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Abstract

This paper establishes a non-stochastic analogue of the celebrated result by
Dubins and Schwarz about reduction of continuous martingales to Brownian
motion via time change. We consider an idealized financial security with con-
tinuous price path, without making any stochastic assumptions. It is shown
that typical price paths possess quadratic variation, where “typical” is under-
stood in the following game-theoretic sense: there exists a trading strategy that
earns infinite capital without risking more than one monetary unit if the process
of quadratic variation does not exist. Replacing time by the quadratic varia-
tion process, we show that the price path becomes Brownian motion. This is
essentially the same conclusion as in the Dubins–Schwarz result, except that
the probabilities (constituting the Wiener measure) emerge instead of being
postulated. We also give an elegant statement, inspired by Peter McCullagh’s
unpublished work, of this result in terms of game-theoretic probability theory.

The journal version [70] of this paper appeared in Finance and Stochastics in
2012. The final journal publication is available at Springer via

http://dx.doi.org/10.1007/s00780-012-0180-5.

As compared to the journal version, this technical report slightly strengthens the
main result (Theorem 6.3) and includes a few further clarifications.

http://dx.doi.org/10.1007/s00780-012-0180-5
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1 Introduction

This paper is a contribution to the game-theoretic approach to probability. This
approach was explored (by, e.g., von Mises, Wald, and Ville) as a possible basis
for probability theory at the same time as the now standard measure-theoretic
approach (Kolmogorov), but then became dormant. The current revival of
interest in it started with A. P. Dawid’s prequential principle ([16], Section
5.1, [18], Section 3), and recent work on game-theoretic probability includes
monographs [57, 61] and papers [39, 34, 38, 40, 63, 41].

Treatment of continuous-time processes in game-theoretic probability often
involves non-standard analysis (see, e.g., [57], Chapters 11–14). The recent
paper [62] suggested avoiding non-standard analysis and introduced the key
technique of “high-frequency limit order strategies”, also used in this paper and
its predecessors, [68] and [66].

An advantage of game-theoretic probability is that one does not have to start
with a full-fledged probability measure from the outset to arrive at interesting
conclusions, even in the case of continuous time. For example, [68] shows that
continuous price paths satisfy many standard properties of Brownian motion
(such as the absence of isolated zeroes) and [66] (developing [72] and [62]) shows
that the variation index of a non-constant continuous price path is 2, as in the
case of Brownian motion. The standard qualification “with probability one” is
replaced with “unless a specific trading strategy increases the capital it risks
manyfold” (the formal definitions, assuming zero interest rate, will be given in
Section 2). This paper makes the next step, showing that the Wiener measure
emerges in a natural way in the continuous trading protocol. Its main result
contains all main results of [68, 66], together with several refinements, as special
cases.

Other results about the emergence of the Wiener measure in game-theoretic
probability can be found in [65] and [67]. However, the protocols of those papers
are much more restrictive, involving an externally given quadratic variation (a
game-theoretic analogue of predictable quadratic variation, generally chosen by
a player called Forecaster). In this paper the Wiener measure emerges in a
situation with surprisingly little a priori structure, involving only two players:
the market and a trader.

The reader will notice that not only our main result but also many of our
definitions resemble those in Dubins and Schwarz’s paper [22], which can be
regarded as the measure-theoretic counterpart of this paper. The main differ-
ence of this paper is that we do not assume a given probability measure from
the outset. A less important difference is that our main result will not assume
that the price path is unbounded and nowhere constant (among other things,
this generalization is important to include the main results of [68, 66] as special
cases). A result similar to that of Dubins and Schwarz was almost simulta-
neously proved by Dambis [13]; however, Dambis, unlike Dubins and Schwarz,
dealt with predictable quadratic variation, and his result can be regarded as the
measure-theoretic counterpart of [65] and [67].

Another related result is the well-known observation (see, e.g., [29], The-
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orem 5.39) that in the binomial model of a financial market every contingent
claim can be replicated by a self-financing portfolio whose initial price is the
expected value (suitably discounted if the interest rate is not zero) of the pay-
off function with respect to the risk-neutral probability measure. This insight
is, essentially, extended in this paper to the case of an incomplete market (the
price for completeness in the binomial model is the artificial assumption that at
each step the price can only go up or down by specified factors) and continuous
time (continuous-time mathematical finance usually starts from an underlying
probability measure, with some notable exceptions discussed in Section 12).

This paper’s definitions and results have many connections with several other
areas of finance and stochastics, including stochastic integration, the Funda-
mental Theorems of Asset Pricing, and model-free option pricing. These will be
discussed in Section 12.

The main part of the paper starts with the description of our continuous-
time trading protocol and the definition of game-theoretic versions of the notion
of probability (upper and lower price of a set) in Section 2. In Section 3 we state
our main result (Theorem 3.1), which becomes especially intuitive if we restrict
our attention to the case of the initial price equal to 0 and price paths that do not
converge to a finite value and are nowhere constant: the upper and lower price of
any event that is invariant with respect to time transformations then exist and
coincide between themselves and with its Wiener measure (Corollary 3.8). This
simple statement was made possible by Peter McCullagh’s unpublished work on
Fisher’s fiducial probability: McCullagh’s idea was that fiducial probability is
only defined on the σ-algebra of events invariant with respect to a certain group
of transformations. Section 4 presents several applications (connected with [68]
and [66]) demonstrating the power of Theorem 3.1. The fact that typical price
paths possess quadratic variation is proved in Section 8. It is, however, used
earlier, in Section 5, where it allows us to state a constructive version of Theorem
3.1. The constructive version, Theorem 5.1, says that replacing time by the
quadratic variation process turns the price path into Brownian motion. In
Section 6 we state generalizations from events to positive measurable functions of
Theorem 3.1 and part of Theorem 5.1; these are Theorem 6.3 and Theorem 6.5,
respectively. The easy directions in Theorem 6.3 and Theorem 6.5 are proved
in the same section. Sections 7 and 9 prove part of Theorem 5.1 and prepare
the ground for the proof of the remaining parts of Theorems 5.1 and 6.5 (in
Section 10) and Theorem 6.3 (in Section 11). Section 12 continues the general
discussion started in this section.

The words such as “positive”, “negative”, “before”, “after”, “increasing”,
and “decreasing” will be understood in the wide sense of ≥ or ≤, as appropriate;
when necessary, we will add the qualifier “strictly”. As usual, C(E) is the
space of all continuous functions on a topological space E equipped with the
sup norm. We often omit the parentheses around E in expressions such as
C[0, T ] := C([0, T ]).
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2 Upper price for sets

We consider a game between two players, Reality (a financial market) and Scep-
tic (a trader), over the time interval [0,∞). First Sceptic chooses his trading
strategy and then Reality chooses a continuous function ω : [0,∞) → R (the
price path of a security).

Let Ω be the set of all continuous functions ω : [0,∞) → R. For each
t ∈ [0,∞), Ft is defined to be the smallest σ-algebra that makes all functions
ω 7→ ω(s), s ∈ [0, t], measurable. A process S is a family of functions St : Ω→
[−∞,∞], t ∈ [0,∞), each St being Ft-measurable; its sample paths are the
functions t 7→ St(ω). An event is an element of the σ-algebra F∞ := ∨tFt, also
denoted by F. (We will often consider arbitrary subsets of Ω as well.) Stopping
times τ : Ω→ [0,∞] w.r. to the filtration (Ft) and the corresponding σ-algebras
Fτ are defined as usual; ω(τ(ω)) and Sτ(ω)(ω) will be simplified to ω(τ) and
Sτ (ω), respectively (occasionally, the argument ω will be omitted in other cases
as well).

The class of allowed strategies for Sceptic is defined in two steps. A simple
trading strategy G consists of an increasing sequence of stopping times τ1 ≤
τ2 ≤ · · · and, for each n = 1, 2, . . ., a bounded Fτn -measurable function hn. It
is required that, for each ω ∈ Ω, limn→∞ τn(ω) =∞. To such G and an initial
capital c ∈ R corresponds the simple capital process

K
G,c
t (ω) := c+

∞∑
n=1

hn(ω)
(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
, t ∈ [0,∞) (2.1)

(with the zero terms in the sum ignored, which makes the sum finite for each
t); the value hn(ω) will be called Sceptic’s bet (or bet on ω, or stake) at time

τn, and K
G,c
t (ω) will be referred to as Sceptic’s capital at time t.

A positive capital process is any process S that can be represented in the
form

St(ω) :=

∞∑
n=1

K
Gn,cn
t (ω), (2.2)

where the simple capital processes K
Gn,cn
t (ω) are required to be positive, for

all t and ω, and the positive series
∑∞
n=1 cn is required to converge. The sum

(2.2) is always positive but allowed to take value ∞. Since K
Gn,cn
0 (ω) = cn

does not depend on ω, S0(ω) also does not depend on ω and will sometimes be
abbreviated to S0.

Remark 2.1. The financial interpretation of a positive capital process (2.2)
is that it represents the total capital of a trader who splits his initial capital
into a countable number of accounts and on each account runs a simple trading
strategy making sure that this account never goes into debit.

