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Abstract We consider a nonstandard ruin problem where: (i) the increments of the
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probability of ruin, viz., P(supn≤δu Sn ≥ u), where {Sn} denotes the discrete partial
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1 Introduction and summary

In this article we consider Markov-modulated risk processes of the form

Sn = ζ1 + · · · + ζn, (1.1)

where the increments {ζn} are driven by an underlying Markov chain {Xn}, as de-
scribed explicitly in (2.1) below. We assume that {Sn} has a positive mean drift, say μ.
Our objective is to study its large exceedance probabilities, more precisely,

P
(

sup
n≤δu

Sn > u
)

as u → ∞. (1.2)

If δ < 1/μ, then the probability on the left of (1.2) tends to zero as u → ∞; and since
the time boundary at δu grows as u → ∞ and does so at a linear rate, this can be
regarded as a large deviation problem. Our main result characterizes the rate of decay
in (1.2) under the assumption, roughly, that F̂ (u) := P(ζ1 ≤ u|X1 ∼ π) is heavy-
tailed, where π is the stationary distribution of {Xn}. In particular, F̂ may belong to
the regularly varying, lognormal, or Weibull classes of distribution functions.

The problem described in (1.2) is nonstandard and is motivated by certain aspects
of risk management. As an important part of our study, we need to assume that the
Markov chain takes values in a general state space, such as R

d , which is uncountable.
Thus our approach will depart significantly from classical risk theory, as described,
e.g., in [1–3], where traditional ruin problems are studied for processes modulated by
a Markov chain, but in a finite state space.

Our original motivation for (1.2) came from a problem in operational risk man-
agement, where there has been an interest in quantifying “repetitive” operational risk
losses. This refers to capital loss incurred by a financial institution due to, say, doc-
umentation errors, system failure, or programming or information errors, which, fol-
lowing the Basel II accord, need to be estimated. The following stylized facts are
well established: the individual losses are known to be heavy-tailed, consistent with
regularly varying tails, while their arrival rates are closely correlated with traded vol-
ume in the market. It is natural to assume that the claims arrive at a Poisson rate,
but that this arrival rate changes over time according to a volume index. With these
considerations in mind, we are led to a model of the form

Sn = ζ1 + · · · + ζn, where ζi =
Ni∑
j=1

Z
(i)
j . (1.3)

In this expression, Nn is assumed to have a Poisson distribution with parameter
λ(Xn) for some function λ; and thus the total capital loss, Sn, is viewed as an ag-
gregate of losses {Z(n)

j } which occur at a Poisson rate modulated by an external

process {Xn}. Here, {Xn} may be assumed to follow the AR(1) time series model,
or an ARMA(p,q) model (based on the p-dimensional representation in [20], p. 28),
or it may be governed by a far more general dependent process.

In this example, there is no premium payment, and the process {Sn} has a positive
drift, in the same direction as the claims process. It is of interest to characterize the
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chance that a large positive exceedance occurs over a time interval, namely (1.2), for
a constant δ which is small compared with the natural ruin time for the process.

It is worth noting that models similar to (1.3) have also arisen in high frequency
financial analysis (cf. [31, 32]). In this context, Z

(i)
j in (1.3) denotes a discrete price

jump, while, in the most realistic models, the intensity of the jumps is assumed to
be time-dependent, modulated by an underlying Markov process. The asymptotic
problem addressed in this paper can then be used to describe the probability that a
large aggregate price movement occurs at some point within a time interval. Aside
from its self-evident mathematical interest, this problem (and minor variants of it)
also seems to be of some statistical relevance, for example, in change-point detection.

A further example—which we introduce to illustrate the breadth of our approach—
considers exceedances for the sums

Sn = X1 + · · · + Xn, (1.4)

where

Xn = AnXn−1 + Bn, n = 1,2, . . . , X0 = x, (1.5)

and {(An,Bn) : n = 1,2, . . .} is an i.i.d. sequence of random variables. Then {Xn}
is a Markov chain on R, and (1.5) is a so-called stochastic recurrence equation. The
process {Xn} plays a prominent role in the study of the ARCH(1) and GARCH(1,1)
financial time series models (cf. [13, 21]). The study of the sums {Sn} in (1.4) has
recently been initiated in [19], but under assumptions which are not satisfied by the
ARCH(1) or GARCH(1,1) processes. It is of interest to consider the extremal behav-
ior of (1.4) under conditions which will be satisfied by these models. In this context
(1.4) could, in particular, describe the net price increase for a financial model where
the jump sizes are, say, deterministic, but the number of jumps in a given time interval
is governed by an ARCH(1) process. The generalization to random price jumps also
seems feasible.

Motivated by these examples, our objective here is to consider—from a general
theoretical viewpoint—the asymptotic behavior of (1.2), where {Sn} is given as in
(1.1) and is driven, we again emphasize, by a general state-space Markov chain, such
as an ARMA(p,q) process or an ARCH(1) process, which will be typically assumed
to be observable. (However, this last condition plays no role in our analysis, and an
example to the contrary, where {Xn} is latent, is given in Sect. 3.2 below.) Under
some natural conditions, we shall show that

P
(

sup
n≤δu

Sn > u
)

∼ CuP
(
U > (1 − γ )u

)
as u → ∞, (1.6)

where C and γ are positive constants, and U is a random variable describing the
typical increase of {Sn} over its regeneration cycles; see Lemma 2.1 below. Moreover,
we shall show that, for both (1.3) and (1.5),

P(U > u) ∼ DuPπ (ζ1 > u|X1 ∼ π) as u → ∞, (1.7)

where D is a positive constant (which, however, turns out to be different in two sep-
arate cases).
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We remark that results such as (1.7) appear to be of general interest, useful well
beyond the context of this article. Moreover, it can be shown that there is a math-
ematical distinction in the Markovian behavior in (1.3) and (1.5), and this can be
quantified.

Extensions of our work include applications to credit risk (a very preliminary re-
sult in this direction can be found in [18]) and statistical applications. (For a general
discussion of large deviation asymptotics in statistics, see, e.g., [5].)

In the next section, we give a precise mathematical statement of (1.6) and, in
Sect. 3, apply this result to the special cases (1.3) and (1.5). The proof of the main
result (1.6) is then given in Sect. 4, while some technical results and their proofs can
be found in the Appendix.

2 Statement of results

We now turn to a precise mathematical formulation of our problem. Let
{Xn : n = 0,1, . . .} be a Markov chain defined on a probability space (�,F,P), and
assume that {Xn} takes values in a state space S with σ -algebra S, which is as-
sumed to be countably generated. Suppose that {Xn} is time-homogeneous with one-
step transition kernel P(x,A) =: P(Xn+1 ∈ A|Xn = x) and k-step transition kernel
P k = P k−1P for k > 1. Moreover, assume that {Xn} is aperiodic and irreducible with
respect to a maximal irreducibility measure ϕ. For the definitions and discussion of
these conditions, see [20]. (In our examples, we always have S = R

d equipped with
the Borel σ -algebra, and ϕ may be taken to be Lebesgue measure on R

d .)
Next introduce a sequence of R-valued random variables {ζn : n = 1,2, . . .}, where

P
(
(Xn+1, ζn+1) ∈ A × Γ

∣∣Fn

) = P
(
(Xn+1, ζn+1) ∈ A × Γ

∣∣Xn

)

and

P
(
(Xn+1, ζn+1) ∈ A × Γ

∣∣Xn = x
) =

∫

A

P (x, dy)η(y,Γ ) (2.1)

for some family of probability measures {η(x,Γ ) : x ∈ S,Γ ∈ R}, where R denotes
the Borel σ -algebra on R, and Fn = σ(X0, . . . ,Xn, ζ1, . . . , ζn).

Our objective is to study the asymptotic behavior of the sums

Sn := ζ1 + · · · + ζn (2.2)

in a setting where {Sn} has a positive mean drift, namely,

μ :=
∫

S×R

π(dy)sη(y, ds) ∈ (0,∞), (2.3)

where π denotes the stationary distribution of {Xn}, which is assumed to exist.
Minorization condition: There exist a ϕ-positive set C ∈ S, a probability measure

ν on (S,S), and positive constants δ > 0 and k ∈ Z+ such that

δ1C(x)ν(A) ≤ P k(x,A) for all x ∈ S and A ∈ S. (M)
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The set C appearing in (M) is called a “small set”.
Condition (M) is an exceedingly weak requirement, which is roughly equivalent

to “Harris recurrence” (see, e.g., [20]).
Under (M), an important result—first established in [4] and [28]—states that the

Markov chain is regenerative.

Lemma 2.1 (Nummelin–Athreya–Ney) Assume (M). Then there exists a sequence
of random times 0 < T0 < T1 < · · · such that:

(i) {Tj+1 − Tj : j ∈ N} is a sequence of i.i.d. and a.s. finite random variables;
(ii) the random blocks {XTj

, . . . ,XTj+1−1}, j = 0,1, . . . , are independent;
(iii) P(XTj

∈ A|FTj −1) = ν(A) for all A ∈ S.

(Here, N = {0,1, . . .} denotes the set of natural numbers.)
Let τj := Tj+1 − Tj , j ≥ 0, and τ0 := T0 denote the inter-regeneration times. We

shall generally need to assume that these times have finite exponential moments, and
for this purpose we introduce the following:

Drift condition: There exist a small set C ∈ S, a function V ≥ 1 (V �≡ ∞), and
constants β > 0 and b < ∞ such that

∫

S

V (y)P (x, dy) ≤ (1 − β)V (x) + b1C(x) for all x ∈ S. (D)

Next, we turn to some distributional assumptions on the process {Sn}. Given the
regeneration times 0 < T0 < T1 < · · · of Lemma 2.1, set

Uj = ζTj−1 + · · · + ζTj −1, j = 0,1, . . . (where T−1 = 1); (2.4)

Ǔ−
j = min{0, ζTj−1} + · · · + min{0, ζTj −1}, j = 0,1, . . . . (2.5)

Then {Uj : j = 1,2, . . .} is an i.i.d. sequence of random variables, which is in-
dependent of U0 (and similarly for {Ǔ−

j : j = 0,1, . . .}). We shall frequently let

U
d= Uj , j ≥ 1, and Ǔ− d= Ǔ−

j , j ≥ 1, denote random variables describing typical
increments of these processes.

The original risk process (2.2) can then be written as

Sn = U0 + U1 + · · · + UN∗−1 + (ζTN∗−1 + · · · + ζn),

where N∗ := inf{j ≥ 0 : Tj > n} (inf∅ := ∞). The first and last terms turn out to be
asymptotically negligible, and so it makes sense to focus on the distribution function
F of a typical increment U , which—based on our motivating examples—will mainly
be assumed to be regularly varying.

Recall that a distribution G is said to be regularly varying with index α (written
G ∈ R(α)) if its tail distribution G(u) := 1 − G(u) satisfies

G(u) ∼ L(u)u−α as u → ∞,
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where L is a slowly varying function, i.e., limu→∞ L(tu)/L(u) = 1 for all t > 0.
The distribution G is said to have a lognormal-type tail with parameter γ (written
G ∈ LN(γ )) if

G(u) ∼ cuβe−λ logγ u as u → ∞
for some β ∈ R, γ > 1, and c > 0. G is said to have a Weibull-type tail with parameter
α (written G ∈ WE(α)) if

G(u) ∼ cuβe−λuα

as u → ∞

for some β ∈ R, α ∈ (0,1), λ > 0, and c > 0. For a more detailed description of these
distributions, see [13].

Theorem 2.2 Suppose that {Xn} is a Markov chain satisfying (M) and (D) and
assume that P(Ǔ− < −u) = o(P(U > u)) as u → ∞.

(i) Suppose that either: (a) F ∈ R(α) for some α > 1; or (b) F ∈ LN(γ ); or (c)
F ∈ WE(α) for some α ∈ (0,1/3). Then

ψδ,x(u) := P
(

sup
n≤δu

Sn > u

∣∣∣X0 = x
)

∼ δu

E[τ ]F
(
(1 − δμ)u

)
(2.6)

as u → ∞ for any positive constant δ < 1/μ and ϕ-a.a. x.

(ii) If F ∈ WE(α) for α ∈ [1/3,1/2), then, for any θ ∈ (1 − α,2 − 3α),

ψ
(θ)
δ,x (u) := P

(
sup

n≤δuθ

Sn > u

∣∣∣X0 = x
)

∼ δuθ

E[τ ]F
(
u − δμuθ

)
(2.7)

as u → ∞ for any positive constant δ and ϕ-a.a. x.

The proof of Theorem 2.2 will be given below in Sect. 4.

Remark 2.3 In the case F ∈ R(α) with α > 1, (2.6) reduces to

ψδ,x(u) ∼ δu

E[τ ] (1 − δμ)−αF (u) as u → ∞. (2.8)

3 Applications

We now return to the motivating examples introduced in Sect. 1. Before proceeding,
we should like to stress that the applications and models presented below should be
viewed as examples of how Markov modulation can occur. In the case of operational
risk, in particular, it is not our objective to strive for a full model for this kind of risk.
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3.1 Repetitive operational risk losses

Formally, operational risk has been defined in [6] as “the risk of losses resulting
from inadequate or failed internal processes, people and systems, or from external
events.” Our focus is on “repetitive” operational risk, which refers, more specifically,
to systematic errors arising sporadically over time and caused, e.g., by system failure,
programming or information errors, or other back-office errors, such as transaction
risk or control risk; see [9].

