
HAL Id: hal-00426229
https://hal.science/hal-00426229

Submitted on 23 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware Support for Ubiquitous Software
Components

Didier Hoareau, Yves Mahéo

To cite this version:
Didier Hoareau, Yves Mahéo. Middleware Support for Ubiquitous Software Components. Personal
and Ubiquitous Computing, 2008, 12 (2), pp.167-178. �10.1007/s00779-006-0110-7�. �hal-00426229�

https://hal.science/hal-00426229
https://hal.archives-ouvertes.fr


Middleware support for the deployment ofubiquitous software 
omponentsDidier Hoareau and Yves MahéoValoria, University of South BrittanyCampus de Tohanni
, 56017 Vannes, Fran
e{Didier.HoareaujYves.Maheo}�univ-ubs.fr
Abstra
t A number of emerging distributed plat-forms in
lude �xed and robust workstations but,like dynami
 and pervasive networks, are often builtfrom mobile and resour
e-
onstrained devi
es. Thesenetworks are 
hara
terized by the volatility of theirhosts and 
onne
tions, whi
h may lead to networkfragmentation. Although in
reasingly 
ommon, theyremain a 
hallenging target for distributed appli
a-tions. In this paper we fo
us on 
omponent-baseddistributed appli
ations by addressing the distributionand the deployment of software 
omponents on dy-nami
 pervasive networks. We present a distributions
heme and some asso
iated middleware me
hanismsthat allow a 
omponent to provide its servi
es in anubiquitous way. First, an ar
hite
ture des
riptionlanguage extension is proposed in order to spe
ify adeployment driven by 
onstraints on the resour
esneeded by 
omponents. Then, a propagative andautonomi
 deployment pro
ess is explained, whi
h isbased on a 
onsensus algorithm adapted for dynami
networks. Lastly, implementation details and experi-ment results are given.
1 Introdu
tion1.1 Dynami
 pervasive platformsDuring the last years have emerge new distributed plat-forms, often quali�ed as pervasive, that are no longerrestri
ted to an inter
onne
tion of workstations thatforms a stable network. These platforms may still in-
lude powerful and robust ma
hines but they are rather
omposed of resour
e-
ontrained and mobile devi
es(laptops, personal digital assistants�or PDA�, smart-

phones, sensors, et
.). Due to the mobility and thevolatility of the devi
es involved, dynamism is one oftheir major 
hara
teristi
s. A dynami
 network hen
eformed 
an be des
ribed as a partitioned network,viewed as a 
olle
tion of independent islands. An is-land is equivalent to a 
onne
ted graph of hosts that
an 
ommuni
ate together, while no 
ommuni
ation ispossible between two islands. In addition, the 
on�gu-ration of the islands may 
hange dynami
ally.In this paper, we are interested in medium-size dy-nami
 pervasive platforms. Figure 1 shows a simpleexample of su
h a dynami
 network. It is 
omposed ofa number of hosts a user has a

ess to and on whi
h adistributed appli
ation is meant to be a

essible. Thisset of hosts in
ludes �xed and mobile ma
hines. Con-ne
tivity is not ensured between all the hosts. Indeed,at home, the user's 
onne
tion to Internet is sporadi
and some of the devi
es are mobile (as su
h, they maybe
ome out of rea
h) and/or volatile (a PDA may forexample be swit
hed o� frequently).1.2 Ubiquitous appli
ationsAlthough this kind of distributed platform is in
reas-ingly 
ommon, it remains a 
hallenging target for build-ing, deploying and maintaining distributed appli
a-tions. The pervasiveness of the equipment should be re-�e
ted on the distributed appli
ation, leading to someform of ubiquitous appli
ations. Many appli
ationsshould bene�t from ubiquity in this 
ontext: enhan
ed
lassi
al appli
ations su
h as PIM (Personal Informa-tion Management) or 
ollaborative appli
ations, butalso envisioned appli
ations in e-home or e-business.A ubiquitous appli
ation is supposed to render its ser-vi
es everywhere, or at least wherever it makes sense,a

ounting for the 
onstraints of the hosting devi
es.For example a PIM appli
ation is mu
h more usable if1



Fig. 1: Example of a dynami
 network, possibly parti-tioned in three islandsit o�ers its servi
es on all the ma
hines owned by a user,even if the entire appli
ation is not installed on ea
hma
hine. It is not desirable however that the appli-
ation be designed and administered as a 
olle
tion oftarget-spe
i�
 
odes. Ubiquity must be made as trans-parent as possible. Of 
ourse, it may o

ur that some ofthe servi
es are temporarily not available on a spe
i�
host (eg a

ess to an up-to-date shared agenda from aPDA that is isolated from any network). In addition,some fun
tionality may not be a

essible everywheredue to a la
k of resour
es (eg extended graphi
al viewon a devi
e with a small display). We believe thata minimal set of me
hanisms should be provided toimplement this adaptation in order to redu
e the 
om-plexity of the design and the administration of ubiqui-tous appli
ations.1.3 Ubiquitous 
omponentsSoftware 
omponents have proved to be useful for de-veloping 
omplex distributed appli
ations, and many
omponent models and their asso
iated te
hnologiesare now available. In the 
omponent-based approa
h,the appli
ation is designed as an assembly of reusable
omponents that 
an be bound in a versatile manner,possibly dynami
ally. Some of the proposed modelsare known as hierar
hi
al models. They o�er the pos-sibility of 
reating high level 
omponents by 
ompos-ing 
omponents of lower abstra
tion level, whi
h repre-sents a software 
onstru
tion prin
iple that is naturaland expressive. In su
h models, a 
omponent�thatis then 
alled a 
omposite 
omponent�
an itself bean assembly of 
omponents, re
ursive in
lusion endingwith primitive 
omponents that en
apsulate 
omput-ing 
ode.Using a hierar
hi
al 
omponent-based approa
h forbuilding a ubiquitous appli
ation that targets a dy-nami
 network seems an attra
tive solution. Yet, sev-eral problems remain that are not treated by available
omponent models and 
omponent exe
ution supports.In parti
ular, the two following aspe
ts have to be dealtwith: (1) how to deploy a hierar
hi
al 
omponent in adynami
 network while ensuring that this deploymentrespe
ts the ar
hite
ture of the appli
ation and adapts