The upper price of a set E ⊆ Ω (not necessarily E ∈ F) is defined as

P(E) := inf
{
S0

∣∣ ∀ω ∈ Ω : lim inf
t→∞

St(ω) ≥ 1E(ω)
}
, (2.3)
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where S ranges over the positive capital processes and 1E stands for the indi-
cator function of E. In the financial terminology (and ignoring the fact that the
inf in (2.3) may not be attained), P(E) is the price of the cheapest superhedge
for the European contingent claim paying 1E at time ∞. It is easy to see that
the lim inft→∞ in (2.3) can be replaced by supt (and, therefore, by lim supt→∞):
we can always stop (i.e., set all bets to 0) when S reaches the level 1 (or a level
arbitrarily close to 1).

We say that a set E ⊆ Ω is null if P(E) = 0. If E is null, there is a positive
capital process S such that S0 = 1 and limt→∞St(ω) = ∞ for all ω ∈ E
(it suffices to sum over ε = 1/2, 1/4, . . . positive capital processes Sε satisfying
Sε

0 = ε and lim inft→∞Sε
t ≥ 1E). A property of ω ∈ Ω will be said to hold for

typical ω if the set of ω where it fails is null. Correspondingly, a set E ⊆ Ω is
full if P(Ec) = 0, where Ec := Ω \ E stands for the complement of E.

We can also define lower price:

P(E) := 1− P(Ec)

(intuitively, this is the price of the most expensive subhedge of 1E). This notion
of lower price will not be useful in this paper (but its simple modification will
be).

Remark 2.2. Another natural setting is where Ω is defined as the set of all
continuous functions ω : [0, T ] → R for a given constant T (the time horizon).
In this case the definition of upper price simplifies: instead of lim inft→∞St(ω)
we will have simply ST (ω) in (2.3).

Remark 2.3. Many alternative names for upper and lower price have been
used in literature (and even in literature on game-theoretic probability). The
book [57] talks about upper and lower probability in the case of sets and upper
and lower expectation in the case of functions (the latter case will be considered
in Section 6). The journal version [70] of this paper essentially follows [33] and
[58] in using “outer content” for “upper price” and “inner content” for “lower
price”. For terminology used in finance literature, see Section 12.

2.1 Relation to the standard notion of a self-financing
trading strategy

Readers accustomed to the standard definition of a self-financed trading strategy
specifying explicitly the cash position (as in [59], Section VII.1a) might find it
helpful to have the connection between our notion of a simple trading strategy
and the standard definition spelled out in detail. The main difference of the
standard definition (apart from not being “simple”, i.e., not trading at discrete
times) is that it specifies not only the process of trading but also the initial
capital. In the standard definition, we have d+ 1 assets (a bank account and d
securities) with prices X0

t , . . . , X
d
t at time t (we are using the notation of [59]).

In this paper, d = 1, it is assumed that X0
t = 1 for all t (i.e., the interest rate is
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zero) and the notation for X1
t is ω(t); since X0

t does not carry any information,
it is not mentioned explicitly.

Suppose we are given an initial capital c and a simple trading strategy G,
as described above. The corresponding standard trading strategy is defined as
a pair of predictable processes (π0

t , π
1
t ); intuitively, π0

t (resp. π1
t ) is the number

of units of X0
t (resp. X1

t ) in the trader’s portfolio. We will now describe how
the pair (G, c) determines (π0

t , π
1
t ); first we define π1

t and then explain how π0
t

is determined by the condition that the trading strategy is self-financing. The
process π1

t is piecewise constant and is defined by

π1
t =


0 if t ≤ τ1
h1 if τ1 < t ≤ τ2
h2 if τ2 < t ≤ τ3
. . . ;

in particular, π1
0 = 0. Being làdcàg (left-continuous with limits on the right),

this process is predictable. The gain process of the standard trading strategy
(π0
t , π

1
t ) is

Y πt :=

∫ t

0

π0
sdX

0
s +

∫ t

0

π1
sdX

1
s =

∫ t

0

π1
sdX

1
s = K

G,0
t ,

in the notation of (2.1), and its value process is

Xπ
t := π0

tX
0
t + π1

tX
1
t = π0

t + π1
tX

1
t .

Since the initial capital is c, we have to define π0
0 := c. In order to be self-

financing, the trading strategy (π0
t , π

1
t ) must satisfy Xπ

t = Xπ
0 + Y πt , i.e.,

π0
t + π1

tX
1
t = c+ K

G,0
t = K

G,c
t .

Therefore, defining
π0
t := K

G,c
t − π1

tX
1
t

(which agrees with π0
0 := c) makes the strategy (π0

t , π
1
t ) self-financing.

It remains to check that the process π0
t is làdcàg: for each t ∈ (0,∞),

π0
t − π0

t− = (KG,c
t −K

G,c
t− )− π1

t (X1
t −X1

t−)

= hn(ω)(ω(t)− ω(t−))− π1
t (X1

t −X1
t−) = 0,

where n is defined from the condition t ∈ (τn, τn+1].

3 Main result: abstract version

A time transformation is defined to be a continuous increasing (not necessarily
strictly increasing) function f : [0,∞) → [0,∞) satisfying f(0) = 0. Equipped
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with the binary operation of composition, (f ◦ g)(t) := f(g(t)), t ∈ [0,∞), the
time transformations form a (non-commutative) monoid, with the identity time
transformation t 7→ t as the unit. The action of a time transformation f on ω ∈
Ω is defined to be the composition ωf := ω◦f ∈ Ω, (ω◦f)(t) := ω(f(t)). The trail
of ω ∈ Ω is the set of all ψ ∈ Ω such that ψf = ω for some time transformation
f . (These notions are often defined for groups rather than monoids: see, e.g.,
[49]; in this case the trail is called the orbit. In their “time-free” considerations
Dubins and Schwarz [22, 55, 56] make simplifying assumptions that make the
monoid of time transformations a group; we will make similar assumptions in
Corollary 3.8.) A subset E of Ω is time-superinvariant if together with any
ω ∈ Ω it contains the whole trail of ω; in other words, if for each ω ∈ Ω and
each time transformation f it is true that

ωf ∈ E =⇒ ω ∈ E. (3.1)

The time-superinvariant class I is defined to be the family of those events (ele-
ments of F) that are time-superinvariant.

Let c ∈ R. The probability measure Wc on Ω is defined by the conditions
that ω(0) = c with probability one and, for all 0 ≤ s < t, ω(t) − ω(s) is
independent of Fs and has the Gaussian distribution with mean 0 and variance
t− s. (In other words, Wc is the distribution of Brownian motion started at c.)
In this paper, we rely on the classical arguments for the existence of Wc (see,
e.g., [37], Chapter 2).

Theorem 3.1. Let c ∈ R. Each event E ∈ I such that ω(0) = c for all ω ∈ E
satisfies

P(E) = Wc(E). (3.2)

The main part of (3.2) is the inequality ≤, whose proof will occupy us in
Sections 7–11. The easy part ≥ will be established in Section 6.

Remark 3.2. Define a partial order ≤ on Ω as follows: ω′ ≤ ω if and only
if there is a time change f such that ω′ = ω ◦ f . (The intuition behind this
definition is that some information in ω may be lost, even if the time scale is
ignored: it is possible that f(∞) < ∞.) Then E is time-superinvariant if and
only if E is an upper set for this partial order.

Remark 3.3. The time-superinvariant class I is closed under countable unions
and intersections; in particular, it is a monotone class. However, it is not closed
under complementation, and so is not a σ-algebra (unlike McCullagh’s invariant
σ-algebras). An example of a time-superinvariant event E such that Ec is not
time-superinvariant is the set of all increasing (not necessarily strictly increas-
ing) ω ∈ Ω satisfying limt→∞ ω(t) = ∞: the implication (3.1) is violated when
ω is the identity function (i.e., ω(t) = t for all t), f = 0, and we have Ec in
place of E.