Some stylized features of these losses are: (i) the sizes of the individual losses,
or “claims,” appear to be independent and quite heavy-tailed, consistent with Pareto
tails; and (ii) their occurrences are irregularly-spaced in time and appear in clusters,
which tend to coincide with large bursts of traded volume in the market. See [12]
for a more detailed discussion. In particular, it is reasonable to assume that the losses
occur at a Poisson rate, as in the classical ruin problem, but that the intensity of losses
depends on an external process, {Xn}, which is observed. This suggests a model of
the form

Sn = ζ1 + · · · + ζn, where ζi =
Ni∑
j=1

Z
(i)
j . (3.1)

Here, {Z(n)
j : n ∈ Z+, j ∈ Z+} is an i.i.d. sequence of random variables with common

distribution function FZ ∈ R(α) or, more generally, FZ ∈ S , where S denotes the
subexponential class (as defined in [13]). For any fixed n, Nn is assumed to have a
Poisson distribution with parameter λ(Xn) for some function λ : S → [0,∞). More-
over, it is assumed that, conditioned on a realization {xn} of {Xn}, the random vari-
ables N1,N2, . . . are independent, and {Z(n)

j } is independent of {Nn}. We regard

{Xn} as a volume index, which we assume to be a Markov chain on R
d (say).

The simplest choice for the intensity would be to take λ(x) ∈ {λ1, λ2}, which
would correspond to a regime-switching model, as has been introduced, e.g., in
[16] and [17]. Another reasonable choice would be to take λ(x) = Kx, x ≥ c, and
λ(x) = 0 otherwise for some threshold c ≥ 0 and constant K > 0.

Applying Theorem 2.2 yields (2.8), but this result is useless without a characteri-
zation of F , namely the distribution of U , which describes the increase of {Sn} over
its regeneration cycles.

To this end, let

Yn = λ(X1) + · · · + λ(Xn);
ΘY (ξ) = lim sup

n→∞
1

n
log E

[
eξYn

]
.

Then ΘY is the “Gärtner–Ellis limit” from large deviation theory, cf. [11], Sect. 2.3;
this is closely related to the spectral radius of an associated transform kernel, cf.,
e.g., [10].

Proposition 3.1 Assume the model described in (3.1), where {Xn} is a Markov chain
satisfying (M) and (D) and suppose that μ̂ := Eπ [λ(X)] < ∞.
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(i) If FZ ∈ R(α) with α > 0, and Eπ [Nβ ] < ∞ for some β > α, then

F(u) ∼ μ̂E[τ ]FZ(u) as u → ∞. (3.2)

(ii) If FZ ∈ S and ΘY (ξ) < ∞ for some ξ > 0, then (3.2) holds.

(In the statement of the proposition, Eπ [·] denotes the expected value under the
assumption that the underlying Markov chain assumes its stationary distribution.)

The proof of Proposition 3.1 will be given below in the Appendix.

Remark 3.2 Our requirement in (ii) that ΘY (ξ) < ∞ for some ξ > 0—which is
stronger than the moment assumption in (i)—can be seen to hold rather gener-
ally. For example, if {Xn} is an ARMA(p,q) process with Gaussian errors and
λ(x) = max{x, c} for some c ≥ 0, then ΘY is finite everywhere. Moreover, if λ is
bounded, then ΘY is finite everywhere for any process {Xn}.

Combining Theorem 2.2 (as given in (2.8)) with Proposition 3.1 yields

ψδ,x(u) ∼ μ̂δu(1 − δμ)−αFZ(u) as u → ∞. (3.3)

To analyze the validity of (3.3) statistically, we should need data for both the claim
sizes and traded volume. The first is not publicly available, although internal data we
have seen suggests that our model is reasonable. However, data for traded volume
can be easily obtained. For example, an analysis of the weekly volume of Nokia
quotes for the period of January 2000–December 2003 suggests that the Nokia time
series follows an AR(1) process, whereas the same analysis for the corresponding
Intel data suggests that it follows an AR(2) process. Both are examples of a general
state-space Markov chain satisfying conditions (M) and (D) of Sect. 2.1. (Note that,
in the AR(2) case, the state space of the Markov chain is actually R

2, based on the
representation in [20], p. 28.)

Focusing on the Nokia data set, a statistical analysis suggests that Xn = aXn−1 +
εn, where {εn} ∼ Normal(0, σ 2) for a = 0.90 and σ = 5.66 × 106. Suppose, more-
over, that {Z(n)

j } has a Pareto(3/2,3) distribution and that the intensity function λ has

the form λ(x) = x, x ≥ c = 1.9 × 107, and λ(x) = 0 otherwise. We then obtain the
simulated losses {ζn} displayed in Fig. 1. These simulated losses closely resemble

Fig. 1 Nokia volume (left) and corresponding loss process (right)
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what is seen in practice: the individual losses have periods of low and high intensity,
with changes in the intensity driven by large changes in the volume process.

It is interesting to note that (3.1) could also apply as a model for high frequency
financial data. In a financial market, one might assume that discrete jumps occur when
quotes are posted and that the quotes arise at a Poisson rate, governed by a Poisson
process which is inhomogeneous and modulated by an underlying Markov process. If
the Markov process is ergodic, then estimates for means and variances have recently
been given in [31]. Our results deal with extremal behavior, but our assumptions on
the underlying process, {Xn}, are otherwise roughly similar to theirs.

3.2 GARCH models and stochastic recurrence equations

The popular GARCH(1,1) financial time series model of [8] assumes that the loga-
rithmic returns of a stock, {Yn}, satisfy

Yn = σnZn, where σ 2
n = a0 + b1σ

2
n−1 + a1Y

2
n−1, (3.4)

and {Zn} is an i.i.d. sequence of Normal(0,1) random variables.
The intuition behind (3.4) is that, in practice, observed volatilities exhibit corre-

lation with respect to the absolute values of the returns, but little correlation with
respect to the actual returns. See [21] for a survey on GARCH models and their prop-
erties.

The mathematical analysis of the GARCH(1,1) process can be based on the fact
that it satisfies a stochastic recurrence equation. Namely, if Xn = σ 2

n , then

Xn = AnXn−1 + Bn, (3.5)

where

An = b1 + a1Z
2
n−1 and Bn = a0.

If we now let {(An,Bn)} be an arbitrary i.i.d. sequence of random variables and let
{Xn} be a sequence of random variables satisfying (3.5), n = 1,2, . . . (where X0 =
x ∈ R), then it is of mathematical interest and potential statistical relevance to study
the extremal behavior of the sums

Sn = X1 + · · · + Xn.

This setting agrees with our general assumptions, since the process {Xn} is a Markov
chain on R, which is known to satisfy the regularity conditions (M) and (D) (for the
latter, see [7]).

Thus we may apply Theorem 2.2 as before, but once again, a characterization of
F is needed for this result to be useful. Let

ΛA(ξ) = log E
[
Aξ

]
, ΛB(ξ) = log E

[
Bξ

]
for all ξ ∈ R.

