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Abstract
The field of Music Emotion Recognition has become and established research sub-domain of Music Information Retrieval.
Less attention has been directed towards the counterpart domain of Audio Emotion Recognition, which focuses upon
detection of emotional stimuli resulting from non-musical sound. By better understanding how sounds provoke emotional
responses in an audience, it may be possible to enhance the work of sound designers. The work in this paper uses the
International Affective Digital Sounds set. A total of 76 features are extracted from the sounds, spanning the time and
frequency domains. The features are then subjected to an initial analysis to determine what level of similarity exists between
pairs of features measured using Pearson’s r correlation coefficient before being used as inputs to a multiple regression
model to determine their weighting and relative importance. The features are then used as the input to two machine learning
approaches: regression modelling and artificial neural networks in order to determine their ability to predict the emotional
dimensions of arousal and valence. It was found that a small number of strong correlations exist between the features and
that a greater number of features contribute significantly to the predictive power of emotional valence, rather than arousal.
Shallow neural networks perform significantly better than a range of regression models and the best performing networks
were able to account for 64.4% of the variance in prediction of arousal and 65.4% in the case of valence. These findings are
a major improvement over those encountered in the literature. Several extensions of this research are discussed, including
work related to improving data sets as well as the modelling processes.

Keywords Affect · Arousal · Audio emotion recognition · Audio features · Emotion · IADS · Regression ·
Neural networks · Valence
1 Introduction

This article extends our previous work, where we pre-
sented promising, but initial, results of the use of supervised
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3 Wrexham Glyndŵr University, Wrexham, LL11 2AW, UK

machine learning techniques in the field of Audio Emotion
Recognition (AER), with the intention of using such informa-
tion to help sound designers navigate large sound databases
and select the most emotionally effective material [15]. In
this section, the underpinning concepts of affect recognition
in sound are introduced. The section begins by explaining
emotion recognition tasks, models and approaches before
describing the data set employed in our work. The impor-
tance of emotional sound is highlighted with a particular
emphasis on its application in film and other visual media.

1.1 Affective computing and audio

Affective computing is an interdisciplinary research field
concerned with the emotional interaction between technol-
ogy and humans [48]. The field of Music Emotion Recog-
nition (MER) is one such subset of this broad field and
has received considerable attention from the research com-
munity in recent years [16, 32, 43, 52, 52, 54, 66]. In this
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article, however, we turn our focus to the area of AER,
which deals with affect in non-musical sound. The AER
field has received less attention in the literature, although we
make the case that it is equally as relevant. This is particu-
larly true, for example, in the task of sound design for media
such as television, computer games and film, where sound
effects are typically coupled with music to direct the percep-
tion of the audience [11]. For the purposes of this article, we
define sound effects as including the many layers of audio,
whether they be natural or artificial in origin, and sounds
other than music, that are found in media, namely ambience,
Foley, dialogue, and human non-verbal utterances.

Gerhard [25] provided a considered and useful taxonomy
of sounds that can be appropriated in the context of the
research that we plan and report upon here. In particular, the
taxonomy contains four classes of hear-able sound: noise,
natural sounds, artificial sounds, speech, and music, each
with a number of sub-categories. The sounds that are used in
this article provide a comprehensive number of samples that
fall broadly within Gerhard’s categories of natural sounds,
artificial sounds, non-verbal speech, and the sounds created
by instruments, which Gerhard allocates to the music class
as “...sound made [by] humans using instruments...”.

Traditionally, affective computing makes use of theoreti-
cal models of emotion. The most common models encoun-
tered are either categorical or dimensional. Categorical
models use qualitative descriptions, commonly text-based,
to identify discrete emotions, whereas dimensional mod-
els use quantitative values on one or more dimensions. An
example of a categorical model can be seen in the work of
Ekman [22] or Panksepp [47], whereas dimensional models
may be seen in those of Thayer [63] or Russell [53].

The research documented in this article adopts the use of
the latter: Russell’s circumplex model of affect, which is a
two-dimensional Cartesian emotion space consisting of axes
relating to arousal (vertical) and valence (horizontal) [53].
Such an approach is typical in the field of emotion
recognition. Although our work focuses upon the affective
analysis of audio, it is worth making the observation that,
in the field of Music Emotion Recognition (MER), it is
typically reported that models for the prediction of the
arousal dimension tend to outperform those of valence [32,
43, 52, 54, 54].

Models for the prediction of emotion in media make use
of the coefficient of determination R2 as a performance
metric. It is based upon a set of dependent variables Y output
from a regression model and calculated knowing the set of
independent input variables X and is calculated as

R2 =
⎛
⎜⎝

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2

⎞
⎟⎠

2

(1)

Fig. 1 IADS mean values in arousal and valence space

where x̄ and ȳ are the means of sets X and Y .
In the field of MER, the upper range of R2 values for

arousal is approximately 80 to 85% and approximately 60
to 70% for valence [20, 32, 39]. An aim of our work is to
determine if similar levels of performance can be achieved
in AER.