Remark 3.4. This remark explains the meaning of the formal notion of time-
superinvariance. Let f be a time transformation. Transforming ω into ωf is
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either trivial (ω is replaced by the constant ω(0), if f = 0) or can be split
into three steps: (a) remove [T,∞) from the domain of ω, i.e., transform ω
into ω′ := ω|[0,T ), for some T ∈ (0,∞] (namely, T := limt→∞ f(t)); (b) con-
tinuously deform the time interval [0, T ) into [0, T ′) for some T ′ ∈ (0,∞], i.e.,
transform ω′ into ω′′ ∈ C[0, T ′) defined by ω′′(t) := ω′(g(t)) for some increasing
homeomorphism g : [0, T ′) → [0, T ) (e.g., the graph of g can be obtained from
the graph of f by removing all horizontal pieces); (c) insert countably many
(perhaps a finite number of, perhaps zero) horizontal pieces into the graph of
ω′′ making sure to obtain an element of Ω (inserting a horizontal piece means
replacing ψ ∈ Ω with

ψ′(t) :=


ψ(t) if t < a

ψ(a) if a ≤ t < b

ψ(t+ a− b) if t ≥ b,

for some a and b, a < b, in the domain of ψ, or

ψ′(t) :=

{
ψ(t) if t < c

lims→c ψ(s) if t ≥ c

if the domain of ψ is [0, c) for some c <∞ and lims→c ψ(s) exists in R). There-
fore, the trail of ω ∈ Ω consists of all elements of Ω that can be obtained from
ω by an application of the following steps: (a) remove any number of horizontal
pieces from the graph of ω; let [0, T ) be the domain of the resulting function ω′

(it is possible that T <∞; if T = 0, output any ω′′ ∈ Ω satisfying ω′′(0) = ω(0));
(b) assuming T > 0, continuously deform the time interval [0, T ) into [0, T ′) for
some T ′ ∈ (0,∞]; let ω′′ be the resulting function with the domain [0, T ′); (c)
if T ′ = ∞, output ω′′; if T ′ < ∞ and limt→T ′ ω(t) exists in R, extend ω′′ to
[0,∞) in any way making sure that the extension belongs to Ω and output the
extension; otherwise, nothing is output. A set E is time-superinvariant if and
only if application of these last three steps, (a)–(c), never leads outside E.

Remark 3.5. By the Dubins–Schwarz result [22] and Lemma 3.6 below, we
can replace the Wc in the statement of Theorem 3.1 by any probability measure
P on (Ω,F) such that the process Xt(ω) := ω(t) is a martingale w.r. to P and
the filtration (Ft), is unbounded P -a.s., is nowhere constant P -a.s., and satisfies
X0 = c P -a.s.

Because of its generality, some aspects of Theorem 3.1 may appear counter-
intuitive. (For example, the conditions we impose on E imply that E contains
all ω ∈ Ω satisfying ω(0) = c whenever E contains constant c.) In the rest of this
section we will specialize Theorem 3.1 to the more intuitive case of divergent
and nowhere constant price paths.

Formally, we say that ω ∈ Ω is nowhere constant if there is no interval (t1, t2),
where 0 ≤ t1 < t2, such that ω is constant on (t1, t2), we say that ω is divergent
if there is no c ∈ R such that limt→∞ ω(t) = c, and we let DS ⊆ Ω stand
for the set of all ω ∈ Ω that are divergent and nowhere constant. Intuitively,

7



the condition that the price path ω should be nowhere constant means that
trading never stops completely, and the condition that ω should be divergent
will be satisfied if ω’s volatility does not eventually die away (cf. Remark 5.2 in
Section 5 below). The conditions of being divergent and nowhere constant in
the definition of DS are similar to, but weaker than, Dubins and Schwarz’s [22]
conditions of being unbounded and nowhere constant.

All unbounded and strictly increasing time transformations f : [0,∞) →
[0,∞) form a group, which will be denoted G. Let us say that an event E is
time-invariant if it contains the whole orbit {ωf | f ∈ G} of each of its elements
ω ∈ E. It is clear that DS is time-invariant. Unlike I, the time-invariant events
form a σ-algebra: Ec is time-invariant whenever E is (cf. Remark 3.3).

The following two lemmas will be needed to specialize Theorem 3.1 to subsets
of DS. First of all, it is not difficult to see that for subsets of DS there is no
difference between time-invariance and time-superinvariance (which makes the
notion of time-superinvariance much more intuitive for subsets of DS).

Lemma 3.6. An event E ⊆ DS is time-superinvariant if and only if it is time-
invariant.

Proof. If E (not necessarily E ⊆ DS) is time-superinvariant, ω ∈ E, and f ∈ G,

we have ψ := ωf ∈ E as ψf
−1

= ω. Therefore, time-superinvariance always
implies time-invariance.

It is clear that, for all ψ ∈ Ω and time transformations f , ψf /∈ DS unless
f ∈ G. Let E ⊆ DS be time-invariant, ω ∈ E, f be a time transformation, and
ψf = ω. Since ψf ∈ DS, we have f ∈ G, and so ψ = ωf

−1 ∈ E. Therefore,
time-invariance implies time-superinvariance for subsets of DS.

Lemma 3.7. An event E ⊆ DS is time-superinvariant if and only if DS \E is
time-superinvariant.

Proof. This follows immediately from Lemma 3.6.

For time-invariant events in DS, (3.2) can be strengthened to assert the
coincidence of the upper and lower price of E with Wc(E). However, the notions
of upper and lower price have to be modified slightly.

For any B ⊆ Ω, a restricted version of upper price can be defined by

P(E;B) := inf
{
S0

∣∣ ∀ω ∈ B : lim inf
t→∞

St(ω) ≥ 1E(ω)
}

= P(E ∩B),

with S again ranging over the positive capital processes. Intuitively, this is the
definition obtained when Ω is replaced by B: we are told in advance that ω ∈ B.
The corresponding restricted version of lower price is

P(E;B) := 1− P(Ec;B) = P(E ∪Bc).

We will use these definitions only in the case where P(B) = 1. Lemma 7.3 below
shows that in this case P(E;B) ≤ P(E;B).
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We will say that P(E;B) and P(E;B) are restricted to B. It should be clear
by now that these notions are not related to conditional probability P(E | B).
Their analogues in measure-theoretic probability are the function E 7→ P(E∩B),
in the case of upper price, and the function E 7→ P(E ∪ Bc), in the case of
lower price (assuming B is measurable). Both functions coincide with P when
P(B) = 1.

We will also use the restricted versions of the notions “null”, “for typical”,
and “full”. For example, E being B-null means P(E;B) = 0.

Theorem 3.1 immediately implies the following statement about the emer-
gence of the Wiener measure in our trading protocol (another such statement,
more general and constructive but also more complicated, will be given in The-
orem 5.1(b)).

Corollary 3.8. Let c ∈ R. Each event E ∈ I satisfies

P(E;ω(0) = c,DS) = P(E;ω(0) = c,DS) = Wc(E) (3.3)

(in this context, ω(0) = c stands for the event {ω ∈ Ω | ω(0) = c} and the
comma stands for the intersection).

Proof. Events E ∩DS∩{ω | ω(0) = c} and Ec∩DS∩{ω | ω(0) = c} belong to I:
for the first of them, this immediately follows from DS ∈ I and I being closed
under intersections (cf. Remark 3.3), and for the second, it suffices to notice
that Ec ∩DS = DS \(E ∩DS) ∈ I (cf. Lemma 3.7). Applying (3.2) to these two
events and making use of the inequality P ≤ P (cf. Lemma 7.3 and Equation
(7.1) below), we obtain:

Wc(E) = 1−Wc(E
c ∩DS∩{ω | ω(0) = c}) = 1− P(Ec;ω(0) = c,DS)

= P(E;ω(0) = c,DS) ≤ P(E;ω(0) = c,DS)

= Wc(E ∩DS∩{ω | ω(0) = c}) = Wc(E).

We can express the equality (3.3) by saying that the game-theoretic proba-
bility of E exists and is equal to Wc(E) when we restrict our attention to ω in
DS satisfying ω(0) = c.

4 Applications

The main goal of this section is to demonstrate the power of Theorem 3.1; in
particular, we will see that it implies the main results of [68] and [66]. One
corollary (Corollary 4.5) of Theorem 3.1 solves an open problem posed in [66],
and two other corollaries (Corollaries 4.6 and 4.7) give much more precise re-
sults. At the end of the section we will draw the reader’s attention to several
events such that: Theorem 3.1 together with very simple game-theoretic argu-
ments show that they are full; the fact that they are full does not follow from
Theorem 3.1 alone.

9



In this section we deduce the main results of [68] and [66] and other results as
corollaries of Theorem 3.1 and the corresponding results for measure-theoretic
Brownian motion. It is, however, still important to have direct game-theoretic
proofs such as those given in [68, 66]. This will be discussed in Remark 4.11.

The following obvious fact will be used constantly in this paper: restricted
upper price is countably (in particular, finitely) subadditive. (Of course, this
fact is obvious only because of our choice of definitions.)

Lemma 4.1. For any B ⊆ Ω and any sequence of subsets E1, E2, . . . of Ω,

P

( ∞⋃
n=1

En;B

)
≤
∞∑
n=1

P(En;B).

In particular, a countable union of B-null sets is B-null.

4.1 Points of increase

Let us say that t ∈ [0,∞) is a point of increase for ω ∈ Ω if there exists δ > 0
such that ω(t1) ≤ ω(t) ≤ ω(t2) for all t1 ∈ ((t − δ)+, t] and t2 ∈ [t, t + δ).
Points of decrease are defined in the same way except that ω(t1) ≤ ω(t) ≤ ω(t2)
is replaced by ω(t1) ≥ ω(t) ≥ ω(t2). We say that ω is locally constant to the
right of t ∈ [0,∞) if there exists δ > 0 such that ω is constant over the interval
[t, t+ δ].

A slightly weaker form of the following corollary was proved directly (by
adapting Burdzy’s [10] proof) in [68].

Corollary 4.2. Typical ω have no points t of increase or decrease such that ω
is not locally constant to the right of t.

This result (without the clause about local constancy) was established by
Dvoretzky, Erdős, and Kakutani [26] for Brownian motion, and Dubins and
Schwarz [22] noticed that their reduction of continuous martingales to Brow-
nian motion shows that it continues to hold for all almost surely unbounded
continuous martingales that are almost surely nowhere constant. We will apply
Dubins and Schwarz’s observation in the game-theoretic framework.

Proof of Corollary 4.2. Let us first consider only the ω ∈ Ω satisfying ω(0) = 0.
Consider the set E of all ω ∈ Ω that have points t of increase or decrease such
that ω is not locally constant to the right of t and ω is not locally constant to
the left of t (with the obvious definition of local constancy to the left of t; if
t = 0, every ω is locally constant to the left of t). Since E is time-superinvariant
(cf. Remark 3.4), Theorem 3.1 and the Dvoretzky–Erdős–Kakutani result show
that the event E is null. And the following standard game-theoretic argument
(as in [68], Theorem 1) shows that the event that ω is locally constant to the
left but not locally constant to the right of a point of increase or decrease is null.
For concreteness, we will consider the case of a point of increase. It suffices to
show that for all rational numbers b > a > 0 and D > 0 the event that

inf
t∈[a,b]

ω(t) = ω(a) ≤ ω(a) +D ≤ sup
t∈[a,b]

ω(t) (4.1)
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is null (see Lemma 4.1). The simple capital process that starts from ε > 0, bets
h1 := 1/D at time τ1 = a, and bets h2 := 0 at time τ2 := min{t ≥ a | ω(t) ∈
{ω(a) − Dε, ω(a) + D}} is positive and turns ε (an arbitrarily small amount)
into 1 when (4.1) happens. (Notice that this argument works both when t = 0
and when t > 0.)

It remains to get rid of the restriction ω(0) = 0. Fix a positive capital
process S satisfying S0 < ε and reaching 1 on ω with ω(0) = 0 that have at
least one point t of increase or decrease such that ω is not locally constant to
the right of t. Applying S to ω − ω(0) gives another positive capital process,
which will achieve the same goal but without the restriction ω(0) = 0.

It is easy to see that the qualification about local constancy to the right of
t in Corollary 4.2 is essential.

Proposition 4.3. The upper price of the following event is one: there is a point
t of increase such that ω is locally constant to the right of t.

Proof. This proof uses Lemma 7.2 stated in Section 7 below. Consider the
continuous martingale which is Brownian motion that starts at 0 and is stopped
as soon as it reaches 1.

4.2 Variation index

For each interval [u, v] ⊆ [0,∞) and each p ∈ (0,∞), the strong p-variation of
ω ∈ Ω over [u, v] is defined as

v[u,v]
p (ω) := sup

κ

nκ∑
i=1

|ω(ti)− ω(ti−1)|p , (4.2)

where κ ranges over all partitions u = t0 ≤ t1 ≤ · · · ≤ tnκ = v of the inter-
val [u, v]. It is obvious that there exists a unique number vi[u,v](ω) ∈ [0,∞],

called the variation index of ω over [u, v], such that v
[u,v]
p (ω) is finite when

p > vi[u,v](ω) and infinite when p < vi[u,v](ω); notice that vi[u,v](ω) /∈ (0, 1).
The following result was obtained in [66] (by adapting Bruneau’s [9] proof);

in measure-theoretic probability it was established by Lepingle ([42], Theorem 1
and Proposition 3) for continuous semimartingales and Lévy [43] for Brownian
motion.

Corollary 4.4. For typical ω ∈ Ω, the following is true. For any interval
[u, v] ⊆ [0,∞) such that u < v, either vi[u,v](ω) = 2 or ω is constant over [u, v].

(The interval [u, v] was assumed fixed in [66], but this assumption is easy to get
rid of.)

Proof. Without loss of generality we restrict our attention to the ω satisfying
ω(0) = 0 (see the proof of Corollary 4.2). Consider the set of ω ∈ Ω such that,
for some interval [u, v] ⊆ [0,∞), neither vi[u,v](ω) = 2 nor ω is constant over
[u, v]. This set is time-superinvariant (cf. Remark 3.4), and so in conjunction
with Theorem 3.1 Lévy’s result implies that it is null.
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Corollary 4.4 says that, for typical ω,

v[u,v]
p (ω)

{
<∞ if p > 2

=∞ if p < 2 and ω is not constant.

However, it does not say anything about the situation for p = 2. The following
result completes the picture (solving the problem posed in [66], Section 5).

Corollary 4.5. For typical ω ∈ Ω, the following is true. For any interval

[u, v] ⊆ [0,∞) such that u < v, either v
[u,v]
2 (ω) =∞ or ω is constant over [u, v].

Proof. Lévy [43] proves for Brownian motion that v
[u,v]
2 (ω) = ∞ almost surely

(for fixed [u, v], which implies the statement for all [u, v]). Consider the set of

ω ∈ Ω such that, for some interval [u, v] ⊆ [0,∞), neither v
[u,v]
2 (ω) = ∞ nor

ω is constant over [u, v]. This set is time-superinvariant, and so in conjunction
with Theorem 3.1 Lévy’s result implies that it is null.

4.3 More precise results

Theorem 3.1 allows us to deduce much stronger results than Corollaries 4.4 and
4.5 from known results about Brownian motion.

Define ln∗ u := 1 ∨ |lnu|, u > 0, and let ψ : [0,∞)→ [0,∞) be Taylor’s [64]
function

ψ(u) :=
u2

2 ln∗ ln∗ u

(with ψ(0) := 0). For ω ∈ Ω, T ∈ [0,∞), and φ : [0,∞)→ [0,∞), set

vφ,T (ω) := sup
κ

nκ∑
i=1

φ (|ω(ti)− ω(ti−1)|) ,

where κ ranges over all partitions 0 = t0 ≤ t1 ≤ · · · ≤ tnκ = T of [0, T ]. In the
previous subsection we considered the case φ(u) := up; another interesting case
is φ := ψ. See [8] for a much more explicit expression for vψ,T (ω).

Corollary 4.6. For typical ω,

∀T ∈ [0,∞) : vψ,T (ω) <∞.

Suppose φ : [0,∞) → [0,∞) is such that ψ(u) = o(φ(u)) as u → 0. For typical
ω,

∀T ∈ [0,∞) : ω is constant on [0, T ] or vφ,T (ω) =∞.

Corollary 4.6 refines Corollaries 4.4 and 4.5; it will be further strengthened
by Corollary 4.7.

The quantity vψ,T (ω) is not nearly as fundamental as the following quantity
introduced by Taylor [64]: for ω ∈ Ω and T ∈ [0,∞), set

wT (ω) := lim
δ→0

sup
κ∈Kδ[0,T ]

nκ∑
i=1

ψ (|ω(ti)− ω(ti−1)|) , (4.3)
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where Kδ[0, T ] is the set of all partitions 0 = t0 ≤ · · · ≤ tnκ = T of [0, T ] whose
mesh is less than δ: maxi(ti − ti−1) < δ. Notice that the expression after the
limδ→0 in (4.3) is increasing in δ; therefore, wT (ω) ≤ vψ,T (ω).

The following corollary contains Corollaries 4.4–4.6 as special cases. It is
similar to Corollary 4.6 but is stated in terms of the process w.

Corollary 4.7. For typical ω,

∀T ∈ [0,∞) : ω is constant on [0, T ] or wT (ω) ∈ (0,∞). (4.4)

Proof. First let us check that under the Wiener measure (4.4) holds for almost
all ω. It is sufficient to prove that wT = T for all T ∈ [0,∞) a.s. Furthermore,
it is sufficient to consider only rational T ∈ [0,∞). Therefore, it is sufficient to
consider a fixed rational T ∈ [0,∞). And for a fixed T , wT = T a.s. follows
from Taylor’s result ([64], Theorem 1).

As usual, let us restrict our attention to the case ω(0) = 0. In view of
Theorem 3.1 it suffices to check that the complement of the event (4.4) is time-
superinvariant, i.e., to check (3.1), where E is the complement of (4.4). In other
words, it suffices to check that ωf = ω◦f satisfies (4.4) whenever ω satisfies (4.4).
This follows from Lemma 4.8 below, which says that wT (ω ◦f) = wf(T )(ω).

Lemma 4.8. Let T ∈ [0,∞), ω ∈ Ω, and f be a time transformation. Then
wT (ω ◦ f) = wf(T )(ω).

Proof. Fix T ∈ [0,∞), ω ∈ Ω, a time transformation f , and c ∈ [0,∞]. Our
goal is to prove

lim
δ→0

sup
κ∈Kδ[0,f(T )]

nκ∑
i=1

ψ (|ω(ti)− ω(ti−1)|) = c

=⇒ lim
δ→0

sup
κ∈Kδ[0,T ]

nκ∑
i=1

ψ (|ω(f(ti))− ω(f(ti−1))|) = c, (4.5)

in the notation of (4.3). Suppose the antecedent in (4.5) holds. Notice that the
two limδ→0 in (4.5) can be replaced by infδ>0.

