Skip to main content
Log in

Option pricing with quadratic volatility: a revisit

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

This paper considers the pricing of European options on assets that follow a stochastic differential equation with a quadratic volatility term. We correct several errors in the existing literature, extend the pricing formulas to arbitrary root configurations, and list alternative representations of option pricing formulas to improve computational performance. Our exposition is based entirely on probabilistic arguments, adding a fresh perspective and new intuition to the existing PDE-dominated literature on the subject. Our main tools are martingale methods and shifts of probability measures; the fact that the underlying process is typically a strict local martingale is carefully considered throughout the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albanese, C., Campolieti, G., Carr, P., Lipton, A.: Black–Scholes goes hypergeometric. RISK Mag. 14(12), 99–103 (2001)

    Google Scholar 

  2. Andersen, L.: Monte Carlo simulation of options on joint minima and maxima. In: Dupire, B. (ed.) Monte Carlo, pp. 91–102. RISK Books, London (1998)

    Google Scholar 

  3. Andersen, L., Andreasen, J.: Volatility skews and extensions of the LIBOR market model. Appl. Math. Finance 7, 1–32 (2000)

    Article  MATH  Google Scholar 

  4. Bhattacharya, R., Waymire, E.: Stochastic Processes with Applications. Wiley, New York (1990)

    Google Scholar 

  5. Blacher, G.: A new approach for designing and calibrating stochastic volatility models for optimal delta-vega hedging of exotics. In: ICBI Global Derivatives, Conference Presentation. ICBI Global Derivatives, Juan-Les-Pins (2001)

    Google Scholar 

  6. Cox, A., Hobson, D.: Local martingales, bubbles and option prices. Finance Stoch. 9, 477–492 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox, D., Miller, H.: The Theory of Stochastic Processes. Chapman & Hall, London (1965)

    MATH  Google Scholar 

  8. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duffie, D.: Dynamic Asset Pricing Theory, 3rd edn. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  10. Emmanuel, D., MacBeth, J.: Further results on the constant elasticity of variance call option pricing model. J. Financ. Quant. Anal. 10, 533–554 (1982)

    Article  Google Scholar 

  11. Heston, S., Loewenstein, M., Willard, G.: Options and bubbles. Rev. Financ. Stud 20, 359–390 (2007)

    Article  Google Scholar 

  12. Hull, J.: Options, Futures, and Other Derivatives. Prentice Hall, New York (2005)

    Google Scholar 

  13. Ingersoll, J.: Valuing foreign exchange rate derivatives with a bounded exchange process. Rev. Deriv. Res. 1, 159–181 (1997)

    Article  Google Scholar 

  14. Johnson, G., Helms, L.: Class D supermartingales. Bull. Am. Math. Soc. 69, 59–62 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    MATH  Google Scholar 

  16. Karlin, S., Taylor, H.: A Second Course in Stochastic Processes. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  17. Kotani, S.: On a condition that one-dimensional diffusion processes are martingales. In: Séminaire de Probabilités XXXIX. Lecture Notes in Mathematics, vol. 1874, pp. 159–170. Springer, Berlin (2006)

    Google Scholar 

  18. Lewis, A.: Option Valuation under Stochastic Volatility. Finance Press, Newport Beach (2000)

    MATH  Google Scholar 

  19. Lipton, A.: The vol smile problem. RISK Mag. 15(2), 61–65 (2002)

    MathSciNet  Google Scholar 

  20. Madan, D., Yor, M.: Itô’s integrated formula for strict local martingales. In: Séminaire de Probabilités XXXIX. Lecture Notes in Mathematics, vol. 1874, pp. 157–170. Springer, Berlin (2006)

    Google Scholar 

  21. Pal, S., Protter, P.: Strict local martingales, bubbles, and no early exercise. Working Paper, Cornell University (2007). http://www.math.cornell.edu/~soumik/strictlocmgle4.pdf

  22. Rady, S.: Option pricing in the presence of natural boundaries and a quadratic diffusion term. Finance Stoch. 1, 331–344 (1997)

    Article  MATH  Google Scholar 

  23. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  24. Schroder, M.: Computing the constant elasticity of variance option pricing formula. J. Finance 44, 211–219 (1989)

    Article  Google Scholar 

  25. Sin, C.: Complications with stochastic volatility models. Adv. Appl. Probab. 30, 256–268 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weideman, J.: Computations of the complex error function. SIAM J. Numer. Anal. 31, 1497–1518 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yen, J., Yor, M.: Call option prices based on Bessel processes. Methodol. Comput. Appl. Probab. August 2009. http://www.springerlink.com/content/u57w64l65k455140/

  28. Zühlsdorff, C.: The pricing of derivatives on assets with quadratic volatility. Appl. Math. Finance 8, 235–262 (2001)

    Article  MATH  Google Scholar 

  29. Zühlsdorff, C.: Extended LIBOR market models with affine and quadratic volatility. Working Paper, University of Bonn (2002). ftp://web.bgse.uni-bonn.de/pub/RePEc/bon/bonedp/bgse6_2002.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, L. Option pricing with quadratic volatility: a revisit. Finance Stoch 15, 191–219 (2011). https://doi.org/10.1007/s00780-010-0142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-010-0142-8

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation