Skip to main content
Log in

Estimating ambient visibility in the presence of fog: a deep convolutional neural network approach

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Next-generation intelligent transportation systems are based on the acquisition of ambient data that influence traffic flow and safety. Among these, is the ambient visibility range whose estimation, in the presence of fog, is extremely useful for next-generation intelligent transportation systems. However, existing camera-based approaches are based on “engineered features” extraction methods that use computer algorithms and procedures from the image processing field. In this contribution, a novel approach to estimate visibility range under foggy weather conditions is proposed which is based on “learned features” instead. More precisely, we use AlexNet deep convolutional neural network (DCNN), trained with raw image data, for feature extraction and a support vector machine (SVM) for visibility range estimation. Our quantitative analysis showed that the proposed approach is very promising in estimating the visibility range with very good accuracy. The proposed solution can pave the way towards intelligent driveway assistance systems to enhance awareness of driving weather conditions and hence mitigate the safety risks emanating from fog-induced low visibility conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christina M (2019) Heavy fog causes 20-plus vehicle collision in Texas. https://edition.cnn.com/2019/01/01/us/austin-20-vehicle-crash/index.html . Accessed 14 March 2019

  2. Napoli, DS (2018) Heavy early-morning fog causes fatal accident in north Harris County. https://www.click2houston.com/news/heavy-early-morning-fog-causes-fatal-accident . Accessed March 14 2019

  3. Heavy fog a factor in fatal crash involving up to 29 vehicles in Verona, https://fox6now.com/2018/02/12/fatal-dane-county-highway-crash-involves-about-20-vehicles/ . Accessed March 14 2019

  4. Heavy fog leads to fatal crash in Wisconsin. https://www.kcrg.com/content/news/Heavy-fog-leads-to-fatal-crash-in-Wisconsin-473867243.html . Accessed March 14 2019

  5. Dubai police record 564 accidents due to fog on Thursday, https://www.thenational.ae/uae/dubai-police-record-564-accidents-due-to-fog-on-thursday-1.703044 . Accessed March 14, 2019

  6. Hamilon B, Tefft B, Arnold L, Grabowski J (2014) Hidden highways: fog and traffic crashes on America’s roads, 2014 AAA Foundation for Traffic Safety Report. July 2014:1–24

    Google Scholar 

  7. Chaabani H, Kamoun F, Bargaoui H, Outay F, Yasar A (2017) A neural network approach to visibility range estimation under foggy weather conditions. Procedia Comput Sci 113:466–471. https://doi.org/10.1016/j.procs.2017.08.304

    Article  Google Scholar 

  8. Hautière N, Bossu J, Bigorgne E, Hiblot N, Boubezoul, Lusett B, Aubert D (2009) Sensing visibility range at low cost in the SAFESPOT roadside unit. ITS World Congress (ITS’09), Stockholm, pp 1–8

    Google Scholar 

  9. Meteorological office: observers’ handbook. Third edition, London: HMSO, 1969

  10. Grosshans H, Kristensson E, Szász RZ, Berrocal E (2015) Prediction and measurement of the local extinction coefficient in sprays for 3D simulation/experiment data comparison. Int J Multiphase Flow 72:218–232. https://doi.org/10.1016/j.ijmultiphaseflow.2015.01.009

    Article  Google Scholar 

  11. Middleton W (1952) Vision through the atmosphere. University of Toronto Press, Toronto

    Book  MATH  Google Scholar 

  12. IEC (1987) International lighting vocabulary. CIE 17:4–1987 The International Commission on Illumination

    Google Scholar 

  13. Perrin J, Martin P, Cottrell W (2000) Effects of variable speed limit signs on driver behavior during inclement weather. Compendium for the Institute of Transportation Engineers (ITE). 70th Annual Meeting, Nashville, Tennessee

  14. Kwon T (1998) An automatic visibility measurement system based on video cameras. Publication MN/RC-1998-25. Minnesota Department of Transportation: 1-62

