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Abstract
We describe two proof-of-concept approaches on the sonification of estimated operation states and conditions focusing on two
scenarios: a laboratory setup of a manipulated 3D printer and an industrial setup focusing on the operations of a punching
machine. The results of these studies form the basis for the development of an “intelligent” noise protection headphone as part of
Cyber Physical Production Systems which provides auditorily augmented information to machine operators and enables radio
communication between them. Further application areas are implementations in control rooms (equipped with multi-channel
loudspeaker systems) and utilization for training purposes. As a first proof-of-concept, the data stream of error probability
estimations regarding partly manipulated 3D printing processes were mapped to three sonification models, providing evidence
about momentary operation states. The neural network applied indicates a high accuracy (> 93%) of the error estimation
distinguishing between normal and manipulated operation states. None of the manipulated states could be identified by listening.
An auditory augmentation, or sonification of these error estimations, provides a considerable benefit to process monitoring. For a
second proof-of-concept, setup operations of a punching machine were recorded. Since all operations were apparently flawlessly
executed, and there were no errors to be reported, we focused on the identification of operation phases. Each phase of a punching
process could be algorithmically distinguished at an estimated probability rate of > 94%. In the auditory display, these phases
were represented by different instrumentations of a musical piece in order to allow users to differentiate between operations
auditorily.

Keywords Auditory augmentation . Processmonitoring .Auditory display .Cyber physical production systems . Error prediction
estimation

1 Introduction

A side effect of the transition from traditional production pro-
cesses to smart manufacturing and Industry 4.0 is a steady in-
crease in complexity not only regarding the variety and diversity
of products to bemanufactured but also in terms of operating and
maintaining production plants in general. The decreasing number
of employees (e.g., caused by a higher degree of automated
processes) goes alongwith an increased complexity of operations
which need to be controlled as well as an escalating amount of
data generated by these processes. As a further consequence, the
degree of professional knowledge and expertise that enables op-
erators to withdraw information from the collected data grows
rapidly. Cyber Physical Production Systems (CPPS) support the
mediation of implicit and explicit knowledge and can be adapted
to the employees’ individual level of expertise [1]. In the context
of manufacturing, the term explicit knowledge comprises any
kind of information that can be stored and made accessible to
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operators, such as instruction sheets describing the handling of
certain tools to be used for specific processes. Intrinsic
knowledge, also known as tacit or working knowledge, on the
other hand, refers to information based on personal experience
that cannot be articulated easily, such as riding a bicycle or dril-
ling a hole in a wall. Future human-centered intelligent factories
aim to utilize information and knowledge derived from the pro-
duction for tomorrow’s production staff to optimally reinforce
their skills in terms of creativity and innovation generation. As
a result, operatorswill also have a higher job satisfaction resulting
in increased productivity. Stocker et al. suggest application fields
for information and communication technology (ICT) solutions
based on four potential implementations [2]:

1. the “personalized augmented operator,” which means the
support of operators through augmented reality content

2. “worker-centric knowledge sharing,” which establishes a
culture in which knowledge sharing is the dominant strat-
egy to provide actionable and decision-relevant informa-
tion at the right time

3. “self-learning manufacturing workplaces,” which corre-
sponds to the approach of self-learning workplaces as a
fixed component of Smart Factories, where operators are
supported by intelligent data linking and analysis regard-
ing Big Data, and finally

4. “in situ mobile learning in production,” which describes
mobile, personalized, and situation-adaptive learning sys-
tems for lifelong learning in enterprises and the
generation-spreading transfer of know-how

To simplify the development of human-centered tools for
manufacturing, [2] defined a framework containing 16 build-
ing blocks to ensure a successful implementation of the above-
mentioned application fields. These building blocks include
categories such as hardware devices (for instance head
mounted displays or wearables), communication infrastruc-
ture, data analysis tools, and worker environments including
sensors, knowledge management systems, or enterprise re-
source planning tools. CPPS introduced by [3–5] are based
on the proposed framework, focusing on visualization tools
for information display. Thereby, beneficial aspects of ad-
vanced devices that emphasize other senses, such as (hands-
free) auditory or haptic displays, to support operators in pro-
duction plants have been rather neglected. Up to now, auditory
alarms have usually still been restricted to intermittent, at
times even uninformative, warning sounds, leaving out the
potential of monitoring approaches based on continuous
sonification, which have shown to improve situation aware-
ness [6–8].

While such advanced implementations of auditory displays
for process monitoring are still restricted, major advances in
regard to the incorporation of acoustic information for auto-
mated condition monitoring have recently been achieved

[9–13]. Research by Fraunhofer Institute for Digital Media
Technology in Ilmenau resulted in a service1 for automated
quality assurance combing recording of airborne sounds with
machine learning approaches [14]. Due to its comparatively
simple implementation in existing infrastructure and the good
recognizability of altering sound attributes by means of ma-
chine learning, more and more companies supplying automa-
tion technology offer machine learning-based methodology as
a product for industrial applications, especially in energy, in-
frastructure, and manufacturing domains. These approaches
mostly focus on automated, algorithmically classified, and
evaluated condition monitoring processes. Their results are
usually displayed in the visual domain exclusively without
any involvement of auditory monitoring.