itself to the resour
e 
onstraints imposed by the targetplatform? (2) how to allow a distributed exe
ution ofthe 
omponents, ie to allow intera
tions between 
om-ponents in a not-always-
onne
ted environment?1.4 Outline of our approa
hThis paper des
ribes a distribution s
heme for hierar-
hi
al 
omponents and its asso
iated deployment pro-
ess that target dynami
 pervasive networks. Be
auseof the very 
onstrained environment in whi
h the ap-pli
ation is to be deployed, we 
an hardly envisage apermanent a

ess to the servi
es o�ered by the appli-
ation or an optimal utilization of the resour
es. Theemphasis is put on �nding a distribution s
heme andsome deployment me
hanisms that a
hieve a minimalavailability while taking a

ount of the environment.The distribution s
heme we propose is related to thehierar
hi
al stru
ture of the appli
ation. This s
hemeis based on the repli
ation of 
omposite 
omponents.Indeed, we allow a 
omposite to be a

essible on a set ofhosts, although ea
h primitive 
omponent is lo
alizedon a single host. Besides, we also allow a 
omponentto operate in a degraded mode in order to a

ount fornetwork dis
onne
tions without making the entire ap-pli
ation unusable. The notion of a
tive interfa
e isadded to the 
omponent model. Our runtime supportdete
ts network dis
onne
tions and dea
tivates some
omponents' interfa
es a

ordingly. Introspe
tion onthe state (a
tive or ina
tive) of an interfa
e is possibleso as to allow the development of adaptive 
omponents.The deployment of a 
omponent 
overs several partsof the life-
y
le of a 
omponent. In this paper wefo
us on the last phases of the deployment, 
overingthe instantiation of the 
omponent (that 
reates anexe
utable instan
e from a 
omponent 
ode), its 
on-�guration (that establishes the bindings to its inter-fa
es) and its a
tivation (that allows the other 
om-ponents to invoke its interfa
es). The presented te
h-niques should be 
omplemented with 
omponent deliv-ery me
hanisms su
h as those des
ribed in [1℄.The deployment of the hierar
hy of 
omponents isspe
i�ed in a 
onstraint-based de
larative way. Thear
hite
ture des
riptors of the 
omponents are aug-mented with deployment des
riptors in whi
h 
on-straints on the resour
es required by 
omponents andon their possible lo
ation 
an be spe
i�ed.When the deployment is triggered, all the 
onstraintslisted in the deployment des
riptor may not be satis-�ed immediately. The dynamism of the network makesthe situation even more di�
ult as it may o

ur thatthe set of hosts that would satisfy globally the deploy-ment 
onstraints are never 
onne
ted together at thesame time, pre
luding any deployment. Instantiationof some 
omponents and their a
tivation is however2



possible as we allow the 
omponents to operate in a de-graded mode through the dynami
 management of in-terfa
es' a
tivation. The deployment pro
ess we imple-ment is thus a propagative pro
ess: the instantiationand the a
tivation of a 
omponent are performed assoon as some resour
es that meet its needs are dis
ov-ered. Moreover, as it may o

ur that resour
es neededby an already deployed 
omponent be
ome not su�-
ient, the pla
ement 
hoi
e for a 
omponent 
an be
alled in question dynami
ally. The deployment pro-
ess 
an thus be 
onsidered as autonomi
. We proposean algorithm that supports this propagative and auto-nomi
 deployment. The s
alability of the pro
ess is en-sured by the distributed and hierar
hi
al organisationof the 
ontrol. Moreover, we implement a distributed
onsensus that guarantees that the lo
ation 
onstraintsare satis�ed even in the 
ontext of a partitioned net-work.The paper is organised as follows. In se
tion 2, themodel of hierar
hi
al 
omponent we work on is pre-sented and we explain how a hierar
hy of 
omponents isdistributed over a network. The 
on
ept of a
tivationat the interfa
e level is brie�y exposed. In se
tion 3we give some details on the form of the deploymentdes
riptor that 
omplements the ar
hite
ture des
rip-tion, we present the overall propagative and autonomi
deployment pro
ess, and we detail the distributed in-stantiation algorithm that forms the basis of the dis-tributed deployment. Se
tion 4 brie�y des
ribes thestatus of the development of our prototype. After dis-
ussing related work in se
tion 5 we 
on
lude the paperin se
tion 6.2 Distributed Hierar
hi
al ComponentsWe des
ribe in this se
tion what we understand by dis-tributed hierar
hi
al 
omponents. The basi
 featuresof our 
omponent model are explained and we detailhow the 
omponents are distributed over a network ofhosts. Further details 
an be found in [2℄.2.1 Hierar
hi
al Component ModelIn this paper, we 
onsider a widely appli
able hierar
hi-
al 
omponent model in whi
h a 
omposite 
omponentrepresents a more or less 
omplex stru
ture of inter-
onne
ted 
omponents that 
an be used as a simple
omponent with well-de�ned required and provided in-terfa
es. Re
ursion stops with primitive 
omponentsthat 
orrespond to 
omputing units. Components areinter
onne
ted through bindings that ea
h representsa link between a required interfa
e and a provided in-terfa
e. For pra
ti
al reasons, we have 
hosen to baseour development on the Fra
tal 
omponent model [3℄

and more pre
isely on its referen
e Java implementa-tion Julia. However, the 
on
epts developed in thispaper 
ould easily be applied to other hierar
hi
al 
om-ponent models su
h as Koala [4℄, Darwin [5℄ or Sofa [6℄.The notion of 
omposite 
omponent is often usedat design time and is found in so-
alled ar
hite
turedes
ription languages (ADL) [7℄. In the appli
ativeframework we have 
hosen, it is however interesting toalso be able to manipulate a 
omposite at exe
utiontime in order to ease dynami
 adaptation. Thereforethe 
omposite is rei�ed at runtime namely by a mem-brane obje
t that stores the interfa
es of the 
ompo-nent and its 
on�guration (ie the list of its sub
ompo-nents and the bindings between these sub
omponents).2.2 Distribution ModelAs mentioned in the introdu
tion, we wish to deploya hierar
hy of 
omponents on a distributed platformthat is 
hara
terized namely by its heterogeneity andthe volatility of its hosts. The appli
ation 
omponentsare distributed on a set of hosts. The way this pla
e-ment is performed is detailed in se
tion 3.2. We fo
ushere on the des
ription of the me
hanisms allowing adistributed exe
ution of hierar
hi
al 
omponents.In our approa
h, the ar
hite
ture of a 
omponentis 
oupled to its pla
ement and this relationship isdealt with di�erently for 
omposite 
omponents thanfor primitive 
omponents. As far as distribution is 
on-
erned, a primitive 
omponent exe
utes on one hostwhereas a 
omposite 
an be physi
ally repli
ated ona set of di�erent hosts. The main goal of 
ompositerepli
ation is that the 
omponent's interfa
es be
omedire
tly a