1.2 The IADS data set

An existing corpus of validated, emotionally annotated
sounds exists in the form of the International Affective
Digitized Sound (IADS) system [8]. The IADS set provides
167 varied sounds and their associated emotional ratings,
obtained through the Self-Assessment Manikin (SAM)
approach on the dimensions of arousal, valence and
dominance [6]. Ratings are presented for each dimension
using a 9-point scale and each sound has been rated by a
minimum of 100 participants. The mean duration of the 167
sound samples in the IADS set is 6.014 s (σ = 0.017 s).
The overall distribution of the IADS ratings in arousal and
valence space is illustrated in Fig. 1 and broken down
by quadrant in Table 1. By extracting data relating to the

Table 1 Quadrant distribution of IADS ratings

Quadrant Number of sounds

Q1 51

Q2 70

Q3 16

Q4 30
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arousal and valence dimensions therein, we make use of
the IADS in our attempt to create computational models of
emotional response to sound.

Nardelli et al. [44] used the valence and arousal
ratings from IADS and heart rate variability (HRV) data
collected from participants who were listening to the
rated sound. The participants’ HRV was measured as they
listened to various “arousal sessions”, compiled of similarly
arousing sounds. Using the data collected, the researchers
could automatically recognise emotions elicited by affective
sounds with considerable accuracy (84%), in both valence
and arousal. This study effectively proves that the IADS
data set can be useful for research into audio and emotions,
particularly when attempting to predict emotional affect.

1.3 Affective audio

Whilst Picard [48] argues that human-computer interactions
can be improved through the design of systems that
represent, recognise, respond to or have emotions, these
concerns are also significant for a variety of media, namely
games, audio-visual art and film, which increasingly are
embedded within computer systems. For instance, Weinel’s
work [64] on altered states of consciousness argues that
the design of various electronic music and audio-visual
media allows the transmission of affective properties to
audiences. He argues that these affective properties are
combined with representational properties, which frame
the emotive aspects of the media with different forms
of conceptual meaning. According to this argument, non-
diegetic music is a central feature of media that elicits
states of positive or negative valence and arousal (following
Russell’s circumplex model of affect [53]). For instance,
Gabrielsson and Lindstrom’s [24] meta-study of music
and emotion revealing musical features, including rhythm,
melody, pitch and tonality, may often be associated with
specific affective responses. Weinel [64] argues that these
features are primarily involved in the production of affect,
whilst non-diegetic sounds or images may frame these with
representational meaning. Yet he also notes that there is
inevitably some overlap between these broad categories.

Considering this overlap, affective properties are elicited
in conjunction with other representational aspects of these
media, such as diegetic audio, or visual representations,
which may suggest places, spaces and narratives. Sound
effects, for instance, may reference real or imaginary
locations (through soundscapes, for instance), and suggest
sequences of events. The primary role of these is often
to reveal the diegesis, conjuring these spaces for the
audience. Yet diegetic sound may also have emotional
resonances for the listener. For instance, following R.
Murray Schafer’s [56] discussion, we may consider how
sounds like alarms or dogs barking have representational

or symbolic meaning, and also give rise to emotional
responses. Such emotional responses may include aspects
that are culturally shared, and those that are highly
individualised and subjective [56]. For example, the sound
of an alarm ringing is widely understood to indicate forms
of alert, corresponding with high arousal, calling those who
can hear it to action in some form—whether to take action
to prevent the breakout of a fire, or, in a musical context
where this sound effect is often used by DJs at raves, to
trigger ecstatic dance [51]. Such sounds can be understood
as cross-cultural, relating to shared cultural knowledge and
semantic memory (in terms of Schacter and Tulving’s [55]
theory of semantic and episodic memory). Yet alarms can
also trigger highly individualised responses, for example in
persons living with post-traumatic stress syndrome (PTSD),
the sound may trigger traumatic autobiographical episodic
memories [21].

1.4 Affective sound design for film and other media

It has been suggested [5] that sound design can “actively
shape how we perceive the image”. The shaping of an
audience’s experience through the use of sound can be
performed by the elicitation of emotions, amongst other
techniques. This section shall discuss some methods of
purposefully shaping an audience’s response as well as look
at examples of previous research into the matter.

The use of the “affective qualities” of sound may commu-
nicate “dramatic tone, atmosphere and mood” [17], whilst
also describing the fictional world, giving it a “particular
toning” [34]. The use of sound in this way, to create a
more detailed and believable world, is useful for filmmak-
ers to envelop their audience within the fictional world, to
experience it alongside the characters that inhabit it [5, 9].

We hypothesise that by using affective audio in cinema,
a filmmaker may be able to ensure their audience feels
a particular emotion at specific points in the film. Some
research into how this can be implemented has already
been undertaken. Most notable is the work of Hillman and
Pauletto [29, 30], which concluded that a “Four Sound
Areas framework” in which sound design is broken down
into four areas (logical, abstract, temporal and spatial)
would afford a more flexible approach to “emotive sound
design”.

The induction and perception of emotion by hearing
non-speech, non-musical sounds are just as intuitive as
their speech and musical counterparts [65]. Consider the
elicitation of tension and alarm upon hearing the sound of
a pulsing evacuation warning, the excitement and delight of
the sound of a bottle cork proudly popping open, the calm
and contentment of hearing the sea lapping gently ashore, or
the sadness and depression of hearing the life sputter out of
a car engine. Representations of such sounds are frequent in
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many forms of popular media and may be present alongside
music and speech or entirely on their own, at the discretion
of the sound design and production team [3, 4, 27].