Proposition 3.3 Assume that κ := sup{ξ : ΛA(ξ) ≤ 0} ∈ (0,∞) and that the func-
tions ΛA and ΛB are finite in a neighborhood of κ . Then, for some constant
C ∈ (0,∞),

F(u) ∼ Cu−κ as u → ∞. (3.6)
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The proof is given in the Appendix.
By Theorem 2.2 and Proposition 3.3,

ψδ,x(u) ∼ Cu
(
(1 − δμ)u

)−κ as u → ∞. (3.7)

As an interesting mathematical observation, we note that (3.7) is structurally different
from (3.3); that is to say, both (3.3) and (3.7) can be put in the general form

ψδ,x(u) ∼ DuP(ζ1 > u|X1 ∼ π) as u → ∞, (3.8)

where π is the stationary distribution of {Xn}, but the constant D will be differ-
ent in the two separate cases. Hence it is not possible to obtain a general result
which describes the behavior over the regeneration cycles (as in Propositions 3.1
and 3.3) which holds in full generality. Indeed, from a mathematical perspective, an
exceedance in Proposition 3.1 results from a single large jump over a given regenera-
tion cycle, while an exceedance in Proposition 3.3 results from a large accumulation
due to atypical path behavior of the sequence {An} over the cycle. In this second
case, the length of the cycle leading to ruin will be unusually large, while the individ-
ual increments leading to ruin will be “twisted” in the sense of large deviation theory.
Thus, in this case, no individual term of the sequence {An} will have an unusually
large value, but rather an unusual combination of random variables will lead to the
exceedance described in (3.6).

There has been very little work dealing with the sums of processes governed by
stochastic recurrence equations. The notion was recently introduced in [19] but, in
their case, the sequence {Bn} is assumed to have heavier tails than u−κ ; i.e., their
setting does not agree with that of the standard GARCH(1,1) process and leads to
different tail asymptotics from those obtained here.

4 Proof of Theorem 2.2

Case 1 F ∈ R(α) for some α > 1.

Upper bound. We begin by considering the probability that the process is in the
state of ruin at some regeneration time. To this end, let {Uj : j = 0,1, . . .} denote the
increase in {Sn} over its regeneration cycles, as defined formally in (2.4). Then the
probability that ruin is incurred at a time of regeneration is

P
(
U0 + · · · + Uj > u for some j < N(u)

)
, (4.1)

where

N(u) = inf{j : Tj > δu} (4.2)

and where {Tj } are the regeneration times of Lemma 2.1. Thus, N(u)−1 denotes the
number of regenerations which occur up to time δu, and (4.1) describes the proba-
bility that ruin is incurred at one of these times.
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To determine (4.1), we first introduce a standard ladder height construction;
namely, let

Yn = U0 + · · · + Un, n = 0,1, . . . ;
T +

0 = inf{n : Yn > 0}; T +
j+1 = inf{n > T +

j : Yn > YT +
j

}, j = 0,1, . . . ;
τ+

0 = T +
0 ; τ+

j+1 = T +
j+1 − T +

j , j = 0,1, . . . ;
L0 = YT +

0
; Lj+1 = YT +

j+1
− YT +

j
, j = 0,1, . . . .

We are primarily interested in the ladder heights {Lj }, which describe the points of
increase of the process {Yn} just defined. Note that since {Un}n≥1 is i.i.d. and indepen-
dent of U0, it follows that {Lj }j≥1 and {τ+

j }j≥1 likewise are i.i.d. and independent of

L0 and τ+
0 , respectively.

Going back to (4.1) and observing that the sequence {L0 +· · ·+Lj } is increasing,
we obtain

P
(
U0 + · · · + Uj > u, for some j < N(u)

) = P(L0 + · · · + LM(u)−1 > u), (4.3)

where

M(u) = inf
{
j : T +

j ≥ N(u)
}
, (4.4)

i.e., M(u) − 1 is the number of ladder heights which occur by time δu.
Now by Wald’s identity the expected number of steps until the occurrence of a

typical ladder height time is E[τ ]E[τ+]. Hence, large deviation estimates for renewal
processes (as given in Lemma 5.2 below) yield

P
(

M(u) − δu

E[τ ]E[τ+] > εu

)
exp→ 0 as u → ∞ (4.5)

for any ε > 0. Thus, if we define

m(u) =
⌊

δu

E[τ ]E[τ+] + εu

⌋
and Mu = {

M(u) ≤ m(u)
}
, (4.6)

then

P(L0 + · · · + LM(u)−1 > u) ≤ P(L0 + · · · + Lm(u) > u) + P
(
Mc

u

)
, (4.7)

where P(Mc
u)

exp→ 0.
We now focus on the first term on the right of (4.7). A result of [25] states that if

{Vn} is an i.i.d. sequence with mean zero and distribution G ∈ R(α), where α > 1,
then

P(V1 + · · · + Vn > s) ∼ nG(s) as n → ∞ (4.8)

for all s ≥ cn, where c is an arbitrary constant.
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To apply this result in our setting, we first need to characterize the mean of L

and its distribution function, where L
d= Lj , j ≥ 1, is a typical ladder height. By

Lemma 5.2 of [27] we have μ = E[U ]/E[τ ]. Then, by Wald’s identity,

E[L] = E
[
τ+] · μE[τ ]. (4.9)

Moreover, for {Yn} given as above but with U0 = 0,

P(L > u) =
∞∑

n=1

P(Yn > u and Yk ≤ 0, ∀k < n)

≤
∞∑

n=1

P
(
τ+ > n − 1

)
P(Un > u) = E

[
τ+]

F(u). (4.10)

Conversely, if R−(E) := E[∑τ+−1
n=1 1{Yn∈E}] denotes the pre-τ+ occupation measure,

then, for any given Δ > 0,

R−
([−a,0]) ≥ E[τ+] − Δ for sufficiently large a, (4.11)

since τ+ is finite a.s. Consequently,

P(L > u) ≥
∫ 0

−a

F (u − v)R−(dv) ∼ (
E

[
τ+] − Δ

)
F(u) (4.12)

by Proposition IX.1.5 of [1]. From (4.10) and (4.12) we conclude that L ∈ R(α).
Finally, note that, by Lemma 5.1 of the Appendix, when L is replaced with L0, (4.9)
and (4.10) remain valid up to multiplication by a finite constant. Hence, from (4.8)
we now conclude that

P(L1 + · · · + Lm(u) > u) ∼ m(u)P
(
L > u − m(u)E[L])

∼
(

δu

E[τ ] + εuE
[
τ+])

P
(
U > (1 − δμ)u − ε′u

)
, (4.13)

where ε′ = εμE[τ ]E[τ+]. Moreover, since L0 has an upper bound for its tail distrib-
ution which—up to multiplication by a constant—is equivalent to that of L, it follows
that (4.13) holds with L0 + · · · + Lm(u) in place of L1 + · · · + Lm(u).