essible on several hosts. A 
omposite 
om-ponent 
an then be seen as providing a ubiquitous ser-vi
e.A single host is asso
iated with a primitive 
ompo-nent whereas a set of hosts is asso
iated with a 
om-posite 
omponent. This set must be a subset of the setof hosts asso
iated with the in
luding 
omponent. Bydefault, the pla
ement set of a 
omposite 
omponentis inherited from the in
luding 
omponent.At exe
ution time, ea
h instan
e of a 
omposite
omponent maintains lo
ally some information aboutthe 
on�guration of its sub
omponents. Hen
e, a dis-tributed 
omposite 
omponent 
 distributed over a setof hosts H respe
ts the following properties:� The provided and required interfa
es of 
 are a
-
essible on all the hosts hi of H .� Let 
 be a 
omposite 
omponent that 
ontains aprimitive sub
omponent p. There exists a singlehost hi on whi
h p exe
utes. For every host hj 2 H(j 6= i), there exits 
j , an instan
e of 
 on hj . Ea
h
j holds a remote referen
e to p (in a proxy).3



2.3 ExampleWe give in this se
tion an example of an appli
ationmade of hierar
hi
al 
omponents and we detail how it
an be distributed on a given set of hosts.Figure 2 depi
ts the ar
hite
ture of a photo appli-
ation that allows the user to sear
h for a number ofphotos in a repository and to build a diaporama withthe sele
ted photos. The top-level 
omposite 
ompo-nent (PhotoApp) in
ludes a generi
 
omponent devotedto do
ument sear
hing (Do
umentSear
h). This 
om-ponent is also a 
omposite 
omponent (taken o� theshelf); it is 
omposed of a Do
umentFinder and a Do
-umentBu�er. The primitive Do
umentFinder 
ompo-nent provides an interfa
e for issuing more or less 
om-plex requests based on the names of the do
uments, ontheir subje
ts or some other meta-information, and forsele
ting the 
orresponding do
uments from a givenset of do
uments (a repository). The sele
ted do
u-ments are passed to a Do
umentBu�er. Apart froman interfa
e for adding new do
uments, the primitiveDo
umentBu�er 
omponent provides an interfa
e forsorting and extra
ting do
uments. This provided inter-fa
e and the one of Do
umentFinder are a

essible asprovided interfa
es of the Do
umentSear
h 
omponent.Finally, the Do
umentSear
h 
omponent is bound to aPhotoRepository 
omponent that 
onstitutes the spe-
ialized do
ument repository and a DiapoMaker 
om-ponent whi
h allows the sele
ted photos to be assem-bled in a parameterizable diaporama.Consider that the photo appli
ation is meant to beusable from any of the �ve ma
hines owned by the user(hosts h1 to h5), in a dynami
 network similar to theone depi
ted in �gure 1. Hen
e, the target set of hostsasso
iated with the PhotoApp 
omponent is {h1, h2,h3, h4, h5}. A subset of these hosts is dedi
ated tothe distributed exe
ution of the 
omposite 
omponentDo
umentSear
h, say {h1, h2, h3}, h4 and h5 beingex
luded for li
en
e reasons for example. Moreover,some 
onstraints on the required resour
es result in thefollowing pla
ement of the primitive 
omponents (seese
tion 3.2 for details): Do
umentFinder on h1, Do
u-mentBu�er on h2, PhotoRepository on h4 and Diapo-Maker on h5.At runtime the membranes of the 
omposite 
om-ponents are maintained on ea
h of their target hosts.A membrane 
ontains the interfa
es of the 
omponentas well as the des
ription of its ar
hite
ture (sub
om-ponents and bindings). The instan
es of 
omponents(primitive or 
omposite) that are not present are rep-resented by proxies. Note that for a primitive 
ompo-nent, the proxy is linked to the distant (single) instan
eof this primitive whereas for a 
omposite 
omponent,the proxy is linked to one distant instan
e of the (par-tially repli
ated) membrane.

Figure 3 summarizes the pla
ement of the 
ompo-nents and shows the runtime entities (ar
hite
tural in-formation and instan
es) maintained on every host forour PhotoApp example.2.4 Support for dis
onne
tionsThe repli
ation of a 
omposite 
omponent eases thea

ess to the servi
es it implements as it permits theuse of its provided interfa
es on ea
h host. However,be
ause of network dis
onne
tions, from a given site,a

ess to a remote 
omponent 
an be interrupted. Con-sequently, a method invo
ation in this 
ase may raisesome kind of a network ex
eption. This problem is notspe
i�
 to our approa
h but appears as soon as remotereferen
es are used, that may point to una

essible
omponents at any time. In a 
ontext of hierar
hi
al
omponents, the te
hnique that 
onsists in dea
tivat-ing a 
omponent as soon as one of its required interfa
eis unbound is very penalizing as a single dis
onne
tionwill end up by ri
o
het with the dea
tivation of the top-level 
omponent, that is the dea
tivation of the entireappli
ation. In the dynami
 environments we target,where dis
onne
tions are frequent, the appli
ation islikely to be rarely usable.We address this problem in the following two ways:� We introdu
e the notions of a
tive and non a
tiveinterfa
es. We maintain the state (a
tive or not)of an interfa
e a

ording to the a

essibility of the
omponent's instan
e it is bound to. Moreover,we add a 
ontrol interfa
e to 
omponents to al-low introspe
tion on the state of its provided andrequired interfa
es.� We allow the exe
ution of a 
omponent even ifsome of its interfa
es are not a
tive.On the PhotoApp example, if a dis
onne
tion o

ursbetween h1 and h4, the PhotoRepository 
omponent isno longer a

essible from h1. The dis
onne
tion is de-te
ted by a dedi
ated monitor, and 
onsequently, therequired interfa
e of the Do
umentSear
h 
omponent isdea
tivated. This triggers the dea
tivation of the 
or-responding required interfa
e of the Do
umentFinderand then of its provided interfa
e. However, the se
-ond interfa
e of Do
umentSear
h (the one bound to Di-apoMaker) 
an remain a
tive as the Do
umentSear
h
omponent is still a

essible. Globally the appli
ationis still usable, although in a degraded mode, as diapo-ramas 
an still be built from the do
ument bu�er.Noti
e that this approa
h has an obvious impa
t onthe programming style required when developing 
om-ponents, as the state of an interfa
e should be testedbefore invoking methods on this interfa
e. Indeed, the4