Sound in the real-world is known to cause affect. The
everyday soundscapes that we experience may change our
mood. For example, for someone from the countryside, the
soundscape when visiting a busy city may cause distress
or unease as they are not accustomed to the sounds [33,
56]. Further, the notion of “Acoustic Violence” coined by
Miyara [42] and described as sound that is invasive, exudes
power or prominence, or is not wanted, may also cause
affect. Consider the sound of a newly built airport, and the
affect it has on the local community. The airport exerts
its acoustic power over the local community and comes to
define it. Over time, the local people may consider the sound
to become a part of the local soundscape. At this point,
it is no longer a violent invasion but a keynote [56] — a
background sound that is part of life. One could now argue
that to take this sound away is in itself acoustic violence,
changing the soundscape that local residents live with. The
unwanted sound is the acoustic violence in either case.
This scenario looks at both sides of interpretation, and such
techniques may be used as plot devices.

Successful sound design does not only access the
representational aspects of sound but also taps into this
capability to elicit culturally shared affective properties. In
films and video games, the diegetic soundscape extends
the spatial representations of these media beyond the
limited space of the screen, allowing the construction of
believable environments. Yet the affective properties of
sound furnish these narrative spaces with cues and triggers
for mood and emotion. For example, in Wall Street [61],
one scene cuts from Bud Fox’s budget New York apartment
to Gordon Gekko strolling a beach at dawn. As Gekko
tempts Fox with a business proposition that could fulfil
his wildest capitalist fantasies, the contrast between the
mundane and the affluent sublime are underscored by the
contrasting sounds of street noise and ocean waves lapping
on the beach; the full frequency sound of Gekko’s voice
speaking into his expensive mobile phone, and the low-
fidelity simulacrum which comes through Fox’s landline. In
Michael Mann’s films such asMiami Vice [40], we similarly
find sublime tropical environments contrasted with dense
industrial landscapes or seedy urban sprawl. Here, sounds
of waves or palm trees rustling in the wind similarly
create a tangible, affective, aural sense of the sublime,
which contrasts with the noise of the action sequences.
Considering the latter, in the main shootout sequence of
Heat, after the main crew exit from a bank robbery, for
approximately 5 min we hear no music—only machine
gun fire, shattering glass, squealing tires, and occasionally
screams and shouts. Here, it is not music that gives a sense

of adrenaline and excitement, but rather the sound effects
that delivers a high arousal affective experience for the
audience.

Further, the building of soundscapes for film has been
documented as a method for creating a mood, atmosphere or
otherwise eliciting audience emotion. A noticeable example
of positive use of such technique can be heard in American
Graffiti [38]. In street scenes where teenagers are driving
their cars, the background sound is filled with happy crowd
noises, laughs and giggles, radios playing and so on [37].
All of this adds to the party atmosphere of the film, and may
subtlety elicit euphoric and sometimes nostalgic feelings in
the audience, as it never over emphasises anything.

In video games, sound design often serves similar
purposes as it does with film but in an interactive context.
However, this scope for interactivity also gives rise to
the use of sound for other goals, such as playing-along
and dynamic sound manipulation game mechanics. The
diegetic soundscape serves to make spatial environments
convincing navigable spaces, leading to presence and
immersion through what Cajella [10] refers to as spatial
player involvement. Yet the affective properties of diegetic
sound can also be understood as creating an affective
sensorium, facilitating Cajella’s concept of affective player
involvement. Through the combination of the two, we can
think of games as providing interactive affective spaces,
which may denote zones of safety and danger and reinforce
rewarding and un-rewarding actions. Thereby, affect also
contributes to ludic involvement, since it gives sensory cues
regarding the relative success or behaviour of the player’s
actions in the virtual world. With video games as with other
audio-visual media, it is not only non-diegetic music but
also diegetic sound that contributes towards the audience
experience of affect, which in turn plays a pivotal role in the
overall experience of the media.

The use of affective sound design in film and linear
media has not advanced much since its most prominent
use in the auteur renaissance of the 1970s and 1980s,
particularly with directors such as Lucas and Coppola, and
sound editors such as Murch and Burtt [59]. In sound design
for interactive media, such as videogames, the technical
tools and capabilities have advanced significantly. Notably
in games, the dynamic, real-time manipulation of sound
for affective purposes is often seen, but even this relies
upon the selection of appropriate sonic assets by the sound
designer in the first instance [31]. A core intention of the
work that follows in this paper is to be able to empower
and enhance sound designers and their work, particularly for
application in film. We envisage that computational models
for AER will enable sound designers to create work with
greater emotional impact and to evaluate their designs prior
to audience trials.
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2 Related work

This section begins by depicting existing research studies
into the manifestation of human emotional responses to non-
musical sounds. Following this, recent research specifically
into AER is chronicled, highlighting the techniques
employed and performance of the models created.

2.1 Audio affect identification

Existing research in the field of emotion recognition for
audio-visual media, most often short video clips, represents
the combination of audio and visual modes [14, 23, 28,
45, 46, 58]. Current research works in emotion recognition
involve non-musical audio, but are typically focused upon
human speech and utterances in the audio component,
and therefore less concerned with what might be deemed
sound effects and are more oriented towards human affect
expression. Nevertheless, such current research examples
have exploited machine learning approaches in emotion
recognition classification tasks and have made use of
techniques that included state vector machines, Bayesian
methods, neural networks, linear discriminant analysis and
so forth.

In noting that the presence of film when studying
affective responses makes it difficult to isolate the sonic
aspects, work by Bradley and Lang [7] gathered affective
reaction data from acoustic stimuli. The study involved the
playback of 60 sounds to test subjects, who were asked to
rate how they felt when listening to the sounds based on
arousal, valence and dominance using a scale of 1 to 9.
The study found that the results followed a similar pattern
to studies using the International Affective Picture System
(IAPS) data set, with extreme ratings of pleasure having
extreme ratings of arousal, and neutral levels of pleasure
having low arousal ratings.