Substituting (4.13) into (4.3) and (4.7) and recalling that P(Mc
u)

exp−→ 0, by
Lemma 5.2, we obtain

lim sup
u→∞

P(U1 + · · · + Uj > u, for some j < N(u))

(δu/E[τ ])F ((1 − δμ)u)

≤ lim sup
ε′→0

lim sup
u→∞

P(U > (1 − δμ)u − ε′u)

P(U > (1 − δμ)u)
= 1, (4.14)

where the last step follows from the fact that F ∈ R(α), where F is the distribution
function of U .
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Thus we have characterized the probability that the process is in the state of ruin
at a regeneration time, and our final objective is to determine the probability of ruin
for the original sums {Sn}. To this end we employ a truncation argument as follows.
Let ζ

(K)
n = max{ζn,−K},

S(K)
n = ζ

(K)
1 + · · · + ζ (K)

n ,

and let U
(K)
j , etc., be defined in the obvious way, with {ζ (K)

n } in place of {ζn}.
Note that ζ

(K)
n ≥ ζn and hence S

(K)
n ≥ Sn for all n. Thus,

ψδ,x(u) ≤ P
(
S(K)

n > u, for some n ≤ δu
)
. (4.15)

Set Lu = {τj ≤ u/K2, for all j < N(u)}. Then fix n and, looking forward in time,

compare the magnitude of {S(K)
n } at time n with that at T ∗ := the next regeneration

time. Note that S
(K)
n −S

(K)
T ∗ ≤ u/K on Lu. This is because the length of any given re-

generation cycle is not larger than u/K2, and the negative increments of the process,
under truncation, are not larger than K . Consequently,

ψδ,x(u) ≤ P
(

U
(K)
1 + · · · + U

(K)
j >

(
1 − 1

K

)
u, for some j < N(u)

)
+ P

(
Lc

u

)
.

(4.16)
Next observe that limK→∞ E[U(K)]/E[U ] = 1, while

P
(
U(K) > u

) ≤ P
(
U − Ǔ− > u

) ∼ P(U > u) as u → ∞, (4.17)

since by assumption P(Ǔ− < −u) = o(P(U > u)). Therefore the proof leading to
(4.14) may be repeated to obtain

lim sup
K→∞

lim sup
u→∞

P(U
(K)
1 + · · · + U

(K)
j > (1 − 1/K)u, for some j < N(u))

(δu/E[τ ])F ((1 − δμ)u)
≤ 1,

(4.18)
where we have used that F ∈ R(α). By (4.15) the upper bound is now established,
provided that P(Lc

u) → 0 at a rate faster than uF((1 − δμ)u).
For this purpose, note that, by condition (D) and Theorem 15.0.1 of [20],

E
[
eξ(Tj+1−Tj )

]
< ∞ for some ξ > 0 (4.19)

for all j ≥ 0. (To be entirely precise, Meyn and Tweedie consider a single visit to the
set C in (M) prior to regeneration, whereas it may actually be necessary to consider
multiple visits to C. However, this added complication can be handled, e.g., based on
the characterization in [26], p. 7.) Moreover, by Chebyshev’s inequality,

P
(
Lc

u,j+1

) := P
(

Tj+1 − Tj >
u

K2

)
≤ e−ξu/K2

E
[
eξ(Tj+1−Tj )

]
(4.20)

for all j ≥ 0 (and the case of Lu,0 can be handled similarly by using Lemma 5.1
below). Consequently,

P(Lc
u) ≤ const · δue−ξu/K2

for some ξ > 0. (4.21)
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Lower bound. For any ε > 0, let

k(u) =
⌊

δu

E[τ ] − εu

⌋
and Ku = {

N(u) ≥ k(u)
}
,

where N(u) − 1 again denotes the number of regenerations which occur by time
δu. On the set Ku, there are at least k(u) − 1 regenerations by time δu, and so
Tk(u)−1 ≤ δu. Hence

ψδ(u) := P(Sn > u, for some n ≤ δu) ≥ P(Uk(u)−1 > u) − P
(
Kc

u

)
. (4.22)

Since E[U ] = μE[τ ], it follows by [25] (cf. (4.8) above) that

P(U0 + · · · + Uk(u)−1 > u) ∼ k(u)P
(
U > u − k(u)E[U ])

∼
(

δu

E[τ ] − εu

)
P
(
U > (1 − δμ)u + ε′u

)
, (4.23)

where ε′ = εμE[τ ]. (Once again, the initial term, U0, can be handled by using

Lemma 5.1 below.) Since P(Kc
u)

exp→ 0, by Lemma 5.2, from (4.22) and (4.23) it fol-
lows that

lim inf
u→∞

ψδ(u)

(δu/E[τ ])F ((1 − δμ)u)

≥ lim inf
ε′→0

lim inf
u→∞

P(U > (1 − δμ)u + ε′u)

P(U > (1 − δμ)u)
= 1, (4.24)

where the last equality holds since U has a regularly varying distribution function.

Case 2 F ∈ LN(γ ) or F ∈ WE(α), α ∈ (0,1/2).

We adopt the same notation as in Case 1 but, in contrast to (4.6), set

m̌(u) =
⌊

δu

E[τ ]E[τ+] + εǎ
(
(1 − δμ)u

)⌋
and M̌u = {

M(u) ≤ m̌(u)
}
,

where ǎ is the “auxiliary function” defined by

ǎ(u) =
{

u log1−γ u/λγ if F ∈ LN(γ ),

u1−α/λα if F ∈ WE(α).
(4.25)

First, we focus on the cases F ∈ LN(γ ) and F ∈ WE(α), α ∈ (0,1/3).
Reasoning as before (cf. (4.3), (4.7)), we obtain

P
(
U0 + · · · + Uj > u, for some j < Ň(u)

)

≤ P(L0 + · · · + Lm̌(u) > u) + P
(
M̌c

u

)
. (4.26)
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Table 1 Threshold dn for
different heavy-tailed
distributions

LN(γ ), γ ∈ (1,2] LN(γ ), γ > 2 WE(α)

n1/2 log1/2 n n1/2 logγ /2 n n1/2(1−α)

Now if {Vn} is an i.i.d. sequence of random variables with mean zero and distri-
bution G having a left tail which is, say, bounded, then a result of [23, 24] (cf. [22])
states that, for G ∈ LN(γ ) or G ∈ WE(α),

P(V1 + · · · + Vn > s) ∼ nG(s) as n → ∞ (4.27)

for any s ∈ (dngn,∞), where gn is an arbitrary sequence such that gn → ∞ as
n → ∞ and dn is given as in Table 1. In particular, we may take s ≥ cn for the
cases LN(γ ) and WE(α), α ∈ (0,1/2). Then (cf. (4.13))

P(L1 + · · · + Lm̌(u) > u) ∼ m̌(u)P
(
L > u − m̌(u)E[L])

∼
(

δu

E[τ ] + εǎ(u)E
[
τ+])

P
(
U > (1 − δμ)u − ε′ǎ(u)

)
, (4.28)

where ε′ = μE[τ ]E[τ+].
To establish an upper bound over the regeneration cycles (the equivalent of (4.14)),

we need to show that

lim sup
ε′→0

lim sup
u→∞

P(U > (1 − δμ)u − ε′ǎ((1 − δμ)u))

P(U > (1 − δμ)u)
≤ 1. (4.29)

To this end, note that, for the above choice of ǎ,

lim
v→∞ P

(
U > v − ǎ(v)Z

∣∣U > v
) → P(Z > z) (4.30)

for some random variable Z which has a continuous density on (0,∞); see, e.g., [22],
p. 90. Hence (4.29) follows.

