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Abstract A number of emerging distributed plat-
forms include fixed and robust workstations but,
like dynamic and pervasive networks, are often built
from mobile and resource-constrained devices. These
networks are characterized by the volatility of their
hosts and connections, which may lead to network
fragmentation. Although increasingly common, they
remain a challenging target for distributed applica-
tions. In this paper we focus on component-based
distributed applications by addressing the distribution
and the deployment of software components on dy-
namic pervasive networks. We present a distribution
scheme and some associated middleware mechanisms
that allow a component to provide its services in an
ubiquitous way. First, an architecture description
language extension is proposed in order to specify a
deployment driven by constraints on the resources
needed by components. Then, a propagative and
autonomic deployment process is explained, which is
based on a consensus algorithm adapted for dynamic
networks. Lastly, implementation details and experi-
ment results are given.

1 Introduction

1.1 Dynamic pervasive platforms

During the last years have emerge new distributed plat-
forms, often qualified as pervasive, that are no longer
restricted to an interconnection of workstations that
forms a stable network. These platforms may still in-
clude powerful and robust machines but they are rather
composed of resource-contrained and mobile devices
(laptops, personal digital assistants—or PDA—, smart-

phones, sensors, etc.). Due to the mobility and the
volatility of the devices involved, dynamism is one of
their major characteristics. A dynamic network hence
formed can be described as a partitioned network,
viewed as a collection of independent islands. An is-
land is equivalent to a connected graph of hosts that
can communicate together, while no communication is
possible between two islands. In addition, the configu-
ration of the islands may change dynamically.

In this paper, we are interested in medium-size dy-
namic pervasive platforms. Figure 1 shows a simple
example of such a dynamic network. It is composed of
a number of hosts a user has access to and on which a
distributed application is meant to be accessible. This
set of hosts includes fixed and mobile machines. Con-
nectivity is not ensured between all the hosts. Indeed,
at home, the user’s connection to Internet is sporadic
and some of the devices are mobile (as such, they may
become out of reach) and/or volatile (a PDA may for
example be switched off frequently).

1.2 Ubiquitous applications

Although this kind of distributed platform is increas-
ingly common, it remains a challenging target for build-
ing, deploying and maintaining distributed applica-
tions. The pervasiveness of the equipment should be re-
flected on the distributed application, leading to some
form of ubiquitous applications. Many applications
should benefit from ubiquity in this context: enhanced
classical applications such as PIM (Personal Informa-
tion Management) or collaborative applications, but
also envisioned applications in e-home or e-business.
A ubiquitous application is supposed to render its ser-
vices everywhere, or at least wherever it makes sense,
accounting for the constraints of the hosting devices.
For example a PIM application is much more usable if



Fig. 1: Example of a dynamic network, possibly parti-
tioned in three islands

it offers its services on all the machines owned by a user,
even if the entire application is not installed on each
machine. It is not desirable however that the appli-
cation be designed and administered as a collection of
target-specific codes. Ubiquity must be made as trans-
parent as possible. Of course, it may occur that some of
the services are temporarily not available on a specific
host (eg access to an up-to-date shared agenda from a
PDA that is isolated from any network). In addition,
some functionality may not be accessible everywhere
due to a lack of resources (eg extended graphical view
on a device with a small display). We believe that
a minimal set of mechanisms should be provided to
implement this adaptation in order to reduce the com-
plexity of the design and the administration of ubiqui-
tous applications.

1.3 Ubiquitous components

Software components have proved to be useful for de-
veloping complex distributed applications, and many
component models and their associated technologies
are now available. In the component-based approach,
the application is designed as an assembly of reusable
components that can be bound in a versatile manner,
possibly dynamically. Some of the proposed models
are known as hierarchical models. They offer the pos-
sibility of creating high level components by compos-
ing components of lower abstraction level, which repre-
sents a software construction principle that is natural
and expressive. In such models, a component—that
is then called a composite component—can itself be
an assembly of components, recursive inclusion ending
with primitive components that encapsulate comput-
ing code.

Using a hierarchical component-based approach for
building a ubiquitous application that targets a dy-
namic network seems an attractive solution. Yet, sev-
eral problems remain that are not treated by available
component models and component execution supports.
In particular, the two following aspects have to be dealt
with: (1) how to deploy a hierarchical component in a
dynamic network while ensuring that this deployment
respects the architecture of the application and adapts

itself to the resource constraints imposed by the target
platform? (2) how to allow a distributed execution of
the components, ie to allow interactions between com-
ponents in a not-always-connected environment?