A study by Redondo et al. [50] replicated the original
IADS experiments with the intention of finding differences
in ratings based on cultural differences between American
(original study) participants and Spanish participants. The
study found that whilst Spaniards rated sounds in a very
similar way to Americans, there were some, if only minor,
differences. It found that Americans tend to rate sounds with
more positive valance than Spaniards and as less activate
in the arousal scale, but with a wider range. The study
also noted that some specific sounds in the data set may
be affected by cultural differences, giving the examples of
American Football, which is seldom played in Spain, and
the sounds of bombs. At the time of the writing of their
study, the authors noted that explosive devices had been
recently used in terror attacks in Spain.

In a similar manner to previously mentioned studies,
research by Stevenson and James [60] aimed to predict the

arousal, valence and dominance for a set of sounds after
categorising them into one of five emotions: happiness,
anger, sadness, fear and disgust. Participants rated each
of the IADS sounds on a scale of 1–9 for each emotion.
The data from this experiment was used to label each
sound in the IADS data set with one or more emotions.
The conclusion was that valence and arousal were only
effectively predicted in the fear emotion, for both positive
and negative stimuli. The study acknowledged that even
though the results obtained were not entirely useful
for predicting responses, the categorisation of sounds it
produced may be beneficial to future research.

2.2 Audio emotion recognition

Sundaram and Schleicher [62] conducted experiments
modelling the affective response of listeners to a range
of sound recordings. What makes their work novel was
their use of recordings that might be considered complex,
in that they did not represent a single attributable source.
Instead, they were recordings of outdoor spaces and real
environments, meaning each sound contained multiple,
often overlapping, acoustic sources. The authors advocated
a move away from the use of categorical models of emotion.
Primarily, this was based upon the difficulties associated
with using categorical approaches for sounds with multiple
acoustic sources, and was also supported by the assertion
that alternate approaches are already robustly employed
in the field of experimental psychology. Therefore, their
work makes use of a dimensional model, with ratings
being produced on arousal, valence and dominance axes
by using the Self-Assessment Manikin [6]. The work
makes use of Latent Perceptual Indexing (LPI) to produce
affective values for sounds using twelve Mel-Frequency
Cepstral Coefficient (MFCCs) audio features. Sounds rated
as similar in terms of their affect were also comparable in
terms of their latent similarity index.

Drossos et al. [18] utilised the arousal and valence
ratings for samples in the IADS set, which they described
as being representative of sound events based upon a set
of criteria defined from the literature. First, they performed
an initial classification upon all sounds in the IADS set,
determined by the quadrant location of each sound, as
shown in Fig. 1. This meant that the process became a
classification task, rather than the prediction of continuous
variables representing arousal and valence. A range of
typical audio features were then extracted and used in a
series of training and validation exercises using support
vector machines (SVM) and artificial neural networks
(ANNs). Classification accuracy using these methods was
reported at 43.7% for arousal and 36.5% for valence. The
aforementioned findings must be considered in the context
of a theoretical 25% allocation by chance, further skewed
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by the distribution of the sounds, as evidenced in Fig. 1. The
authors submit that traditional approaches used inMERmay
not be equally applicable to AER tasks.

The IADS set was used in another work by Drossos
et al. [19] that examined rhythmic attributes of sound and
their relationship to arousal. The authors elected to follow
the approach of using a dimensional approach to dealing
with arousal values, thereby avoiding the complexities
associated with detaching dimensional components from
categorical descriptors of affect. The approach employed
seven different window lengths during the audio analysis.
Prior to features being extracted, the data set was split
into two groups, allocating the samples into a low or high
arousal class. Six audio features were extracted along with
statistics describing the shape of their distribution. Three
approaches to classification were adopted: artificial neural
systems, logistic regression and K-nearest-neighbour. The
overall approach was shown to yield strong outcomes
in performance, with the lowest outcome being 71.26%
accuracy with ANS and 88.37% using logistic regression.
However, these results must be contextualised against being
a classification task of two categories, where chance would
result in a theoretical outcome of 50% accuracy, which
would then be further skewed by the distribution of the
sounds between the two classes. This reflects sounds being
attributed to either a low or high arousal class, not one where
dimensional output is sought.

Schuller et al. [57] also recognised the value of
researching AER in work that explored “realistic acoustic
environment conditions”, which they classified into eight
different subsets, such as animals, musical instruments,
people and vehicles. Acknowledging the general lack of
existing work and resources in the field of AER, the
authors elected to construct their own data set, known as
the Emotional Sound Database, sourced from an online
sound repository. The sounds were annotated by a group
of four participants, which was arguably a limitation of the
corpus as a valid ground truth. A large number of audio
features were extracted from the sounds and modelled with a
regression approach, yielding results that equated to a R2 of
37.21% in the prediction of arousal and 24.01% for valence.