In highly interconnected manufacturing environments,
however, advanced auditory displays (AD) would offer plenty
of advantages that have already been utilized in other fields of
expertise. For instance, AD allow operators to freely interact
during primary activities, such as walking, running, or driv-
ing, where the visual attention of humans is focused on nav-
igation or orientation [15]. For this reason, interactive auditory
displays have been developed for gait representations without
barriers that may have impact on the physical posture [16, 17].
In comparison with other user interfaces such as tablets or
head mounted displays, auditory interfaces also require less
physical activity. These facts make AD interesting for smart
manufacturing applications, especially for monitoring and
controlling operations in production lines and shop floors.

Based on these considerations about (i) the potential of
auditorily enhanced CPPS, (ii) acoustic condition monitoring
based on machine learning, and (iii) the importance of audi-
tory feedback for work experience and the buildup of working
knowledge [18, 19], we designed a research project that com-
bines these three aspects. It pursues the development of a
method for the sonification of processed machine emission
data that equips operators with unobtrusive acoustic informa-
tion about the actual state or condition of one or more ma-
chines and ongoing operations in quasi real time. In the con-
text of process monitoring, [20] differentiates between direct,
peripheral, and serendipitous-peripheral monitoring modes.
Peripheral monitoring relies on “information that is not central
to a person’s current task, but provides the person the oppor-
tunity to learn more, to do a better job, or to keep track of less
important tasks” [21]. Serendipitous-peripheral monitoring is
meant as “information that is useful but not required” [20].
The implementation of AD within our research project will
focus on the former, i.e., peripheral monitoring, in order to
confirm the smoothness of the processes and to make opera-
tors betimes aware of non-optimum behavior and future
threats by continuous sonification (cf. Sects. 2.1, 2.2, and
3.3). In the long term, our research aims to develop an

1 https://www.idmt.fraunhofer.de/de/business_units/ima.html
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intelligent noise protection headphone with an integrated as-
sistant system that provides supportive information about ma-
chine states, operations, setup, and maintenance routines to be
used at production plants. We also plan a multi-channel loud-
speaker implementation for control rooms.

In this publication, we will present two proof-of-concept
sonification approaches that focus on process identification
and error probability based on operation state and condition
classification data. In order to gain basic knowledge on how to
map classification data resulting from machine learning to
auditory feedback information, we equipped a 3D printer with
several microphones and recorded printing processes in nor-
mal and manipulated conditions. We then analyzed the
resulting audio files by machine learning algorithms and de-
veloped several sonification models to display the error prob-
abilities of the processes. In our second study, we focused on
the algorithmic identification and sonification of operation
phases occurring during the processes of a punching machine.

The next section gives insight into the state of the art of the
several fields this paper is related to. This includes aspects of
process monitoring and ecological interface design,
sonification, and auditory augmentation, as well as ap-
proaches based on machine learning and feature classification
for acoustic monitoring. We will then present our proof-of-
concept approach on mapping error probability rates of the
mentioned 3D printing processes to continuous sonifications
followed by the study on operation phase identification and
sonification. After a discussion of the results, we will conclude
with an outlook on future steps of our research.

2 Related work

Despite an increasing demand for automated process surveil-
lance and condition monitoring in manufacturing environ-
ments, the human factor in terms of manual handlings of pro-
cesses, judgments of situations, and the reliability of decisions
to be made may by no means be neglected in order to ensure a
successful and sustainable production. We will focus on three
aspects of this rather broad topic which all fall within the
scope of acoustic information design and the relationship be-
tween operators and their work. Firstly, we will present as-
pects of process monitoring and workplace design.
Particularly concerning the implementation of warning
sounds, a vast amount of research has been conducted in re-
cent decades. Secondly, we will discuss approaches referring
to the term auditory augmentation or auditorily augmented
reality, emphasizing the extension of auditory spaces for ad-
ditional information. Finally, we will conclude the section
with a review on industrial setups in which machine learning
approaches on acoustic emissions have been used to analyze
and categorize production processes.

2.1 Auditory display for process monitoring

The design and implementations of warning sounds in critical
situations has been discussed for many years. Patterson and
Mayfield [22] and Edworthy et al. [23] elaborated criteria
concerning the attributes of warning sounds in order to distin-
guish them from the production environment. Various authors
(see, e.g., [24–26]) mention “alarm fatigue,” “alarm flooding,”
and sequential “alarm showers” as aspects needing to be con-
sidered for the design of warning sounds. The avoidance of too
many sounds, i.e., also of too much information to be handled
properly [27], appears to be as important as the prevention of
inattentional deafness, i.e., the failure of noticing warning
sounds [28]. Most implementations of alarming sounds are
based on intermittent, event-based auditory displays presenting
one or a sequence of sounds, either in anticipation of or on the
actual occurrence of critical situations [29]. However, [8] indi-
cate the advantages of continuous sonification for process mon-
itoring, since instead of displaying warning sounds only related
to specific situations, the auditory display will permanently rep-
resent the state of the monitored system. This enables operators
to anticipate upcoming problems. A major challenge for the
sonification design is to create a sonic environment that is
meaningful and unobtrusive at the same time in order to be well
conceived by the operators. In [7], we present a comprehensive
overview on auditory displays for process monitoring including
their various fields of application (e.g., air traffic control, plant
surveillance) as well as the design criteria to be considered.

