Skip to main content
Log in

Efficient estimation of drift parameters in stochastic volatility models

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We study the parametric problem of estimating the drift coefficient in a stochastic volatility model \(Y_{t}=\int_{0}^{t}\sqrt{V_{s}}\,\mathrm {d}W_{s}\) , where Y is a log price process and V the volatility process. Assuming that one can recover the volatility, precisely enough, from the observation of the price process, we construct an efficient estimator for the drift parameter of the diffusion V. As an application we present the efficient estimation based on the discrete sampling \((Y_{i\delta_{n}})_{i=0,\dots,n}\) with δ n →0 and n δ n →∞. We show that our setup is general enough to cover the case of ‘microstructure noise’ for the price process as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aït-Sahalia, Y., Kimmel, R.: Maximum likelihood estimation of stochastic volatility models. J. Finance Econ. 83, 413–452 (2007)

    Article  Google Scholar 

  2. Andersen, T.G., Bollerslev, T., Meddahi, N.: Correcting the errors: volatility forecast evaluation using high-frequency data and realized volatilities. Econometrica 73, 279–296 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics. Econometrica 72, 885–925 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bates, D.S.: Maximum likelihood estimation of latent affine processes. Rev. Finance Stud. 19, 909–965 (2006)

    Article  Google Scholar 

  5. Bollerslev, T., Zhou, H.: Estimating volatility diffusion using conditional moments of integrated volatility. J. Econom. 109, 33–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Corradi, V., Distaso, W.: Semi-parametric comparison of stochastic volatility models using realized measures. Rev. Econom. Stud. 73, 635–667 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dacunha-Castelle, D., Duflo, M.: Probabilité et Statistiques. Tome 2. Problèmes à Temps Mobile. Masson, Paris (1983)

    Google Scholar 

  8. Feller, W.: An Introduction to Probability Theory and its Application, vol. 1, 3rd edn. Wiley, New York (1969)

    Google Scholar 

  9. Florens-Zmirou, D.: Approximate discrete-time schemes for statistics of diffusion processes. Statistics 20, 547–557 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Genon-Catalot, V., Jacod, J.: On the estimation of the diffusion coefficient for multidimensional diffusion processes. Ann. Inst. Henri Poincaré, Probab. Stat. 29, 119–151 (1993)

    MATH  MathSciNet  Google Scholar 

  11. Genon-Catalot, V., Jeantheau, T., Laredo, C.: Parameter estimation for discretely observed stochastic volatility models. Bernoulli 5, 855–872 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Genon-Catalot, V., Jeantheau, T., Laredo, C.: Stochastic volatility models as hidden Markov models and statistical applications. Bernoulli 6, 1051–1079 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gloter, A.: Estimation du coefficient de diffusion de la volatilitité d’un modèle à volatilité stochastique. [Estimation of the volatility diffusion coefficient for a stochastic volatility model]. C.R. Acad. Sci. Paris Sér. I Math. 330, 243–248 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Gloter, A.: Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient. ESAIM Probab. Stat. 4, 205–224 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Gloter, A.: Parameter estimation for a discretely observed integrated diffusion process. Scand. J. Stat. 33, 83–104 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gloter, A., Hoffmann, M.: Stochastic volatility and fractional Brownian motion. Stoch. Process. Appl. 113, 143–172 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bonds and currency options. Rev. Finance Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  18. Hoffmann, M.: Rate of convergence for parametric estimation in a stochastic volatility model. Stoch. Process. Appl. 97, 147–170 (2002)

    Article  MATH  Google Scholar 

  19. Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42, 281–300 (1987)

    Article  Google Scholar 

  20. Ibragimov, I.A., Khas’minskii, R.Z.: Statistical Estimation, Asymptotic Theory. Springer, Berlin (1981)

    MATH  Google Scholar 

  21. Jacod, J.: Limit of random measures associated with the increments of a Brownian semimartingale. Preprint 120, Laboratoire de Probabilité, Université Pierre et Marie Curie, Paris (1994)

  22. Kessler, M.: Estimation of an ergodic diffusion from discrete observations. Scand. J. Stat. 24, 211–229 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Phillips, P.C.B., Yu, J.: A two stage realized volatility approach to the estimation for diffusion processes from discrete observations. Cowles Foundation Discussion Paper 1523, Cowles Foundation, Yale University (2005). http://cowles.econ.yale.edu/P/cd/d15a/d1523.pdf

  24. Ruiz, E.: Quasi-maximum likelihood estimation of stochastic volatility models. J. Econom. 63, 289–306 (1994)

    Article  MATH  Google Scholar 

  25. Scott, L.O.: Option pricing when the variance changes randomly: theory, estimation, and an application. J. Finance Quant. Anal. 22, 419–438 (1987)

    Article  Google Scholar 

  26. Shephard, N.: Stochastic Volatility (Advanced Texts in Econometric). Oxford University Press, London (2005)

    Google Scholar 

  27. Sørensen, M.: Prediction-based estimating functions. Econom. J. 3, 123–147 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wiggins, J.B.: Option values under stochastic volatility: theory and empirical estimates. J. Finance Econ. 19, 351–372 (1987)

    Article  Google Scholar 

  29. Yoshida, N.: Estimation for diffusion processes from discrete observation. J. Multivar. Anal. 41, 220–242 (1992)

    Article  MATH  Google Scholar 

  30. Zhang, L.: Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach. Bernoulli 12, 1019–1043 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhang, L., Mykland, P.A., Aït-Sahalia, Y.: A tale of two time scales: determining integrated volatility with noisy high-frequency data. J. Am. Stat. Assoc. 100, 1394–1411 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Gloter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloter, A. Efficient estimation of drift parameters in stochastic volatility models. Finance Stoch 11, 495–519 (2007). https://doi.org/10.1007/s00780-007-0048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-007-0048-2

Keywords

JEL

Mathematics Subject Classification (2000)

Navigation