Skip to main content
Log in

Potentials of IR-UWB technology for ubiquitous computing

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Connectivity is very important to enable ubiquitous computing. Wireless communication plays a continual key role in future ubiquitous network where all devices need to be connected freely. Ultra-wideband (UWB) radio is a new method of short-range wireless technology which is suit for ubiquitous computing. In this paper, we provided the potentials of impulse radio UWB (IR-UWB) technology in ubiquitous computing environments. Our study investigated possible communication methods which can be used in ubiquitous network. Comparisons between different communication technologies demonstrated that UWB-based solutions can support identification, location, sensing, and connectivity. In addition, we proposed two typical schemes which show how IR-UWB is used in ubiquitous computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weiser M (1993) Ubiquitous computing. IEEE Comput 26:71–72

    Google Scholar 

  2. Schneider KS (1999) Primer on fiber optic data communications for the premises environment

  3. Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Google Scholar 

  4. Kameda S et al (2004) Ubiquitous network. In: Second international symposium on acoustic wave devices for future mobile communication systems, Japan

  5. 3GPP (2008) TS 36 series standard. 3GPP specification series

  6. IEEE_802.11-2007 (2007) Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications

  7. Guo N et al (2007) 60-GHz millimeter-wave radio: principle, technology, and new results. EURASIP J Wirel Commun Netw

  8. Wang C et al (2008) A 60-GHz single-chip transceiver for WPAN applications. In: Millimeter waves. GSMM 2008. Global symposium on, 2008

  9. Win MZ, Scholtz RA (1998) Impulse radio: how it works. IEEE Commun Lett 2:36–38

    Article  Google Scholar 

  10. ISO/IEC_26907 (2007) High rate ultra wideband PHY and MAC standard. International Organization for Standardization

  11. ISO/IEC_26908 (2007) MAC_PHY interface for ISO/IEC 26907. International Organization for Standardization

  12. Ha DS, Schaumont PR (2007) Replacing cryptography with ultra wideband (UWB) modulation in secure RFID. In: IEEE international conference on RFID

  13. YRP Ubiquitous Networking Laboratory (2006) The world’s first & smallest UWB active tag of 10 mm square

  14. Baghaei-Nejad M et al (2007) Enabling ubiquitous wireless sensing by a novel RFID-based UWB module. In: RFID

  15. Gezici S et al (2005) Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Process Mag 22:70–84

    Article  Google Scholar 

  16. Alavi B, Pahlavan K (2006) Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. In: IEEE Commun Lett 10

  17. Yu K et al (2006) UWB location and tracking for wireless embedded networks. Signal Processing

  18. Yu K (2007) 3-D localization error analysis in wireless networks. IEEE Trans Wirel Commun 6

  19. Jourdan DB et al (2008) Position error bound for UWB localization in dense cluttered environments. IEEE Trans Aerosp Electron Syst 44:613–628

    Article  Google Scholar 

  20. Mizugaki K et al (2007) Accurate wireless location/communication system with 22-cm error using UWB-IR. In: Radio and Wireless Symposium, IEEE, 2007, pp 455–458

  21. Oppermann I et al (2004) UWB wireless sensor networks: UWEN—a practical example. IEEE Commun Mag 42

  22. Stoica L et al (2005) An ultrawideband system architecture for tag based wireless sensor networks. IEEE Trans Veh Technol 54

  23. Gatzoulis L, Iakovidis I (2007) Wearable and portable eHealth systems. IEEE Eng Med Biol Mag 26

  24. Higashikaturagi K et al (2008) Non-invasive respiration monitoring sensor using UWB-IR. In: Ultra-wideband, 2008. ICUWB 2008. IEEE International Conference on, 2008

  25. Nakagawa M et al (2003) Ubiquitous homelinks based on IEEE 1394 and ultra wideband solutions. IEEE Commun Mag 41:74–82

    Article  Google Scholar 

  26. Chong C et al (2006) Potential of UWB technology for the next generation wireless communications. In: IEEE ninth international symposium on spread spectrum techniques and applications

  27. Zhang J et al (2008) Microstrip-fed semi-elliptical dipole antennas for ultra-wideband communications. IEEE Trans Antennas Propag 56:241–244

    Article  Google Scholar 

  28. Gong X et al (2007) An improved design method for UWB filter using two-section open-circuited stubs. In: 5th International conference on microwave and millimeter wave technology proceedings, 2007

  29. Yin H et al (2007) Burst impulse radio communication with the aid of non-coherent methods. In: IEEE WiCOM, 2007

  30. Li Y et al (2007) A frequency synchronization method for IR-UWB system. In: IEEE WiCOM 2007

  31. IEEE_802.15b (2005) Part 15.3b: wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPAN): amendment to MAC sublayer. IEEE P802-15-3-DF8 draft Amendment, 2005

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (2007CB310602), Natural Science Foundation of Education Department of Anhui, China (KJ2010A333), and National High Technology Research and Development Program of China (2007AA01Z2B2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Xu, S., Yin, H. et al. Potentials of IR-UWB technology for ubiquitous computing. Pers Ubiquit Comput 15, 75–84 (2011). https://doi.org/10.1007/s00779-010-0299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-010-0299-3

Keywords

Navigation