In their approach towards an integration of auditory dis-
plays into the proceeding scheme of Ecological Interface
Design, [24, 30] develop a multimodal monitoring environ-
ment for the demands of anesthesia and intensive care units
using intermittent and continuous sounds. The vital conditions
of these environments require high accuracy in terms of the
unambiguousness of the acoustic information to ensure that
operators make the right decisions. At the same time, auditory
displays should be reasonably pleasant to listen to in order to
prevent distraction of the operators by inducing stress and to
avoid an interference with the healing process of the patients.
Baldwin et al. [31] provide an overview of perceptual advan-
tages and disadvantages of multimodal displays regarding the
complexity of information.

In a dual task experiment on multimodal displays,
Hildebrandt et al. demonstrated that an AD based on continu-
ous sonification outperformed event-based, intermittent
sonifications in terms of accuracy and timing [8, 32]. Haas
and Erp [33] supported these findings in their overview on
multimodal warnings. Using continuous sonification models
based on music, [34] showed that background music does not
“distract users from their primary task, and […] can effectively
convey information.”Assumedly, it can be listened to over long
periods of time, especially when the kind of music can be se-
lected by the user.
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2.2 Auditory augmentation

Mynatt et al. implemented an “audio augmented reality” in the
context of office environments [35]. They developed a system
using active infrared badges for tracking the position of per-
sons and wireless headphones to deliver information through
auditory cues built on the peripheral acoustic office environ-
ment. The system was behavior dependent, everyday routines
such as walking through the office for instance could trigger
additional auditory information, notifying a specific person
about her meetings or the status of incoming emails. The au-
thors were aware of avoiding the “alarm paradigm” (intermit-
tent auditory displays) and integrated the auditory cues into a
continuous “low-level soundtrack” (continuous sonification)
as a combination of music, sound effects, and voice.

In their approach to auditory augmentation, [36] overlaid
natural acoustic emissions, for instance noises that arise from
typing on a computer keyboard with sound effects controlled
by parameter values of an independent data domain, in the
given example weather data. Serving as a basis for the gener-
ated sounds, keystrokes were recorded by vibration pickup
microphones and played back in quasi real-time after data
dependent sound processing had been applied. Users classi-
fied this unobtrusive additional weather report as useful infor-
mation. Although the processed sounds were clearly distin-
guishable, nobody “mentioned the system to be bothersome.”
In their resume of a workshop with 19 participants from the
sonification community, interaction experts, composers,
sound engineers, one musicologist, and one sociologist [37]
extended this approach and designed three prototype scenarios
of auditory augmentation, which they defined as “the augmen-
tation of a physical object and/or its sound by sound which
conveys additional information.” Together with Grosshauser
[38], Hermann, one of the authors of the mentioned publica-
tion, equipped a drilling machine with sensors and sonified
deviations from the optimum angle within an auditory inter-
action loop as a further example of auditory augmentation.

2.3 Machine learning approaches for process
classification in production environments

To the authors’ best knowledge, there is no published previous
research in terms of an implementation of continuous
sonification based on classification or continuous data retrieved
by machine learning. There are several examples of prior work
facilitating a combination of acoustic condition monitoring and
machine learning. Pasha et al. present an overview of multiple
supervised machine learning techniques (such as SVM, J48, and
Deep Learning) used in the scope of acoustic condition monitor-
ing [13]. Acoustic condition monitoring is, for instance, applied
to the detection of air leaks in a sintering plant. The algorithm that
performs best here is a Recurrent Neural Network (RNN). By
directly feeding a collection of output frames of a Short Time

Fourier Transform (STFT) into the network, a classification ac-
curacy of more than 80% was achieved. Zafar et al. describe the
use of RMS measurements as one of four input features to an
artificial neural network in order to classify tool conditions in a
wood milling process [12]. They demonstrated that the addition
of airborne acoustic emission measurements increases accuracy
in classification.

Both the approach of using the complete spectral magni-
tude data as input for a machine learning model, as well as
using feature extraction (e.g., a combination of spectral mo-
ments, mel frequency cepstrum coefficients (MFCCs) and
other audio features) beforehand have been explored in prior
work. Liang and Wang describe the application of condition
monitoring to a Desktop CNC 3D engraver machine [39].
They extracted vibrational features using a piezoelectric sen-
sor and calculating spectral features in the range of human
hearing by using a spectrum analyzer with seven frequency
banks. The individual energies of these bands were divided by
each other, resulting in 21 additional dimensionless indices.
Combined, the energies of the frequency bands and the 21
dimensionless indices resulted in a total of 28 features as input
for machine learning. All applied algorithms (random forest
(RF), K-nearest neighbor (KNN), and support vector machine
(SVM)) proved suitable for classification.

Grebenik et al. presented the detection of a roller element
bearing failure via smartphone microphone recordings of air-
borne acoustic emission [40]. Three multi-dimensional features
were derived from the audio recordings. The audio spectrumwas
divided into several bins to be analyzed separately, and three
features were extracted from each bin: the number of peaks
above a specified threshold, the number of peaks, and the product
of the amplitudes of all the peaks in the bin. Deciding against
artificial neural networks (ANN) in favor of a multi-SVM ap-
proach, a 95% accuracy could be achieved. This decision for
SVMs was largely due to the quicker training times in compar-
ison to ANNs. Yang et al. compared the performance of several
classifiers, among them ANNs and SVMs [41]. They also argue
in favor of SVMs because of more efficient risk minimization
that “leads to a better generalization performance.” They con-
clude that SVMs and LVQ (learning vector quantization) provide
the highest accuracy “for classifying healthy and faulty condi-
tions of small reciprocating compressors.”

