Skip to main content
Log in

Detection of ventricular fibrillation using Hilbert transforms, phase-space reconstruction, and time-domain analysis

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

This study proposes feature extraction using Hilbert transforms, phase-space reconstruction, and time-domain analysis to detect ventricular fibrillation and normal sinus rhythm from electrocardiogram (ECG) episodes. We implemented three preprocessing steps to extract features from ECG episodes. In the first step, we use Hilbert transforms to extract peaks. In the second step, we use statistical methods and extract four features from the peaks. In the final step, we extract four features using statistical methods based on the Euclidean distance between the origin (0, 0) and the peaks after the peaks are plotted in a two-dimensional phase-space diagram. By applying time-domain analysis directly to the series of successive peak-to-peak interval values, we extract seven additional features. Using a neural network with weighted fuzzy membership functions (NEWFM), we applied the nonoverlap area distribution measurement method, and from 15 initial features, we selected 11 minimum features exhibiting the highest accuracy. Then, we applied the 11 minimum features as inputs to the NEWFM and recorded sensitivity, specificity, and accuracy values of 79.12, 89.58, and 87.51 %, respectively. In addition, McNemar’s test revealed a significant difference between the performances of NEWFM with and without feature selection (p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Afonso VX, Tompkins WJ (1995) Detection ventricular fibrillation. IEEE Eng Med Biol Mag 14(2):152–159

    Article  Google Scholar 

  2. Alexandre B, Laurent B, Alice C, Phillipe N, Lionel L, Daniela GT, Vjekoslav L, Céline M, Guillaume C (2009) Multimodal focus attention and stress detection and feedback in an augmented driver simulator. Pers Ubiquit Comput 13:33–41

    Article  Google Scholar 

  3. Amann A, Tratnig R, Unterkofler K (2007) Detecting ventricular fibrillation by time-delay methods. IEEE Trans Biomed Eng 54(1):174–177

    Article  Google Scholar 

  4. Arzeno NM, Deng Z-D, Poon C-S (2008) Analysis of first-derivative based QRS detection algorithms. IEEE Trans Biomed Eng 55(2):478–484

    Article  Google Scholar 

  5. Baek SJ, Han JS, Chung KY (2013) Dynamic reconfiguration based on goal-scenario by adaptation strategy. Wireless Pers Commun. doi:10.1007/s11277-013-1239-0

    Google Scholar 

  6. Barro S, Ruiz R, Cabello D, Mira J (1989) Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artifacts: a diagnostic system. J Biomed Eng 11:320–328

    Article  Google Scholar 

  7. Burcu C, Bert A, Roberto LM, Gerhard T (2013) Monitoring of mental workload levels during an everyday life office-work scenario. Pers Ubiquit Comput 17:229–239

    Article  Google Scholar 

  8. Choi S, Jiang Z (2008) Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst Appl 34:1056–1069

    Article  Google Scholar 

  9. Chuang L-Y, Tsai S-W, Yang C-H (2011) Improved binary particle swarm optimization using catfish effect for feature selection. Expert Syst Appl 38:12699–12707

    Article  Google Scholar 

  10. de Cristina N, Michael B, Carlo M, del José RM (2011) Brain-computer interfaces for space applications. Pers Ubiquit Comput 15:527–537

    Article  Google Scholar 

  11. Dornaika F, Lazkano E, Sierra B (2011) Improving dynamic facial expression recognition with feature subset selection. Pattern Recogn Lett 32:740–748

    Article  Google Scholar 

  12. Engin M (2004) ECG beat classification using neuro-fuzzy network. Pattern Recogn Lett 25:1715–1722

    Article  Google Scholar 

  13. Gunn SR (1998) Support vector machines for classification and regression, faculty of engineering and applied science, technical report, pp 1–54

  14. Hahn SL (1996) Hilbert transforms in signal processing. Artech House Publishers

  15. Han JS, Chung KY, Kim GJ (2013) Policy on literature content based on software as service. Multimed Tools Appl. doi:10.1007/s11042-013-1664-9

    Google Scholar 

  16. Kabir M, Islam M, Murase K (2010) A new wrapper feature selection approach using neural network. Neurocomputing 73:3273–3283

    Article  Google Scholar 

  17. Kandaswamy A, Sathish KC, Ramanathan RP, Jayaraman S, Malmurugan N (2004) Neural classification of lung sounds using wavelet coefficients. Comput Biol Med 34:523–537

    Article  Google Scholar 

  18. Karayiannis N (2000) Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators. IEEE Trans Neural Netw 11:1093–1105

    Article  Google Scholar 

  19. Kim SH, Chung KY (2013) Medical information service system based on human 3D anatomical model. Multimed Tools Appl. doi:10.1007/s11042-013-1584-8

    Google Scholar 

  20. Kim JH, Chung KY (2013) Ontology-based healthcare context information model to implement ubiquitous environment. Multimed Tools Appl. doi:10.1007/s11042-011-0919-6

    Google Scholar 

  21. Ko JW, Chung KY, Han JS (2013) Model transformation verification using similarity and graph comparison algorithm. Multimed Tools Appl. doi:10.1007/s11042-013-1581-y