The potential for machine learning techniques to be
employed in AER, specifically using the IADS set, was
previously further verified by Choi et al. [12], who
consider the audio clips in IADS to broadly represent
those that would be encountered in daily life. Using a
small set of audio features, namely loudness, sharpness,
roughness and fluctuation strength, Choi and colleagues
were able to demonstrate a better-than-chance discriminant
function able to classify audio clips from IADS into
one of three emotional factors: happiness, sadness and

negativity. Although Choi et al. describe another example
of a classification approach to AER, rather than one of
regression, their findings are notably robust. Such strength
is due to an additional human-testing phase, involving
140 students, that was employed to help validate such a
methodology. To this end, a new set of participant ratings
was produced for the IADS set according to the three
categories and accompanied by an additional test data set
of 62 sounds, which were also subjected to the same
procedure. Choi et al. found that when a reduced IADS set
of 82 sounds were used as training data, a mean overall
classification accuracy of 88.9% was reported for IADS
sounds and 63.04% for the test data set.

3 Audio emotion recognition in IADS

This section explains our empirical work towards the
recognition of emotion in the IADS set. It describes the
methods of analysis, creation of models using regression
and neural networks, and the performance of each model.
The steps followed are graphically summarised in Fig. 2.
The audio features used are defined and then extracted
from the sounds in the IADS set. Resultant feature
information was then and subjected to an initial analysis
to determine the similarity that existed between pairs of
features, before being used as inputs to a multiple regression
model to determine their weighting and relative importance.
Following this, the features are used as inputs to the machine
learning approaches of regression modelling and artificial

Fig. 2 Audio emotion recognition in IADS - workflow
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neural networks so as to determine their ability to predict
the emotional dimensions of arousal and valence.

3.1 Analysis method

All 167 sounds from IADS were employed within the
analysis. Before work commenced, the sounds were peak-
normalised, as advocated by other researchers [19], to
control the loudness. The normalisation replicated the
conditions reported by the originators of IADS in their
participant study [8]. Audio features were extracted using
the Matlab 2018b software and the Matlab Audio Analysis
Library [26], using the settings of a 50-ms window with a
50% overlap. The adopted values have been shown effective
in other works relating to emotion analysis in the domain
of acapella singing [16]. The set of 35 features from the
Audio Analysis Library were extracted, which comprise
zero-crossing rate, energy, energy entropy, spectral centroid
, spectral centroid , spectral entropy, spectral flux, spectral
rolloff, the first 13 MFCCs, harmonic ratio, fundamental
frequency and 12 chroma vectors. For each feature, mean
and standard deviation were calculated.

In addition to these features, it was decided to incorporate
other higher level data relating to the mode, harmonicity,
distribution of energy and rhythmic elements, the latter
being recognised as of value in prediction of emotional
arousal in audio samples [19]. The following features were
obtained by making use of the MIRToolbox [35] and
included for analysis: inharmonicity, low energy, mode,
tempo and pulse clarity. Finally, the location of the
peak amplitude level, expressed in seconds, was added to
give an indication of the attack envelope of each sound.
Consequently, a total of 76 features were obtained for
subsequent analysis.

Regression analysis was performed on the response
variables from the IADS mean arousal and mean valence
using a range of models, in order to find the one that
performed the best in terms of minimising the root-mean-
square error (RMSE) and producing the strongest R2 value.
RMSE is the standard error of the regression model where
values tending to zero indicate better performance, and is
calculated by analysing the outputs from the model f (x),
for each instance i, with respect to the known set of outputs
Y as

RMSE =
√∑n

i=1 (yi − f (xi))
2

n
. (2)

Variations were performed using five and tenfold cross-
validation (CV) with and without dimension reduction via
principal component analysis (PCA), which explained 95%
of the variance.

For the ANN experiments, a shallow, two-layer feed-
forward ANN was configured, with one hidden layer. The
IADS data were divided into segments for the purposes
of training (70%), validation (15%) and testing (15%) of
the ANNs. The results reported in the next section relate
specifically to the performance on the test data subsets.
Training used the Levenberg-Marquardt algorithm [36, 41].
Unlike statistical regression, the outcome of training a
neural network is a non-deterministic process, ostensibly
due to the random allocation of weights to nodes in the
network and the potential of the performance metric being
used in the training process becoming trapped in local
minima [2, 13].

To address this, a systematic approach to the training
and evaluation of multiple ANNs was adopted to determine
how beneficial ANNs consisting of a different number of
neurons, with a differing number of training phases, would
be in the prediction of arousal and valence. The approached
used involved evaluating ANNs alongside varying the
number of neurons in the hidden layer between 1 and 30 and
exponentially increasing the number of training iterations
at each neuron size, starting at 1 training iteration and
finishing at 1000 training iterations. For each training cycle,
the resultant best performing network determined in terms
of its R2 metric.

An identical approach was followed as one network was
created for the output of emotional arousal and another
for valence. Despite the fact that it is possible to produce
a single network with two distinct outputs, at this stage
it was decided to deal with each dimension separately, as
has become common practice in MER [32, 66]. Separation
of the affective space also allows the performance of
the ANN to be easily examined in terms of each of the
aforementioned dimensions.

3.2 Results: feature analysis

Prior to applying the machine learning techniques to the
IADS features and arousal and valence ratings to create
predictive models, an investigation was undertaken on the
set of extracted audio features. This analysis was performed
to provide insight into any correlations and dependencies
between the 76 features and their respective weightings
in being able to predict arousal and valence ratings for
the IADS contents. To achieve this, Pearson’s correlation
coefficient was calculated for each pairing of features to
form a correlation matrix. Each pairing was then tested for
statistical significance and correlation strength to identify
similar features. Following this, and by using the audio
features as independent variables and the arousal and
valence ratings as dependent variables, the predictive power
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Fig. 3 Correlation matrix - IADS features

of the feature set, as well as the weighting of individual
features, was established using multiple regression analysis.