3 Design of a sonification model based
on real-time process classification

3.1 Approach

In order to generate representative data of printing operations,
we equipped a 3D printer2 with two types of microphones. Four

2 BQ Witbox 2
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miniature condenser vibration pickups3 were mounted to the
four stepper motors (responsible for the X-, Y-, and Z-axis
movements) of the extruder as well as the conveyer of the
printing material (filament). Another two pickups of the same
type were fixed to the connecting part between the guidance
rods of the X- and Y-axes and the filament spool holder.
Additionally, two hyper cardioid instrument microphones4 with
magnetic mounts were placed on the printer frame (Fig. 1).

For printing, we adjusted a given 3D model of a hollow
cube model without the top and bottom5 to a volume of 2 cm3.
We then printed the cube three times under normal conditions.
Thereafter, we induced three faults to the printer which are not
unusual to occur during printing operations and may affect
print quality or lead to complete failure. For the first of the
three printing errors, the grease on the guidance rods of the x-
axis was removed. To create the second error condition, the
screws of the extruder fan were loosened. For the third error,
we reduced the tension of the hobbed bolt of the extruder,
which causes issues with the conveying of the filament.

All printing operations were recorded on eight audio chan-
nels. For reasons of reproducibility, a synchronized video of
the operations was captured additionally. The recordings were
manually edited, labeled, and prepared for data analysis.

An informal evaluation of the recorded material conducted
among the authors revealed that the error states of the printer
cannot be distinguished from the normal operation state aural-
ly. The authors’ expertise and experience in the fields of music
and sound engineering, and the subsequent inability to aurally
distinguish the different printing states from each other, led to
the relinquishment of further aural experiments testing unin-
volved subjects.

3.2 Data analysis6

The analysis aimed at finding an appropriate method to re-
trieve the recorded printing states (error condition vs. normal
operation) from the audio data. This method had to fulfill three
main requirements:

1. Verify that the information (acoustic cues) is contained in
the data.

2. Provide insight into where or how the information is
contained in the recorded data.

3. Provide preferably low-dimensional data to keep the com-
plexity of the data sonification as low as possible.

Using the raw spectral data of all microphones would have
resulted in a high-dimensional (8 × frame size) input vector for

the machine learning algorithm. In order to reduce data com-
plexity, we therefore performed feature extraction and feature
selection first. We built a suitable training set by framing the
audio data of all recordings using a frame size of 65,536
(= 216) samples and a hop size of 4096 samples. This rather
large frame size facilitates a high frequency resolution as a
basis for further processing. From the obtained spectral data,
the following features were chosen for their general accep-
tance in audio machine learning applications: five MFCCs,
root mean square (cf. [12]), spectral bandwidth, spectral cen-
troid, and spectral roll-off. Feature calculation was based on
the libROSA python package [42]. Other than [13], we did not
run machine learning algorithms on the complete data gener-
ated via spectral analysis, but rather performed feature extrac-
tion and selection7 to achieve a quicker convergence of the
machine learning algorithm. That way, we also obtained
means of getting insights into the data by automatic feature
selection.

As result of the analysis, we obtained a table containing
18,760 labeled observations (audio frames) with 64 audio fea-
tures (8 microphones × 8 audio features). The gathered dataset
was subsampled to obtain a balanced distribution of 50% error
states and 50% states of normal operation. For automatic fea-
ture selection, the chi-squared test (X2) [43] was chosen for its
generality, simplicity, and effectiveness [44]. The 15 most
relevant features of all recordings were selected as input to
the network model (cf. Fig. 2).

The application of an SVM did not deliver satisfying
results. Therefore, we utilized a neural network-based
classifier (Fig. 3). The model was built using the python
libraries Keras [45] and TensorFlow [46]. While [13] ap-
plied a recurrent neural network (RNN) to their audio data
in a similar approach, for a start, we opted for a standard
forward one. Comparing severa l configura t ions

3 AKG C411
4 DPA d:vote 4099

Fig. 1 Schematic representation of the microphone placement on the 3D-
printer: 1–4: vibration pickups on the stepper motors (x-, y-, z-axes,
extruder); 5: vibration pickup on the connection of the rods of the x-
axis and the y-axis; 6: vibration pickup on the filament spool holder; 7
and 8: small diaphragm condenser microphones (DPAs) with hyper car-
dioid characteristics on the frame

5 https://www.thingiverse.com/thing:187707
6 Documented code available at https://github.com/fhstp/AARIP

7 That is, not all calculated audio features of all microphones were used but a
subset that could be shown to correlate most with the printer state
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(concerning the number of layers, neurons, and layer
types), this network model showed to be sufficiently ac-
curate for our purposes. It requires a relatively low num-
ber of features as an input, which in turn reduces the
requirements for a real-time classification or the develop-
ment of sonification models. However, a model that also
makes use of past states (such as RNNs) is very likely to
further improve the obtained accuracy and we will con-
sider this for future developments.

The obtained data was split into a training set, a validation
set and an independent test set. Using a training/validation
split of 0.3 during the training process, an accuracy of >
93% on the independent test set could be achieved. This indi-
cates that the collected data was meaningful (cf. Table 1 and
Fig. 4 for a receiver operating characteristic (ROC) plot using
only independent test data).