Fig. 2: Ar
hite
ture of the photo appli
ation (in UML 2.0)

Fig. 3: Pla
ement of 
omponents and entities maintained on hosts h1 to h5
5



un
ertainty of the a

esses to needed (or required) ser-vi
es �inherent to the targeted dynami
 platforms�enfor
es adaptable 
ode. The provision for tools tointrospe
t on the availability of the interfa
es is a min-imal answer that should be 
omplemented by other fa-
ilities for des
ribing or applying, for example, adap-tation strategies. This involves resear
h at languagelevel and middleware level that is out the s
ope of thepresented work.3 Deployment3.1 Deployment spe
i�
ationWhen 
onsidering the deployment of distributed 
om-ponents, the key issue is to build a mapping betweenthe 
omponent instan
es and the hosts of the targetplatform. This task implies to have some knowledgenot only about the identity of the hosts involved in thedeployment phase, but also about the 
hara
teristi
s ofea
h of them. Moreover, for a hierar
hi
al 
omponent-based appli
ation, every 
omponent instan
e at ea
hlevel of the hierar
hy has to be handled.At design-time, it is unlikely that the designer knowswhere to deploy ea
h 
omponent regarding resour
eavailability. This motivates the need to di�er this taskat runtime. We propose to add a deployment aspe
t toan existing ar
hite
ture des
ription language (su
h asxA
me1 or [8℄). This will allow the des
ription of theresour
e properties that must be satis�ed by a ma
hinefor hosting a spe
i�
 
omponent.We propose an extension to ADLs that makes possi-ble the des
ription of the target platform in a de
lara-tive way. The language we propose is purely de
larativeand des
riptive and has a similar obje
tive to the lan-guage des
ribed in [9℄. It is not mandatory to give anexpli
it name or address of a target ma
hine: the pla
e-ment of 
omponents are mainly driven by 
onstraintson the resour
es the target host(s) should satisfy. The
hoi
e of the ma
hine that will host a 
omponent willbe made automati
ally at runtime (during the deploy-ment).The des
ription of the resour
es that the target plat-form must satisfy is de�ned in a deployment des
riptorin whi
h referen
es to 
omponent instan
es (de�ned inthe ar
hite
ture des
riptor) 
an be made. For ea
h
omponent, a deployment 
ontext is de�ned. Su
h a
ontext lists all the 
onstraints that a hosting ma
hinehas to satisfy. If these 
onstraints are asso
iated witha primitive 
omponent, one host will be authorized toinstantiate this 
omponent whereas several hosts maybe sele
ted for hosting the membrane of a 
omposite
omponent, in a

ordan
e with our distribution model.1xA
me: A
me Extensions to xAr
h, http://www-2.
s.
mu.edu/~a
me/pub/xA
me/

Two types of 
onstraints 
an be de�ned in a deploy-ment 
ontext: resour
e 
onstraints and lo
ation 
on-straints. Resour
e 
onstraints allow hardware and soft-ware needs to be represented. Ea
h of these 
onstraintsde�nes a domain value for a resour
e type that thetarget host(s) should satisfy. Lo
ation 
onstraints areuseful to drive the pla
ement 
hoi
e of a 
omponent ifit o

urs that more than one host is 
andidate.An example of use of resour
e and lo
ation 
on-straints is illustrated in Figure 4 whi
h shows the de-ployment des
riptor, in an XML notation, of the photoappli
ation introdu
ed in the previous se
tion. De-s
riptor (a) 
ontains the 
onstraints asso
iated withthe Do
umentSear
h 
omposite 
omponent and de-s
riptor (b) 
ontains those of the PhotoApp 
ompo-nent. Resour
e 
onstraints are de�ned within theresour
e-
onstraint element. For every 
omponent,adding an XML tag 
orresponding to a resour
e type(eg 
pu, memory) spe
i�es a 
onstraint on this resour
ethe target host has to verify.Lo
ation 
onstraints are de
lared within thelo
ation-
onstraint element. The target element de�nesthe set of hosts among whi
h our runtime support willhave to 
hoose. Hosts 
an be represented in two ways:(1) by their hostname if their identity are known beforethe deployment or (2) by a variable. A variable name
an be used at the 
omposite level to 
ontrol the pla
e-ment of the 
omponents. This feature is a
hieved bythe use of the operator elemen, whi
h allows relationsbetween variables to be expressed. For example, in de-s
riptor (a), the Do
umentFinder 
omponent is said tobe deployed on host x and Do
umentBu�er on host y.ConstrainingDo
umentFinder and Do
umentBu�er tobe on two distin
t hosts is a
hieved by using the alldi�operator that de
lares x to be di�erent from y. For aprimitive 
omponent, at most one variable 
an be de-
lared (be
ause a primitive 
omponent will be pla
edon an unique host). Several variables 
an be used for a
omposite 
omponent, whi
h is physi
ally distributedover several hosts.When 
omposing the appli
ation, it is possible touse only variables. Then, the de�nition of the targetplatform is made at the �rst level of the hierar
hy (forthe 
omponent PhotoApp on the example) by addingthe list of the ma
hines that will be involved in thedeployment (lines 71�75 on Figure 4). During the de-ployment, as it is detailed in the next se
tion, this set ofma
hines, together with the lo
ation 
onstraints, willbe inherited by the sub
omponents.6



Fig. 4: Deployment des
riptor3.2 Deployment pro
ess3.2.1 OverviewWhen the ar
hite
ture des
riptor and the deploymentdes
riptor are de�ned, the deployment phase we 
on-sider in this arti
le 
onsists in 
hoosing one (or several)target host(s) for every 
omponent of the ar
hite
ture.This sele
tion has to be done in a

ordan
e with thedeployment 
ontext asso
iated with the 
omponents:the target hosts must satisfy the resour
e 
onstraintsand must not 
ontradi
t the lo
ation 
onstraints. De-pending on the resour
es that are available on the ma-
hines of the network, more than one ma
hine 
an be
hosen for hosting a 
omponent: for a primitive 
om-ponent, only one host has to be sele
ted whereas fora 
omposite 
omponent, a

ording to our distributions
heme, several hosts 
an be 
hosen. It is required to
ontrol the pla
ement of 
omponents. Indeed, we haveto guarantee that two islands of ma
hines do not makein
onsistent de
isions (eg instantiating twi
e the sameprimitive 
omponent).Be
ause of the dynamism of the network on whi
h wedeploy our appli
ations, it is not possible to base a de-ployment on a full 
onne
tion of the di�erent host. Weare interested in a deployment that will allow an appli-


ation to be a
tivated progressively, that is, part of itsprovided servi
es 
an be put at disposal even if somema
hines, that are required for the �not yet� installed
omponents, are not available. As soon as these ma-
hines be
ome 
onne
ted, the deployment will go along.Moreover, the progression of the deployment is guaran-teed not only thanks to the a

essibility of a new 
on-ne
ted ma
hine but also be
ause of resour
e 
hangeson any host. This deployment is therefore quali�ed aspropagative.However, in the kind of dynami
 network we tar-get, when a 
omponent is installed and instan
iated,the resour
es it requires may also disappear or be-
ome unavailable. A redeployment is then mandatory.The autonomi
 deployment 
onsists in re
onsideringthe pla
ement 
hoi
es that have been made in the prop-agative phase in order to take into a

ount the unavail-ability of resour
es.The main di�
ulty of su
h a deployment in a per-vasive network is to guarantee the uni
ity of the in-stantiations de�ned in the ar
hite
ture des
riptor. Onone hand, a host that represents a 
omposite 
ompo-nent 
annot be sele
ted before the deployment, as ina fully 
onne
ted network, sin
e this ma
hine may notbe 
onne
ted. On the other hand, if we let ea
h of the7



ma
hines that host the same repli
ated 
omposite 
om-ponent make a de
ision, we 
annot guarantee that, intwo di�erent islands, 
ontradi
tory instantiations maynot be performed.In the following, we present the autonomi
 deploy-ment in two steps. First, we detail the propagative de-ployment, then, we present the me
hanisms that makethis deployment autonomi
.3.2.2 Propagative deploymentWhen the deployment is laun
hed from an initial ma-
hine, the deployment des
riptor and the ar
hite
turedes
riptor are di�used to all the ma
hines that arelisted at the top level of the appli
ation (with theXML target element). Then, ea
h ma
hine that re-
eives these des
riptors, laun
hes a re
ursive pro
ess(ie for ea
h 
omposite 
omponent) in order to sele
tthe 
omponents that 
an be deployed (instantiated)lo
ally. The main steps of this pro
ess for a host hiand for a 
omposite 
omponent C are the following:1. hi 
he
ks if it belongs to the set of the target hostsasso
iated with C (see the XML target element).If hi is not 
on
erned by the deployment (instan-tiation), the pro
ess returns for this 
omponent,else,2. host hi laun
hes probes 
orresponding to the re-sour
e 
onstraints of every sub
omponent of C (ega probe for memory observation). For ea
h sub-
omponent for whi
h the probes have returned a
ompatible value with regard to the resour
e 
on-straints, hi de
lares itself as 
andidate for hostingthis 
omponent.3. hi also re
eives other 
andidatures. As soon as hihas 
omputed a solution in fun
tion of these 
andi-datures, it tries to make it adopted via a 
onsensusalgorithm.4. On
e the 
onsensus has 
ompleted, ie a majorityof ma
hines has de
ided (or not) to 
on�rm thepla
ement solution of hi, this pie
e of information(whi
h 
ontains the values of the free variables) issent to the other ma
hines (and therefore to theother appli
ants) whi
h will stop the pro
ess forea
h 
omponent they are not authorized to instan-tiate, else,5. For ea
h sub
omponent that 
an be instantiatedon hi, the pro
ess starts again at step 1.Sin
e resour
es may �u
tuate (eg be
ome available andunavailable), dis
overy me
hanisms (step 2) are usedperiodi
ally. Moreover, it may be possible that no so-lution exists (step 3), that is, no 
ombination of 
an-didatures satis�es the lo
ation 
onstraints. Periodi


observation of resour
es allows a ma
hine to apply forthe instantiation of a spe
i�
 (not installed yet) 
om-ponent as soon as its resour
e 
onstraints are veri�ed,potentially allowing the emergen
e of a new solutionfor the lo
ation 
onstraints.The propagative deployment requires a distributedalgorithm in order to make a 
olle
tive de
ision (step3). This is a
hieved thanks to the use of a 
onsensusalgorithm on the identity of the ma
hines that applyfor the instantiation of a 
omponent. This algorithmis detailed in the next se
tion.The pla
ement information is di�used to other ma-
hines (step 4) by updating the deployment des
riptorwith the new values, ie the names of the ma
hines thatare sele
ted for hosting ea
h 
omponent. Indeed, be-fore the deployment, the lo
ation of a 
omponent 
anbe de�ned without any knowledge on the identity of aspe
i�
 host through the use of variables. For exam-ple, if hosts ambika and dakini are 
hosen respe
tivelyfor the Do
umentFinder and Do
umentBu�er 
ompo-nent, the following lines are modi�ed in the deploymentdes
riptor:
/ / rep lace l i n e 12 by :
< t a r g e t varname=" x " value ="ambika " / >

/ / rep lace l i n e 24 by :
< t a r g e t varname=" y " value =" dak i n i " / >3.2.3 From a propagative deployment to an auto-nomi
 deploymentPrin
iple The propagative deployment allows a
omponent-based appli
ation to be deployed as soon asits required resour
es be
ome available. But, in gen-eral, and espe
ially in the kind of network we target,resour
es 
an also be
ome unavailable (eg the amountof free memory demanded may de
rease and be
omenot su�
ient) and faults may happen. In these 
ases,one or several 
omponents have to be redeployed. Thisredeployment 
an be divided into three steps:1. Ea
h of the 
omponents that depend on the un-available resour
e is stopped, yielding the dea
ti-vation of its provided interfa
es. All the (remote orlo
al) required interfa
es bound to these latter be-
ome ina
tive. Thus, all the interfa
es leading tothis 
omponent will be dea
tivated, one after theother. The appli
ation runs then in a degradedmode.2. The state of the 
omponent is saved in a serializ-able form (we assume that the developer has an-ti
ipated this situation).3. A message holding the identity of the 
omponentto redeploy is di�used. This message also 
on-8



tains the lo
ation from whi
h the state of the 
om-ponent(s) 
an be retrieved. Ea
h ma
hine thatre
eives this message updates its deployment de-s
riptor by removing the lo
ation of the 
ompo-nent.The above pro
edure is su�
ient to de�ne an auto-nomi
 deployment. Indeed, when re
eiving the mes-sage di�used at step 3, the ma
hines�be
ause theyupdate their deployment des
riptor��nd themselvesba
k in the propagative deployment: some 
omponentsare not installed yet. Thus, be
ause the deployment isnot fully 
ompleted, the propagative deployment re-mains a
tive, that is, some ma
hines will apply for theinstantiation of the uninstalled 
omponent. In our ap-proa
h, the ar
hite
ture des
riptor of the appli
ationis viewed as a goal to a
hieve in terms of 
omponents'instantiations and with respe
t to some 
onstraints tosatisfy.Consensus The propagative and autonomi
 deploy-ment des
ribed above is based on a 
olle
tive de
isionmaking algorithm. When several ma
hines apply forthe instantiation of the same 
omponent, and in orderto avoid in
onsisten
ies regarding the ar
hite
ture de-s
riptor, we have to guarantee that one and only onema
hine will be 
hosen. We use the 
onsensus algo-rithm des
ribed in [10℄ to ele
t among appli
ants thema
hine whose identity will be approved by a majorityof hosts. The authors of this algorithm have identi-�ed 
onditions for whi
h there exists an asyn
hronousproto
ol that solves the 
onsensus problem despite theo

urren
e of t pro
ess 
rashes. In our 
ase, if thereare n ma
hines involved in the deployment, t 
an beas great as �n2 �. Thus, a 
olle
tive de
ision makingis possible if there is at least a majority of ma
hinesthat 
ompose the island. By relying on a majority weguarantee that within an island there is at least onema
hine that holds the latest version of the deploy-ment des
riptor, and so, no 
ontradi
tory de
ision 
anbe made in two distin
t islands.The 
onsensus algorithm requires that the number ofma
hines that are a

essible among the target hosts ofthe 
omposite 
omponent rea
hes the majority. Thismajority is not the same depending on the 
ompos-ite 
omponent. For example, the photo appli
ation isdistributed over h1; h2; h3; h4 and h5; as a 
onsequen
e,the majority is rea
hed when at least three of these ma-
hines are in the same island. Whereas for 
omposite
omponent Do
umentSear
h, whi
h is distributed overfh1; h2; h3g, the 
onsensus is solved when an island,
omposed of at least fh1; h2}, fh1; h3g or fh2; h3g, isformed.Moreover, the 
onsensus may not terminate (eg thenumber of hosts within an island may not be su�
ient).

In order to prevent this situation, we allow a newly 
on-ne
ted ma
hine to parti
ipate in the 
onsensus. This isa
hieved by periodi
ally broad
asting a message askingif a 
onsensus is still in progress. In this 
ase, the newly
onne
ted ma
hine 
olle
ts the data that have alreadybeen ex
hanged between the other ma
hines and pro-poses a value that 
an make the 
onsensus evolve.4 Implementation status and results4.1 Component distributionWe have implemented a middleware support for hierar-
hi
al distributed 
omponents by extending Julia [3℄, aJava implementation of the Fra
tal 
omponent model.A
tive interfa
es have been realized thanks to the addi-tion of a new 
ontroller (
ubik-
ontroller) to the prim-itive and 
omposite 
omponents. This 
ontroller is in
harge of maintaining up-to-date the state of the re-quired and provided interfa
es. The 
ubik-
ontrollerprevents method invo
ations on the ina
tive interfa
esby reifying methods invo
ation (using the Julia Meta-CodeGenerator). We propose an API to make possiblethe use of spe
i�
 strategies when an interfa
e is ina
-tive: for example, one 
an wait for the rea
tivation ofthe interfa
e.The support for managing a
tive and ina
tive inter-fa
es relies on the mixin me
hanisms o�ered by Juliathat allow 
ode insertion in the membrane of the 
om-ponent. It is thus possible to take into a

ount thiskind of interfa
e in any appli
ation implemented withJulia without any 
ode modi�
ation. The 
omponentsare then endowed with an API for dis
overing the stateof the interfa
es (a
tive or not) and the dependen
iesbetween interfa
es.4.2 Context-awarenessThe deployment that has been presented in this pa-per relies on the dis
overy of the resour
es requiredby the 
omponents. Thanks to Draje (DistributedResour
e-Aware Java Environment) [11℄, an extensibleJava-based middleware developed in our team, hard-ware resour
es (eg pro
essor, memory, network inter-fa
e) or software resour
es (eg pro
ess, so
ket, thread,dire
tory) 
an be modeled and observed in an homoge-neous way. For every resour
e 
onstraint of the deploy-ment des
riptor, a resour
e in Draje is 
reated and aperiodi
 observation is laun
hed.Moreover, Draje has been extended by adding twonew types of resour
es: the RemoteBinding and Net-workLink resour
es. A NetworkLink resour
e models thephysi
al link between two hosts and maintains some in-formation about the state of the network 
onne
tion.A RemoteBinding resour
e subs
ribes to a NetworkLink9



in order to 
onstru
t the state of a binding between tworemote 
omponents. Thus, thanks to a simple noti�
a-tion system, when a dis
onne
tion (resp. re
onne
tion)o

urs at the network level between two ma
hines, thestate of the bindings is updated and the 
orrespondinginterfa
es of 
omponents are dea
tivated (resp. a
ti-vated).4.3 Deployment resolutionThe deployment pro
ess presented is based on a 
on-straint language to des
ribe the pla
ement of the 
om-ponents a