1.4 Outline of our approach

This paper describes a distribution scheme for hierar-
chical components and its associated deployment pro-
cess that target dynamic pervasive networks. Because
of the very constrained environment in which the ap-
plication is to be deployed, we can hardly envisage a
permanent access to the services offered by the appli-
cation or an optimal utilization of the resources. The
emphasis is put on finding a distribution scheme and
some deployment mechanisms that achieve a minimal
availability while taking account of the environment.

The distribution scheme we propose is related to the
hierarchical structure of the application. This scheme
is based on the replication of composite components.
Indeed, we allow a composite to be accessible on a set of
hosts, although each primitive component is localized
on a single host. Besides, we also allow a component
to operate in a degraded mode in order to account for
network disconnections without making the entire ap-
plication unusable. The notion of active interface is
added to the component model. Our runtime support
detects network disconnections and deactivates some
components’ interfaces accordingly. Introspection on
the state (active or inactive) of an interface is possible
so as to allow the development of adaptive components.

The deployment of a component covers several parts
of the life-cycle of a component. In this paper we
focus on the last phases of the deployment, covering
the instantiation of the component (that creates an
executable instance from a component code), its con-
figuration (that establishes the bindings to its inter-
faces) and its activation (that allows the other com-
ponents to invoke its interfaces). The presented tech-
niques should be complemented with component deliv-
ery mechanisms such as those described in [1].

The deployment of the hierarchy of components is
specified in a constraint-based declarative way. The
architecture descriptors of the components are aug-
mented with deployment descriptors in which con-
straints on the resources required by components and
on their possible location can be specified.

When the deployment is triggered, all the constraints
listed in the deployment descriptor may not be satis-
fied immediately. The dynamism of the network makes
the situation even more difficult as it may occur that
the set of hosts that would satisfy globally the deploy-
ment constraints are never connected together at the
same time, precluding any deployment. Instantiation
of some components and their activation is however



possible as we allow the components to operate in a de-
graded mode through the dynamic management of in-
terfaces’ activation. The deployment process we imple-
ment is thus a propagative process: the instantiation
and the activation of a component are performed as
soon as some resources that meet its needs are discov-
ered. Moreover, as it may occur that resources needed
by an already deployed component become not suffi-
cient, the placement choice for a component can be
called in question dynamically. The deployment pro-
cess can thus be considered as autonomic. We propose
an algorithm that supports this propagative and auto-
nomic deployment. The scalability of the process is en-
sured by the distributed and hierarchical organisation
of the control. Moreover, we implement a distributed
consensus that guarantees that the location constraints
are satisfied even in the context of a partitioned net-
work.

The paper is organised as follows. In section 2, the
model of hierarchical component we work on is pre-
sented and we explain how a hierarchy of components is
distributed over a network. The concept of activation
at the interface level is briefly exposed. In section 3
we give some details on the form of the deployment
descriptor that complements the architecture descrip-
tion, we present the overall propagative and autonomic
deployment process, and we detail the distributed in-
stantiation algorithm that forms the basis of the dis-
tributed deployment. Section 4 briefly describes the
status of the development of our prototype. After dis-
cussing related work in section 5 we conclude the paper
in section 6.

2 Distributed Hierarchical Components

We describe in this section what we understand by dis-
tributed hierarchical components. The basic features
of our component model are explained and we detail
how the components are distributed over a network of
hosts. Further details can be found in [2].

2.1 Hierarchical Component Model

In this paper, we consider a widely applicable hierarchi-
cal component model in which a composite component
represents a more or less complex structure of inter-
connected components that can be used as a simple
component with well-defined required and provided in-
terfaces. Recursion stops with primitive components
that correspond to computing units. Components are
interconnected through bindings that each represents
a link between a required interface and a provided in-
terface. For practical reasons, we have chosen to base
our development on the Fractal component model [3]

and more precisely on its reference Java implementa-
tion Julia. However, the concepts developed in this
paper could easily be applied to other hierarchical com-
ponent models such as Koala [4], Darwin [5] or Sofa [6].

The notion of composite component is often used
at design time and is found in so-called architecture
description languages (ADL) [7]. In the applicative
framework we have chosen, it is however interesting to
also be able to manipulate a composite at execution
time in order to ease dynamic adaptation. Therefore
the composite is reified at runtime namely by a mem-
brane object that stores the interfaces of the compo-
nent and its configuration (ie the list of its subcompo-
nents and the bindings between these subcomponents).