To prove that the limit on the right-hand side of (4.5) is ≤ c, take any ε > 0.
We will assume c <∞ (the case c =∞ is trivial). Let δ > 0 be so small that

sup
κ∈Kδ[0,f(T )]

nκ∑
i=1

ψ (|ω(ti)− ω(ti−1)|) < c+ ε.

Let δ′ > 0 be so small that |t − t′| < δ′ =⇒ |f(t) − f(t′)| < δ. Since f(κ) ∈
Kδ[0, f(T )] whenever κ ∈ Kδ′ [0, T ],

sup
κ∈Kδ′ [0,T ]

nκ∑
i=1

ψ (|ω(f(ti))− ω(f(ti−1))|) < c+ ε.
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To prove that the limit on the right-hand side of (4.5) is ≥ c, take any
ε > 0 and δ′ > 0. We will assume c < ∞ (the case c = ∞ can be considered
analogously). Place a finite number N of points including 0 and T onto the
interval [0, T ] so that the distance between any pair of adjacent points is less
than δ′; this set of points will be denoted κ0. Let δ > 0 be so small that
ψ(|ω(t′′) − ω(t′)|) < ε/N whenever |t′′ − t′| < δ. Choose a partition κ =
{t0, . . . , tn} ∈ Kδ[0, f(T )] satisfying

n∑
i=1

ψ (|ω(ti)− ω(ti−1)|) > c− ε.

Let κ′ = {t′0, . . . , t′n} be a partition of the interval [0, T ] satisfying f(κ′) = κ.
This partition will satisfy

n∑
i=1

ψ
(∣∣ω(f(t′i))− ω(f(t′i−1))

∣∣) > c− ε,

and the union κ′′ = {t′′0 , . . . , t′′N+n} (with its elements listed in the increasing
order) of κ0 and κ′ will satisfy

N+n∑
i=1

ψ
(∣∣ω(f(t′′i ))− ω(f(t′′i−1))

∣∣) > c− 2ε.

Since κ′′ ∈ Kδ′ [0, T ] and ε and δ′ can be taken arbitrarily small, this completes
the proof.

The value wT (ω) defined by (4.3) can be interpreted as the quadratic vari-
ation of the price path ω over the time interval [0, T ]. Another non-stochastic
definition of quadratic variation (see (5.2)) will serve us in Section 5 as the ba-
sis for the proof of Theorem 3.1. For the equivalence of the two definitions, see
Remark 5.6.

4.4 Limitations of Theorem 3.1

We said earlier that Theorem 3.1 implies the main result of [68] (see Corol-
lary 4.2). This is true in the sense that the extra game-theoretic argument used
in the proof of Corollary 4.2 was very simple. But this simple argument was
essential: in this subsection we will see that Theorem 3.1 per se does not imply
the full statement of Corollary 4.2.

Let c ∈ R and E ⊆ Ω be such that ω(0) = c for all ω ∈ E. Suppose the
set E is null. We can say that the equality P(E) = 0 can be deduced from
Theorem 3.1 and the properties of Brownian motion if (and only if) Wc(E) = 0,
where E is the smallest time-superinvariant set containing E (it is clear that
such a set exists and is unique). It would be nice if all equalities P(E) = 0, for
all null sets E satisfying ∀ω ∈ E : ω(0) = c, could be deduced from Theorem 3.1
and the properties of Brownian motion. We will see later (Proposition 4.9) that

14



this is not true even for some fundamental null events E; an example of such
an event will now be given.

Let us say that a closed interval [t1, t2] ⊆ [0,∞) is an interval of local max-
imum for ω ∈ Ω if (a) ω is constant on [t1, t2] but not constant on any larger
interval containing [t1, t2], and (b) there exists δ > 0 such that ω(s) ≤ ω(t) for
all s ∈ ((t1 − δ)+, t1) ∪ (t2, t2 + δ) and all t ∈ [t1, t2]. In the case where t1 = t2
we will say “point” instead of “interval”. It is shown in [68] (Corollary 3) that,
for typical ω, all intervals of local maximum are points; this also follows from
Corollary 4.2, and is very easy to check directly (using the same argument as in
the proof of Corollary 4.2). Let E be the null event that ω(0) = c and not all
intervals of local maximum of ω are points. Proposition 4.9 says that P(E) = 0
cannot be deduced from Theorem 3.1 and the properties of Brownian motion.
This implies that Corollary 4.2 also cannot be deduced from Theorem 3.1 and
the properties of Brownian motion, despite the fact that the deduction is pos-
sible with the help of a very easy game-theoretic argument.

Before stating and proving Proposition 4.9, we will introduce formally the
operator E 7→ E and show that it is a bona fide closure operator. For each
E ⊆ Ω, E is defined to be the union of the trails of all points in E. It can be
checked that E 7→ E satisfies the standard properties of closure operators: ∅ = ∅
and E1 ∪ E2 = E1∪E2 are obvious, and E = E and E ⊆ E follow from the fact
that the time transformations constitute a monoid. Therefore ([27], Theorem
1.1.3 and Proposition 1.2.7), E 7→ E is the operator of closure in some topology
on Ω, which may be called the time-superinvariant topology. A set E ⊆ Ω is
closed in this topology if and only if it contains the trail of any of its elements.

Proposition 4.9. Let c ∈ R and E be the set of all ω ∈ Ω such that ω(0) = c
and ω has an interval of local maximum that is not a point. Then E and E are
events and

0 = Wc (E) = P(E) < P
(
E
)

= Wc

(
E
)

= 1. (4.6)

Proof. For the equality P(E) = 0, see above. The equality Wc(E) = 0 is
a well-known fact (and follows from P(E) = 0 and Lemma 6.4 below). It
suffices to prove that E ∈ F and Wc(E) = 1; Theorem 3.1 will then imply
P(E) = 1. The inclusion E ∈ F and equality Wc(E) = 1 follow from the
following explicit description of E: this set consists of all ω ∈ Ω with ω(0) = c
that are not increasing functions. This can be seen from Remark 3.4 or from the
following argument. If ω is increasing, ωf will also be increasing for any time
transformation f . Combining this with (3.1), we can see that the set of all ω
that are not increasing is time-superinvariant; since this set contains E, it also
contains E. In the opposite direction, we are required to show that any ω ∈ Ω
that is not increasing is an element of E, i.e., there exists a time transformation
f such that ωf ∈ E. Fix such ω and find 0 ≤ a < b such that ω(a) > ω(b).
Let m ∈ [0, b] be the smallest element of arg maxt∈[0,b] ω(t). Applying the time

15



transformation

f(t) :=


t if t < m

m if m ≤ t < m+ 1

t− 1 if t ≥ m+ 1

to ω we obtain an element of E.

Remark 4.10. Another event E that satisfies (4.6) is the set of all ω ∈ Ω such
that ω(0) = c and ω has an interval of local maximum that is not a point or has
an interval of local minimum that is not a point (with the obvious definition of
intervals and points of local minimum). Then E is the event that consists of all
non-constant ω with ω(0) = c. This is the largest possible E for E satisfying
P(E) = 0 (provided we consider only ω with ω(0) = c): indeed, if the constant
c is in E, c will also be in E, and so P(E) = 1.

Proposition 4.9 shows that Theorem 3.1 does not make all other game-
theoretic arguments redundant. What is interesting is that already very simple
arguments suffice to deduce all results in [68, 66].

Remark 4.11. Theorem 3.1 does not make the game-theoretic arguments in
[68, 66] redundant also in another, perhaps even more important, respect. For
example, Corollary 4.2 is an existence result: it asserts the existence of a trad-
ing strategy whose capital process is positive and increases from 1 to ∞ when
ω has a point t of increase or decrease such that ω is not locally constant to
the right of t. In principle, such a strategy could be extracted from the proof
of Theorem 3.1, but it would be extremely complicated and non-intuitive; the
result would remain essentially an existence result. The proof of Theorem 2
in [68], on the contrary, constructs an explicit trading strategy exploiting the
existence of points of increase or decrease. Similarly, the proof of Theorem 1 in
[66] constructs an explicit trading strategy whose existence is asserted in Corol-
lary 4.4. The recent paper [69] partially extends Corollary 4.4 to discontinuous
price paths showing that vi[0,T ](ω) ≤ 2 for all T < ∞ for typical ω. The trad-
ing strategy constructed in [69] for profiting from vi[0,T ](ω) > 2 is especially
intuitive: it just combines (following Stricker’s [60] idea) the strategies for prof-
iting from lim inft ω(t) < a < b < lim supt ω(t) implicit in the standard proof of
Doob’s martingale convergence theorem.