    Google Scholar 

  15. Baumer D, Versick S, Vogel B (2008) Determination of the visibility using a digital panorama camera. Atmos Environ 42(11):2593–2602. https://doi.org/10.1016/j.atmosenv.2007.06.024

    Article  Google Scholar 

  16. Abdel-Aty M, Ahmed MM, Lee JSQ, Abuzwidah M (2012) Synthesis of visibility detection systems. University of Central Florida Report, BDK78 977-11: 1-130, http://www.fdot.gov/research/Completed_Proj/Summary_TE/FDOT-BDK78-977-11-rpt.pdf . Accessed 14 January 2018

  17. Hautiere N, Labayrade R, Aubert D (2006) Estimation of the visibility distance by stereovision: a generic approach. IEICE Trans on Information and Systems 89(7):2084–2091

    Article  Google Scholar 

  18. Bush C, Debes E (1998) Wavelet transform for analyzing fog visibility. IEEE Intell Syst 13(6):66–71

    Article  Google Scholar 

  19. Guo F, Peng H, Tang J, Zou B, Tang C (2016) Visibility detection approach to road scene foggy images. KSII Trans on Internet and Information Systems 10(9):4419–4441. https://doi.org/10.3837/tiis.2016.09.022

    Article  Google Scholar 

  20. Hautiere N, Tarel JP, Lavenant J, Aubert D (2006) Automatic fog detection and estimation of visibility distance through the use of onboard camera. Mach Vis Appl 17(1):8–20. https://doi.org/10.1007/s00138-005-0011-1

    Article  Google Scholar 

  21. Bronte S, Bergasa LM., Alcantarilla PF (2009) Fog detection system based on computer vision techniques. 12th International IEEE Conference on Intelligent Transportation Systems: 1–6 https://doi.org/10.1109/ITSC.2009.5309842.

  22. Hautière N, Bigorgne E, Aubert D (2008) Daytime visibility range monitoring through use of a roadside camera. IEEE Intelligent Vehicles Symposium, Eindhoven, pp 470–475. https://doi.org/10.1109/IVS.2008.4621200

    Book  Google Scholar 

  23. Hautière N, Bigorgne E, Bossu J, Aubert D (2008) Meteorological conditions processing for vision-based traffic monitoring. In: The Eighth International Workshop on Visual Surveillance -VS2008. Marseille, France, pp 1–8

    Google Scholar 

  24. Boussard C, Hautière N, D’andréa-Novel B (2008) Vehicle dynamics estimation for camera-based visibility distance estimation. IEEE/RSJ International Conference on Intelligent Robotics and Systems, Nice-France, pp 600–605

    Google Scholar 

  25. Hautière N, Labayrade R, Aubert D (2006) Real-time disparity contrast combination for onboard estimation of the visibility distances. IEEE Trans Intell Transp Syst 7(2):201–212. https://doi.org/10.1109/TITS.2006.874682

    Article  Google Scholar 

  26. Gallen R, Cord A, Hautiére N, Aubert D (2011) Towards night fog detection through use of in-vehicle multipurpose cameras. IEEE Intelligent Vehicle Symposium, Baden-Baden, Germany, pp 399–404. https://doi.org/10.1109/IVS.2011.5940486

    Book  Google Scholar 

  27. Wauben W, Roth M (2016) Exploration of fog detection and visibility estimation from camera images. WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, CIMO TECO, Madrid, Spain: 1-14

  28. Hautiére N, Babari R, Dumont É, Brémond R, Paparoditis N (2010) Estimating meteorological visibility using cameras: a probabilistic model-driven approach. In: Kimmel R, Klette R, Sugimoto A (eds) Computer Vision – ACCV 2010, Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg, pp 243–254. https://doi.org/10.1007/978-3-642-19282-1_20

    Chapter  Google Scholar 

  29. Budnik, M, Gutierrez-Gomez, EL, Safadi B, Quénot G (2015) Learned features versus engineered features for semantic video indexing. Proceedings of the 13th International Workshop on Content-Based Multimedia Indexing (CBMI), Prague, Czech Republic: 1-6

  30. Chow TWS, Rahman MKM (2007) A new image classification technique using tree-structured regional features. Neurocomputing 70(4-6):1040–1050. https://doi.org/10.1016/j.neucom.2006.01.033

    Article  Google Scholar 

  31. Zhang H, Fritts JE, Goldman SA( 2005) A fast texture feature extraction method for region-based image segmentation. Proc. SPIE 5685, Image and Video Communications and Processing 2005 Conference:1-12

  32. Xu X, Shafin SH, Li Y, Hao HW (2014) A prototype system for atmospheric visibility estimation based on image analysis and learning. Journal of Information and Computational Science 11(3):4577–4585

    Article  Google Scholar 

  33. Fan B, Kong Q, Wang X, Wang Z, Xiang S, Pan C, Fua P (2019) A performance evaluation of local features for image-based 3d reconstruction. IEEE Transactions on Image Processing:1-16

  34. Ojala, T., Pietikäinen, M., Harwood,D., 1996. A comparative study of texture measures with classification based on featured distribution. Pattern Recogn 29 (1): 51–59. https://doi.org/10.1016/0031-3203(95)00067-4

  35. Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 46(1):765–781. https://doi.org/10.1109/TSMCC.2011.2118750

    Article  Google Scholar 

  36. Luo CH, Wen CY, Yuan CS, Liaw JL, Lo CC, Chiu SH (2005) Investigation of urban atmospheric visibility by high-frequency extraction: model development and field test. Atmos Environ 39:2545–2552. https://doi.org/10.1016/j.atmosenv.2005.01.023

    Article  Google Scholar 

  37. Pavlic M, Rigoll G, Ilic S (2013) Classification of images in fog and fog-free scenes for use in vehicles. 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia: 1-6

  38. Chen Z, Li J, Chen Q (2009) Real-time video detection of road visibility conditions. WRI World Congress on Computer Science and Information Engineering, Los Angeles, pp 472–476

    Google Scholar 

  39. Babari R, Hautière N, Dumont É, Paparoditis N, Misener J (2012) Visibility monitoring using conventional roadside cameras, emerging applications. Trans Res, part C : Emerg technol 22:17–28

    Article  Google Scholar 

  40. Babari R, Hautière N, Dumont É, Brémond R, Paparoditis N (2011) A model-driven approach to estimate atmospheric visibility with ordinary cameras. Atmos Environ 45(30):5316–5324. https://doi.org/10.1016/j.atmosenv.2011.06.053

    Article  Google Scholar 

  41. Hallowell R, Matthews M, Pisano P (2007) An automated visibility detection algorithm utilizing camera imagery. 23rd Conference on Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrology, San Antonio, TX, Amer. Meteor. Soc: 1-15

  42. Tian DP (2013) A review on image feature extraction and representation techniques. Int J Multimed Ubiquitous Eng 8(4):385–396

    Google Scholar 

  43. Nithin K, Sivakumar B (2015) Generic feature learning in computer vision. Proceedings of the second international symposium on computer vision and Internet. Procedia Computer Science 58:202–209

    Article  Google Scholar 

  44. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Processing Syst:1097–1105

  45. He K,Gkioxari G, Dollar P, Girshick R (2018) Mask r-cnn. arXivpreprint arXiv:1703.06870. https://arxiv.org/pdf/1703.06870.pdf . Accessed 24 July 2018

  46. Redmon J, Divvala S, Girshick R, Farhadi R (2016) You only look once: unified, real-time object detection. IEEE Conf. on ComputerVision and Pattern Recognition (CVPR):779–788 https://doi.org/10.1109/CVPR.2016.91

  47. Deng J, Dong W, Socher R, Li-Jia L,Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR09):248-255. https://doi.org/10.1109/CVPR.2009.5206848