2.2 Distribution Model

As mentioned in the introduction, we wish to deploy
a hierarchy of components on a distributed platform
that is characterized namely by its heterogeneity and
the volatility of its hosts. The application components
are distributed on a set of hosts. The way this place-
ment is performed is detailed in section 3.2. We focus
here on the description of the mechanisms allowing a
distributed execution of hierarchical components.

In our approach, the architecture of a component
is coupled to its placement and this relationship is
dealt with differently for composite components than
for primitive components. As far as distribution is con-
cerned, a primitive component executes on one host
whereas a composite can be physically replicated on
a set of different hosts. The main goal of composite
replication is that the component’s interfaces become
directly accessible on several hosts. A composite com-
ponent can then be seen as providing a ubiquitous ser-
vice.

A single host is associated with a primitive compo-
nent whereas a set of hosts is associated with a com-
posite component. This set must be a subset of the set
of hosts associated with the including component. By
default, the placement set of a composite component
is inherited from the including component.

At execution time, each instance of a composite
component maintains locally some information about
the configuration of its subcomponents. Hence, a dis-
tributed composite component ¢ distributed over a set
of hosts H respects the following properties:

e The provided and required interfaces of ¢ are ac-
cessible on all the hosts h; of H.

e Let ¢ be a composite component that contains a
primitive subcomponent p. There exists a single
host h; on which p executes. For every host h; € H
(j # 1), there exits ¢;, an instance of c on h;. Each
¢; holds a remote reference to p (in a proxy).



2.3 Example

We give in this section an example of an application
made of hierarchical components and we detail how it
can be distributed on a given set of hosts.

Figure 2 depicts the architecture of a photo appli-
cation that allows the user to search for a number of
photos in a repository and to build a diaporama with
the selected photos. The top-level composite compo-
nent (PhotoApp) includes a generic component devoted
to document searching (DocumentSearch). This com-
ponent is also a composite component (taken off the
shelf); it is composed of a DocumentFinder and a Doc-
umentBuffer. The primitive DocumentFinder compo-
nent provides an interface for issuing more or less com-
plex requests based on the names of the documents, on
their subjects or some other meta-information, and for
selecting the corresponding documents from a given
set of documents (a repository). The selected docu-
ments are passed to a DocumentBuffer. Apart from
an interface for adding new documents, the primitive
DocumentBuffer component provides an interface for
sorting and extracting documents. This provided inter-
face and the one of DocumentFinder are accessible as
provided interfaces of the DocumentSearch component.
Finally, the DocumentSearch component is bound to a
PhotoRepository component that constitutes the spe-
cialized document repository and a DiapoMaker com-
ponent which allows the selected photos to be assem-
bled in a parameterizable diaporama.

Consider that the photo application is meant to be
usable from any of the five machines owned by the user
(hosts h; to hj), in a dynamic network similar to the
one depicted in figure 1. Hence, the target set of hosts
associated with the PhotoApp component is {hy, ha,
hs, hg, hs}. A subset of these hosts is dedicated to
the distributed execution of the composite component
DocumentSearch, say {h1, ha, hs}, hsy and hs being
excluded for licence reasons for example. Moreover,
some constraints on the required resources result in the
following placement of the primitive components (see
section 3.2 for details): DocumentFinder on hy, Docu-
mentBuffer on hs, PhotoRepository on hy and Diapo-
Maker on hs.

At runtime the membranes of the composite com-
ponents are maintained on each of their target hosts.
A membrane contains the interfaces of the component
as well as the description of its architecture (subcom-
ponents and bindings). The instances of components
(primitive or composite) that are not present are rep-
resented by proxies. Note that for a primitive compo-
nent, the proxy is linked to the distant (single) instance
of this primitive whereas for a composite component,
the proxy is linked to one distant instance of the (par-
tially replicated) membrane.

Figure 3 summarizes the placement of the compo-
nents and shows the runtime entities (architectural in-
formation and instances) maintained on every host for
our PhotoApp example.

2.4 Support for disconnections

The replication of a composite component eases the
access to the services it implements as it permits the
use of its provided interfaces on each host. However,
because of network disconnections, from a given site,
access to a remote component can be interrupted. Con-
sequently, a method invocation in this case may raise
some kind of a network exception. This problem is not
specific to our approach but appears as soon as remote
references are used, that may point to unaccessible
components at any time. In a context of hierarchical
components, the technique that consists in deactivat-
ing a component as soon as one of its required interface
is unbound is very penalizing as a single disconnection
will end up by ricochet with the deactivation of the top-
level component, that is the deactivation of the entire
application. In the dynamic environments we target,
where disconnections are frequent, the application is
likely to be rarely usable.