Remark 4.12. All results discussed in this section are about sets of upper price
zero or lower price one, and one might suspect that the class I is so small that
Wc(E) ∈ {0, 1} for all c ∈ R and all E ∈ I such that ω(0) = c when ω ∈ E; this
would have been another limitation of Theorem 3.1. However, it is easy to check
that for each p ∈ [0, 1] and each c ∈ R there exists E ∈ I satisfying ω(0) = c for
all ω ∈ E and satisfying Wc(E) = p. Indeed, without loss of generality we can
take c := p, and we can then define E to be the event that ω(0) = p, ω reaches
levels 0 and 1, and ω reaches level 1 before reaching level 0.
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5 Main result: constructive version

For each n ∈ {0, 1, . . .}, let Dn := {k2−n | k ∈ Z} and define a sequence of
stopping times Tnk , k = −1, 0, 1, 2, . . ., inductively by Tn−1 := 0,

Tn0 (ω) := inf {t ≥ 0 | ω(t) ∈ Dn} ,
Tnk (ω) := inf

{
t ≥ Tnk−1(ω) | ω(t) ∈ Dn & ω(t) 6= ω(Tnk−1)

}
, k = 1, 2, . . .

(as usual, inf ∅ :=∞). For each t ∈ [0,∞) and ω ∈ Ω, define

Ant (ω) :=

∞∑
k=0

(
ω(Tnk ∧ t)− ω(Tnk−1 ∧ t)

)2
, n = 0, 1, 2, . . . , (5.1)

(cf. (4.2) with p = 2) and set

At(ω) := lim sup
n→∞

Ant (ω), At(ω) := lim inf
n→∞

Ant (ω). (5.2)

We will see later (Theorem 5.1(a)) that the event (∀t ∈ [0,∞) : At = At)
is full and that for typical ω the functions A(ω) : t ∈ [0,∞) 7→ At(ω) and
A(ω) : t ∈ [0,∞) 7→ At(ω) are elements of Ω (in particular, they are finite).
But in general we can only say that A(ω) and A(ω) are positive increasing
functions (not necessarily strictly increasing) that can even take value ∞. For
each s ∈ [0,∞), define the stopping time

τs := inf

{
t ≥ 0 | A|[0,t) = A|[0,t) ∈ C[0, t) & sup

u<t
Au = sup

u<t
Au ≥ s

}
. (5.3)

(We will see in Section 8, Lemma 8.3, that this is indeed a stopping time.) It
will be convenient to use the following convention: an event stated in terms of
A∞, such as A∞ =∞, happens if and only if A = A ∈ Ω and A∞ := A∞ = A∞
satisfies the given condition.

Let P be a function defined on the power set of Ω and taking values in [0, 1]
(such as P or P), and let f : Ω→ Ψ be a mapping from Ω to another set Ψ. The
pushforward Pf−1 of P by f is the function on the power set of Ψ defined by

Pf−1(E) := P (f−1(E)), E ⊆ Ψ.

An especially important mapping for this paper is the normalizing time
transformation ntt : Ω → R[0,∞) defined as follows: for each ω ∈ Ω, ntt(ω) is
the time-changed price path s 7→ ω(τs), s ∈ [0,∞), with ω(∞) set to, e.g., 0.
(We call it “normalizing” since our goal is to ensure At(ntt(ω)) = At(ntt(ω)) = t
for all t ≥ 0 for typical ω.) For each c ∈ R, let

Qc := P( · ;ω(0) = c, A∞ =∞) ntt−1 (5.4)

Qc := P( · ;ω(0) = c, A∞ =∞) ntt−1 (5.5)

17



(as before, the commas stand for conjunction in this context) be the pushfor-
wards of the restricted upper and lower price

E ⊆ Ω 7→ P(E;ω(0) = c, A∞ =∞)

E ⊆ Ω 7→ P(E;ω(0) = c, A∞ =∞),

respectively, by the normalizing time transformation ntt.
As mentioned earlier, we use restricted upper and lower price P(E;B) and

P(E;B) only when P(B) = 1. In Section 7, (7.2), we will see that indeed
P(ω(0) = c, A∞ =∞) = 1.

The next theorem shows that the pushforwards of P and P we have just
defined are closely connected with the Wiener measure. Remember that, for
each c ∈ R, Wc is the probability measure on (Ω,F) which is the pushforward
of the Wiener measure W0 by the mapping ω ∈ Ω 7→ ω + c (i.e., Wc is the
distribution of Brownian motion over the time period [0,∞) started from c).

Theorem 5.1. (a) For typical ω, the function

A(ω) : t ∈ [0,∞) 7→ At(ω) := At(ω) = At(ω)

exists, is an increasing element of Ω with A0(ω) = 0, and has the same intervals
of constancy as ω. (b) For all c ∈ R, the restriction of both Qc and Qc to F

coincides with the measure Wc on Ω (in particular, Qc(Ω) = 1).

Remark 5.2. The value At(ω) can be interpreted as the total volatility of the
price path ω over the time period [0, t]. Theorem 5.1(b) implies that typical ω
satisfying A∞(ω) =∞ are unbounded (in particular, divergent). If A∞(ω) <∞,
the total volatility At+1(ω)−At(ω) of ω over (t, t+ 1] tends to 0 as t→∞, and
so the volatility of ω can be said to die away.

Remark 5.3. Theorem 5.1 will continue to hold if the restriction “;ω(0) =
c, A∞ = ∞)” in the definitions (5.4) and (5.5) is replaced by “;ω(0) =
c, ω is unbounded)” (in analogy with [22]).

Remark 5.4. Theorem 5.1 depends on the arbitrary choice (Dn) of the sequence
of grids to define the quadratic variation process At. To make this less arbitrary,
we could consider all grids whose mesh tends to zero fast enough and which
are definable in the standard language of set theory (similarly to Wald’s [73]
suggested requirement for von Mises’s collectives). When quadratic variation
is defined via partitions of the time (horizontal) axis (as in Lévy’s paper [43]),
Dudley [23] shows that the rate of convergence o(1/ log n) of the mesh to zero
is sufficient for Brownian motion, and de la Vega [19] shows that this rate is
slowest possible. It is an open question what the optimal rate of convergence
is when quadratic variation is defined, as in this paper, via partitions of the
vertical axis.

Remark 5.5. In this paper we construct quadratic variation A and define
the stopping times τs in terms of A. Dubins and Schwarz [22] construct τs
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directly (in a very similar way to our construction of A). An advantage of our
construction (the game-theoretic counterpart of that in [36]) is that the function
A(ω) is continuous for typical ω, whereas the event that the function s 7→ τs(ω)
is continuous has lower price zero (Dubins and Schwarz’s extra assumptions
make this function continuous for almost all ω).

Remark 5.6. Theorem 3.1 implies that the two notions of quadratic variation
that we have discussed so far, wt(ω) defined by (4.3) and At(ω), coincide for
all t for typical ω. Indeed, since wt = At = t, ∀t ∈ [0,∞), holds almost surely
in the case of Brownian motion (see Lemma 8.4 for At = t), it suffices to check
that the complement of the event ∀t ∈ [0,∞) : wt = At belongs to I. This
follows from Lemma 4.8 and the analogous statement for A: if wt(ω) = At(ω)
for all t, we also have

wt(ω ◦ f) = wf(t)(ω) = Af(t)(ω) = At(ω ◦ f)

for all t.

6 Functional generalizations

Theorems 3.1 and 5.1(b) are about upper price for sets, but the former and part
of the latter can be generalized to cover the following more general notion of
upper price for functionals, i.e., real-valued functions on Ω. The upper price of
a positive functional F restricted to a set B ⊆ Ω is defined by

E(F ;B) := inf
{
S0

∣∣ ∀ω ∈ B : lim inf
t→∞

St(ω) ≥ F (ω)
}
, (6.1)

where S ranges over the positive capital processes. This is the price of the
cheapest positive superhedge for F when Reality is restricted to choosing ω ∈ B.
Restricted upper price for functionals generalizes restricted upper price for sets:
P(E;B) = E(1E ;B) for all E ⊆ Ω. When B = Ω, we abbreviate E(F ;B) to
E(F ) and refer to E(F ) as the upper price of F . Notice that E(F ;B) = E(F 1B).

Let us say that a positive functional F : Ω → [0,∞) is I-measurable if, for
each constant c ∈ [0,∞), the set {ω | F (ω) ≥ c} is in I. (We need to spell
out this definition since I is not a σ-algebra: cf. Remark 3.3.) Notice that the
I-measurability of F means that F is F-measurable and, for each ω ∈ Ω and
each time transformation f ,

F (ωf ) ≤ F (ω) (6.2)

(cf. (3.1)).

Remark 6.1. The presence of ≤ in (6.2) is natural as, intuitively, transform-
ing ω into ωf may involve cutting off part of ω (step (a) at the beginning of
Remark 3.4). It is clear that F (ωf ) = F (ω) when f ∈ G.

Remark 6.2. In terms of the partial order defined in Remark 3.2, we can
say that a functional F is I-measurable if and only if it is F-measurable and
monotonic.
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In this paper we will in fact prove the following generalization of Theo-
rem 3.1.