It remains to show that P(M̂c
u) = o(F̄ ((1 − δμ)u)) as u → ∞. But by

Lemma 5.2(ii), eb(u)P(M̌c
u) → 0 as u → ∞, where we may take

b(u) =
{

u/ log2γ−1 u if F ∈ LN(γ ),

u1−2α/ logu if F ∈ WE(α).
(4.31)

Then it is easily verified that exp{−b(u)} decays faster than F((1− δμ)u) in both the
lognormal and Weibull cases (for α < 1/3).

The remainder of the proof proceeds by a truncation argument, which is identical
to that used in the proof of the previous case, and a corresponding lower bound,
which uses the same modifications as those just given. We omit the details, which are
straightforward.

Finally, if F ∈ WE(α) for α ∈ [1/3,1/2), then

P
(
Sn > v for some n ≤ δvθ

∣∣X0 = x
) = P

(
Sn > u1/θ for some n ≤ δu

∣∣X0 = x
)
.

(4.32)
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The proof now follows as before, with the positive boundary at u replaced with
a boundary at u1/θ . The only significant change is in the definition of m̌(u), where
ǎ((1 − δμ)u) is replaced with a(u) := ǎ(u1/θ − δμu). With θ ∈ (1 − α,2 − 3α) and
b(u) := u{2(1−α)/θ−1}/ logu, one can then verify that exp{−b(u)} decays faster than
F(u1/θ − δμu).

Appendix

5.1 Some auxiliary results needed in the proof of Theorem 2.2

In the following lemmas, conditions (M) and (D) will always be assumed. We begin
by studying the behavior of the initial pair (U0, τ0).

Lemma 5.1

(i) For ϕ-a.a. x, there exists a finite constant Cx such that

lim sup
u→∞

P(U0 > u|X0 = x)

F (u)
≤ Cx. (5.1)

(ii) If μ is finite, then so is E[U0|X0 = x] for ϕ-a.a. x.
(iii) If E[exp{ξτ }] < ∞ for some ξ > 0, then E[exp{ξτ0}|X0 = x] < ∞ for ϕ-a.a. x.

Proof (i) For any K > 0, let

AK =
{
x : sup

u≥K

P(U0 > u|X0 = x)

F (u)
≥ K

}
.

Now consider a typical regeneration cycle. According to Lemma 2.1, this begins
with an initial measure of ν and has a duration of τ ; for notational convenience, we
shall assume that this cycle starts at T0 = 1. Define

AK = {
Xn ∈ AK, for some n ∈ [1, τ ]} and OL =

{
min

1≤n≤τ
Sn ≥ −L

}
,

and set TAK
= inf{n ≥ 1 : Xn ∈ AK}.

If {Xn} visits the set AK by time τ , then the random variable U may be decom-
posed into a sum of two terms, namely U = STAK

+ (U − STAK
); based on this

representation, we obtain

P(U > u) ≥ P(AK ∩OL)P(U0 > u + L|X0 ∼ ν̂), (5.2)

where ν̂ is the distribution of XTAK
conditioned on the event AK . By (5.2),

lim sup
u→∞

P(U > u)

F(u)
≥ lim sup

K→∞
P(AK ∩OL) · K; (5.3)
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on the right-hand side we have used the definition of AK and Proposition IX.1.5 of
[1]. Since the left-hand side of (5.3) is finite, it follows that

P(AK ∩OL) ↘ 0 as K → ∞. (5.4)

Next observe that clearly

P(AK) ≤ P(AK ∩OL) + P(Oc
L), (5.5)

and since the random variable τ is finite a.s.,

P(Oc
L) = P

(
min

1≤n≤τ
Sn < −L

)
↘ 0 as L → ∞. (5.6)

By first choosing L sufficiently large and then letting K → ∞, from (5.4)–(5.6) we
conclude that

P(AK) ↘ 0 as K → ∞. (5.7)

Hence, away from a set of measure zero, every x ∈ S belongs to some set Ac
K for

K < ∞, and consequently (5.1) holds.
(ii) Assume, to the contrary, that there exists a ϕ-positive set A with E[U0|X0 = x]

= ∞ (or −∞) for all x ∈ A. Let TA = inf{n : Xn ∈ A} and observe, once again, that
we may write U = STA

+ (U − STA
). Hence

E[U ] ≥ p
(
−L + inf

x∈A
E[U0|X0 = x]

)
, (5.8)

where

p := P(TA < τ and STA
≥ −L).

Since A is ϕ-positive, P(TA < τ) > 0 ([4], Sect. 6). Hence p > 0 for L sufficiently
large. Then from (5.8) it follows that E[U ] = ∞ by the choice of A. By [27],
Lemma 5.2, μ = E[U ]/E[τ ]; hence μ = ∞. This is a contradiction.

The proof of (iii) is identical. �

Next we turn to a characterization of the renewal processes N(u) and M(u), where
N(u) − 1 denotes the random number of regenerations which occur by time δu, and
M(u) − 1 denotes the number of ladder heights occurring by this time, as formally
defined in Sect. 4.

Lemma 5.2

(i) For any ε > 0, there exists a positive constant β such that

eβuP
(∣∣∣∣N(u) − δu

E[τ ]
∣∣∣∣ > εu

)
→ 0, u → ∞; (5.9)

eβuP
(

M(u) − δu

E[τ ]E[τ+] > εu

)
→ 0, u → ∞. (5.10)
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(ii) Assume that a : [0,∞) → [0,∞) is a function such that a(u)/u ↘ 0 as u → ∞
and that b : [0,∞) → [0,∞) is a function satisfying b(u) = o(a2(u)/u) as u →
∞. Then, for any ε > 0,

eb(u)P
(∣∣∣∣N(u) − δu

E[τ ]
∣∣∣∣ > εa(u)

)
→ 0, u → ∞; (5.11)

eb(u)P

(
M(u) − δu

E[τ ]E[τ+] > εa(u)

)
→ 0, u → ∞. (5.12)

Proof (i) is standard; see, e.g., [33], Theorem 2.3. Note that condition (D) implies
that the usual large deviation moment condition is satisfied, namely,

Λ(ξ) := log E
[
eξ(τ−E[τ ])] < ∞ for some ξ > 0 (5.13)

([20], Theorem 15.0.1). We also note that the absence of a corresponding moment
condition on τ+ implies that we only have a one-sided bound in (5.10).