A correlation matrix was produced for each paired
combination of the 76 features extracted from the IADS
set, where the metric employed was Pearson’s r product-
moment correlation coefficient. The absolute value of
Pearson’s correlation coefficient |r|was calculated and used
to produce a correlation matrix for the 76 features, as shown
in Fig. 3.

Once the inclusion of its identity matrix was accounted
for and the duplicate pairs in the upper-half of the matrix
are removed, Fig. 3 reveals that a number of features in the
IADS set may be correlated and can be visually identified by
the light patches. To formally and objectively identify such
features, further use can be made of the correlation statistics,
where a threshold can be defined. Correlation between
features that exceeds this threshold can then be considered
as being statistically similar. To achieve this, the r value
and confidence interval p were interrogated for each pair
of features. A value of r ≥ 0.8 is accepted as representing
a strong or very strong correlation [1] and was chosen as
the threshold for the correlation coefficient and a threshold
of p < 0.05 was selected for the confidence interval. The
same criteria were then applied to the features in the original
correlation matrix, resulting in a binary correlation matrix
that identifies which features meet the threshold test. A
revised correlation matrix is presented in Fig. 4.

Once again, after the identity matrix is discounted and
the duplicate matches from the upper-half of the matrix
are removed, the significantly correlated features can be
identified. A total of 36 unique matching pairs of features
were identified representing 47.37% of the feature set.

Fig. 4 Correlation matrix - strongest (r ≥ ±0.8 and p < 0.05) IADS
features

Notably, the features with the the largest number of strong
and significant correlations, specifically 3 or more, were

– standard deviation of MFCCs 6 to 12, which correlated
with a mixture of one another;

– standard deviation of the spectral rolloff, which corre-
lated with zero-crossing rate standard deviation, spec-
tral centroid standard deviation and spectral entropy
standard deviation;

– standard deviation of the spectral centroid, which was
correlated with zero-crossing rate standard deviation,
spectral entropy standard deviation, spectral rolloff
standard deviation, and MFCC 1 standard deviation;

– mean spectral rolloff, which was correlated with zero-
crossing rate mean, spectral centroid mean and spectral
entropy mean;

– mean spectral entropy, which was correlated with
spectral centroid mean, and spectral rolloff mean;

– mean spectral centroid, which was correlated with zero-
crossing rate mean, spectral centroid spread mean,
spectral entropy mean and spectral rolloff mean;

– mean zero-crossing rate, which was correlated with
spectral centroid mean, spectral entropy mean and
spectral rolloff mean.

It was notable that those features listed, with the
exception of zero-crossing rate are predominantly in the
frequency domain and thus relate to spectral components
of the audio samples. These findings suggest that it could
be possible to reduce the size of the feature set and
that, subsequently, techniques for dimension reduction may
produce favourable outcomes. To further investigate the role
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Table 2 Regression performance - arousal

CV PCA Model RMSE R2

5-fold Yes Linear 1.157 0.01

5-fold No Squared exp. GPR 0.989 0.28

10-fold Yes Exp. GPR 1.179 −0.02

10-fold No Squared exp. GPR 0.998 0.27

5-fold CV squared exponential Gaussian Process Regression achieves
best performance for arousal

that each of the 76 features plays in predicting arousal and
valence values, multiple regression analysis was conducted.

For the prediction of arousal, the multiple correlation
coefficient showed a strong level of prediction by the
features R = 0.824. Upon analysing the model using
an analysis of variance (ANOVA), the IADS feature set
statistically significantly predicted arousal, F(76, 90) =
2.505, p < 0.0005 outcomes. From examining the
coefficients of the regression model, the statistically
significant features adding to the prediction of arousal
were the mean and standard deviation of MFCC 1, with
p < 0.05. Although not quite statistically significant, the
coefficient weights for the mean and standard deviation
spectral centroid were notably large.

For the prediction of valence, the multiple correlation
coefficient showed a good level of prediction by the
features R = 0.759. Upon analysing the model using
an ANOVA, it was found that the IADS feature set
statistically significantly predicts valence, F(76, 90) =

Fig. 5 5-fold squared exponential GPR - arousal

Table 3 Regression Performance - Valence

CV PCA Model RMSE R2

5-fold Yes Stepwise linear 1.756 0.00

5-fold No Rational quadratic GPR 1.645 0.12

10-fold Yes Squared exp. GPR 1.746 0.02

10-fold No Matérn 5/2 GPR 1.656 0.12

5-fold CV Rational Quadratic GPR achieves best performance for
valence

1.613, p < 0.02 outcomes. From examining the coefficients
of the regression model, the statistically significant features
adding to the prediction of valence were as follows: mean
spectral rolloff; mean chroma vectors 6 and 10; standard
deviation of MFCCs 1, 2, 8 and 10; and the standard
deviation of chroma vector 10, p < 0.05.

Whilst the correlation matrix revealed that it may have
been possible to reduce the number of features slightly,
the multiple regression analysis suggests that there are few
single features that contribute significantly to the prediction
of arousal values in the IADS set. In the case of valence,
a limited quality prediction might be possible by reducing
the number of features and dimensions of the features. As
such, a decision was taken at this stage to use the original
76 features in the machine learning stage and dimension
reduction was attempted, but with the expectation that it
would be unlikely to yield any major benefit, at least in the
case of prediction of arousal.