  48. Razavian A, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW): 512–519.https://doi.org/10.1109/CVPRW.2014.131

  49. Liaw JJ, Lian SB, Chen RC (2009) Atmospheric visibility monitoring using digital image analysis techniques. In: Jiang X, Petkov N (eds) International Conference on Computer Analysis of Images and Patterns, Lecture Notes in Computer Science (LNCS), vol 5702, pp 1204–1211. https://doi.org/10.1007/978-3-642-03767-2_146

    Chapter  Google Scholar 

  50. Xie L, Chiu A, Newsam S (2008) Estimating atmospheric visibility using general-purpose cameras. In Bebis G (ed) International Symposium on Visual Computing, Part II. Lecture Notes in Computer Science (LNCS) 5359: 356–367. https://doi.org/10.1007/978-3-540-89646-3_35

  51. Ming-wei A, Zong-Liang G., Jibin L, Tao Z. (2010) Visibility detection based on traffic camera imagery. Proceedings of the Third International Conference on Information Sciences and Interaction Sciences (ICIS). Chengdu, China: 411-414

  52. Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings. J Physiol 197(3):551–566

    Article  Google Scholar 

  53. Hagiwara T, Ota Y, Kaneda Y, Nagata Y, Araki K (2006) A method of processing CCTV digital images for poor visibility identification. Transp Res Rec 1973:95–104. https://doi.org/10.1177/0361198106197300112

    Article  Google Scholar 

  54. Krizhevsky A, Sutskever I., Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada 1: 1097-1105

  55. Cortes C, Vapnik V (1995) Support-vector networks, machine learning 20 (3): 273–297 https://doi.org/10.1007/BF00994018

  56. http://www.livic.ifsttar.fr/linstitut/cosys/laboratoires/livic-ifsttar/logiciels/bases-de-donnees/frosi/ . Accessed 20 June 2017

  57. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    MATH  Google Scholar 

  58. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436. https://doi.org/10.1016/j.patcog.2008.08.014

    Article  MATH  Google Scholar 

  59. Seewald AK, Fürnkranz J (2001) An evaluation of grading classifiers. In: Hoffmann F, Hand DJ, Adams N, Fisher D, Guimaraes G (eds) Advances in intelligent data analysis. IDA 2001. Lecture Notes in Computer Science, 2189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44816-0_12

    Chapter  Google Scholar 

  60. Bianco S, Cadene R, Celona L, Napoletano P (2018) Benchmark analysis of representative deep neural network architectures. IEEE Access 6(1):64270–64277. https://doi.org/10.1109/ACCESS.2018.2877890

    Article  Google Scholar 

  61. Kang H (2018) Accelerator-aware pruning for convolutional neural networks, CoRR, vol. abs/1804.09862. https://arxiv.org/pdf/1804.09862.pdf.

  62. He Y, Dong X, Kang G, Fu Y, Yang Y (2019) Progressive deep neural networks acceleration via soft filter pruning”, arXiv:1808.07471v3, March 2019. https://arxiv.org/pdf/1808.07471.pdf. Accessed September 29 2019

  63. Kamoun F, Chaabani H, Outay F, Yasar A (2020) A survey of approaches for estimating meteorological visibility distance under foggy weather conditions. In: Outay F, Yasar A, Shakshuki E (eds) Global advancements in connected and intelligent mobility: emerging research and opportunities, IGI Global, Chapter, vol 2, pp 65–92. https://doi.org/10.4018/978-1-5225-9019-4.ch002

    Chapter  Google Scholar 

Download references

Funding

This research was financially supported by Zayed University Cluster Research Grant No. R17075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faouzi Kamoun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Outay, F., Taha, B., Chaabani, H. et al. Estimating ambient visibility in the presence of fog: a deep convolutional neural network approach. Pers Ubiquit Comput 25, 51–62 (2021). https://doi.org/10.1007/s00779-019-01334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-019-01334-w

Keywords

Navigation