ording to some 
onditions on resour
es.This language is purely de
larative. It has been imple-mented with Fra
talADL and is supported at run-timeby a 
onstraint engine developed with Cream2. Creamis a Java library for writing and solving 
onstraint sat-isfa
tion problems or optimization problems. Thanksto this library, information about 
andidates and aboutthe state of the lo
al resour
es 
an be �told� to a store.This store is then used in order to get a lo
ation pla
e-ment solution or to dete
t a 
onstraint in
onsisten
y(eg the amount of free memory required is no longeravailable).4.4 Performan
e evaluationThe performan
e of the deployment pro
ess dependson multiple parameters imposed by the exe
ution envi-ronment (dis
onne
tions, �u
tuation of the resour
es,volatility of the hosts, et
.).In a preliminary experiment, we have tried to iso-late the impa
t of the implementation of our 
onsen-sus from 
onne
tivity 
onditions. This experiment hasbeen hen
e 
ondu
ted on a (fully 
onne
ted) 100Mb/sEthernet network of workstations (2GHz Pentium 4).It dealt with the deployment of a 
omponent whosedeployment des
riptor is similar to the one of the Do
-umentSear
h 
omponent des
ribed in se
tion 3. Fig-ure 5 shows the time taken by our algorithm to de
ideon a pla
ement solution in fun
tion of the number ofma
hines involved in the deployment. First (
urve 1),we have limited to one the number of ma
hines thatapply for hosting a 
omponent. Then we have 
onsid-ered 
on
urrent appli
ants, with 5 and 8 simultaneous
andidatures (
urves 2 and 3).This experiment allowed us to verify that the timeto obtain a pla
ement solution remains a

eptable andthat the multipli
ity of simultaneous 
onsensus exe
u-tions does not in
ur prohibitive over
ost.We are 
urrently investigating the 
onne
tion of ourmiddleware support to a mobility simulator so as toemulate more realisti
 exe
utions.2http://kurt.s
ite
.kobe-u.a
.jp/~shuji/
ream/

Fig. 5: Evaluation of the duration of a de
ision making onthe pla
ement of 
omponents5 Related WorkThe main aspe
ts developed in this paper are related toa distribution s
heme for hierar
hi
al 
omponents ondynami
 networks and to an automati
 managementof their deployment whi
h is driven by 
onstraints onresour
es that the ma
hines of the network have tosatisfy.Many works have taken into a

ount a 
ontext-awaredeployment, that is, the pla
ement of 
omponents ontohosts a

ording to some resour
e requirements. A for-mal statement of the deployment is given in [12℄ anda set of algorithms that improve mobile system's avail-ability is presented. In [13℄ the authors propose a de-ployment 
on�guration language (DCL) in whi
h prop-erties on the target hosts 
an be expressed. The de-ployment 
onsidered in this work extends the CorbaComponent Model, whi
h is a �at 
omponent model.In [9℄, the authors present the Deladas language thatalso allows 
onstraints to be de�ned on hosts and 
om-ponents. A 
onstraint solver is used to generate a valid
on�guration of the pla
ements of 
omponents and re-
on�guration of the pla
ement is possible when a 
on-straint be
omes in
onsistent. But this 
entralized res-olution is not suited to the kind of dynami
 network wetarget. Moreover, the 
urrent version of Deladas doesnot 
onsider resour
e requirements.These abovementioned works aim at �nding an opti-mum for the pla
ement problem of 
omponents. Thisaspe
t is not one of our obje
tives. Indeed, due to thedynamism of the environment, it is hardly feasible tode�ne a quies
ent state that will allow our 
onsensusalgorithm to de
ide on an optimal pla
ement. More-over, the solutions proposed are 
entralized.10



In [14℄ a de
entralized redeployment is presented.The 
on�guration to be deployed is available on everyhost involved in the deployment. A lo
al de
ision 
anthen be made a

ording to the lo
al subsystem 
on�g-uration state. However the 
hoi
e of the 
omponents'lo
ation is made before the deployment pro
ess.The work presented in [15℄ deals with the deploymentof hierar
hi
al 
omponent-based appli
ations. The au-thors des
ribe an asyn
hronous deployment and usethe hierar
hi
al stru
ture of the appli
ation in order todistribute deployment tasks. In the solution developedby the authors, a deployment 
ontroller is stati
ally
hosen and de�ned in the deployment des
riptor. Inour approa
h we 
ould not de
ide at design-time whi
hma
hine will host su
h a 
ontroller. Besides, the ap-proa
h proposed by the authors fo
uses on fun
tional
onstraints and thus resour
e requirements have notbeen taken into a

ount.Among the works on autonomi
 
omputing, [16℄and [17℄ are based on autonomi
 entities�the
omponents�to de�ne autonomi
 systems. Changes inthe environment are performed lo
ally by every 
om-ponent that is responsible for its own re
on�guration,update, migration et
. However, the deployment of au-tonomi
 systems and the management of ar
hite
tural
onsisten
y are not expli
it.6 Con
lusionThis paper has presented a middleware support for de-ploying and exe
uting an appli
ation built with ubiqui-tous hierar
hi
al 
omponents on an heterogeneous anddynami
 network. The main 
ontribution of this workis that it attempts to take into a

ount a 
hallengingdistributed target platform 
hara
terized by the het-erogeneity and the volatility of the hosts, volatility thatmay result in the fragmentation of the network.A distribution method has been proposed for hierar-
hi
al 
omponents. Composite 
omponents are ubiqui-tous in the sense that they are made available on a setof hosts whereas ea
h primitive 
omponent is lo
alizedon a single host. Besides, via the notion of a
tive inter-fa
e, we allow a 
omponent to operate in a degradedmode in order to a

ount for network dis
onne
tionswithout making the entire appli
ation unusable.Our proposal for supporting the deployment 
oversthe last phases of the deployment pro
ess, namely theinstantiation of the 
omponents' instan
es and theira
tivation, whi
h are handled through the individuala
tivation of their interfa
es. We have presented apurely des
riptive language for spe
ifying deploymentdes
riptors that allow for a 
ontext-aware deployment.This language is meant to extend some existing ADL.A deployment des
riptor allows the des
ription of the