Fig. 6 5-fold rational quadratic GPR - valence
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Table 4 Neural network performance - test data

Dimension RMSE R2 Neurons

Arousal 0.748 64.42 2

Valence 0.839 65.35 2

Fig. 7 ANN - arousal - regression plot for test data

Fig. 8 ANN - valence - regression plot for test data

3.3 Results: regression fitting

The results for prediction of arousal are provided in Table 2.
By inspecting the returned RMSE and R2 values, it can
be seen that the 5-fold CV squared exponential Gaussian
Process Regression [49] method performs best (RMSE =
0.989, R2 = 0.28), closely followed by the 10-fold CV
squared exponential GPR (RMSE = 0.998, R2 = 0.27). The
best fit regression model for arousal is shown in Fig. 5.

Table 5 ANN performance (Arousal) - best outcomes over all neurons
and training iterations

Training iterations

Neurons 1 10 100 1000

1 0.057 0.254 0.634 0.548

2 0.154 0.333 0.465 0.644

3 0.269 0.380 0.597 0.630

4 0.302 0.285 0.523 0.547

5 0.188 0.458 0.531 0.624

6 0.300 0.419 0.418 0.566

7 0.396 0.452 0.476 0.576

8 0.114 0.294 0.481 0.495

9 0.157 0.237 0.451 0.496

10 0.111 0.316 0.364 0.527

11 0.111 0.343 0.374 0.507

12 0.236 0.276 0.393 0.502

13 0.272 0.305 0.493 0.485

14 0.236 0.353 0.432 0.476

15 0.229 0.343 0.399 0.495

16 0.118 0.285 0.448 0.481

17 0.084 0.321 0.349 0.502

18 0.246 0.342 0.451 0.601

19 0.122 0.270 0.444 0.514

20 0.103 0.282 0.397 0.448

21 0.240 0.397 0.434 0.567

22 0.162 0.290 0.497 0.532

23 0.205 0.311 0.335 0.531

24 0.300 0.262 0.444 0.636

25 0.148 0.398 0.476 0.504

26 0.173 0.375 0.429 0.543

27 0.251 0.326 0.398 0.494

28 0.298 0.322 0.448 0.546

29 0.149 0.326 0.377 0.523

30 0.144 0.516 0.417 0.518

Mean 0.196 0.336 0.446 0.535

S.D. 0.080 0.064 0.066 0.050

Best arousal outcomes achieved at: 1 training iteration and 7 neurons;
10 training iterations and 30 neurons; 100 training iterations and 1
neuron; and 1000 training iterations and 2 neurons
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The results for prediction of valence are provided in
Table 3. The best performing model was the 5-fold CV
Rational Quadratic GPR (RMSE = 1.645, R2 = 0.12),
followed by the 10-fold CV Matérn 5/2 GPR (RMSE =
1.656, R2 = 0.12). The best fit regression model for valence
is shown in Fig. 6.

Overall, the best performing models were variations
on the GPR approach, suggesting that the modelling of
arousal and valence using this set of features does not
follow a clearly predictable trend. Both arousal and valence
regression models tended to predict in the middle of the
possible data range, a trend that was best exemplified in the
case of valence (Fig. 6), where it can be seen that the bulk
of predictions sit between a valence level of 4 and 6. The
effect was less pronounced in the case of arousal, which is
commensurate with the improved performance in terms of
the RMSE and R2 metrics.

3.4 Results: neural network fitting

Due to the use of a small number of neurons in the hidden
layer, the training, validation and test processes were fast,
each cycle completing within seconds. However, due to the
exhaustive search process between 1 and 30 neurons and
varying training iterations exponentially in a set of 1, 10,
100 and 1000, the complete experiment duration was in the
region of 16 h because of its complexity being polynomial,
approximately O(n2). The best obtained values for the
metrics of RMSE and R2 for the test data set are reported
in Table 4 with respect to the dimensions of arousal and
valence. Graphs representing the performance of the ANN
are shown in Fig. 7 for arousal and in Fig. 8 for valence.

To provide a complete picture of the entire set of results
obtained with each variation of neuron size and training
iterations, Tables 5 and 6 show the combinations therein and
the R2 value obtained by the best performing network at
each point. Doing so was useful to obtain a more general
view of the performance achieved using the ANN approach
and to confirm that the overall best performing results
were not numerical outliers obtained by chance during the
experiment. Such additional context is supported by Fig. 9,
which compares the performance of the best networks
produced with the mean values of the experiment.

Performance of arousal and valence prediction, in terms
of the best outcomes from the experiment, was found
to be extremely similar. Unusually, prediction of valence
was slightly more accurate than that of arousal, although
analysis of the mean results obtained across all ANN
iterations shows that prediction of arousal was generally
more accurate than that of valence, which is consistent
with the literature on AER and MER. Generally, although
the number of samples used in the test data set represents
only 15% (25 sounds) of the IADS ratings, there was not

Table 6 ANN performance (valence) - best outcomes over all neurons
and training iterations