We therefore conclude that the chosen model fulfills the
requirements in terms of prediction reliability. Through fea-
ture selection, we were able to identify information-rich fea-
tures and the model allows the classification of system states
and conditions. Thus, the hypothesis that information is
contained in the data is confirmed. Furthermore, the network
model generates low dimensional data streams which makes it
particularly suitable for the subsequent sonification.

The results of our data analysis offered three starting points
for sonification approaches:

1. Data of the identified most relevant features are directly
mapped to a sonification model.

2. Data of the identified most relevant features are used as
metadata to manipulate incoming audio signals of the

monitored machines. Thus, relevant sonic information
within these signals can be emphasized and conditioned.

3. The information on the confidence (error probability) of
the model is used directly instead of thresholding this
value to retrieve a classification. This provides a continu-
ous data stream which is one-dimensional, meaningful
and already normalized (Fig. 5).

Fig. 2 Fifteen most relevant features according to X2 of all recordings.
“DPA mic” refers to a single DPA microphone (cf. no. 7 in Fig. 1)

Fig. 3 Scheme of the analysis and classification processes. The nth audio
frame of all eight microphones is fed into the feature extraction section.
The 15 most relevant features are then transferred to the artificial neural
network (contained in the dotted rectangle). The network calculates an
error prediction P(n). A threshold is used to generate the classification
data for training and evaluation. Additionally, P(n) is fed to the
sonification section

Table 1 True/false positive/negative rates of the independent test set

True negatives False positives False negatives True positives

482 34 35 505
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By reason of simplicity and efficiency, we chose the third
of these starting points as data basis for our sonification
model.

3.3 Design and application of auditory display

By the application of machine learning algorithms, a highly
complex input situation (eight channels of audio data) could
be simplified to a one-dimensional data stream giving evi-
dence of the error probability of the monitored operations.
Thus, the challenge to deliver easily accessible and distinct
information that is frequently put on an auditory display could
be enormously reduced. The error probability indices of the
previous condition classification comprised a value range
from 0.0 to 1.0 for each analysis frame (at about 12 frames
per second). These incoming values were smoothed by a mov-
ing average window of 10 frames length. To distinguish be-
tween normal operation states and error conditions, we

applied a threshold at 0.7 on the weighted data stream. Error
probability values below that threshold were unambiguously
considered as normal state operations, values above gradually
indicated increased probabilities of errors.

As a proof-of-concept, we designed three sonification
models utilizing rather diverse approaches based on the fol-
lowing metaphors: (i) heartbeat, (ii) soundscape, and (iii) mu-
sic listening. Thereby, we considered five fundamental
requirements:

1. In terms of an auditory augmented reality approach, the
classification processes and the sonification processes are
altogether realized in quasi real time.

2. Normal states are unobtrusively represented by continu-
ous sonification [47] to affirm that everything is working
alright.

3. Error conditions are clearly distinguishable without being
considered as alarms.

4. Silence indicates a dropout of the complete system.
5. None of the represented states must acoustically hinder

verbal communication (e.g., via radio).

The “heartbeat model”was chosen for its simplicity and its
inherence to human activity. The characteristic double beat
was generated by envelope shaped sinusoids. By default, the
basic meter was set to 60 bpm and represented normal opera-
tion states reassuring a well-functioning system. As soon as
the value stream of error probability indices exceeded the
threshold, the meter started to fluctuate and speed up. Also,
the volume of the heartbeats increased.

For their dual task experiment, Hildebrandt et al. [8] de-
signed a soundscape based on a “forest”metaphor that includ-
ed sounds such as a woodpecker pecking a tree or breaking
twigs.We picked up this concept of utilizing nature sounds for
the development of the “soundscape model.” Based on proce-
dural synthesis models provided by [48], we implemented a
natural environment that included bird tweets and flaps,
crickets, wind, thunder, and rain. All parameters, such as,
e.g., wind speed, triggering of chirps and tweets, and position-
ing in stereo panorama, were driven by random values. Only
the individual contribution of the elements (= mixing) to the
scene was controlled by the error condition parameter values.
Therefore, good weather conditions including sounds of birds
and crickets represented normal operation states, while up-
coming storm and rain sounds indicated an increase of error
probability over the threshold at 0.7.

As mentioned in Sect. 2.1, Barra et al. [34] developed and
evaluated a continuous sonification model that included back-
ground music which was enriched by additional musical in-
formation. Based on this rather complex concept, we designed
a much simpler “music listening model” that respects the habit
that many operators have, according to our observations, of
listening to music (via headphones or loudspeakers) during

Fig. 5 Prediction of error probability P(n) over time within a 10-s seg-
ment of recordings for the different operation states

Fig. 4 ROC of independent test dataset
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work.8 Using our model, operators continue to listen to the
music of their preference. However, in case of an increased
error probability, a gradually narrowing bandpass filter is ap-
plied to the music playback (patina effect). Accordingly, the
speed of the music starts to fluctuate in order to make opera-
tors aware of increasing error probability. The implementation
of the speed fluctuation is based on the “supervp~”-external of
the MuBu Library provided by IRCAM9 [49] which allows
tempo manipulations independent of frequency shifts in de-
cent quality.

3.4 Results of 1st pilot study on error estimation
sonification

Our results in detail are as follows:

1. Combining feature extraction and a custom artificial neu-
ral network (ANN), the applied model indicated a high
accuracy (> 93%) concerning error probability identifica-
tion distinguishing between operation states. None of
these states could be identified by listening. An auditory
augmentation, or rather the sonification of this classifier,
provides a considerable benefit to process monitoring.