The proof of (ii) is a variant of the proof of (i) and can be developed, as with (i),
from Cramér’s theorem ([11], Theorem 2.2.3). Let

g(u) = δu

E[τ ] − εa(u).

Since N(u) is integer-valued, it follows by definition that N(u) > t is equivalent to
T�t� ≤ δu. Hence

P
(
N(u) ≤ g(u)

) ≤ P(T�g(u)� > δu) ≤ P
(

T̃�g(u)�
�g(u)� > h(u)

)
, (5.14)

where T̃n = Tn − nE[τ ] for all n, and

h(u) := εE[τ ](a(u) − 1)

�g(u)� .

By Cramér’s theorem (and its proof),

P
(

T̃�g(u)�
�g(u)� > h(u)

)
≤ Ce−g(u)Λ∗(h(u)), (5.15)

where Λ∗ is the convex conjugate of the function Λ defined in (5.13), and C is a pos-
itive constant, where C → 1 as h(u) → 0. (This constant results from the inclusion
of the initial term T0, which has a distribution different from {Ti}i≥1.)

Furthermore, Λ is strictly convex, and therefore Λ∗ is essentially smooth ([30],
Theorem 26.3). Moreover, since Λ∗ is a nonnegative function and the mean of
τ − E[τ ] is obviously zero, it follows that Λ∗(0) = 0 = (Λ∗)′(0) ([11], Lemma 2.2.5).
Thus, after a Taylor expansion, the exponent on the right-hand side of (5.15) decays as

g(u)
(
Λ∗)′′

(0) · (h(u))2

2
∼ const · (a(u))2

u
as u → ∞; (5.16)
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by assumption, the last term grows at a faster rate than b(u), thus establishing the
required left-sided bound in (5.11).

The remaining estimates are obtained similarly. We omit the details. �

5.2 Proofs of Propositions 3.1 and 3.3

Proof of Proposition 3.1 For notational convenience, assume that regeneration oc-
curs at time one, i.e., T0 = 1 in Lemma 2.1, and let τ + 1 denote the subsequent
regeneration time. Set

N
(r) = N1 + · · · + Nτ ,

and note by [27], Lemma 5.2, that

E
[
N

(r)
] = Eπ [N]E[τ ] = Eπ

[
λ(X)

]
E[τ ], (5.17)

where the last step follows since N has a Poisson distribution with intensity λ(X).
As μ̂ := Eπ [λ(X)] and the sequence {Z(n)

j : n ∈ Z+, j ∈ Z+} is independent of the
process {Nn : n ∈ Z+}, it then suffices to show that

P

(
N(r)∑
k=1

Žk > u

)
∼ E

[
N

(r)
]
FZ(u) as u → ∞, (5.18)

where {Žk} is an i.i.d. sequence of random variables with distribution FZ .
In the regularly varying case, (5.18) follows from [14], Proposition 4.1, since, for

any γ < β , Hölder’s inequality yields

E
[(

N
(r)

)γ ] ≤ E
[
τγ

(
max

1≤i≤τ
Ni

)γ ]
≤ E

[
τpγ

]1/p(
E[τ ]Eπ

[
N

qγ
])1/q

, (5.19)

where p−1 + q−1 = 1 and qγ ≤ β , and where once again we have applied [27],
Lemma 5.2, on the right-hand side. Moreover, the quantity on the right is finite under
our hypotheses since, in particular, (D) implies that τ has exponential moments in a
neighborhood of zero (as previously observed in (4.19)).

For the general subexponential case, (5.18) follows, provided that

E
[
eξYτ

]
< ∞ for some ξ > 0, (5.20)

since by [1], Proposition IX.1.8, there would then exist a finite constant K such that

∞∑
n=0

P(
∑n

k=1 Žk > u)

FZ(u)
P
(
N

(r) = n
) ≤

∞∑
n=0

K(1 + ξ)nP
(
N

(r) = n
)

= KE

[
τ∏

i=1

E
[
(1 + ξ)Ni

∣∣τ,X1, . . . ,Xτ

]] = KE
[
eξYτ

]
< ∞, (5.21)

where in the last equality we have utilized the probability generating function of a
Poisson random variable. This bound enables a dominated convergence argument,



318 J.F. Collamore, A. Höing

since the limit (as u → ∞) can then be brought inside the above sum, and we may
then apply Proposition IX.1.7 of [1].

To establish (5.20), let ΛY (ξ) = log(R(ξ)−1), where R(ξ) is the convergence pa-
rameter of the kernel P̂ξ (x, dy) := exp{ξλ(y)}P(x, dy). (For the definition, see [29],
p. 27.) Then

E
[
eξYτ −τΛY (ξ)

] ≤ 1. (5.22)

(This is the inequality b̂(R) ≤ 1 on p. 565 of [27]; see also Sect. 4 of that article.)
Then, by Hölder’s inequality,

(
E

[
eξYτ

])2 ≤ E
[
e2ξYτ −τΛY (2ξ)

]
E

[
eτΛY (2ξ)

]
. (5.23)

By (5.22) the first term on the right is bounded by one. For the second term, note that
ΛY (ξ) ≤ ΘY (ξ) for all ξ ; cf. [10], Sect. 7. Also, from the definition of ΘY it easily
follows that ΘY (0) = 0 and that ΘY is a convex function. Consequently,

ΛY (2ξ) ≤ ΘY (2ξ) ↘ 0 as ξ → 0. (5.24)

Since (D) implies that τ has exponential moments in a neighborhood of zero (cf.
(4.19)), (5.20) follows from (5.23) and (5.24). �

Proof of Proposition 3.3 Without loss of generality, assume that regeneration occurs
at time one, and let τ +1 denote the subsequent regeneration time. Moreover, assume
that regeneration is understood with respect to the joint process {(Xn,Wn)}, where
Wn := (Wn−1 + logAn)

+, n ∈ Z+, and W0 = 0.
First note that the Markov chain {(Xn,Wn)} is geometrically recurrent. By [20],

Theorem 15.0.1, this will be true, provided that the drift condition (D) is satisfied. Let
V (x, y) = xε + eεy + 1, x ≥ 0, y ∈ R, and let C = [−K,K] × {0}, for some K > 0.
Then, for ε ≤ 1,

E
[
V (X1,W1)

∣∣X0 = x,W0 = y
] ≤ E

[
(A1x + B1)

ε + (
eε(y+logA1) + 1

) + 1
]

≤ E
[
Aε

1

]
xε + E

[
Bε

1

] + E
[
Aε

1

]
eεy + 2

= (1 − γ )V (x, y) + {
E

[
Bε

1

] − E
[
Aε

1

] + 2
}

for some γ > 0, provided that ε has been chosen sufficiently small so that E[Aε
1] < 1.

