Skip to main content
Log in

Urban traffic analysis through multi-modal sensing

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

This paper makes contributions toward adopting a systemic view of city-wide ubiquitous systems. Here, we present methods and techniques for combining multiple sensing modalities to measure and model traffic patterns in urban environments. We show how noise in one modality can be reduced by considering another more reliable modality and how two modalities can be combined. While much work in the literature deals with simulated data or small data sets, our work focuses on analyzing data from a permanent data collection infrastructure in a downtown area. We present results using a 3-week data set containing data of two modalities: inductive loop traffic detectors and Bluetooth scanners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Balazinska M, Castro P (2003) Characterizing mobility and network usage in a corporate wireless local-area network. ACM Press, New York, pp 303–316

    Google Scholar 

  2. Barcelo J, Montero L, Marques L, Carmona C (2010) Travel time forecasting and dynamic od estimation in freeways based on bluetooth traffic monitoring. Transp Res Rec 2175(1):19–27

    Article  Google Scholar 

  3. Caceres N, Wideberg JP, Benitez FG (2007) Deriving origin–destination data from a mobile phone network. Eng Technol 1(1):15–26

    Google Scholar 

  4. Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, Scott J (2007) Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans Mob Comput 6(6):606–620

    Article  Google Scholar 

  5. Day CM, Haseman R, Premachandra H, Brennan TM, Wasson JS, Sturdevant JR, Bullock DM (2010) Visualization and assessment of arterial progression quality using high resolution signal event data and measured travel time. Transp Res Rec 10–0039(2192):1–30

    Google Scholar 

  6. Eagle N, Pentland A (2006) Reality mining: sensing complex social systems. Pers Ubiquitous Comput 10:255–268

    Article  Google Scholar 

  7. Girardin F, Calabrese F, Fiore F, Ratti C, Blat J (2008) Digital footprinting: uncovering tourists with user-generated content. Pervasive Comput IEEE 7(4):36–43

    Article  Google Scholar 

  8. Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782

    Article  Google Scholar 

  9. Haghani A, Hamedi M, Sadabadi KF, Young S, Tarnoff P (2009) Data collection of freeway travel time ground truth with bluetooth sensors. Transp Res Rec 2160(–1):60–68

    Google Scholar 

  10. H.D. R (1994) ITE manual of transportation engineering studies. Prentice Hall, Englewood Cliffs

    Google Scholar 

  11. O. J.C. (1976) Sample size determination for travel time and delay studies. Traffic Eng. 46(9)

  12. Kostakos V, Camacho T, Mantero C (2013) Towards proximity-based passenger sensing on public transport buses. Pers Ubiquitous Comput, pp. 1–10

  13. Kostakos V, Nicolai T, Yoneki E, O’Neill E, Kenn H, Crowcroft J (2009) Understanding and measuring the urban pervasive infrastructure. Pers Ubiquitous Comput 13:355–364

    Article  Google Scholar 

  14. Krumm J (2010) Where will they turn: predicting turn proportions at intersections. Pers Ubiquitous Comput 14:591–599

    Article  Google Scholar 

  15. Lammer S, Gehlsen B, Helbing D (2006) Scaling laws in the spatial structure of urban road networks. Phys A Stat Mech Appl 363(1):89–95

    Article  Google Scholar 

  16. Liu L, Andris C, Ratti C (2010) Uncovering cabdrivers’ behavior patterns from their digital traces. Comput Environ Urban Syst 34(6):541–548

    Article  Google Scholar 

  17. Lu Y, Liu Y (2012) Pervasive location acquisition technologies: opportunities and challenges for geospatial studies. Comput Environ Urban Syst 36(2):105–108

    Article  Google Scholar 

  18. Martchouk M, Street NC, Suite NE (2010) Analysis of freeway travel time variability using bluetooth detection. J Transp Eng 2051(July):1–30

    Google Scholar 

  19. McNett M, Voelker GM (2005) Access and mobility of wireless PDA users. ACM SIGMOBILE Mob Comput Commun Rev 9(2):40

    Article  Google Scholar 

  20. Nicolai T, Kenn H (2007) About the relationship between people and discoverable bluetooth devices in urban environments. In: Mobility. ACM, New York, pp 72–78

  21. Nicolai T, Yoneki E, Behrens N, Kenn H (2006) Exploring social context with the wireless rope, vol 4277. Springer, Berlin

    Google Scholar 

  22. O’Neill E, Kostakos V, Kindberg T, Schieck AF gen, Penn, Fraser ADS, Jones T (2006) Instrumenting the city: developing methods for observing and understanding the digital cityscape. In: Ubicomp, vol 4206. Springer, pp 315–332

  23. Quayle S, Koonce P (2010) Arterial performance measures using MAC Readers-Portland’s experience. Kittelson & Associates, Inc., Portland

    Google Scholar 

  24. Rattenbury T, Good N, Naaman M (2007) Towards automatic extraction of event and place semantics from flickr tags. In: ACM SIGIR conference on research and development in information retrieval, SIGIR ’07, New York, NY, USA, ACM, pp 103–110

  25. Versichele M, Neutens T, Delafontaine M, de Weghe NV (2012) The use of bluetooth for analysing spatiotemporal dynamics of human movement at mass events: a case study of the ghent festivities. Appl Geogr 32(2):208–220

    Article  Google Scholar 

  26. Working H (1960) Notes on the correlation of first differences of averages in a random chain. Econometrica 28(4):916–918

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou X, Mahmassani H (2006) Dynamic origin-destination demand estimation using automatic vehicle identification data. Intell Transp Syst IEEE Trans 7(1):105–114

    Article  Google Scholar 

  28. Ziebart BD, Maas AL, Dey AK, Bagnell JA (2008) Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Ubicomp. ACM, New York, pp 322–331

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Kostakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perttunen, M., Kostakos, V., Riekki, J. et al. Urban traffic analysis through multi-modal sensing. Pers Ubiquit Comput 19, 709–721 (2015). https://doi.org/10.1007/s00779-015-0833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-015-0833-4

Keywords

Navigation