2. The data stream of error probability values was mapped into
a sonification model, providing evidence about momentary
operation states. Three models relying on different acoustic
metaphors (heartbeat, soundscape, music listening) were im-
plemented as a proof-of-concept. These models were de-
signed to be unobtrusively perceived during normal condi-
tions, clearly indicating error states without shifting into
warning sound characteristics.

3. The systemworks in quasi real time; the application of the
analysis buffer causes a delay of about 85 ms; the input
and output buffers of audio interface add another 10 ms.

Due to the simplicity of the sonification models and the one-
dimensional, almost Boolean information stream, error condi-
tions are easily distinguishable from normal states in all three
models. We therefore decided to forego a formal perceptional
user study for now and restrict our approach to a proof-of-con-
cept. Also, the general benefit of continuous sonifications for
early identification of upcoming issues has already been evalu-
ated by in vitro studies (see, e.g., [32, 34]). As the latter pointed
out, long-term observations under real-world conditions are
necessary in order to evaluate the impact, benefit, and, most
importantly, willingness of operators to accept exposure to the
provided acoustic information on a day-to-day 8-h basis. While
we expect a good chance for an implementation of the music
listening model in manufacturing environments, we doubt the

potential of the two other models since they appear quite uni-
form and fatiguing overall. For our 2nd proof-of-concept study,
we therefore focused on the musical aspect.

3.5 Design and application of 2nd proof-of-concept
study: process classification

As a next step of our research, we designed a second proof-of-
concept study in situ at the shop floor of a metal working
company. The fluctuating acoustic environment of a real-
world production scenario implicates additional challenges for
airborne sound analysis and process categorization. In addition
to noises caused by nearby machines, passing by forklift trucks
or human activities, area-wide music playback all over the shop
floor was also a source of acoustic emission that needed to be
taken into consideration.

Similar to our proceeding in the first study, we equipped a
semi-automatic CNC punching machine10 with 10 small dia-
phragm condensers and contact microphones11 at strategic
positions which are, for instance, situated near the punching
head, the work plate, the valve, the clutch, the compressor, and
the transformer box. The aims of the study were as follows:

1. to test/adapt our previously established feature extraction
and machine learning routines against/to environmental
influences

2. to classify different operation phases during processes12

with an accuracy in similar height to the one achieved in
the first proof-of-concept study

3. to develop a sonification model that clearly displays and
distinguishes operation phases and integrates them into
the work environment

3.6 Process phases during operations

The processing of a single workpiece, i.e., a metal sheet, at the
punching machine can be subdivided into five operation
phases:

1. operator inserting the workpiece into the machine (manu-
al operation)

2. punching processes (automatic operation)
3. re-arranging the workpiece (automatic operation)
4. punching processes (automatic operation)

8 In later real-world implementations, operators will be encouraged to compile
their individual playlists and listen to the music of their preference.
9 www.ircam.fr

10 Boschert Punching Machine Compact (https://boschert.de/en/products/
machines/punching-machines/compact.html)
11 Six AKG 411 contact microphones, 2 DPA 4099 cardioid clip microphones,
2 Sennheiser MKE600 shotgun microphones
12 Originally, we also intended to analyze and classify the probability of pro-
cess errors. However, since all (500+) operations during our two-day observa-
tion were processed flawlessly, this aspect of our research had to be postponed
to a follow-up investigation.
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5. operator withdrawing workpiece (manual operation)

Our self-defined task for the process classification was to
develop a method based on our first proof-of-concept study
that automatically distinguishes between these phases with a
comparable accuracy (i.e., > 93%).

We focused on the recording of the processing of one spe-
cific product type (“A”). The observed custom order com-
prised 500 workpieces, a sample size that we expected to
deliver enough data for our analysis. The processes for this
product type consisted of 10-mm-diameter stamps punching
holes into a 0.55-mm electronically galvanized steel sheet. In
order to be able to reproduce the operations recorded by the set
of the 10 microphones described above, we filmed the scenar-
io with a video camera that was time-synchronized to the
audio recordings. Manually labeled operation phases show a
maximum difference of 3 s within each of the 5 operation
phases (cf. Table 2) indicating that even the processes involv-
ing manual activities ran on a stable basis.

Combining the manual operations, i.e., the “inserting” and
“withdrawing” of a workpiece to an overall “handling” phase
and considering the two “punching” phases as a single cate-
gory, we obtain a characteristic temporal pattern of operation
phases as displayed in Fig. 6.

Equivalent to our previous proceeding, we performed fea-
ture extraction on all audio recordings which were framed to a
buffer of 215 samples13 using 12 MFCCs (from a mel spec-
trum with 128 mel bins), spectral centroid, spectral roll-off,
and spectral bandwidth. Feature selection was performed
using X2 (Fig. 7).

The 30 most relevant features of a dataset of 1206 frames
were selected and fed into seven network models14 for

training and testing using a train/test split of 0.5. For each
input frame, the network estimates the probability P(n) for
each of the three classifiers representing the “handling” [0],
“punching” [1], and “re-arranging” [2] phases of the opera-
tions. The classifier with the highest probability ranking de-
termines the allocation of the analyzed frame. While most of
the tested networks exhibit rather high confusion rates be-
tween phases [0, 2]—the confusion matrix of the support vec-
tor machine (Table 3) with an overall accuracy of about 80%
provides a representative example—the random forest net-
work (Table 4) performed best with an accuracy of more than
96%.