Theorem 6.3. Let c ∈ R. Each positive I-measurable functional F : Ω→ [0,∞)
satisfies

E(F ;ω(0) = c) =

∫
FdWc. (6.3)

The proof of the inequality ≥ in (6.3) is easy and is accomplished by the
following lemma; it suffices to apply it to Wc in place of P and to F 1{ω(0)=c}
in place of F .

Lemma 6.4. Let P be a probability measure on (Ω,F) such that the process
Xt(ω) := ω(t) is a martingale w.r. to P and the filtration (Ft). Then

∫
FdP ≤

E(F ) for any positive F-measurable functional F .

Proof. Fix a positive F-measurable functional F and let ε > 0. Find a
positive capital process S of the form (2.2) such that S0 < E(F ) + ε and
lim inft→∞St(ω) ≥ F (ω) for all ω ∈ Ω. It can be checked using the optional
sampling theorem (it is here that the boundedness of Sceptic’s bets is used)
that each addend in (2.1) is a martingale, and so each partial sum in (2.1) is
a martingale and (2.1) itself is a local martingale. Since each addend in (2.2)
is a positive local martingale, it is a supermartingale. By the monotone con-
vergence theorem, the sum (2.2) of positive supermartingales is itself a positive
supermartingale: if 0 ≤ s < t,

E (St | Fs) = E

( ∞∑
n=1

K
Gn,cn
t | Fs

)

=

∞∑
n=1

E
(
K
Gn,cn
t | Fs

)
≤
∞∑
n=1

KGn,cn
s = Ss,

E(· | Fs) standing for the conditional expectation w.r. to the probability measure
P . (The positive supermartingale S is somewhat unusual in that it is not
guaranteed to be right-continuous; however, it is lower semicontinuous as the
limit of an increasing sequence of continuous processes.) Using Fatou’s lemma,
we now obtain∫

FdP ≤
∫

lim inf
t→∞

StdP ≤ lim inf
t→∞

∫
StdP ≤ S0 < E(F ) + ε, (6.4)

where t can be assumed to take only integer values. Since ε can be arbitrarily
small, this implies the statement of the lemma.

We will deduce the inequality ≤ in Theorem 6.3 from the following general-
ization of the part of Theorem 5.1(b) concerning Qc.
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Theorem 6.5. For any c ∈ R and any positive F-measurable functional F :
Ω→ [0,∞),

E(F ◦ ntt;ω(0) = c, A∞ =∞) =

∫
Ω

FdWc (6.5)

(with ◦ standing for composition of two functions and with the convention that
(F ◦ ntt)(ω) := 0 when ω /∈ ntt−1(Ω)).

We will check that Theorem 6.5 (namely, the inequality ≤ in (6.5)) indeed
implies Theorem 5.1(b) in Section 10. In this section we will only prove the
easy inequality ≥ in (6.5). In Section 8 (Lemma 8.4) we will see that At(ω) =
At(ω) = t for all t ∈ [0,∞) for Wc-almost all ω; therefore, ntt(ω) = ω for Wc-
almost all ω. In conjunction with Lemma 6.4, this implies the inequality ≥ in
(6.5):

E(F ◦ ntt;ω(0) = c, A∞ =∞) = E((F ◦ ntt) 1{ω(0)=c,A∞=∞})

≥
∫

Ω

(F ◦ ntt) 1{ω(0)=c,A∞=∞} dWc =

∫
Ω

FdWc.

Remark 6.6. Theorem 6.3 gives the price of the cheapest superhedge for the
contingent claim F , but it is not applicable to the standard contingent claims
traded in financial markets, which are not I-measurable. This theorem would
be applicable to the imaginary contingent claim paying f(ω(τS)) at time τS
(cf. (5.3); there is no payment if τS = ∞), where S > 0 is a given constant
and f is a given positive and measurable payoff function. (If the interest rate
r is constant but different from 0, we can consider the contingent claim pay-
ing eτSrf(ω(τS)) at time τS .) The price of the cheapest superhedge will be∫
f(ψ(S))Wc(dψ), where c := ω(0), if there are no restrictions on ω ∈ Ω, but

will become
∫
f(ψ(S)) 1{∀s∈[0,S]:ψ(s)≥0}Wc(dψ) if ω is restricted to be positive

(as in many real financial markets). Similar contingent claims were considered
by Bick [5] and later marketed by Société Générale Corporate and Investment
Banking under the name of timer options, but in timer options τS is replaced
by the moment when the realised variance exceeds the a priori chosen bound
S. The methods of this paper can be used to price timer options: see, e.g., [3].

The following lemma reduces Theorems 6.3 and 6.5 to the case of bounded F .

Lemma 6.7. Without loss of generality, we can assume that the functional F
in (6.3) and (6.5) is bounded.

Proof. The inequalities ≥ in (6.3) and (6.5) have already been proved, so we
will concentrate on the inequalities ≤. We will only consider the case of (6.3);
the case of (6.5) is analogous.

Suppose (6.3) holds for all bounded positive I-measurable functionals F :
Ω → [0,∞), and let F : Ω → [0,∞) be an unbounded positive I-measurable
functional. Represent F as the sum of bounded positive I-measurable func-
tionals Fn : Ω → [0,∞), n ∈ {0, 1, . . .}, defined by Fn := 0 ∨ (F − n) ∧ 1:
F =

∑∞
n=0 Fn. To check that Fn are indeed I-measurable, notice that, since
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0 ∨ (u − n) ∧ 1 is an increasing function of u, (6.2) will continue to hold if we
replace F by Fn. Now we can apply (6.3) to Fn:

E(F ;ω(0) = c) = E

( ∞∑
n=0

Fn;ω(0) = c

)

≤
∞∑
n=0

E (Fn;ω(0) = c) ≤
∞∑
n=0

∫
FndWc =

∫
FdWc.

Sections 7–11 are mainly devoted to the proof of the remaining statements
in Theorems 5.1, 6.3, and 6.5 (the last two for bounded F ), whereas Section 12
is devoted to the discussion of the financial meaning of our results and their
connections with related probabilistic and financial literature.

7 Coherence

The following trivial result says that our trading game is coherent, in the sense
that P(Ω) = 1 (i.e., no positive capital process increases its value between time
0 and ∞ by more than a strictly positive constant for all ω ∈ Ω).

Lemma 7.1. P(Ω) = 1. Moreover, for each c ∈ R, P(ω(0) = c) = 1.

Proof. No positive capital process can strictly increase its value on a constant
ω ∈ Ω.

Lemma 7.1, however, does not even guarantee that the set of non-constant
elements of Ω has upper price one. The theory of measure-theoretic probability
provides us with a plethora of non-trivial events of upper price one.

Lemma 7.2. Let E be an event that almost surely contains the sample path of
a continuous martingale with time interval [0,∞). Then P(E) = 1.

Proof. This is a special case of Lemma 6.4 applied to F := 1E .

In particular, applying Lemma 7.2 to Brownian motion started at c ∈ R
gives

P(ω(0) = c, ω ∈ DS) = 1 (7.1)

and
P(ω(0) = c, A∞ =∞) = 1 (7.2)

(for the latter we also need Lemma 8.4 below). Both (7.1) and (7.2) have been
used above.

Lemma 7.3. Let P(B) = 1. For every set E ⊆ Ω, P(E;B) ≤ P(E;B).

Proof. Suppose P(E;B) > P(E;B) for some E; by the definition of P, this
would mean that P(E;B) + P(Ec;B) < 1. Since P(·;B) is finitely subadditive
(see Lemma 4.1), this would imply P(Ω;B) < 1, which is equivalent to P(B) < 1
and, therefore, contradicts our assumption.
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8 Existence of quadratic variation

In this paper, the set Ω is always equipped with the metric

ρ(ω1, ω2) :=

∞∑
d=1

2−d sup
t∈[0,2d]

(|ω1(t)− ω2(t)| ∧ 1) (8.1)

(and the corresponding topology and Borel σ-algebra, the latter coinciding with
F). This makes it a complete and separable metric space. The main goal of this
section is to prove that the sequence of continuous functions t ∈ [0,∞) 7→ Ant (ω)
is convergent in Ω for typical ω; this is done in Lemma 8.2. This will establish
the existence of A(ω) ∈ Ω for typical ω, which is part of Theorem 5.1(a). It
is obvious that, when it exists, A(ω) is increasing and A0(ω) = 0. The last
part of Theorem 5.1(a), asserting that the intervals of constancy of ω and A(ω)
coincide for typical ω, will be proved in the next section (Lemma 9.4).

Lemma 8.1. For each T > 0, for typical ω, t ∈ [0, T ] 7→ Ant is a Cauchy
sequence of functions in C[0, T ].