We address this problem in the following two ways:

e We introduce the notions of active and non active
interfaces. We maintain the state (active or not)
of an interface according to the accessibility of the
component’s instance it is bound to. Moreover,
we add a control interface to components to al-
low introspection on the state of its provided and
required interfaces.

e We allow the execution of a component even if
some of its interfaces are not active.

On the PhotoApp example, if a disconnection occurs
between hy and hy4, the PhotoRepository component is
no longer accessible from h;. The disconnection is de-
tected by a dedicated monitor, and consequently, the
required interface of the DocumentSearch component is
deactivated. This triggers the deactivation of the cor-
responding required interface of the DocumentFinder
and then of its provided interface. However, the sec-
ond interface of DocumentSearch (the one bound to Di-
apoMaker) can remain active as the DocumentSearch
component is still accessible. Globally the application
is still usable, although in a degraded mode, as diapo-
ramas can still be built from the document buffer.
Notice that this approach has an obvious impact on
the programming style required when developing com-
ponents, as the state of an interface should be tested
before invoking methods on this interface. Indeed, the
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uncertainty of the accesses to needed (or required) ser-
vices —inherent to the targeted dynamic platforms—
enforces adaptable code. The provision for tools to
introspect on the availability of the interfaces is a min-
imal answer that should be complemented by other fa-
cilities for describing or applying, for example, adap-
tation strategies. This involves research at language
level and middleware level that is out the scope of the
presented work.

3 Deployment

3.1 Deployment specification

When considering the deployment of distributed com-
ponents, the key issue is to build a mapping between
the component instances and the hosts of the target
platform. This task implies to have some knowledge
not only about the identity of the hosts involved in the
deployment phase, but also about the characteristics of
each of them. Moreover, for a hierarchical component-
based application, every component instance at each
level of the hierarchy has to be handled.

At design-time, it is unlikely that the designer knows
where to deploy each component regarding resource
availability. This motivates the need to differ this task
at runtime. We propose to add a deployment aspect to
an existing architecture description language (such as
xAcme' or [8]). This will allow the description of the
resource properties that must be satisfied by a machine
for hosting a specific component.

We propose an extension to ADLs that makes possi-
ble the description of the target platform in a declara-
tive way. The language we propose is purely declarative
and descriptive and has a similar objective to the lan-
guage described in [9]. It is not mandatory to give an
explicit name or address of a target machine: the place-
ment of components are mainly driven by constraints
on the resources the target host(s) should satisfy. The
choice of the machine that will host a component will
be made automatically at runtime (during the deploy-
ment).

The description of the resources that the target plat-
form must satisfy is defined in a deployment descriptor
in which references to component instances (defined in
the architecture descriptor) can be made. For each
component, a deployment contezt is defined. Such a
context lists all the constraints that a hosting machine
has to satisfy. If these constraints are associated with
a primitive component, one host will be authorized to
instantiate this component whereas several hosts may
be selected for hosting the membrane of a composite
component, in accordance with our distribution model.

IxAcme:  Acme FExtensions to
2.cs.cmu.edu/~acme/pub/xAcme/

xArch, http://www-

Two types of constraints can be defined in a deploy-
ment context: resource constraints and location con-
straints. Resource constraints allow hardware and soft-
ware needs to be represented. Each of these constraints
defines a domain value for a resource type that the
target host(s) should satisfy. Location constraints are
useful to drive the placement choice of a component if
it occurs that more than one host is candidate.

An example of use of resource and location con-
straints is illustrated in Figure 4 which shows the de-
ployment descriptor, in an XML notation, of the photo
application introduced in the previous section. De-
scriptor (a) contains the constraints associated with
the DocumentSearch composite component and de-
scriptor (b) contains those of the PhotoApp compo-
nent. Resource constraints are defined within the
resource-constraint element. For every component,
adding an XML tag corresponding to a resource type
(eg cpu, memory) specifies a constraint on this resource
the target host has to verify.

Location constraints are declared within the
location-constraint element. The target element defines
the set, of hosts among which our runtime support will
have to choose. Hosts can be represented in two ways:
(1) by their hostname if their identity are known before
the deployment or (2) by a variable. A variable name
can be used at the composite level to control the place-
ment of the components. This feature is achieved by
the use of the operator elemen, which allows relations
between variables to be expressed. For example, in de-
scriptor (a), the DocumentFinder component is said to
be deployed on host z and DocumentBuffer on host y.
Constraining DocumentFinder and DocumentBuffer to
be on two distinct hosts is achieved by using the alldiff
operator that declares = to be different from y. For a
primitive component, at most one variable can be de-
clared (because a primitive component will be placed
on an unique host). Several variables can be used for a
composite component, which is physically distributed
over several hosts.