This parameter ε can always be found, since Λ′
A(0) < 0 and ΛA is finite in a neigh-

borhood of zero by assumption. Now observe that

E
[
Bε

1

] − E
[
Aε

1

] + 2 <
γ

2
V (x, y) for sufficiently large K.

Hence condition (D) is satisfied, which implies geometric recurrence.
Next observe by an inductive argument that

Xn = (A2 · · ·An)X1 + (A3 · · ·An)B2 + · · · + Bn;
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consequently,

U
d= X1 + · · · + Xτ

= (1 + A2 + A2A3 + · · · + A2 · · ·Aτ )X1

+ (1 + A3 + · · · + A3 · · ·Aτ )B2 + · · · + Bτ . (5.25)

Let Zn := Bn−11{τ≥n−1}(1 + An + AnAn+1 + · · · + An · · ·Aτ ), n > 1, where, for
notational convenience, we have set X1 = B1. Also let

A := 1 + A2 + A2A3 + · · · ,

and observe that A satisfies the random recurrence equation

A
d= 1 + AA, where A

d= A2

and, on the right-hand side, A is independent of A. Since ΛA(κ) = 0 and ΛA is
assumed to be finite in a neighborhood of κ , from [15], Theorem 4.1, it follows that

P(A > u) ≤ Du−κ for all u ≥ 0

with some positive constant D. Hence, for any nonnegative random variable W which
is independent of A,

P(WA > u) = E
[

P
(

A >
u

W

∣∣∣∣W
)

;W > 0

]
≤ DE

[
Wκ

]
u−κ . (5.26)

Moreover, by Hölder’s inequality, the finiteness of ΛB in a neighborhood of zero, and
the geometric recurrence of {(Xn,Wn)},

E
[
Bκ

n−11{τ≥n−1}
] ≤ const · P(τ ≥ n − 1)1/2 ≤ const · e−γ n (5.27)

for some γ > 0. Finally, observe that (1 + An + AnAn+1 + · · · + An · · ·Aτ ) is sto-
chastically bounded by (1 + An + AnAn+1 + · · · ), and the latter quantity is equal in
distribution to A and independent of Bn−11{τ≥n−1}. Hence (5.26) and (5.27) yield

P(Zn > u) ≤ D′u−κ · e−γ n for some D′ > 0. (5.28)

Letting β = eγ/2κ and K = ∑∞
n=0 β−n then gives

P

( ∞∑
n=k

Zn > u

)
≤

∞∑
n=k

P
(

Zn >
β−n

K
u

)
≤ Δ(k)u−κ , (5.29)

where

Δ(k) := D′Kκ
∞∑

n=k

e−γ n/2 → 0 as k → ∞.
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It remains to study the asymptotic decay of
∑k−1

n=2 Zn. From the definition of {Zn}
we obtain, after a short computation,

k−1∑
n=2

Zn = (B1A2 · · ·Ak−1 + · · · + Bk−1)Ak + Bk, (5.30)

where Ak := (1 + Ak + AkAk+1 + · · · + Ak · · ·Aτ )1{τ≥k−1};

Bk := (1 + A21{τ≥2} + A2A31{τ≥3} + · · · + A2 · · ·Ak−21{τ≥k−2})B1

+ (1{τ≥2}+A31{τ≥3}+· · ·+ A3 · · ·Ak−21{τ≥k−2})B2 + · · · + Bk−21{τ≥k−2}.

Observe that, by Minkowski’s inequality (or Eq. (9.26) of [15] if κ + ε < 1),
E[Bκ+ε

k ] < ∞ for some ε > 0. Hence Chebyshev’s inequality yields that, for any
fixed k,

P(Bk > u) ≤ const · u−(κ+ε). (5.31)

Thus, Bk is negligible relative to terms which decay as u−κ .
Next, consider the asymptotic decay of Ak . Note that

Vk1{τ≥k−1} := (1 + Ak + AkAk+1 + · · · )1{τ≥k−1}
= (1 + Ak + AkAk+1 + · · · + Ak · · ·Aτ )1{τ≥k−1}

+ (Ak · · ·Aτ+1)(1 + Aτ+2 + Aτ+2Aτ+3 + · · · )1{τ≥k−1}

:= Ak + (Ak · · ·Aτ+1)Â1{τ≥k−1}, (5.32)

where Vk
d= A and Â

d= A. Now Ak · · ·Aτ < 1, since, by construction, regeneration
occurs after a time of decrease of the process {logAn}, that is, one of its negative lad-
der height times. (This is because the small set used above to derive (D) was taken to
be C = [−K,K] × {0}, implying Wτ = 0.) Moreover, by the regeneration construc-
tion (described, e.g., in [26]), we also have that Aτ+1 is independent of (Ak · · ·Aτ )

and of Â and—for an appropriate choice of the minorization measure ν in (M)—also
bounded from above by one. Moreover, by [15], Theorem 4.1,

P(A > u) ∼ D′′u−κ as u → ∞. (5.33)

Since A
d= Â (where the right-hand side is conditional on {τ ≥ k − 1}), from a result

of Breiman (as given in [19], Lemma 2.2) it follows that

P
(
(Ak · · ·Aτ+1)1{τ≥k−1}Â > u

) ∼ γkD
′′u−κ as u → ∞, (5.34)

where γk := E[(Ak · · ·Aτ+1)
κ1{τ≥k−1}] < P(τ ≥ k − 1). Since Vk

d= A and is in-
dependent of 1{τ≥k−1}, from (5.32), (5.33), (5.34), and an elementary argument it
follows that

P(Ak > u) ∼ D(k)u−κ as u → ∞ (5.35)

for some constant D(k) > 0.
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Applying Breiman’s result once again (cf. (5.34)), but now to the quantity on the
right-hand side of (5.30), we obtain

P

(
k−1∑
n=2

Zn > u

)
∼ Cku

−κ as u → ∞, (5.36)

where Ck := E[Yκ
k ] and Yk := D(k)(B1A2 · · ·Ak−1 + · · · + Bk−1). Moreover, by

Minkowski’s inequality we have that Ck < ∞ for any given k. We conclude

P

(
k−1∑
n=2

Zn

)
∼ Cku

−κ and P

((
U −

k−1∑
n=2

Zn

)
> u

)
≤ Δ(k)u−κ , (5.37)

where Δ(κ) → 0 as k → ∞. It follows that P(U > u) ∼ Cu−κ , where
C := limk→∞ Ck . This constant must be finite because, for any fixed k,
C ≤ const · (Ck + Δ(k)). Moreover, it must be positive because Ck > 0 and the left-
hand side of (5.36) is a lower bound for P(U > u). �
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