anchor
rendition. As a simple example, consider a document collection where the
language of the document is made explicit in the document header, i.e., a
document with title ‘Perigord’ contains ‘<LANGUAGE>FRENCH</LANGUAGE>’.
If document ‘Perigord’ is referenced by another document, the respective
hyperlink anchor in the layouted version of the document may look as in
Figure 1. This alleviates the ‘Expectations-vs.-Actual-Content’ problem. In
this example, if the reader does not speak French, he knows that he does

not want to access the document.

With hyperlink rendition, information on the document directly refer-
enced, but also on documents indirectly referenced, may be taken into ac-
count. Information to be displayed within the hyperlink is specified in the
database-query language. To speed up the process of retrieving a document
from the database, HTML conversion results may be materialized in the

database.

If we again compare the administration of HTML documents to our ap-
proach, we face similar problems as with declarative access. Meta-information
may not be available for document rendition, or one cannot tell which meta-

information has been made explicit within documents. Inconsistent repre-

2Throughout this article, a document containing the anchor of a link referencing an-
other document will be called referencing document, the other document will be referred

to as the document referenced.

sentation of metadata likewise is a problem.

1.2 Database-Internal Representation of Documents

An efficient database-internal representation of structured documents is a
prerequisite to realize the functionality that has been outlined so far. We ad-
vocate a hybrid database-internal representation of documents. Only “big”
elements are represented by individual database objects. Different “small”
elements, so-called flat elements, are mapped to the same database object.
The structured representation of documents is advantageous to allow fine-
grained modifications of documents in the database and to reflect the seman-
tics of hypermedia document components, whereas performance of certain
basic operations, such as insertion of a document into the database, is better
with an unstructured representation [BAK95]. With regard to the mapping
of flat elements to database objects, there are design alternatives that are
described in this article.

Flat elements are completely marked up in the database. This allows a
more efficient implementation of methods operating on the document struc-
ture, as compared to parsing the document fragment (see Section 4). An-
other aspect is that elements can be disambiguously identified by means of
a logical object identifier. If, finally, methods are part of the database, as is
the case with an OODBMS, method invocations are relatively expensive.? Tt
is advantageous to take this into account when implementing the methods.

The database-internal representation of documents is configurable. The
initial configuration is described by means of an SGML document, an in-

stance of the so-called super-DTD. The configuration may be partially al-

30ur terminology is different from the one used in [Sto96]. Object-oriented DBMSs in
our terminology essentially correspond to object-relational ones in [Sto96]. There is no
counterpart in our terminology for object-oriented DBMSs in that terminology, which ba-
sically are persistent object-oriented programming languages without sophisticated declar-

ative access mechanisms.

tered at runtime. Using SGML to describe the startup configuration has the

following advantages:

e The consistency of this specification is checked by means of an SGML

parser.

e To specify the initial configuration, the specification document is in-
serted into the database in the same way normal documents are. No

differentiation is necessary from the user’s perspective.

e The DTD-designer can specify the startup configuration using a mech-

anism he is familiar with.
e The DTD-designer may use SGML tools to fulfill his task.

e The mechanisms described in this article for querying the document
collection, notably query templates, are also available for document
types as documents. In other words, the document type is explicitly
available, in analogy to database-schema information contained in a

data dictionary.

The remainder of this article has the following structure: in the following
section, related work is reviewed. Section 3 contains a brief review of SGML
concepts and introduces some notions that are relevant in this context. In
Section 4, we describe the database-internal representation of documents in
our framework. Section 5 describes how declarative access functionality can
be extended by using SGML and database technology, Section 6 focuses on

navigational access. Section 7 concludes the paper.

2 Related Work

We have classified related work as follows: related work with regard to
document modelling, related work with regard to declarative access, and

related work with regard to navigation and HTML conversion.

Related work with regard to document modelling. In order to rep-
resent the documents’ logical structure using an OODBMS, it seems fea-
sible to carry out a 1:1 mapping from elements to database objects. Fur-
thermore, there would be database classes, so-called element-type classes,
corresponding to an element type from the DTD. However, if this logical
view is identical with the physical representation, the following problem will
arisse: the duration of certain basic operations such as inserting documents
into the database or retrieving documents from the database is almost di-
rectly proportional to the number of database objects that are created or
retrieved, respectively. This may not be acceptable, as others have ob-
served, too [NBY95]. - An alternative seems to be the approach described
in [ACM93, ACM95]. They consider structured data whose physical repre-
sentation is flat, in particular data within files. If the structure is needed
for, e.g., query evaluation or updates, the document is parsed, and objects
in main memory are generated. Our work differs from theirs in the following

respects:

e With our approach, a document is not necessarily represented by
one file. Rather, the document may be physically fragmented in the
database, and the fragments’ logical structure can be recognized using,
e.g., the techniques described in [ACM93, ACM95]. The database-
internal representation is configurable. One advantage is that a finer
granularity is possible with regard to concurrent write access to the
document, using concurrency control mechanisms provided by the

DBMS.

e With our database-internal representation, the DTD is not needed to
recognize documents’ logical structure. More specific techniques than
parsing the document are applied. The advantages will be pointed out

in Section 4.

e An element has an OID whose lifetime is independent from the exis-

tence of a corresponding object in main memory.

Related work with regard to declarative access. The following issues
are of interest with regard to work on declarative access to document collec-
tions having originated in the database community [Mac91, C*94, MMM96,
QRS™95, BT94, ST94, O195].

e With our approach, expressiveness of the query language is achieved
by using methods of the database schema, together with OQL query
mechanisms [Cat94]. Compared to other approaches, the expressive
power is higher, while, on the other hand, it is not necessary to extend
the query algebra. Our approach allows for full-fledged information-
retrieval functionality (IR-functionality) [VAB96], which is different
from search on a syntactic level [SM83], as well as search on documents’

physical characteristics.

e With many of the above references, information with regard to docu-

ments’ database-internal representation is incomplete or missing.

e To the best of our knowledge, work cited above does not contain any
counterparts to query templates or the hyperlink rendition mechanisms

described in this article.

In more detail, work described in [CT94] is based on OODBMS-technology.
They have extended the underlying query algebra to reflect notions such as
the lengths of paths. By using OQL that allows inclusion of methods into
query statements, and having an adequate set of methods as part of the
database schema, the same expressiveness can be obtained without extend-
ing the query algebra. In [BT94], a datatype ‘structured text’ is introduced
to be integrated into relational database systems and an extension of SQL is

defined. To facilitate updates, the approach is to map SGML structures to

tables, but conformance to the DTD remains to be ensured. The PAT-query
algebra [ST94] lacks certain features such as the notion of position, query-
ing according to documents’ secondary structure, and aggregation. Further,
only elements can be retrieved. It is, however, independent of the data-model
and will be dealt with in Section 5 again. While in [O195] a user interface
for an SGML-/HyTime-document database has been realized, work seems

to have been centered around one particular document type.

In [YA94], a coupling of a DBMS and a text search engine is described.
There, documents’ internal structure is not modelled within the database.
The text engine used there does not support the notion of vagueness. The
need for IR-functionality, e.g., ranking, is acknowledged in [SDAMKY95].
Their objective is to build an integrated system providing both database-
and IR functionality. Details about documents’ internal representation are
not revealed. We for our part have realized a loose coupling between the
OODBMS VODAK [VMLY95] and the IR-system INQUERY [CCH92] to
make IR functionality available for database content. With a loose cou-
pling, we will be able to rather easily incorporate improved IR-functionality

whenever it becomes available.

An objective of others, e.g., [QRST95, MMM96], is to provide declarative
access mechanisms for open-ended systems where assumptions about the
data’s structure cannot be made, notably the WWW. Even though WWW-
related issues currently draw a lot of attention, the question how to exploit
consistency of the document collection in controlled environments remains

to be relevant.

Related work with regard to navigation and HTML conversion.
With Hyper-G [AKM95], a principal objective is to ensure hyperlink consis-
tency. The idea is that there is a link database. It contains the information

which hyperlinks exist between documents. The advantage, as compared to

10

the current status of our work, is that there is no confinement to the content
of one database. This is reached by giving up some of the individual infor-
mation servers’ autonomy. Hyper-G is not modular, but, rather, can be seen
as “another web”, as, for example, proprietary browsers have to be used.
In our context, a mere link database would not be sufficient, as arbitrary
information on documents referenced can be requested. An open question
is whether people are willing to take into account the additional overhead
of “a WWW without dangling references”. On the other hand, the need to
ensure consistency of local document collections clearly exists [ST94]. - Con-
version of SGML documents to HTML is the topic of [Fre]. The notion of
location grammar is introduced as a means to specify context-sensitive trans-
formation of element types. It seems that, there, context-sensitivity refers
to documents’ hierarchical structure, but not to other documents. The topic
of [kbo94], similarly, is structured document handling in the internet. They
argue that it is the SGML document that should be delivered to the client to
facilitate so-called document post-processing. Trivially, our database server
can also return the original SGML documents. If the DTD allows for it,
hyperlink rendition, as outlined above, is still feasible. Annotation servers
contain information on WWW documents that may be provided by others.
Instead of directly bringing the document to the client, the document goes

through the annotation server, and relevant information is added [RMW94].

DSSSL [ISO96] is an expressive language to specify document transfor-
mation. The standard specifies a structured representation of documents;
conversion is based on that representation. The standard does not deal with
the question how to efficiently carry out such a conversion if documents are
within a storage system, and if characteristics of documents referenced are
taken into account. With our approach, characteristics of the documents
referenced can be reflected. Rendition mechanisms for hyperlink anchors

likewise are expressive, and are identical with our declarative access mech-

11

<agenda author=Aberer>
<header><language>English</language>
<subject>future research topics for the department</subject>
<location>...<date>...
<invited>
<name>Fischer</name><name>Chen</name>. ..
</invited></header>
<programme>
<item>brief review of present funding situation: in 1996/97 ...</item>
<item>problems with diploma thesis students: due to the fact ...</item>...
</programme>

<agenda>

Figure 2: sample SGML document of type ‘Agenda’

anisms.

3 Modelling Meta-information with SGML

The practical relevance of SGML has considerably increased in the re-
cent past. This is possibly due to the close connection between SGML
and HTML, the format of WWW documents. Within SGML documents,
the logical document components, so-called elements, are made explicit by
means of markup. The document fragment from Figure 2 is an example
of a marked-up SGML document. ‘<item>’, ‘</item>’ identify (the start
position/the end position of) an element of type item. ‘<’ is the start
tag open (STAGO), using SGML terminology, ‘</’ is the end tag open
(ETAGO), and ‘>’ is the tag close (TAGC). It is an important aspect of
SGML that markup may not arbitrarily be chosen and be placed within
documents. Rather, for each document type, a so-called document-type

definition (DTD) has to be provided. It specifies which element types

12

may occur in a document, and how elements may be arranged within a
document. A DTD is a grammar. The agenda-DTD is contained in Fig-
ure 3. Examples of element types from this DTD are header, programme,
and item. The regular expression specifying the admissible content of an
element of the respective type is referred to as content model. For in-
stance, ‘(header, programme)’is the content model of agenda: an agenda-
element contains a header-element, followed by a programme-element. The
expression ‘+(keyword)’ is an example of an inclusion model. It spec-
ifies that the structure within the brackets, in this case an element of
type keyword, may occur arbitrarily within an element of type programme.
For instance, the element ‘<programme><item>brief review of present
<keyword>funding</keyword> situation ...</item> ...</programme>’
conforms to the DTD from Figure 3. Exclusion models are also available to
forbid such inclusions in a subtree of the subdocument. If the element-type
definition of item was

<I!ELEMENT item (§PCDATA) -(keyword)>

the above sample element of type programme would not conform to the
sample DTD any more. - CDATA and (#PCDATA) are terminal element types
comparable to the data type STRING. - Elements may be furnished with
attributes. Again, the attributes cannot freely be chosen, but must be con-
tained in the DTD. #IMPLIED means that a value does not have to be as-

signed to the respective attribute.

Classifying element types. Element types can be categorized by the
role of their instances within the documents [HHM94]. This classification is
important as access patterns, notably with regard to declarative access, are

different for the individual categories.

e Structural element types. Markup of such elements is used to

identify documents’ logical structure. Examples from the sample DTD

13

<!DOCTYPE agenda [
<!ELEMENT agenda (header, programme)>
<!ATTLIST agenda author CDATA #IMPLIED>
<!ELEMENT header (language?, (location|roomno), date, invited)>
<!ELEMENT programme (item)+ +(keyword) >
<!ELEMENT (language|location|roomno|date|name|keyword) (4PCDATA) >
<!ELEMENT invited (name) +>
<!'ELEMENT item (4PCDATA) >
1>

Figure 3: Sample DTD (Document Type ‘Agenda’)

agenda
header programme ...
language subject location date invited jtem
english || future research | brief review of...]
topics...

Figure 4: sample document’s hierarchical structure

14

are programme or item.

e Non-structural element types. Non-structural elements are indi-
vidual words or short sequences of words within structural elements’
content having a particular role, e.g., element type keyword in the
agenda-DTD. In other words, markup of non-structural element types
is used to make explicit the meaning of words within text. In most
cases, non-structural elements are not bound to structural element

types, but may occur rather freely within the text.

¢ Informational element types. Informational elements are meta-
information. While non-structural elements occur within actual doc-
ument text, informational elements do not occur within structural el-
ements’ textual content. Rather, they tend to be contained in a docu-
ment header. Typically, informational element types that do not have
an internal structure could also be modelled as SGML attributes, while
non-structural element types cannot. An example of an informational

element type is element type language from the DTD in Figure 3.

Using this categorization of element types according to their roles, we
are now in the position to describe how meta-information can be modelled

with SGML.
e Informational elements are metadata.

e The markup of structural elements and non-structural elements is
meta-information. This is different from informational element types

where the elements themselves are meta-information.

e Elements, normally structural elements, can be furnished with at-

tributes, as described above. The attribute values are meta-information.

Furthermore, the document-type definition itself can be seen as meta-

data. Namely, the different ways to represent metadata, as described above,

15

must be complemented with the type definition for meaningful interpreta-

tion.

Further SGML mechanisms. The SGML concepts that have been de-
scribed in this section are merely a subset of SGML. It is the subset for which
support is described in the following. With our approach, SGML entities
and marked sections are resolved by the parser and do not occur any more
within the document in the database. Hence, the mapping of a document to
the corresponding database content is not loss-free. Furthermore, notations

and the SGML link mechanism are not supported.

4 The HyperStorM Database Application Frame-

work to Administer Structured Documents

The structure of this section is as follows: the database-internal represen-
tation of documents is described in the following subsection; configurability
mechanisms are described in Subsection 4.2. In the last subsection, the
transformation algorithm from documents to their database-internal repre-

sentation is presented.

4.1 Reflecting the SGML Information Model

This subsection covers design decisions and issues with regard to the database-

internal representation of structured documents within the database.

1. Hybrid database-internal representation for documents: some elements
are represented by individual database objects, while others, the flat
ones, are not. This representation is subject to configuration for the
particular document type, and the respective configuration mecha-

nisms will be described in the sequel.
2. Flat elements are completely marked up within the database.

16

3. Elements have a logical OID whose life cycle is independent of the

existence of corresponding (C++-)objects in main memory.

4. The query language of our system is OQL, together with methods
from the database schema. With methods as part of the query lan-
guage, expressiveness of the declarative access mechanisms is naturally
higher than with other approaches. Method invocations are costly with
methods being part of the database. This must be reflected with their

implementation.

To reflect documents’ internal structure, not only documents, but also
document components are explicit within the database. A differentiation
between flat and non-flat elements is made (cf. Section 1.2). Database
objects corresponding to flat elements are flat objects. The string repre-
sentation of a flat object’s elements is the flat string of the database ob-
ject. As an example of documents’ database-internal representation, con-
sider the document from Figure 2. One out of many representations that
are possible within the database is given in Figure 5. With that particu-
lar configuration, language and subject are examples of flat element types.
‘<language>English...</invited>’ and ‘<programme> <item>brief...< /programme>’
are examples of flat strings. ‘<language>English... </invited>’ is the flat string
of the language- and the subject-element. The hybrid database-internal repre-
sentation facilitates modifications of document fragments and better reflects
the semantics of hypermedia document components. It reduces the negative

impact of a structured physical representation with regard to performance

[BAKY5].

Structure recognition of flat elements. As just explained, elements
in the database can either be flat or non-flat. While, with SGML, it is
allowed to omit markup if the document structure can be disambiguously

recognized by means of the DTD, document fragments within the database

17

agenda

/\

header <programme><item>brief review
/ of...</item>...</programme>...

<language>english</language>
<subject>future research topics...
</subject><location>...
</location>...<invited>...</invited>

Figure 5: possible physical representation of ‘Agenda’-document

are completely marked up. Markup that may have been omitted from the
original documents is added. Consequently, the document structure can be
recognized without the DTD (see the top right fragment in Figure 6 as an
example, as opposed to the top left one). Simple linear access operations

are sufficient. The advantages of not using the DTD are the following ones:

e Ifthe DTD was used for structure recognition, it might seem feasible to
construct a fragment-DTD on-the-fly. However, DTDs are not context-
free due to inclusions and exclusions. Hence, to construct the fragment
DTD, one would have to inspect the inclusion and exclusion models of
the elements the current flat elements are contained in. This requires a,
number of access operations to database objects that are unnecessary

with our approach. As an example, consider the following clipping

from a DTD.

<!ELEMENT A (C)* +(G)>
<!ELEMENT B (C)x*>
<!ELEMENT C (D7, E+)>

In order to construct a fragment-DTD for an element c of type C,
in particular, the inclusion model of type C, one must check if ¢ is
contained in an element of type A or B. In the first case, the fragment-

DTD must reflect that ¢ may contain an element of type G, as opposed

18

to the second case.

e Structure recognition is more efficient without the DTD: if documents
of different types are in the database, it is not necessary to look up

the respective type first.

e With a DTD-based approach, a flexible fragmentation of documents in
the database is not possible in practice. As an example, consider the
bottom left database object in Figure 5. The corresponding document
fragment ‘<language>...</invited>" does not have a root element. In
consequence, either a document fragment suitable for parsing would
have to be constructed first. ‘<header><language>...</invited> </header>’
would be such a parseable fragment. However, this requires access to
at least one more database object, namely the header-object. If this
object contained non-flat elements, further database-access operations
would be necessary. Alternatively, concatenation of flat elements to
build a flat object would have to be forbidden, i.e., the language-
element, the subject-element etc. would be separate database objects.

But this may lead to a big increase in the number of database objects.

Object identifier. Object identity is an important notion in object-oriented
modelings. The necessity of OIDs for both flat and non-flat elements intro-
duces a logical and a physical object level. The logical view remains to
be the one that there is an object corresponding to each element. On the
physical level, however, this is not the case. A logical OID consists of a phys-
ical OID and the STAGO-position within the corresponding flat string, i.e.,
the byte offset. If the respective element is a non-flat one, the offset is -1.
The DBMS has been extended so that it can transparently support method
invocation on objects identified by logical OIDs. With message calls, the
DBMS resolves logical OIDs and dispatches them to the physical objects.

19

original document: database-internal representation:
<A>Xxx<C>yyy <A>xxx<C>yyy</C>

A A
N :
[/N
XXX Yy XXX C

yyy

Figure 6: inferring the document structure from complete and incomplete

markup

In the parsing approach described in [ACM93, ACM95], object identifiers
are available only as long as the corresponding structure in main memory

exists.

Classes and methods of the database schema. The following classes

are part of the database schema.

ELEMENT - The physical database objects representing the document struc-

ture are instances of this class, e.g., the nodes in Figure 4.

ElementType - For each element type from a DTD, there is an instance of

the class.

DTD - An instance of this class corresponds to each DTD currently sup-

ported.

Document - For each document, there is a corresponding object.

The methods for elements include the following ones:

hasTextualContentRegex (r: REGEX): BOOL
hasAttrValueRegex (attrName: STRING, r: REGEX): BOOL

20

getIRSValue (q: STRING): REAL

isContainedIn (e: logicalOID): BOOL
getReferencedElements (attrName: STRING): {logicalOID}
getAttrValue (attrName: STRING): STRING

getSize (): REAL

getAll (elementTypeName: STRING): {logicalOID}
getFirst (elementTypeName: STRING): logicalOID
getElementText (): STRING

Instances of ElementType have method getElements(): {logicalOID}.

Method hasTextualContentRegex returns TRUE iff r is contained in the tar-
get element’s textual content. Method hasAttrValueRegex returns TRUE iff the
value of attribute attrName contains r. getlRSValue returns the belief value
of the element’s textual content with regard to IRS-query q, as computed
by the underlying IRS. isContainedIn returns TRUE iff the target element is
contained in the parameter element e. If attribute attrName of the target
element of getReferencedElements is of type IDREF(S), the logical OIDs of the
elements referenced (within the same document) are returned. Otherwise,
the empty set is returned. getAttrValue returns the value of attribute attr-
Name. getAll returns all elements of type elementTypeName that are contained
in the target element; getFirst returns the first element of type elementType-
Name (in preorder) that is contained in the target element. getElementText
returns the target element’s textual content. getElements returns the logical
OIDs of all elements of the type.

With regard to methods hasTextualContentRegex and getlRSValue, some
comments are appropriate. Data administered by a storage system may
be subject to different paradigms. With some element types, one wants
to search their instances with exact mechanisms, i.e., by means of pattern
matching on the syntactic level such as regular expression search. Such

search mechanisms are in place for element types such as SURNAME or PART _NQO.

21

In this case, method hasTextualContentRegex should be used. On the other
hand, the objective of IR search is to cover the user’s information need by
going beyond the syntactic level. Results of IR queries are never precise
and may differ from system to system, as the content of a piece of text may
be seen differently by different systems. In the IR context, it is too undif-
ferentiated to merely say ‘The document is relevant.” or ‘The document is
not relevant.”. Rather, relevance is expressed by means of a belief value b
such that b € [0;1]. The belief value is the probability that the document
is relevant with regard to the query, as computed by the system. As a rule
of thumb, IR mechanisms for text only work well for texts containing more
than 20 to 30 words, they do not work for individual words or short se-
quences of words. In consequence, search on the syntax level makes sense
for informational element types, i.e., metadata, while IR search mechanisms

should only be applied to structural element types, i.e., raw data.

Not only individual concepts, but also complex query terms in the IRS-
query language may be parameter of method getlRSValue. With INQUERY
being the underlying IRS, parameters such as ‘#and(HyTime, MHEG)’,
‘#not(Java)’, or ‘#uwl0(SGML, HTML)’ can be processed. (The last ex-
pression specifies that ‘SGML’ and ‘HTML’ must occur within a window of
10 words.) In combination with other search mechanisms, this gives rise to

a powerful search functionality.

The set of methods reflects our practical experiences and is now stable.
Methods hasTextualContentRegex, hasAttrValueRegex, getlRSValue, isContainedIn,
getReferencedElements, and getSize are necessary to formulate queries corre-
sponding to terms in the extended PAT language, and none of these meth-
ods can be omitted without subtracting from expressiveness (cf. Section 5.2).
Method getAll is an example of a method that is needed for more efficient
query evaluation, as compared to isContainedIn. getFirst and getAttrValue go

beyond the expressiveness of the extended PAT language.

22

Example of method implementation. Method next identifies the right
sibling of the target element in the logical document structure. In the sam-
ple document from Figure 4, the next element of the subject-element is the
location-element. Method next makes use of method getPositionOfETAGO. get-
PositionOfETAGO returns the (byte offset) position of the end tag open which
corresponds to the start tag whose (byte offset) position is the method pa-
rameter. The method illustrates that, with our database-internal representa-
tion, operations on documents’ logical structure are feasible without directly
using knowledge on the document type. Furthermore, method implementa-
tion is specific for our database-internal representation of documents. For
instance, it is a prerequisite that a flat object must not contain any other

object.

(1) next(): logicalOID {

(2) IF (SELF is a flat element) {

(3) p := position of SELF within flat string;
(4) p := SELF -> getPositionOfETAGO (p);
(5) f := flat string of SELF;

(6)

//database object, it begins after the end tag of the target element

//'find’ starts to search at byte offset identified by the first parameter.

p :=f->>find (p, STAGO) //if the next element is contained in the same flat

/ /It returns the byte offset where the second param. has been found, otherwise -1.

(7) IF (p>-1) { //next element is contained in the same flat
//database object, as its begin markup has been found

(8) compute logical OID from p;

(9) RETURN logical OID just computed; }; };

(10) convert the (physical) OID of the next database object to logical OID;

//trivial to identify next database object with structured representation

(11) RETURN logical OID just computed; };

In the database, tag delimiters, e.g., STAGO, TAGC, are represented by

special characters so that they cannot be mistaken with symbols ‘<’, ‘>’

23

within text, and search becomes more efficient.

Improving method performance. With OODBMSs, database method
invocation is costly. Knowledge on the physical representation can be used
to cut down the number of method invocations, and to reduce the parsing
effort. In particular, it is worthwhile to avoid recursiveness. Consider the

following implementation of method getAll.

(1) getAll (E: ElementType): {logicalOID} {
2 r={k
(3) IF (SELF is a flat element) {
(4) p := position of SELF within flat string;
(5) p_end := SELF -> getPositionOfETAGO (p);
(6) f := flat string of SELF;
(7) WHILE ((p < p-end) AND (p > -1)) { //make sure that only elements within
//target element are retrieved
(8) p :=f ->> find (p, concatenate (STAGO, TypeName (E)))
(9) IF (p > -1)
(10) IF ((isWithinBeginMarkup (p, f)) AND (E == type name of the element
whose begin markup includes position p)) {
//make sure that, e.g., AUTHORS is not found instead of AUTHOR
(11) | := logical OID computed from p;
(12) r=rU{l}})}
(13) ELSE
(14) DO (children of SELF, element, €) //iterate over the children of SELF
(15) r:=rU (e -> getAll (E));
(16) IF (ElementType (SELF) == E)
(17) r:=rU {SELF};
(18) RETURN r; };

On the contrary, a straightforward implementation would be recursive
for all elements (as opposed to the one above that is only recursive for

non-flat elements). Based on the MMF-DTD [ST94], we have conducted

24

experiments to verify that the first version is more efficient. If all elements
are flat, and the root element is the target element of the original method
invocation, the first version is faster by factor 1000 approximately. Natu-
rally, the difference becomes smaller with fewer flat elements. If no elements

are flat, the performance of the two versions is nearly identical.

4.2 Configurability Mechanisms

It is subject to configuration which elements are represented by individual
database objects and which ones are flat. The configuration mechanisms are
described next.

With our database application, documents of arbitrary type can be ad-

ministered. Insertion of documents consists of the following steps:

1. The corresponding document-type definition is parsed. If the DTD
is correct, a parser for instances of the DTD is generated. Further-
more, the DTD is - on a syntactical level - transformed to an SGML
document that conforms to a specific DTD, the so-called super-DTD.
The super-DTD is a document-type definition whose instances are
document-type definitions. In the sequel, we will refer to any DTD
different from the super-DTD as application DTD. For instance, the
DTD from Figure 3 is an application DTD. It corresponds to the super-
DTD-instance in Figure 7. (A fragment of) the super-DTD itself is

contained in Figure 8.

2. At this point, the super-DTD instance contains exactly the informa-
tion from the DTD. Attribute elemName of element type ELEM, to give
an example, contains the element-type name, attribute contentModel
contains the content model as a string. Furthermore, the super-DTD
instances generated in Step 1 contain additional attributes that, ini-
tially, are instantiated with a default value. These attributes essen-

tially contain information on the physical representation of element

25

<DOCTYPE docName=AGENDA ...>
<ELEM elemName=AGENDA ... contentModel=’(HEADER , PROGRAMME)’ ...>

<ATTRIBUTE attrName=AUTHOR attrKeyDecl=CDATA attrKeyDef=IMPLIED ...>

</ELEM>

<ELEM elemName=HEADER ... contentModel=’(LANGUAGE ?,(LOCATION |

ROOMNO), DATE , INVITED)’ ...></ELEM>

<ELEM elemName=PROGRAMME ... contentModel=’(ITEM , ITEM *)’ ...></ELEM>

Figure 7: Fragment of the Super-DTD instance corresponding to ‘Agenda’-

DTD
<!ELEMENT ELEM (ATTRIBUTE*)>
<!ATTLIST ELEM elemName NAME H#REQUIRED

contentModel CDATA HIMPLIED ...>
<!ELEMENT ATTRIBUTE EMPTY>
<V'ATTLIST ATTRIBUTE attrName NAME HREQUIRED ...> ...

Figure 8: Fragment of the Super-DTD

26

types or attribute types. For example, type ELEM has an attribute
FLAT: value NO signifies that such elements are represented by indi-
vidual database objects, YES, on the other hand, stands for a flat
database-internal representation. By means of further attributes, the
index structures are specified.* - Summing up, in this step, i.e., Step 2,
the physical representation of documents of a certain type is config-

ured.

. The document generated in Step 2 is parsed by a super-DTD-parser.
In addition to checking the document’s conformance to the DTD, the
parser invokes database commands that generate the database objects

that represent the document.

. A database-internal bootstrap operation is invoked that, given the
document inserted in Step 3, generates the corresponding database

classes, index tables etc.

. Now documents conforming to that application-DTD can be inserted
into the database. The document parser that has been generated in
Step 1 not only checks conformance to the DTD, but also invokes
database operations generating the corresponding database represen-

tation, updates index tables etc.

Summing up, the physical representation of documents is configurable

with element or attribute types being the granules of configurability. The

dimensions of configurability are orthogonal to each other and transparent

to the application programmer.

*Index structures can be turned on or off at a later stage by means of method invo-

cations. The flat-/non-flat configuration, however, cannot be modified any more. Such a

reorganization of the database would be extremely costly, and the need for such function-

ality has not yet arisen in our context.

27

4.3 The Transformation Algorithm from Documents’ Logical

Structure to their Physical Representation

In the sequel, we give the transformation algorithm that generates a docu-
ment’s database-internal representation from its logical structure. We will
prove that the output of the transformation algorithm has certain important
characteristics.

By definition, Flement type B is directly contained in element type A
with regard to DTD D if B occurs in the content model of A in D.

Definition 1 FElement type B is contained in element type A with regard to
DTD D if

1. B is directly contained in A with regard to D, or

2. there is an element type C such that B is contained in C with regard

to D, and C is contained in A with regard to D, or,
3. in D, A has an inclusion model that contains B, or

4. there is an element type C in D such that C has an inclusion model

containing B, and A is contained in C with regard to D.

The following lemma allows to derive information on the document type
from a document that conforms to the underlying document-type definition.
Due to the complex definition of containment on the type level, the lemma is
not trivial. For instance, if an element a is directly contained in an element
b, one cannot infer that the element type of a occurs in the content model
of the element type of b (because of inclusions). From another perspective,

the lemma shows that Definition 1 is meaningful.

Lemma 1 If an element a of type A is directly contained in an element b
of type B in some document of type D, then A is contained in B with regard
to D.

28

Proof. The proof is by induction on the depth of the document tree.

e a is directly contained in b, and b is the root of the document.

In this case, for a to be directly contained in b, either

1. A occurs in the content model of B, or

2. A occurs in the inclusion model of B.

In both cases, it follows directly from the definition that A is contained

in B.

e a is directly contained in b. Furthermore, ‘b contained in c. = B
contained in C.’.

For a to be directly contained in b,

1. A occurs in the content model of B, or
2. A occurs in the inclusion model of B, or

3. A occurs in the inclusion model of an element type C, and there

is an element c of type C such that a is indirectly contained in c.

It follows from Items 1, 3, 4 from the definition (corresponding to

Items 1, 2, 3, respectively) that A is contained in B.

Lemma 2 If an element a of type A is contained in an element b of type B

in some document of type D, then A is contained in B with regard to D.

Proof. The lemma immediately follows from Lemma 1 and Item 2 in the
definition of ‘contains’. I

In the transformation algorithm, the function isFlat with signature is-
Flat (E: ElementType): BOOL is used. It returns TRUE if E is contained in
an element type that has been marked as flat in the corresponding super-

DTD instance. In the algorithm, the document is traversed recursively in a

29

depth-first-like manner. If the type of the current element is not flat, a new
database object is created and inserted into the tree structure that is already
there (Lines 14-23). Otherwise, the current element’s string representation
is just appended to the current database object, which is flat (Lines 6-12).

The transformation algorithm is as follows:

(1) transform (e: Element, lastElementWasFlat: BOOL, currentObj: OID, parentObj: OID,
root: BOOL): OID {

(2) IF (Type (e) -> isFlat()) {

(3) IF (NOT (lastElementWasFlat)) {

(4) currentObj := ELEMENT -> new();

(5) insert currentObj as rightmost child of parentObj; };

(6) IF (Type (e) is terminal element type) //e.g., CDATA, (#PCDATA)
(7) currentObj -> append (textualContent (e))

(8) ELSE {

(9) { currentObj -> append (BeginMarkup (e));

(10) DO (children of e, element, ') //iterate over the children of e, €' is loop var.
(11) ¢ := transform (e', TRUE, currentObj, parentObj, FALSE);
(12) currentObj -> append (EndMarkup (e)); }; }

(13) ELSE { //current element type is not flat

(14) currentObj := ELEMENT -> new();

(15) IF (NOT (root))

(16) insert currentObj as rightmost child of parentObj;

(17) store ElementTypeName (e) with currentObj;

(18) store Attributes (e) with currentObj;

(19) currentElementlsFlat := FALSE;

(20) ¢ := NULL;

(21) DO (children of e, element, ') //iterate over the children of e
(22) { ¢ := transform (&', currentElementlsFlat, c, currentObj, FALSE);
(23) currentElementlsFlat := isFlat (Type (¢')); }; }; };

ELEMENT is the database class described before, while Element is the

type of SGML elements. - The initial invocation of transform is transform

30

(root, TRUE, NULL, NULL, TRUE). The actual implementation of the algorithm
is non-recursive. Namely, an SGML parser has been extended to control
the transformation that does not work recursively. Note that the database
objects generated are untyped, i.e., they may either contain flat element
types or represent non-flat elements. We say that the database object is
flat or the database object is non-flat, respectively. By definition, an object
becomes a flat one or a non-flat one by means of the assignments in Lines (7),
(9), (12) or in Lines (17), (18), respectively. Thus, the definition of flat and
non-flat database objects is an algorithmic one. From now on, this definition
of flat database objects replaces the previous one.

The implementation of methods reflecting the SGML semantics such as

getAll is based on the following lemmas.

Lemma 3 After a type (i.e., either flat or non-flat) has been assigned to
a database object, the type does not change any more in the course of the

transformation algorithm.

Proof. “=": Consider a flat database object. The assignments making this
object a non-flat one occur in Lines (17), (18). The object is generated
immediately before (Line (14)). In consequence, it cannot happen that a
flat object is subject to the assignments making it a non-flat one.

“<": An object that is already non-flat cannot become a flat one later.
Namely, non-flat objects are generated in Line (14) only. It can easily be
seen that such an object does not become currentObj any more in the course
of transformation after having specified that it is non-flat.]

The following lemma shows that transformation by means of the algo-
rithm is sound (cf. our remark on the implementation of next, and such

knowledge has also been used for the implementation of getAll (Lines (3)-

(12))).
Lemma 4 A non-flat object is never contained in a flat one.

31

Proof. Suppose a non-flat object was contained in a flat one. Then, there
is a non-flat element e; that is directly contained in flat element es. This

requires that either

1. ElementType (e1) occurs in the content model of ElementType (es),

or

2. there is an element type F s.t. ElementType (e1) occurs in the inclusion
model of F, and there is an element e s.t. ElementType (e) = F and

e is contained in e.

Case 1 cannot happen because ElementType (e;) would have to be a flat
one. With regard to Case 2, it follows from Lemma 2 that ElementType (e2)
is contained in F, and ElementType (e;) is contained in F. The last item
from Definition 1 implies that ElementType (e1) is contained in Element-
Type (e2). This, however, is a contradiction to the definition of isFlat, be-
cause, in that case, ElementType (e;) would have to be flat. 1

A variant of the transformation algorithm is used in the context of doc-
ument modification, i.e., in order to insert elements into documents that are

already in the database.

5 DTD-Specific and Generic Declarative Access

Mechanisms

By using SGML and database technology, we have come up with query mech-
anisms for a document collection characterized by the following features:
(1) Formulating expressive queries is possible without knowing a query lan-
guage, the DTD, and the underlying data model. (2) For different user
groups, different mechanisms can be generated, closely matching the user
group’s needs. The description of these mechanisms and how to configure

them covers a large part of this section. This query mechanism, though ex-

32

pressive, provides for a lower degree of expressiveness than others, as we will
show. Our conclusion is to let the user choose between various, in our case
three, query mechanisms differing with regard to expressiveness, but also
with regard to intuitiveness and user-friendliness. In addition to query tem-
plates, there are an extension of the PAT algebra and OQL, together with
methods from the schema. We will show that the extended PAT algebra is
more expressive than query templates, and that OQL together with a rele-
vant set of methods is more expressive than the extended PAT algebra. On
the other hand, however, in order to formulate queries with the individual
mechanisms, the user must have different levels of knowledge, as indicated
in Table 1. More precisely, ‘n’ in the second column does not include the
language of regular expressions and the underlying IRS, and ‘n’ in the third
column does not reflect that the user has to understand the semantics of

element- and attribute-type names.

Modelling | (Syntax of the) query language | DTD
OQL y y y
PAT n y y
Templates n n n

Table 1: Knowledge necessary to use different query mechanisms.

5.1 Query Templates

Query templates are automatically generated document-type-specific query
forms. They may contain widgets of different types. It is subject to config-
uration which widgets are part of a query template. The following widgets

are part of the framework.

e Entry field for element-content search. The figure is an example of

such a widget, as seen in a WWW-browser. The user has to type in

33

a list of regular expressions, each of them separated by a blank space.
The operation corresponding to the widget takes all elements of the
respective type, in this case SURNAME. If AND is selected, it returns all
documents containing elements of the type that contain all of the reg-
ular expressions. If OR is selected, it returns all documents containing

elements of the type that contain one of the regular expressions.

SURNAME AND OR

I 4 v

Entry field for TR search (information-retrieval search). An entry field
for TR search actually consists of two fields, as can be seen in the
figure. The user must type a concept to be searched for in the first
entry field and a threshold value t in the second one. It must hold
that t € [0;1). The corresponding operation takes all elements of the
respective type. It returns all documents containing those elements
that match the concept with a likelihood greater than the threshold
value, as computed by the underlying IRS. - Instead of a concept, a

query in the language of the underlying IRS can also be typed in.

ARTICLE SYW

Entry field for attribute search. The corresponding operation takes
all elements of the corresponding type, in this case SECTION. If AND
is selected, it returns all documents containing elements whose value
for attribute SECQUAL contains all of the regular expressions that have
been typed in. If OR is selected, it returns all documents containing
elements whose value for attribute SECQUAL contains one of the regular

expressions that have been typed in.

34

SECTION f SECOUAL AND OR

e Entry field for structure search. The corresponding operation takes all
elements of the first type, in this case SURNAME. For all such elements
that are contained in one of the second type, in this case AUTHOR,
and contains all of the regular expression that have been typed in,
the corresponding document is returned, if AND has been selected.
Analogously, with OR, only one regular expression must be contained.

SURNAME IN AUTHOR AND OR
4 v

e Entry field for search for physical characteristics. As opposed to the
other atomic entry fields, these entry fields are hardcoded. However,
they can be turned on or off by means of the configuration mecha-
nisms. At this point, there is an entry field for document size allowing

specification of a lower and upper bound.