When composing the application, it is possible to
use only variables. Then, the definition of the target
platform is made at the first level of the hierarchy (for
the component PhotoApp on the example) by adding
the list of the machines that will be involved in the
deployment (lines 71-75 on Figure 4). During the de-
ployment, as it is detailed in the next section, this set of
machines, together with the location constraints, will
be inherited by the subcomponents.



<component name="DocumentSearch">
<component name="DocumentFinder">
5 <deployment-context>
<resource-constraint>
<cpu freq="1.2" unit="GHz"
operator="min" />
</resource-constraint>

<location-constraint>
<target varname="x"/>
</location-constraint>
</deployment-context>
15  </component>

<component name="DocumentBuffer">
<deployment-context>
<resource-constraint>
20 <memory free="200" unit="MB"
operator="min" />
</resource-constraint>
<location-constraint>
<target varname="y"/>
25 </location-constraint>
</deployment-context>
</component>

<deployment-context>
30 <location-constraint>
<operator name="alldiff">
<arg varname="this.DocumentFinder.x" />
<arg varname="this.DocumentBuffer.y" />
</operator>
35 </location-constraint>
</deployment-context>
</component>

(@

<component name="PhotoApp">
<component name="DiapoMaker">
<deployment-context>
40 <resource-constraint>
<cpu freq="1.5" unit="GHz"
operator="min" />
<memory free="50" unit="MB"
directory="/home/"
45 operator="min"/>
</resource-constraint>
</deployment-context>
</component>

50 <component name="PhotoRepository">
<deployment-context>
<resource-constraint>
<memory free="1" unit="GB"
directory="/home/"
55 operator="min" />
</resource-constraint>
</deployment-context>
</component>

60 <component name="DocumentSearch">
<locationconstraint>
<operator name="exclude">
<arg value="egilsay" />
<arg value="parvati" />
65 </operator>
</locationconstraint>
</component>

<deployment-context>
70  <locationconstraint>

<target hostname="ambika"/>

<target hostname="dakini"/>

<target hostname="mafate"/>

<target hostname="egilsay"/>

75 <target hostname="parvati"/>
</locationconstraint>
<deployment-context>

</component>

(b)

Fig. 4: Deployment descriptor

3.2 Deployment process

3.2.1 Owerview

When the architecture descriptor and the deployment
descriptor are defined, the deployment phase we con-
sider in this article consists in choosing one (or several)
target host(s) for every component of the architecture.
This selection has to be done in accordance with the
deployment context associated with the components:
the target hosts must satisfy the resource constraints
and must not contradict the location constraints. De-
pending on the resources that are available on the ma-
chines of the network, more than one machine can be
chosen for hosting a component: for a primitive com-
ponent, only one host has to be selected whereas for
a composite component, according to our distribution
scheme, several hosts can be chosen. It is required to
control the placement of components. Indeed, we have
to guarantee that two islands of machines do not make
inconsistent decisions (eg instantiating twice the same
primitive component).

Because of the dynamism of the network on which we
deploy our applications, it is not possible to base a de-
ployment on a full connection of the different host. We
are interested in a deployment that will allow an appli-

cation to be activated progressively, that is, part of its
provided services can be put at disposal even if some
machines, that are required for the “not yet” installed
components, are not available. As soon as these ma-
chines become connected, the deployment will go along.
Moreover, the progression of the deployment is guaran-
teed not only thanks to the accessibility of a new con-
nected machine but also because of resource changes
on any host. This deployment is therefore qualified as
propagative.

However, in the kind of dynamic network we tar-
get, when a component is installed and instanciated,
the resources it requires may also disappear or be-
come unavailable. A redeployment is then mandatory.
The autonomic deployment consists in reconsidering
the placement choices that have been made in the prop-
agative phase in order to take into account the unavail-
ability of resources.

The main difficulty of such a deployment in a per-
vasive network is to guarantee the unicity of the in-
stantiations defined in the architecture descriptor. On
one hand, a host that represents a composite compo-
nent cannot be selected before the deployment, as in
a fully connected network, since this machine may not
be connected. On the other hand, if we let each of the



machines that host the same replicated composite com-
ponent make a decision, we cannot guarantee that, in
two different islands, contradictory instantiations may
not be performed.

In the following, we present the autonomic deploy-
ment in two steps. First, we detail the propagative de-
ployment, then, we present the mechanisms that make
this deployment autonomic.