    Google Scholar 

  22. Kong DR, Xie HB (2011) Use of modified sample entropy measurement to classify ventricular tachycardia and fibrillation. Measurement 44:653–662

    Article  Google Scholar 

  23. Lee S-H, Lim JS (2011) Forecasting KOSPI based on a neural network with weighted fuzzy membership functions. Expert Syst Appl 38:4259–4263

    Article  Google Scholar 

  24. Lee S-H, Lim JS (2012) Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction. Expert Syst Appl 39:7338–7344

    Article  Google Scholar 

  25. Lee S-H, Lim JS (2013) Comparison of DBS and levodopa on resting tremor using a fuzzy neural network system. Measurement 46:1995–2002

    Article  Google Scholar 

  26. Lim JS (2009) Finding features for real-time premature ventricular contraction detection using a fuzzy neural network system. IEEE Trans Neural Netw 20:522–527

    Article  Google Scholar 

  27. Linh TH, Osowski S, Stodolski M (2003) On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network. IEEE Trans Instrum Meas 52(4):1224–1231

    Article  Google Scholar 

  28. Martínez Sotoca JM, Pla F (2010) Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recogn 43:2068–2081

    Article  MATH  Google Scholar 

  29. Mateo J, Laguna P (2000) Improved heart rate variability signal analysis from the beat occurrence times according to the IPFM model. IEEE Trans Biomed Eng 47(8):985–996

    Article  Google Scholar 

  30. McNemar Q (1947) Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12:153–157

    Article  Google Scholar 

  31. Merigó JM, Casanovas M (2011) Induced aggregation operators in the Euclidean distance and its application in financial decision making. Expert Syst Appl 38:7603–7608

    Article  Google Scholar 

  32. Minami K, Nakajima H, Toyoshima T (1999) Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans Biomed Eng 46(2):176–185

    Article  Google Scholar 

  33. Nikolopoulos S, Alexandridi A, Nikolakeas S, Manisc G (2003) Experimental analysis of heart rate variability of long-recording electrocardiograms in normal subjects and patients with coronary artery disease and normal left ventricular function. J Biomed Inform 36:202–217

    Article  Google Scholar 

  34. Nygards M, Sörnmo L (1983) Delineation of the QRS complex using the envelope of the ECG. Med Biol Eng Comput 21:538–547

    Article  Google Scholar 

  35. Oiws MI, Abou-Zied AH, Youssef AM (2002) Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification. IEEE Trans Biomed Eng 29(7):733–736

    Article  Google Scholar 

  36. Osowski S, Linh TH (2001) ECG beat recognition using fuzzy hybrid neural network. IEEE Trans Biomed Eng 48(4):1265–1271

    Article  Google Scholar 

  37. Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45:712–716

    Article  Google Scholar 

  38. Schölkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New support vector algorithms. Neural Comput 12:1207–1245

    Article  Google Scholar 

  39. Shyu L-Y, Wu Y-H, Hu W (2004) Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans Biomed Eng 51(7):1269–1273

    Article  Google Scholar 

  40. Sivakumar B (2002) A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. J Hydrol 258:149–162

    Article  Google Scholar 

  41. Sivakumar B, Jayawardena AW, Fernando TMKG (2002) River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J Hydrol 265:225–245

    Article  Google Scholar 

  42. Small M, Yu D, Harrison RG, Robertson C, Clegg G, Holzer M (2000) Deterministic nonlinearity in ventricular fibrillation. Chaos 10:268–277

    Article  MATH  Google Scholar 

  43. Su Z-G, Wang P-H (2012) Minimizing neighborhood evidential decision error for feature evaluation and selection based on evidence theory. Expert Syst Appl 39:527–540

    Article  MathSciNet  Google Scholar 

  44. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084–1093

    Article  Google Scholar 

  45. Szmidt E, Kacprzyk J (2000) Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst 114:505–518

    Article  MATH  MathSciNet  Google Scholar 

  46. Tanaka K, Hargens AR (2004) Wavelet packet transform for R–R interval variability. Med Eng Phys 26:313–319

    Article  Google Scholar 

  47. Übeyli ED (2009) Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Comput Methods Programs Biomed 93(3):313–321

    Article  Google Scholar 

  48. Übeyli ED (2010) Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Expert Syst Appl 37:1192–1199

    Article  Google Scholar 

  49. van den Broek EL (2013) Ubiquitous emotion-aware computing. Pers Ubiquit Comput 17:53–67

    Article  Google Scholar 

  50. Xie HB, Gao ZM, Liu H (2011) Classification of ventricular tachycardia and fibrillation using fuzzy similarity-based approximate entropy. Expert Syst Appl 38:3973–3981

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2044134). This research was supported by MSIP (the Ministry of Science, ICT and Future Planning), Korea, under the IT-CRSP (IT Convergence Research Support Program) (NIPA-2013-H0401-13-1001) supervised by the NIPA (National IT Industry Promotion Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon S. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Chung, KY. & Lim, J.S. Detection of ventricular fibrillation using Hilbert transforms, phase-space reconstruction, and time-domain analysis. Pers Ubiquit Comput 18, 1315–1324 (2014). https://doi.org/10.1007/s00779-013-0735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-013-0735-2

Keywords

Navigation