resour
e needs of a 
omponent and some pla
ement
onstraints.An algorithm allowing an autonomi
 deployment of a
omponent-based appli
ation has been proposed. Theinstantiation and the a
tivation of a 
omponent is per-formed as soon as some resour
es that meet its needsare dis
overed. This early a
tivation is possible be-
ause some of its interfa
es 
an remain ina
tive (the
omponent then exe
utes in a degraded mode) and de-�nes the propagative deployment phase. When a 
on-straint atta
hed to a 
omponent be
omes in
onsistent,its redeployment is performed automati
ally by goingba
k to the propagative deployment phase. The auto-nomi
 deployment is based on a 
onsensus algorithmin order to guarantee the 
onsisten
y (in terms of 
om-ponents' instan
es) of the deployed ar
hite
ture evenin the 
ontext of a partitioned network.Referen
es[1℄ H. Roussain and F. Guide
. CooperativeComponent-Based Software Deployment in Wire-less Ad Ho
 Networks. In Pro
eedings of the 3rdInternational Working Conferen
e on ComponentDeployment (CD 2005), volume 3798 of LNCS,pages 1�16, Grenoble, Fran
e, November 2005.Springer.[2℄ D. Hoareau and Y. Mahéo. Distribution of a Hier-ar
hi
al Component in a Non-Conne
ted Environ-ment. In Pro
eedings of the 31th Euromi
ro Con-feren
e - Component-Based Software EngineeringTra
k, pages 143�150, Porto, Portugal, September2005. IEEE CS Press.[3℄ E. Bruneton, T. Coupaye, M. Le
ler
q, V. Quéma,and J-B. Stefani. An Open Component Modeland its Support in Java. In Pro
eedings of the7th International Symposium on Component-basedSoftware Engineering (CBSE7), volume 3054 ofLNCS, pages 7�22, Edinburgh, UK, May 2004.Springer.[4℄ R.C. van Ommering. Koala, a Component Modelfor Consumer Ele
troni
s Produ
t Software. InPro
eedings of the 2nd International ESPRITARES Workshop, volume 1429 of LNCS, pages 76�86, Las Palmas de Gran Canaria, Spain, February1998. Springer.[5℄ J. Magee, N. Dulay, S. Eisenba
h, and J. Kramer.Spe
ifying Distributed Software Ar
hite
tures. InPro
eedings of the 5th European Software Engi-neering Conferen
e (ESEC'95), volume 989 ofLNCS, pages 137�153, Sitges, Spain, September1995. Springer.11



[6℄ F. Plasil, D. Balek, and R. Jane
ek. SOFA/D-CUP: Ar
hite
ture for Component Trading andDynami
 Updating. In Pro
eedings of the 4thInternational Conferen
e on Con�gurable Dis-tributed Systems (ICCDS'98), pages 43�51, An-napolis, Maryland, USA, May 1998. IEEE CSPress.[7℄ N. Medvidovi
 and R.N. Taylor. A 
lassi�
ationand 
omparison framework for software ar
hite
-ture des
ription languages. IEEE Transa
tions onSoftware Engineering, 26(1):70�93, 2000.[8℄ E.M. Dashofy, A. van der Hoek, and R.N. Taylor.An Infrastru
ture for the Rapid Development ofXML-based Ar
hite
ture Des
ription Languages.In Pro
eedings of the 24th International Confer-en
e on Software Engineering (ICSE'02), pages266�276, Orlando, Florida, USA, May 2002. IEEECS Press.[9℄ A. Dearle, G. N. C. Kirby, and A. J. M
Carthy.A framework for 
onstraint-based deployment andautonomi
 management of distributed appli
a-tions. In Pro
eedings of the International Confer-en
e on Autonomi
 Computing (ICAC'04), pages300�301, New York, USA, May 2004. IEEE CSPress.[10℄ A. Mostéfaoui, S. Rajsbaum, M. Raynal, andM. Roy. Condition-based 
onsensus solvability:a hierar
hy of 
onditions and e�
ient proto
ols.Distributed Computing, 17(1):1�20, 2004.[11℄ Y. Mahéo, F. Guide
, and L. Courtrai. A JavaMiddleware Platform for Resour
e-Aware Dis-tributed Appli
ations. In Pro
eedings of 2nd Inter-national Symposium on Parallel and DistributedComputing (ISPDC'2003), pages 96�103, Ljubl-jana, Slovenia, O
tober 2003. IEEE CS Press.[12℄ M. Miki
-Raki
 and N. Medvidovi
. Software ar-
hite
tural support for dis
onne
ted operation inhighly distributed environments. In Pro
eedings ofthe 7th International Symposium on Component-Based Software Engineering (CBSE7), volume3054 of LNCS, pages 23�39, Edinburgh, UK, May2004. Springer.[13℄ T. Li, A. Ho�mann, M. Born, and I. S
hiefer-de
ker. A platform ar
hite
ture to support thedeployment of distributed appli
ations. In Pro-
eedings of the IEEE International Conferen
e onCommuni
ations (ICC'02), volume 4, pages 2592�2596, New York, USA, April 2002. IEEE CS Press.[14℄ M. Miki
-Raki
 and N. Medvidovi
. Ar
hite
ture-level support for software 
omponent deployment

in resour
e 
onstrained environments. In Pro-
eedings of the 1st Working Conferen
e on Com-ponent Deployment (CD 2002), volume 2370 ofLNCS, pages 15�30, Berlin, Germany, June 2002.Springer.[15℄ V. Quéma, R. Balter, L. Bellissard, D. Féliot,A. Freyssinet, and S. La
ourte. Asyn
hronous, hi-erar
hi
al and s
alable deployment of 
omponent-based appli
ations. In Pro
eedings of the 2ndInternational Working Conferen
e on ComponentDeployment (CD'2004), volume 3083 of LNCS,pages 50�64, Edinburgh, UK, May 2004. Springer.[16℄ H. Liu, M. Parashar, and S. Hariri. A 
omponent-based programming model for autonomi
 appli-
ations. In Pro
eedings of the 1st InternationalConferen
e on Autonomi
 Computing (ICAC'04),pages 10�17, New York, USA, May 2004. IEEECS Press.[17℄ S.R. White, J.E. Hanson, I. Whalley, D.M. Chess,and J.O. Kephart. An ar
hite
tural approa
h toautonomi
 
omputing. In Pro
eedings of the 1stInternational Conferen
e on Autonomi
 Comput-ing (ICAC'04), pages 2�9, New York, USA, May2004. IEEE CS Press.

12