3.2.2 Propagative deployment

When the deployment is launched from an initial ma-
chine, the deployment descriptor and the architecture
descriptor are diffused to all the machines that are
listed at the top level of the application (with the
XML target element). Then, each machine that re-
ceives these descriptors, launches a recursive process
(ie for each composite component) in order to select
the components that can be deployed (instantiated)
locally. The main steps of this process for a host h;
and for a composite component C' are the following;:

1. h; checks if it belongs to the set of the target hosts
associated with C' (see the XML target element).
If h; is not concerned by the deployment (instan-
tiation), the process returns for this component,
else,

2. host h; launches probes corresponding to the re-
source constraints of every subcomponent of C' (eg
a probe for memory observation). For each sub-
component for which the probes have returned a
compatible value with regard to the resource con-
straints, h; declares itself as candidate for hosting
this component.

3. h; also receives other candidatures. As soon as h;
has computed a solution in function of these candi-
datures, it tries to make it adopted via a consensus
algorithm.

4. Once the consensus has completed, ie a majority
of machines has decided (or not) to confirm the
placement solution of A;, this piece of information
(which contains the values of the free variables) is
sent to the other machines (and therefore to the
other applicants) which will stop the process for
each component they are not authorized to instan-
tiate, else,

5. For each subcomponent that can be instantiated
on h;, the process starts again at step 1.

Since resources may fluctuate (eg become available and
unavailable), discovery mechanisms (step 2) are used
periodically. Moreover, it may be possible that no so-
lution exists (step 3), that is, no combination of can-
didatures satisfies the location constraints. Periodic

observation of resources allows a machine to apply for
the instantiation of a specific (not installed yet) com-
ponent as soon as its resource constraints are verified,
potentially allowing the emergence of a new solution
for the location constraints.

The propagative deployment requires a distributed
algorithm in order to make a collective decision (step
3). This is achieved thanks to the use of a consensus
algorithm on the identity of the machines that apply
for the instantiation of a component. This algorithm
is detailed in the next section.

The placement information is diffused to other ma-
chines (step 4) by updating the deployment descriptor
with the new values, ie the names of the machines that
are selected for hosting each component. Indeed, be-
fore the deployment, the location of a component can
be defined without any knowledge on the identity of a
specific host through the use of variables. For exam-
ple, if hosts ambika and dakini are chosen respectively
for the DocumentFinder and DocumentBuffer compo-
nent, the following lines are modified in the deployment
descriptor:

Il replace line 12 by:
<target varname="x" value="ambika"/>

Il replace line 24 by:
<target varname="y" value="dakini"/>

3.2.8 From a propagative deployment to an auto-
nomic deployment

Principle The propagative deployment allows a
component-based application to be deployed as soon as
its required resources become available. But, in gen-
eral, and especially in the kind of network we target,
resources can also become unavailable (eg the amount
of free memory demanded may decrease and become
not sufficient) and faults may happen. In these cases,
one or several components have to be redeployed. This
redeployment can be divided into three steps:

1. Each of the components that depend on the un-
available resource is stopped, yielding the deacti-
vation of its provided interfaces. All the (remote or
local) required interfaces bound to these latter be-
come inactive. Thus, all the interfaces leading to
this component will be deactivated, one after the
other. The application runs then in a degraded
mode.

2. The state of the component is saved in a serializ-
able form (we assume that the developer has an-
ticipated this situation).

3. A message holding the identity of the component
to redeploy is diffused. This message also con-



tains the location from which the state of the com-
ponent(s) can be retrieved. Each machine that
receives this message updates its deployment de-
scriptor by removing the location of the compo-
nent.

The above procedure is sufficient to define an auto-
nomic deployment. Indeed, when receiving the mes-
sage diffused at step 3, the machines—because they
update their deployment descriptor—find themselves
back in the propagative deployment: some components
are not installed yet. Thus, because the deployment is
not fully completed, the propagative deployment re-
mains active, that is, some machines will apply for the
instantiation of the uninstalled component. In our ap-
proach, the architecture descriptor of the application
is viewed as a goal to achieve in terms of components’
instantiations and with respect to some constraints to
satisfy.

Consensus The propagative and autonomic deploy-
ment described above is based on a collective decision
making algorithm. When several machines apply for
the instantiation of the same component, and in order
to avoid inconsistencies regarding the architecture de-
scriptor, we have to guarantee that one and only one
machine will be chosen. We use the consensus algo-
rithm described in [10] to elect among applicants the
machine whose identity will be approved by a majority
of hosts. The authors of this algorithm have identi-
fied conditions for which there exists an asynchronous
protocol that solves the consensus problem despite the
occurrence of ¢ process crashes. In our case, if there
are n machines involved in the deployment, ¢ can be
as great as |2|. Thus, a collective decision making
is possible if there is at least a majority of machines
that compose the island. By relying on a majority we
guarantee that within an island there is at least one
machine that holds the latest version of the deploy-
ment descriptor, and so, no contradictory decision can
be made in two distinct islands.