The overall structure of a query template is depicted in Figure 9. The
left column of widgets is for the document to be retrieved, the right column
will be explained below. Results corresponding to individual entry fields
in a column are combined using logical AND. Only those entry fields are
considered where something has been entered.

More complex queries can be formulated using the widget for secondary
structure search. Furthermore, one wants to specify documents by means of
the (link) relationships that exist with other documents. In addition to those
two columns of widgets, there is a pulldown menu with the following options:
[NO LINKSI], an element-type name/attribute-type name pair followed by a

right arrow, and an element-type name/attribute-type name pair followed

35

by a left arrow. The semantics of the menu items is as follows:

e If [NO LINKS] is selected, the documents matching the entries in the

left column are retrieved. Entities in the right column are ignored.

[NO LINEKS] —

o If'-> <E>/<A>’, e.g., ‘=> HYPLINK/REFERENC’ is selected, selection
is based on all pairs of documents (dy, da) such that d; matches the
template entries in the left column, and ds matches the entries in the
right column. The query returns all documents d; that contain an
element of type E, this element has attribute A with value n, and n is

the name of ds.

—>HYPLINE /REFERENC —i

o If‘'<- <E>/<A>’, e.g., ‘“<- HYPLINK/REFERENC’ is selected, selection
is based on all pairs of documents (dy, da) such that d; matches the
template entries in the left column, and do matches the entries in
the right column. The query returns all documents d; such that ds
contains an element of type E, this element has attribute A with value

n, and n is the name of d;.

<—HYPLINE /REFERENC —i

The menu for secondary structure search is also subject to configuration.
The distinction between regular-expression search and IR search has

been reflected by means of methods hasTextualContentRegex and getIRSValue in

Section 4. Analogously, query templates may contain both fields for element-

content search and for IR search. As pointed out before, not only individual

36

concepts, but also complex query terms in the IRS-query language may be
typed into entry fields for IR search. Consequently, it is not necessary to

provide an AND-/OR-toggle for this widget type.

Specifying query templates. The DTD alone is not sufficient as a ba-
sis for automatic generation of query templates. Frequently, one wants to
make available only a restricted set of types for declarative access. This
corresponds to the notion of ‘view’ in the context of conventional database
systems. The motivation why views should be part of the framework is as
manifold as it is with view mechanisms in conventional systems. In principle,

we see two alternative ways of specifying query templates.

1. The super-DTD is extended so that its instances contain the query-
template specification. - Different ways of modelling the specification
are conceivable. For example, there may be an additional element
type QUERYFORM with attributes of type IDREFS. These references point
to the different element- and attribute types to be included in the
template. The type definition of QUERYFORM may be as follows:

<!ELEMENT QUERYFORM EMPTY> ...
<!'ATTLIST QUERYFORM

CONTENTSEARCH IDREFS
ATTRSEARCH IDREFS
IR_SEARCH IDREFS

2. Each query template has a specification contained in a file.

With regard to Item 2, as one may need different templates for one document
type, one may also want to freely add new views over time. However, it

is important to ensure the consistency of the query-template specification

37

with the DTD. Otherwise, queries could be generated for which a solution
cannot exist, and the user would not even notice it. But an operation
which directly reads the specification from file and checks for its consistency
would be too time-consuming with large DTDs. Hence, query-template
generation must consist of two steps: First, the specification is read from file,
its consistency to the DTD is checked, and it is inserted into the database.
Then, a database-internal, consistent version of the specification can be
accessed. - We have realized the first alternative and are now implementing

the second one.

5.2 Other Declarative Access Mechanisms and a Comparison

of their Expressive Power

An extension of the PAT algebra. The PAT algebra, originally de-
scribed in [ST94], is a query language independent of the underlying data
model. In our extension of the PAT algebra, query terms are generated by

the grammar

e -> <Element-type name> |
e UNION el
e INTERSECT el
e DIFF e
CONTENT SELECT (e,)|
ATTR_SELECT (e, A, 1)|
IR_SEARCH (e, c, t)|
e INCLUDS el
e INCL-IN el
REFERENCES (e, A, e)l
REF-BY (e, A, e)l|
ID-REFER (e, A, e)|
ID-REF-BY (e, A, e)l|
LB-SIZE (e, s)|

38

UB-SIZE (e, s)l|
(e)

The term <Element-type name> stands for the set of all elements of
the respective type. UNION, INTERSECT, and DIFF are set operators with the
usual semantics. CONTENT_SELECT takes a set of elements and returns those
where the content contains regular expression r. ATTR_SELECT takes a set
of elements and returns those where attribute A contains regular expression
r. IR_SEARCH takes a set of elements and returns those matching concept
c (or the IR query c¢) with a probability greater than t, according to the
underlying IRS. INCLUDS and INCL-IN take two sets of elements E; and Ey
and return the set of elements

E, INCL-IN Ey = {e; € By | Jeg € Ey s.t. e; is contained in ey}

E, INCLUDS Ey = {e; € E; | ez € Ey s.t. e; contains ex}

REFERENCES, REF-BY, ID-REFER, and ID-REF-BY take two sets of ele-
ments E; and Es and return the set of elements

REFERENCES(E;, A, E3) = {ey € E1|Jes € Ej s.t. e has attribute A with value v,
and v is name of the document where ez is contained in}

REF-BY(E), A, E3) = {e; € Ey|3Jes € Es s.t. e3 has attribute A with value v,
and v is name of the document where e is contained in}

ID-REFER(F;, A, E3) = {e1 € Ey|Jey € Es s.t. e, e2 are contained in the
same document, es has an attribute of type I D with value v, ey has attribute A of

type IDREF(S) containing v}

ID-REF-BY(FE,, A, Ey) = {e; € E1 | ey € Es s.t. e1, ey are contained in the

same document, e has an attribute of type I D with value v, es has attribute A of
type IDREF(S) containing v}

LB-SIZE takes a set of elements and returns those whose size is greater
than s, UB-SIZE returns those elements whose size is smaller than s.

The extensions, as compared to the original algebra [ST94], are the dis-

tinction between search on a syntactic level and IR search, the fact that

39

SURNAME SR R SURNAME P
Roth S ¢ >
LANGUAGE/ LANGQUAL .1 o LANGUAGE/ LANGQUAL .y
Iu 4 W I [Eelnglisk &
<-HYPLINE/REFERENC — |
SECTION/ SECQUAL ST @R SECTION/ SECQUAL AT
i S | vEvg e
ARTICLE sW ARTICLE SW

Figure 9: query template generated from the MMF-DTD

documents’ secondary structure has been taken into account, and the fact

that documents’ physical characteristics have been considered.

OQL queries. The expressive power of OQL stems from the fact that
methods from the database schema can be used within queries at liberty.
The structure of an OQL-query is the same as with SQL. The select-clauses
specifies what is to be selected. The from-clause specifies which database
classes, or, more generally, which sets, the query refers to. The where-clause
contains a condition that must be fulfilled by the query result. All variables
occurring in the query must be bound in the from clause. - The reader is

referred to [Cat94] for more information on OQL.

Illustrations. For illustration purposes, consider the query template in
Figure 9. The template entries correspond to the query “Select all docu-
ments containing an element of type SURNAME whose textual content contains
‘Roth’, and that are referenced by a document containing an element of type
SECTION whose value of attribute SECQUAL contains ‘NEWS’ and containing
an element of type LANGUAGE whose value of attribute LANGQUAL contains

‘English’ or ‘english’.”. The corresponding extended PAT expression is

REF-BY (MMF INCLUDS CONTENT_SELECT (SURNAME, ’Roth’),

40

OR

OR

OR

REFERENC,
HYPLINK INCL-IN (MMF INCLUDS ATTR_SELECT (SECTION, SECQUAL, ’NEWS’))
INCLUDS ATTR_SELECT (LANGUAGE, LANGQUAL, ’[Eelnglish’))

The corresponding OQL expression is

select DO.name
from DO in Document, D1 in Document,
PO in DO.root -> getAll ('SURNAME'),
P1 in D1.root -> getAll ('SECTION"),
P2 in D1.root -> getAll ((LANGUAGE’),
P3in D1.root -> getAll ("HYPLINK")
where PO -> hasTextualContentRegex ('Roth’) and
P1 -> hasAttrValue ('SECQUAL’, 'NEWS') and
P2 -> hasAttrValue ('LANGQUAL', '[Ee]nglish’) and
P3 -> getAttrValue ('REFERENC’) = D0.name

The following lemmas reflect the expressive power of the different mech-

anisms.