Training iterations

Neurons 1 10 100 1000

1 0.000 0.302 0.447 0.497

2 0.108 0.327 0.371 0.654

3 0.155 0.192 0.491 0.637

4 0.137 0.267 0.498 0.553

5 0.095 0.382 0.364 0.539

6 0.048 0.397 0.419 0.508

7 0.020 0.153 0.445 0.487

8 0.116 0.451 0.422 0.557

9 0.076 0.325 0.390 0.514

10 0.032 0.243 0.509 0.459

11 0.327 0.202 0.429 0.490

12 0.035 0.205 0.436 0.465

13 0.035 0.219 0.379 0.428

14 0.071 0.206 0.341 0.449

15 0.058 0.358 0.290 0.503

16 0.052 0.226 0.350 0.457

17 0.159 0.222 0.464 0.493

18 0.212 0.277 0.381 0.473

19 0.001 0.188 0.360 0.410

20 0.201 0.249 0.354 0.441

21 0.143 0.235 0.311 0.426

22 0.130 0.287 0.375 0.455

23 0.121 0.280 0.367 0.541

24 0.264 0.189 0.529 0.475

25 0.099 0.195 0.351 0.514

26 0.098 0.298 0.426 0.515

27 0.050 0.121 0.396 0.467

28 0.143 0.240 0.388 0.510

29 0.020 0.252 0.362 0.453

30 0.080 0.429 0.337 0.485

Mean 0.103 0.264 0.399 0.495

S.D. 0.076 0.079 0.058 0.054

Best valence outcomes achieved at: 1 training iteration and 11 neurons;
10 training iterations and 8 neurons; 100 training iterations and 24
neurons; and 1000 training iterations and 2 neurons

the same amount of clustering of predictions in the middle
of the range of output variables, as was evidenced when
using the regression approach. However, both of the best
models exhibit a behaviour of outputting tightly clustered
values at certain input ranges. It is expected that this was
the result of there being two neurons in both of the best
performing models and a consequence of finding a model
that was mathematically able to minimise the performance
metrics during training and validation, but which does not
provide an output that a human would expect to see. This is
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Fig. 9 ANN performance
metrics over all neurons and
training iterations

a direct consequence of the nature of ANNs and nature of
the training and weight allocation process. Nevertheless, it
was observed that many other models produced during the
experiment produced regression plots that exhibited a more
natural distribution for only marginal reductions in their R2

values.

4 Conclusions and future work

Our results provide an interesting contrast to the values
reported in the findings of MER research. The regression
model outcomes were poor, compared with MER rates, and
largely unsatisfactory for any type of AER task. Regression
models have been shown to be effective in the MER field
and can compete with other techniques, namely ANNs and
other methods [20, 39, 52], but seem to be ineffective
in AER. The findings presented here suggest that the
recognition of affect in non-musical sounds may require
different approaches and alternate or new audio features.

ANN approaches to emotion prediction performed much
better in our experiments than regression, showing greater
potential, with predictions comparable with work in MER.
The ANN models accounted for 64.4% of the variance in
the prediction of arousal and for 65.4% in valence. It was
found that varying the number of neurons in the networks
created did little to improve the R2 values obtained but
that increasing the number of training iterations, thereby
reducing the potential of being trapped in a sub-optimal
local minima. Granting that the exhaustive process of trying
out combinations of neurons and training iterations was time
consuming, it is a process that needs only be carried out
once before the best model(s) can be stored and reused
later, each with a trivial complexity at run-time. The better
performance of the ANN, coupled with the relative best fit

regression models using GPR, provides a strong indication
that emotion prediction, using this set of features, follows a
non-linear model.

Analysis of the features extracted from the IADS set
resulted in a mixed set of findings. Despite there being
a number of features that were strongly and significantly
correlated, predominantly those in the frequency domain,
they were not universally applicable in the prediction of
affect. In the case of arousal, only the first MFCC showed
a statistically significant role in the prediction of arousal,
whilst multiple spectral, chroma and MFCC features
added significantly to the prediction of valence. However,
the subsequent application of PCA prior to regression
modelling did not yield better outcomes, suggesting that
other methods of feature and dimension reduction could
be investigated to improve the efficiency of future AER
systems.

In the course of the research presented in this paper,
only one other work was found in the literature on AER
to which these results can be directly compared, that
of Schuller and colleagues [57]. In their research, the
prediction of arousal accounted for 37.2% of the variance
and prediction of valence achieved 24.0%. These values
support the generalisation that arousal is easier to model
than valence. The results presented in our work show
increased performance over those obtained by Schuller
et al. and provides strong evidence for the use of ANN
approaches to be employed in subsequent AER research.
More broadly, these findings provide evidence that AER
does not yet match the levels of performance found in
MER, but is beginning to come close. Although our findings
represent a significant and incremental improvement and
contribution to knowledge in AER, the results presented are
limited by a general lack of data sets in the AER field and
must be taken in this context.
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As shown in Fig. 1, the IADS ratings distribution is not
uniform. The majority of arousal ratings, 121 of them, lie
in the top two quadrants. As such, modelling and training
processes will be biased. The situation is less extreme in the
case of valence, with 81 sounds located in quadrants 1 and 4.
Nevertheless, at 167 samples, the IADS is small compared
with MER, where data sets range from around 30 to over
100,000 songs [43, 54]. Recognition of these limitations of
the IADS might be dealt with by creation of a larger set of
validated samples with a more uniform distribution.

An avenue for future work would be to take a rigorous
and extensive approach in finding optimal parameters that
can be used to enhance the predictions made by the neural
network. The audio features used are also an area to explore.
It may be the case that the best set of features has not
yet been considered by any research in the field. Typical
audio features are oriented towards signal processing or
music information retrieval (MIR) domains and thus may
not adequately account for the salient aspects in AER. As
an extension to this, another way to train an ANN would be
to use the time-series audio sample data as the input.
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