The consensus algorithm requires that the number of
machines that are accessible among the target hosts of
the composite component reaches the majority. This
majority is not the same depending on the compos-
ite component. For example, the photo application is
distributed over hq, ho, hz, hs and hs; as a consequence,
the majority is reached when at least three of these ma-
chines are in the same island. Whereas for composite
component DocumentSearch, which is distributed over
{h1,ho,hs}, the consensus is solved when an island,
composed of at least {hy,ho}, {h1,hs} or {he, h3}, is
formed.

Moreover, the consensus may not terminate (eg the
number of hosts within an island may not be sufficient).

In order to prevent this situation, we allow a newly con-
nected machine to participate in the consensus. This is
achieved by periodically broadcasting a message asking
if a consensus is still in progress. In this case, the newly
connected machine collects the data that have already
been exchanged between the other machines and pro-
poses a value that can make the consensus evolve.

4 Implementation status and results

4.1 Component distribution

We have implemented a middleware support for hierar-
chical distributed components by extending Julia [3], a
Java implementation of the Fractal component model.
Active interfaces have been realized thanks to the addi-
tion of a new controller (cubik-controller) to the prim-
itive and composite components. This controller is in
charge of maintaining up-to-date the state of the re-
quired and provided interfaces. The cubik-controller
prevents method invocations on the inactive interfaces
by reifying methods invocation (using the Julia Meta-
CodeGenerator). We propose an API to make possible
the use of specific strategies when an interface is inac-
tive: for example, one can wait for the reactivation of
the interface.

The support for managing active and inactive inter-
faces relies on the mixin mechanisms offered by Julia
that allow code insertion in the membrane of the com-
ponent. It is thus possible to take into account this
kind of interface in any application implemented with
Julia without any code modification. The components
are then endowed with an APT for discovering the state
of the interfaces (active or not) and the dependencies
between interfaces.

4.2 Context-awareness

The deployment that has been presented in this pa-
per relies on the discovery of the resources required
by the components. Thanks to DRAJE (Distributed
Resource-Aware Java Environment) [11], an extensible
Java-based middleware developed in our team, hard-
ware resources (eg processor, memory, network inter-
face) or software resources (eg process, socket, thread,
directory) can be modeled and observed in an homoge-
neous way. For every resource constraint of the deploy-
ment descriptor, a resource in DRAJE is created and a
periodic observation is launched.

Moreover, DRAJE has been extended by adding two
new types of resources: the RemoteBinding and Net-
workLink resources. A NetworkLink resource models the
physical link between two hosts and maintains some in-
formation about the state of the network connection.
A RemoteBinding resource subscribes to a NetworkLink



in order to construct the state of a binding between two
remote components. Thus, thanks to a simple notifica-
tion system, when a disconnection (resp. reconnection)
occurs at the network level between two machines, the
state of the bindings is updated and the corresponding
interfaces of components are deactivated (resp. acti-
vated).

4.3 Deployment resolution

The deployment process presented is based on a con-
straint language to describe the placement of the com-
ponents according to some conditions on resources.
This language is purely declarative. It has been imple-
mented with FractalADL and is supported at run-time
by a constraint engine developed with Cream?. Cream
is a Java library for writing and solving constraint sat-
isfaction problems or optimization problems. Thanks
to this library, information about candidates and about
the state of the local resources can be “told” to a store.
This store is then used in order to get a location place-
ment solution or to detect a constraint inconsistency
(eg the amount of free memory required is no longer
available).

4.4 Performance evaluation

The performance of the deployment process depends
on multiple parameters imposed by the execution envi-
ronment (disconnections, fluctuation of the resources,
volatility of the hosts, etc.).

In a preliminary experiment, we have tried to iso-
late the impact of the implementation of our consen-
sus from connectivity conditions. This experiment has
been hence conducted on a (fully connected) 100 Mb/s
Ethernet network of workstations (2 GHz Pentium 4).
It dealt with the deployment of a component whose
deployment descriptor is similar to the one of the Doc-
umentSearch component described in section 3. Fig-
ure 5 shows the time taken by our algorithm to decide
on a placement solution in function of the number of
machines involved in the deployment. First (curve 1),
we have limited to one the number of machines that
apply for hosting a component. Then we have consid-
ered concurrent applicants, with 5 and 8 simultaneous
candidatures (curves 2 and 3).