Lemma 5 The extended PAT language is more expressive than query-template

entries.

Proof. The proof is by defining a mapping from query-template entries to ex-
pressions in the extended PAT language. The full mapping is given in [B97].
To illustrate the mapping, consider the widget for attribute search. Let E
be the respective element-type name, and A be the attribute-type name.
With r; ... 1, being the input to the respective field, the corresponding
expression is <root-element-type> INCLUDS (ATTR_SELECT (E, A, ry)
7 ... w ATTR_SELECT (E, A, r,)) with 7 € {UNION, INTERSECT}. In
the opposite direction, it is obvious that, e.g., the extended PAT expression

A INCLUDS B INCLUDS C cannot be mapped to any query-template input. g

Lemma 6 The extended PAT-query language is less expressive than OQL,
together with the methods given in Section 4.

41

Proof. The proof is by defining a mapping of extended PAT expressions to
OQL statements. The proof is recursive over the structure of query-algebra
terms. Again the full mapping is contained in [B97]. As an example, let Q be
the OQL query corresponding to the PAT expression e. Then ATTR_SELECT
(e, A, r) is mapped to

select p from p in Q where (p -> hasAttrValueRegex ('<A>', '<r>"))
In the opposite direction, it is obvious that, e.g., the OQL query

select p, p -> getFirst (CHRNAME')
from e in ElementType, p in e -> getElements()
where (e.name == 'AUTHOR’)

cannot be mapped to any extended PAT expression. 1
For evaluation, both input to query templates and extended PAT ex-
pressions are mapped to OQL expressions. - Declarative access mechanisms

are also relevant in the following section.

6 Hyperlink Rendition Mechanisms in HyperStorM

With WWW-based access to the database application, documents can be
converted to HTML. Conversion is specified by means of a style-sheet con-

tained in a file.

Hyperlink rendition. Documents may contain references to other docu-
ments. Usually, such references are made explicit within the document with
hypertext anchors. With our system, rendition of anchors of links pointing
to other documents in the database may depend on characteristics of the
documents referenced. As a special case of such rendition, only anchors of
sound links are converted to HTML anchors to avoid some cases of naviga-
tion failure. The layout specification specifies how link anchors are encoded

in documents of the respective type.

42

In Section 4, it has been described how the physical representation of doc-
uments and document components can be configured using the super-DTD.
These mechanisms, however, are not used to specify document conversion

for the following reasons:

e An initial configuration must have been specified before documents
are inserted into the database. This does not have to be the case for
the conversion specification. Furthermore, a higher degree of flexibility
and ease of modification is necessary with the conversion specification,
as compared to the configuration specification. It is appropriate if the
configuration is altered by means of method invocations, but this is

too complicated and inflexible for the conversion specification.

e From an organizational perspective, while the database-internal con-
figuration should be specified by the DTD designer, this is not nec-
essary for document rendition, as readers’ individual preferences may

be reflected.

e The super-DTD has been designed to represent information on individ-
ual (element- or attribute-) types. But the super-DTD instance would
become too big if information from several style-sheets was included.

There should be no restrictions to the number of style-sheets.

Incorporating information on documents referenced into hyper-
link anchors. With our system, information on documents directly or
indirectly referenced can be used to render the corresponding hyperlink an-
chor in the referencing document in a very flexible way. The core idea is
that, for an element type whose instances are hyperlink anchors, the style-
sheet contains a database query. The query specifies the information to be
included in the hyperlink anchor. For this purpose, the full expressive power

of OQL can be exploited.

43

In this context, there are two problems impeding why OQL queries can-

not just be written down and executed during document conversion.

1. Query results must be of a type that can be displayed within a HTML

document.

2. Within such queries, one would like to refer to the particular hyperlink
anchor. For example, one would like to formulate the query “Select
all elements of type AUTHOR within the document that is referenced
by the hyperlink whose anchor is currently being rendered.”. So far,
there is no straightforward way to refer to the hyperlink whose anchor

is currently being rendered in a query.

The solution to Item 1 is as follows: the query is parsed. Then, the
query-result type is looked up. If the type is not available for display, e.g.,
because the query result is a set of database OIDs or a set of instances of
bulk types, the query in the style-sheet is ignored. The current version of
the system accepts only sets of strings.

With regard to Item 2, OQL-queries within the style-sheet may contain
the symbols ANCHORELEM and LINKATTR. Before query evaluation, the sym-
bol ANCHORELEM is replaced by an expression that can be interpreted by
the query processor. In a nutshell, it is the logical OID of the anchor ele-
ment. Since the replacement is carried out within the database, it is ensured

that the new query is correct. Consider the following example:

select p -> getElementText()
from din Document, p in d.root -> getAll ((LANGUAGE’)
where (d.name = (ANCHORELEM -> getAttrValue (LINKATTR)))

The query selects all LANGUAGE-elements in the document referenced
(cf. Figure 1).
Expanding instances of element types is meaningful for informational

and non-structural element types. For instance, one may want to display all

44

instances of a non-structural element type KEYWORD in the referencing doc-
ument. The usefulness of such an expansion for structural element types is
limited, except when these element types are at the same time informational,

such as, say, TITLE.

Summing up, the drawbacks pointed out in the introduction are alle-
viated as follows: checking for a link target before activating the anchor
prevents navigation failure. Displaying meta-information alleviates the “Ex-
pectations vs. ctual Content”-problem and is a measure against “getting lost
in hyperspace”.

With the functionality described so far, document conversion should be
part of the services offered by the database. It would be an unnecessary step
to generate SGML from the database content first and then transform the
result to HTML. Furthermore, conversion on the client would be inefficient
because of unnecessary communication over the network to obtain infor-
mation on the documents referenced. Besides that, and most importantly,
materialized views are used to avoid executing queries during document

conversion. Their consistency is ensured by the database system.

Using materialized views. It is advantageous to materialize the conver-
sion result within the database. In principle, an arbitrary number of dif-
ferent views on the same document being the result of different conversion
parameters is conceivable. To cope with the requirement of materializing
more than one view, but being restricted to a limited number of material-
izations, we have implemented a simple page replacement strategy (LRU).
With our system, documents within the database may be modified. Then,
materialized views have to be updated after the corresponding documents
have been altered. The problem is aggravated by the fact that updates of
individual documents cannot be seen in isolation. Instead, documents that

directly or indirectly reference the modified document also have to be taken

45

into account. In this context, we assume that each document can reference
any other document. Assertions that would allow restrictions of this as-
sumption would be helpful, but cannot be made in the general case. With
our system, a view is updated when a document is accessed, if any docu-
ment has been modified after the view’s last generation date. With frequent
updates, a conceivable refinement is to differentiate between modifications
having an impact on conversion of referencing documents and modifications
without such effects. In this case, however, conversion specifications have to

be administered by the database.

7 Conclusions

One objective of this article was to point out how the combination of database
technology and SGML can be exploited in order to ease access to the doc-
ument collection, both declaratively as well as by means of navigation. In
order to ease declarative access, a mechanism to express information needs
has been designed that is expressive, while, at the same time, neither knowl-
edge of a query language nor the document type or the underlying modelling
are needed to use it. This so-called query-template mechanism can be con-
figured to match the needs of different user groups. We exploit the fact that
SGML documents conform to a document-type definition. Such a document-
type definition is comparable to a database schema in that both can be seen
as integrity constraints on the data. HTML would not be very useful in
this particular context due to its high genericity. The HTML-DTD does not
impose any real constraints on documents’ logical structure. - The query-
template mechanism, though expressive, is less expressive than other query
languages. Thus, in order to provide the user with a choice of declarative ac-
cess mechanisms, queries can also be formulated using two other languages.
These languages have also been described, and their expressiveness has been

compared.