In order to a obtain a more flexible solution for challenges
of future scenarios, we continued our research by developing a
custom artificial neural network (Fig. 8) based on the one we
had used in our first pilot study (Fig. 3) with superior modu-
larity, expandability, and scalability. With an accuracy rate of
about 94%, this model performed slightly worse than the ran-
dom forest network (about 96%). According to the confusion

Table 2 Representative
timestamps of operation phases
after manual labeling

Product type Selected workpiece Operation phases (starting times in seconds): workpiece …

Inserted Punched Re-
arranged

Punched Released

A 1 00:00 00:15 00:25 00:36 00:40

A 2 00:00 00:13 00:23 00:34 00:37

A 3 00:00 00:14 00:24 00:35 00:38

A 4 00:00 00:15 00:25 00:36 00:38

A 5 00:00 00:15 00:25 00:36 00:39

A 6 00:00 00:15 00:25 00:37 00:39

A 7 00:00 00:14 00:24 00:35 00:38

A 8 00:00 00:13 00:23 00:35 00:38

A 9 00:00 00:13 00:23 00:34 00:37

A 10 00:00 00:14 00:24 00:35 00:39

Fig. 6 Sequence of operation phases over time

13 The use of a smaller buffer size than the one set in our first study was caused
by memory restrictions.
14 Logistic regression, decision tree classifier, K-nearest neighbor, support
vector machine, random forest classifier, multi-layer perceptron classifier
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matrix (Table 5), however, the confusion between class 0
(“handling”) and 2 (“re-arranging”) is on a similar level than
the one exhibited by the random forest model and also outper-
forms all the other tested networks models. Since also the
ROC in Fig. 9 displays individual accuracies of 95% for class
2 and even better performances for classes 1 and 3, we con-
clude that we reached our stated target of achieving an accu-
racy comparable with the one we reached in our first proof-of-
concept study.

The time-agnostic characteristics of the network model be-
come evident in the noisy output of the original signal (Fig. 10).
We smoothened these fluctuations by applying an infinite im-
pulse response (IIR) filter H(z) to the output of the network
before allocating the analyzed frames to their most probable
class via argmax (Fig. 8). The filter was constructed using the
following difference equation, with s being a smoothing con-
stant:

y nð Þ ¼ y n−1ð Þ þ x nð Þ−y n−1ð Þ
s

; for x nð Þ < y nð Þ
x nð Þ; for x nð Þ≥y nð Þ

(

resulting in the transfer function

H zð Þ ¼ 1

sþ z−1−sz−1

for a falling signal, and

H zð Þ ¼ 1

for a rising signal.
Figure 10 also shows that the accuracy of our model was

essentially improved by this filtering of recent predictions.
While recurrent neural networks would offer a logical next step
to truly make the model aware of previous states, the presented
model fulfills the given task in a satisfactory manner and can
even be used to label more collected data in order to train a
more general model.

3.7 Sonification model

The auditory display of error probability estimations as per-
formed in our first proof-of-concept study suggests the imple-
mentation of sonification models that map an increasing prob-
ability of faulty operations to sonic parameters that indicate
rather negative connotations. This can be realized by model-
ing bad weather conditions or by applying patina filters to
high-end music recordings. Errors that, for instance, are
caused by the deterioration of machines usually do not appear
at once but develop gradually. The worsening of generated
weather conditions by upcoming rain and thunderstorms or
gradually applied filters according to the state of deterioration
will provide useful information to experienced operators so
that they are well informed about the state of machines and
can decide at which point to take action.

The challenges for designing auditory displays that represent
operation states are rather different, since these phases do not
change gradually but immediately. The sonification should in-
dicate the state clearly on a perceptually neutral basis without
evaluating the quality of the processes. The provided informa-
tion should assure operators that everything is working proper-
ly. Also, it must be kept in mind that the displayed sounds will
be listened to over long periods of time. Therefore, a strategy is
needed that respects the usual acoustic environment operators
are accustomed to and does not essentially intrude into the
auditory scene. The shop floor of the enterprise where we re-
corded the punching processes at was permanently flooded
with music. Listening to music during work has been a

Fig. 7 The 30 most relevant features according to X2

Table 3 Confusion matrix for classifiers [0–2] obtained by the
application of a support vector machine network

[0]: handling [1]: punching [2]: re-arranging

[0]: handling 265 1 6

[1]: punching 18 153 14

[2]: re-arranging 77 4 65

Table 4 Confusion matrix for classifiers [0–2] obtained by the
application of a random forest network

[0]: handling [1]: punching [2]: re-arranging

[0]: handling 270 0 2

[1]: punching 1 184 0

[2]: re-arranging 12 7 127
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common experience for all operators who work there.
Therefore, the development of a sonification model that con-
siders listening to music can be expected to fulfill the stated
criteria.

All three operation phases (“handling,” “punching,” “re-
arranging”) should be displayed on a non-judgmental basis.
One way to comply with this condition is the instrumentation
of a musical piece. However, other than the application of
audio effects, such as patina or tempo fluctuations, instrumen-
tation as a sonification parameter cannot be applied to pro-
duced music recordings. For our second proof-of-concept
study, we therefore arranged the jazz standard Autumn
Leaves by Joseph Kosma manually according to the time se-
quence of phases given by the applied machine learning algo-
rithm. While the plucked double bass and the laid-back drums
(including brushes) build a continuous stable basis over the
complete scene, the handling phase is represented by a muted
trumpet for the melody and a piano for the accompaniment.
During the “automatic” operation phases (i.e., “punching” and
“re-arranging”) of the punching machine, these two instru-
ments were substituted by a lead and a rhythm guitar. In order
to distinguish between “punching” and “re-arranging” phases,
the latter were instrumented with an additional synthetic male
choir (Table 6).