This experiment allowed us to verify that the time
to obtain a placement solution remains acceptable and
that the multiplicity of simultaneous consensus execu-
tions does not incur prohibitive overcost.

We are currently investigating the connection of our
middleware support to a mobility simulator so as to
emulate more realistic executions.

2http:/ /kurt.scitec.kobe-u.ac.jp/ ~shuji/cream/
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Fig. 5: Evaluation of the duration of a decision making on
the placement of components

5 Related Work

The main aspects developed in this paper are related to
a distribution scheme for hierarchical components on
dynamic networks and to an automatic management
of their deployment which is driven by constraints on
resources that the machines of the network have to
satisfy.

Many works have taken into account a context-aware
deployment, that is, the placement of components onto
hosts according to some resource requirements. A for-
mal statement of the deployment is given in [12] and
a set of algorithms that improve mobile system’s avail-
ability is presented. In [13] the authors propose a de-
ployment configuration language (DCL) in which prop-
erties on the target hosts can be expressed. The de-
ployment considered in this work extends the Corba
Component Model, which is a flat component model.

In [9], the authors present the Deladas language that
also allows constraints to be defined on hosts and com-
ponents. A constraint solver is used to generate a valid
configuration of the placements of components and re-
configuration of the placement is possible when a con-
straint becomes inconsistent. But this centralized res-
olution is not suited to the kind of dynamic network we
target. Moreover, the current version of Deladas does
not consider resource requirements.

These abovementioned works aim at finding an opti-
mum for the placement problem of components. This
aspect is not one of our objectives. Indeed, due to the
dynamism of the environment, it is hardly feasible to
define a quiescent state that will allow our consensus
algorithm to decide on an optimal placement. More-
over, the solutions proposed are centralized.



In [14] a decentralized redeployment is presented.
The configuration to be deployed is available on every
host involved in the deployment. A local decision can
then be made according to the local subsystem config-
uration state. However the choice of the components’
location is made before the deployment process.

The work presented in [15] deals with the deployment
of hierarchical component-based applications. The au-
thors describe an asynchronous deployment and use
the hierarchical structure of the application in order to
distribute deployment tasks. In the solution developed
by the authors, a deployment controller is statically
chosen and defined in the deployment descriptor. In
our approach we could not decide at design-time which
machine will host such a controller. Besides, the ap-
proach proposed by the authors focuses on functional
constraints and thus resource requirements have not
been taken into account.

Among the works on autonomic computing, [16]
and [17] are based on autonomic entities—the
components—to define autonomic systems. Changes in
the environment are performed locally by every com-
ponent that is responsible for its own reconfiguration,
update, migration etc. However, the deployment of au-
tonomic systems and the management of architectural
consistency are not explicit.

6 Conclusion

This paper has presented a middleware support for de-
ploying and executing an application built with ubiqui-
tous hierarchical components on an heterogeneous and
dynamic network. The main contribution of this work
is that it attempts to take into account a challenging
distributed target platform characterized by the het-
erogeneity and the volatility of the hosts, volatility that
may result in the fragmentation of the network.

A distribution method has been proposed for hierar-
chical components. Composite components are ubiqui-
tous in the sense that they are made available on a set
of hosts whereas each primitive component is localized
on a single host. Besides, via the notion of active inter-
face, we allow a component to operate in a degraded
mode in order to account for network disconnections
without making the entire application unusable.

Our proposal for supporting the deployment covers
the last phases of the deployment process, namely the
instantiation of the components’ instances and their
activation, which are handled through the individual
activation of their interfaces. We have presented a
purely descriptive language for specifying deployment
descriptors that allow for a context-aware deployment.
This language is meant to extend some existing ADL.
A deployment descriptor allows the description of the
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resource needs of a component and some placement
constraints.

An algorithm allowing an autonomic deployment, of a
component-based application has been proposed. The
instantiation and the activation of a component is per-
formed as soon as some resources that meet its needs
are discovered. This early activation is possible be-
cause some of its interfaces can remain inactive (the
component then executes in a degraded mode) and de-
fines the propagative deployment phase. When a con-
straint attached to a component becomes inconsistent,
its redeployment is performed automatically by going
back to the propagative deployment phase. The auto-
nomic deployment is based on a consensus algorithm
in order to guarantee the consistency (in terms of com-
ponents’ instances) of the deployed architecture even
in the context of a partitioned network.
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