46

Navigational access is eased as follows: meta-information on the doc-
uments can be exploited for hyperlink rendition. Database technology is
advantageous to speed up conversion, and to ensure consistency of conver-
sion outputs that have been materialized. The approach would not work well
with HTML because, with previous versions of HTML, no mechanisms are
provided to model meta-information, and with HTML 3.2 it cannot be en-
sured that meta-information is modeled consistently. It is left to the author
of the document which meta-information is provided, and how he provides
it.

With the description of documents’ database-internal representation, we
have covered several original features. With our hybrid representation of
documents, elements can or cannot be represented by individual database
objects. The actual representation is subject to configuration. The initial
configuration is specified by means of an SGML document. To recognize
the logical structure of physically unstructured document components, it
is not necessary to use the DTD at this stage. We have come up with an
object-oriented modeling of structured documents, together with methods
that are the basis for declarative access. Elements have a (logical) OID even
though they do not have to be represented by an individual database object.
With method implementation, it has been reflected that, with OODBMSs,

method invocations are expensive.

In the future, we wish to evaluate the behavior of a real user community.
We will examine the expressive power of query templates and see whether
new primitives are needed. - In previous work, we have examined how to
reflect the semantics of HyTime architectural forms in the database and have
come up with an implementation [BA94, BAK95]. The HyTime-link model
is more sophisticated than the one that has been considered so far. Arbitrary
document portions can be referenced, independent of the structure that has

been made explicit with SGML markup. It may be worthwhile to extend

47

the reflections with regard to link conversion to the HyTime model.

References

[ACM93]

[ACM95]

[AKM95]

[B+94]

[B97]

[BAY4]

S. Abiteboul, S. Cluet, and T. Milo. Querying and Updating
the File. In R. Agrawal, S. Baker, and D. Bell, editors, Pro-
ceedings of the International Conference on Very Large Data

Bases, pages 73-84. VLDB Endowment, 1993. Dublin, Ireland.

S. Abiteboul, S. Cluet, and T. Milo. A Database Interface for
File Update. In Proceedings ACM SIGMOD, pages 386—-397.
ACM Press, 1995.

K. Andrews, F. Kappe, and H. Maurer. The Hyper-G Network
Information System. J.UCS, 1(4):206-220, 1995.

G.E. Blake et al. Text / Relational Database Management
Systems: Harmonizing SQL and SGML. In Proceedings of the
First International Conference on Applications of Databases.

Lecture Notes in Computer Science, Springer Verlag, June

1994.

Klemens Bohm. Using Object-oriented Database Technology
for Structured Document Storage (in German, forthcoming).

PhD thesis, Technical University of Darmstadt, 1997.

Klemens Bohm and Karl Aberer. Storing HyTime Documents
in an Object-Oriented Database. In Nabil R. Adam, Bharat
Bhargava, and Yelena Yesha, editors, Proceedings of the Third
International Conference on Information and Knowledge Man-

agement, pages 26-33. ACM Press, November 1994.

48

[BAK95]

[CT94]

[Cat94]

[CCHY2]

[HHM94]

[HTM]

[1SO86]

Klemens Bohm, Karl Aberer, and Wolfgang Klas. Building a
Configurable Database Application for Structured Documents,
1995. Accepted for publication in Multimedia - Tools and Ap-

plications.

V. Christophides et al. From Structured Documents to Novel
Query Facilities. In Proceedings ACM SIGMOD. ACM Press,
May 1994.

R.G.G. Cattell, editor. The Object Database Standard:
ODMG-93. Morgan Kaufmann Publishers, 1994.

J.P. Callan, W.B. Croft, and S.M. Hardig. The INQUERY
Retrieval System. In Proceedings of the Third International
Conference on Database and Expert Systems Application, pages
78-83. Springer Verlag, 1992.

J. Conklin. Hypertext: An Introduction and Survey. IEEFE

Computer Magazine, pages 17-41, September 1987.

E.D. Freese. The Transformation of SGML Doc-
uments for Presentation on the World Wide Web.

http://www.sil.org/sgml/freese.html.

A. Haake, C. Hiiser, and W. Mohr. Milestone M1; BERKOM
Project:CLIP-ING; Workpackage 2: System Architecture.
Technical report, GMD-IPSI, November 1994.

HyperText Markup Language (HTML). Available under
"http://www.w3.org/pub/ WWW /MarkUp/”.

Information Technology - Text and Office Systems - Standard-
ized Generalized Markup Language (SGML), 1986.

49

[1SO96]

[kbo94]

[KSS95]

[Mac91]

[MMMO96]

[NBY95]

[0195]

[QRST95]

[RMW94]

Document Style Semantics and Specification Language

(DSSSL), 1996.

Guidelines for Electronic Text Encoding and Interchange, April

1994.

V. Kashyap, K. Shah, and A. Sheth. Multimedia Database
Systems: Issues and Research Directions, chapter Metadata for

building the MultiMedia Patch Quilt. Springer Verlag, 1995.

ILA. Macleod. A Query Language for Retrieving Informa-
tion from Hierarchic Text Structures. The Computer Journal,

34(3):254-264, 1991.

A. Mendelzon, G. Mihaila, and T. Milo. Querying the World
Wide Web, 1996. PDIS’96.

G. Navarro and R. Baeza-Yates. A language for queries on
structure and contents of textual databases. In Proceedings of
18th ACM Conference on Research and Development in Infor-
mation Retrieval (SIGIR’95), July 1995. Seattle, WA, U.S.A.

M.T. Ozsu et al. An Object-Oriented Multimedia Database
System for a News-on-Demand Application. Multimedia Sys-
tems, (3):182-203, 1995.

Dallan Quass, Anand Rajaraman, Yehoshua Sagiv, Jeffrey D.
Ullman, and Jennifer Widom. Querying Semistructured
Heterogeneous Information. In Proceedings of the Fourth
International Conference on Deductive and Object-Oriented

Databases, pages 319-344, 1995. Singapore.

Martin Roscheisen, Christian Mogensen, and Terry Winograd.

Shared Web Annotations as a Platform for Third-Party Value-

50

[ST94]

[SDAMK95]

[SM83]

[ST94]

[St096]

[VAB96]

[VML95]

Added Information Providers: Architecture, Protocols, and
Usage Examples. Technical Report STAN-CS-TR-97-1582,
Stanford University, November 1994.

Klaus Siillow et al. MultiMedia Forum - an Interactive On-
line Journal. In Christoph Hiiser, Wiebke Mo6hr, and Vincent
Quint, editors, Proceedings of Conference on FElectronic Pub-

lishing, pages 413-422. John Wiley & Sons, Ltd., April 1994.

R. Sacks-Davis, T. Arnold-Moore, and A. Kent. A Stan-
dards Based Approach to Combining Information Retrieval
and Database Functionality. International Journal of Infor-

mation Technology, World Scientific, 1(1):1-16, 1995.

Gerard Salton and Michael J. McGill. Introduction to Mod-
ern Information Retrieval. McGraw-Hill Book Company, first
edition, 1983.

A. Salminen and F.W. Tompa. PAT Expressions: an Algebra
for Text Search. Acta Linguistica Hungarica, 41(1):277-306,
1994.

Michael Stonebraker. Object-Relational DBMSs. Morgan Kauf-
mann Publishers, Inc., 1996.

M. Volz, K. Aberer, and K. Bohm. Applying a Flexible
OODBMS-IRS-Coupling to Structured Document Handling.
In Proceedings of the 12th International Conference on Data

Engineering, pages 10-19, 1996. New Orleans.

VODAK V 4.0 User Manual. Technical Report 910, GMD-
IPSI, April 1995. St. Augustin.

o1

[YA94] T.W. Yan and J. Annevelink. Integrating a Structured Text
Retrieval System with an Object-Oriented Database System.
In Proceedings of the International Conference on Very Large

Data Bases. VLDB Endowment, 1994. Santiago, Chile.

52