3.8 Results of the 2nd pilot study on operation phase
sonification

Our results in detail are as follows:

1. The adjusted model combining feature extraction and a
custom artificial neural network appears to be robust
against the environmental influences that occurred during
the recording phases.

2. The model applied to estimate the probability of three
different operation phases indicates an accuracy even

Fig. 8 Complete classification model including feature analysis and
selection, custom artificial neural network (ANN), and smoothing filter

Fig. 9 Receiving operator characteristic

Table 5 Confusion matrix for classifiers [0–2] obtained by the
application of our custom artificial neural network (ANN)

[0]: handling [1]: punching [2]: re-arranging

[0]: handling 261 2 9

[1]: punching 3 182 0

[2]: re-arranging 15 5 126
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higher (> 94%) than the one achieved in the first proof-of-
concept study (> 93%). The robustness of the model could
be further improved by the implementation of an IIR filter.

3. The three states of this classifier representing the three
operation phases were acoustically displayed by charac-
teristic and clearly distinguishable instrumentations of a
musical piece. An intrusion into the auditory scene of
operators is not expected as long as they are accustomed
to listen to music during working hours—as many opera-
tors do according to our observations.

4 Discussion and conclusion

We presented two proof-of-concept approaches on the
sonification of estimated error conditions of 3D printing process-
es and operation phase classification of punching processes. The
results of these studies form the basis for the development of an
“intelligent” noise protection headphone as part of Cyber
Physical Production Systems (CPPSs) which provides auditorily
augmented information to machine operators and enables radio
communication between them. Further application areas for these

auditory displays will be their implementation in control rooms
(equipped with multi-channel loudspeaker systems) and their
utilization for training purposes.

The focus of our research lies on situation-specific acoustic
processing of conditioned machine sounds and operation related
data with high information content, considering the often highly
auditorily influenced working knowledge of skilled workers.
One crucial aspect of continuous sonification for process moni-
toring in the context of shop floors is the willingness of operators
to accept exposures to the provided acoustic information on a
day-to-day 8-h basis. Having background in both, manufacturing
and auditory display, our observations and experiences let us
assume that offering the selection of arbitrary music (which op-
erators are listening to anyway) will have a high acceptance rate
and therefore a good chance for real-world implementations.
Since our project primarily addresses noise production environ-
ments (> 85 dB SPL), where operators are obliged to use noise
protection devices anyway, there will be no constraints by wear-
ing additional equipment. According to [42], acoustic features
integrated in assistance systems, such as attenuation of generated
vibrations or adaptation of sound absorbers, are supportive to the
well-being and motivation of employees. However, acceptance
and benefit can only be evaluated in long-term studies, which
were out of the scope of this exploratory study and which will
need a much more robust database for reliable error prediction.

The results of the presented studies indicate the feasibility
of our long-term proposition to develop an “intelligent”
headphone to be used in industrial environments. This con-
cerns the identification of error conditions and operation
phases (or states) as well as the design of meaningful and
at the same time unobtrusive auditory displays. While audio
effects representing the gradual impact of the errors can be
applied rather simple to existing music playlists, an

Fig. 10 The diagram on the left side displays the three probability estimates of the three classes over time, filtered and unfiltered (“smooth down”). The
diagram on the right side shows the resulting classification with (“phase_f”) and without (“phase”) filtering (cf. Fig. 8)

Table 6 Mapping of operation phases to musical instrumentation

Operation phase Instrumentation

[0] handling Muted trumpet, piano Plucked double
bass, drums[1] punching Lead and rhythm guitar

[2] re-arranging Lead and rhythm guitar,
synthetic choir (male voices)
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appropriate solution for the representation of operation
phases faces major challenges, since operators should be able
to select music according to their listening preferences. A
feasible solution could be the implementation of music-
related artificial intelligence that is capable of creating genre
and style-specific tunes without being too repetitive and, at
the same time, is capable of providing characteristic musical
attributes that are non-judgmental and do not affect the sonic
quality.

The development and comparison of sonification models
themselves was not a primary focus of our project. The
unique selling proposition of the presented project is the
combination of process analysis based on acoustic emission
and machine learning with auditory display. We used ma-
chine learning algorithms to simplify highly complex data
to a one-dimensional data stream that could easily be trans-
formed to a stream of auditory information. As a next step,
we will extend the approach of general error identification
and pursue a comprehensive identification of distinctive ma-
chine and operation states and conditions at classification
rates similarly high to the ones achieved within our proof-
of-concept studies, also considering alternative algorithms
[50]. In order to gain more knowledge about the flexibility,
stability, and reliability of our custom-built classification
models, a large database is required for reliable evaluations.
Therefore, long-term monitoring and recording facilities
must be installed for data collection in industrial environ-
ments. In addition, sound source separation issues [51],
which may be needed in more complex shop floor scenarios,
will be taken into account as well as aspects of sound
spatialization for a position-adjusted display of auditory
scenes.
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