Proof. Fix a T > 0 and fix temporarily an n ∈ {1, 2, . . .}. Let κ ∈ {0, 1} be
such that Tn−1

0 = Tnκ and, for each k = 1, 2, . . ., let

ξk :=

{
1 if ω(Tnκ+2k) = ω(Tnκ+2k−2)

−1 otherwise

(this is only defined when Tnκ+2k < ∞). If ω were generated by Brownian mo-
tion, ξk would be a random variable taking value j, j ∈ {1,−1}, with probability
1/2; in particular, the expected value of ξk would be 0. As the standard back-
ward induction procedure shows, this remains true in our current framework
in the following game-theoretic sense: there exists a simple trading strategy
that, when started with initial capital 0 at time Tnκ+2k−2, ends with ξk at time
Tnκ+2k, provided both times are finite; moreover, the corresponding simple cap-
ital process is always between −1 and 1. (Namely, at time Tnκ+2k−1 bet −2n if
ω(Tnκ+2k−1) > ω(Tnκ+2k−2) and bet 2n otherwise.) Notice that the increment of

the process Ant −An−1
t over the time interval [Tnκ+2k−2, T

n
κ+2k] is

ηk :=

{
2(2−n)2 = 2−2n+1 if ξk = 1

2(2−n)2 − (2−n+1)2 = −2−2n+1 if ξk = −1,

i.e., ηk = 2−2n+1ξk.
The game-theoretic version of Hoeffding’s inequality (see Theorem A.1 in

Appendix below) shows that for any constant λ ∈ R there exists a simple capital
process Sn with Sn

0 = 1 such that, for all K = 0, 1, 2, . . .,

Sn
Tnκ+2K

≥
K∏
k=1

exp
(
ληk − 2−4n+1λ2

)
. (8.2)
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According to Equation (A.1) in Appendix (with xn corresponding to ηk), such
Sn can be defined as the capital process of the simple trading strategy betting
the current capital times

eλ2−2n+1 − e−λ2−2n+1

2−2n+2
exp

(
−λ

2

8

(
2−2n+2

)2)
on Ant − An−1

t at each time Tnκ+2k−2, k ∈ {1, 2, . . .}. In terms of the original
security, this simple trading strategy bets 0 on ω at each time Tnκ+2k−2 and bets
the current capital times

2
(
ω(Tnκ+2k−2)− ω(Tnκ+2k−1)

) eλ2−2n+1 − e−λ2−2n+1

2−2n+2
exp

(
−λ

2

8

(
2−2n+2

)2)
on ω at each time Tnκ+2k−1, k ∈ {1, 2, . . .}. It is clear that the process Sn is
positive: it is constant in each time interval [Tnκ+2k−2, T

n
κ+2k−1], and is linear in

ω(t) in each time interval [Tnκ+2k−1, T
n
κ+2k]; therefore, its positivity follows from

its positivity (cf. (8.2)) at the points Tnκ+2K , K ∈ {0, 1, 2, . . .}.
Fix temporarily α > 0. It is easy to see that, since the sum of the positive

capital processes Sn over n = 1, 2, . . . with weights 2−n will also be a positive
capital process, none of these processes will ever exceed 2n2/α except for a set
of ω of upper price at most α/2. The inequality

K∏
k=1

exp
(
ληk − 2−4n+1λ2

)
≤ 2n

2

α
≤ en 2

α

can be equivalently rewritten as

λ

K∑
k=1

ηk ≤ Kλ22−4n+1 + n+ ln
2

α
. (8.3)

Plugging in the identities

K =
AnTnκ+2K

−AnTnκ
2−2n+1

,

K∑
k=1

ηk =
(
AnTnκ+2K

−AnTnκ
)
−
(
An−1
Tnκ+2K

−An−1
Tnκ

)
,

and taking λ := 2n, we can transform (8.3) to(
AnTnκ+2K

−AnTnκ
)
−
(
An−1
Tnκ+2K

−An−1
Tnκ

)
≤ 2−n

(
AnTnκ+2K

−AnTnκ
)

+
n+ ln 2

α

2n
,

(8.4)
which implies

AnTnκ+2K
−An−1

Tnκ+2K
≤ 2−nAnTnκ+2K

+ 2−2n+1 +
n+ ln 2

α

2n
. (8.5)
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This is true for any K = 0, 1, 2, . . .; choosing the largest K such that Tnκ+2K ≤ t,
we obtain

Ant −An−1
t ≤ 2−nAnt + 2−2n+2 +

n+ ln 2
α

2n
, (8.6)

for any t ∈ [0,∞) (the simple case t < Tnκ has to be considered separately).
Proceeding in the same way but taking λ := −2n, we obtain(
AnTnκ+2K

−AnTnκ
)
−
(
An−1
Tnκ+2K

−An−1
Tnκ

)
≥ −2−n

(
AnTnκ+2K

−AnTnκ
)
−
n+ ln 2

α

2n

instead of (8.4) and

AnTnκ+2K
−An−1

Tnκ+2K
≥ −2−nAnTnκ+2K

− 2−2n+1 −
n+ ln 2

α

2n

instead of (8.5), which gives

Ant −An−1
t ≥ −2−nAnt − 2−2n+2 −

n+ ln 2
α

2n
(8.7)

instead of (8.6). We know that that (8.6) and (8.7) hold for all t ∈ [0,∞) and
all n = 1, 2, . . . except for a set of ω of upper price at most α.

Now we have all ingredients to complete the proof. Suppose there exists
α > 0 such that (8.6) and (8.7) hold for all n = 1, 2, . . . (this is true for typical
ω). First let us show that the sequence AnT , n = 1, 2, . . ., is bounded. Define a
new sequence Bn, n = 0, 1, 2, . . ., as follows: B0 := A0

T and Bn, n = 1, 2, . . .,
are defined inductively by

Bn :=
1

1− 2−n

(
Bn−1 + 2−2n+2 +

n+ ln 2
α

2n

)
(8.8)

(notice that this is equivalent to (8.6) with Bn in place of Ant and = in place of
≤). As AnT ≤ Bn for all n, it suffices to prove that Bn is bounded. If it is not,
BN ≥ 1 for some N . By (8.8), Bn ≥ 1 for all n ≥ N . Therefore, again by (8.8),

Bn ≤ Bn−1 1

1− 2−n

(
1 + 2−2n+2 +

n+ ln 2
α

2n

)
, n > N,

and the boundedness of the sequence Bn follows from BN <∞ and

∞∏
n=N+1

1

1− 2−n

(
1 + 2−2n+2 +

n+ ln 2
α

2n

)
<∞.

Now it is obvious that the sequence Ant is Cauchy in C[0, T ]: (8.6) and (8.7)
imply ∣∣Ant −An−1

t

∣∣ ≤ 2−nAnT + 2−2n+2 +
n+ ln 2

α

2n
= O(n/2n).
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Lemma 8.1 implies that, for typical ω, the sequence t ∈ [0,∞) 7→ Ant is
Cauchy in Ω. Therefore, we have the following implication.

Lemma 8.2. The event that the sequence of functions t ∈ [0,∞) 7→ Ant con-
verges in Ω is full.

We can see that the first term in the conjunction in (5.3) holds for typical
ω; let us check that τs itself is a stopping time.

Lemma 8.3. For each s ≥ 0, the function τs defined by (5.3) is a stopping
time.

Proof. It suffices to check that the condition τs ≤ t can be written as

∀(q1, q2) ⊆ (0, s) ∃q ∈ (0, t) ∩Q : Aq = Aq ∈ (q1, q2), (8.9)

where (q1, q2) range over the non-empty intervals with rational end-points. Let
T be the largest number in [0,∞] such that the functions A|[0,T ) and A|[0,T )

coincide and are continuous; we will use A′ as the common notation for A|[0,T ) =
A|[0,T ). The condition τs ≤ t means that for some t′ ∈ [0, t] the domain of A′

includes [0, t′) and supu<t′ A
′
u = s. Now it is clear that the condition (8.9) is

satisfied if τs ≤ t. In the opposite direction, suppose (8.9) is satisfied. Then
Au = Au whenever u ∈ (0, t) satisfies Au < s. Indeed, if we had Au < Au for
such u, we could choose (q1, q2) ⊆ (0, s) satisfying Au < q1 < q2 < Au and there
would be no q satisfying the required properties in (8.9): if q ≤ u, Aq ≤ Au < q1,
and if q ≥ u, Aq ≥ Au > q2. Combining this result with (8.9), we can see that
there is a function A′′ with a domain [0, t′′) ⊆ [0, t) such that A′′u = Au = Au
for all u ∈ [0, t′′) and supA′′ = s. The function A′′ is increasing and, by (8.9),
continuous; this implies τs ≤ t.

Let us now consider the case of Brownian motion.

Lemma 8.4. For any c ∈ R, Wc(∀t ∈ [0,∞) : At = At = t) = 1.

Proof. It suffices to consider only rational values of t and, therefore, a fixed value
of t. The convergence Ant → t (see (5.1)) in Wc-probability can be deduced from
the law of large numbers applied to Tnk :

• the law of large numbers implies that Ant → t in Wc-probability since∫
(Tnk − Tnk−1)dWc = 2−2n (this is a combination of the second statement

of Theorem 2.49 in [47], which is a corollary of Wald’s second lemma, with
the strong Markov property of Brownian motion);

• the law of large numbers is applicable because
∫

(Tnk − Tnk−1)2dWc < ∞
(see the proof of the second statement of Theorem 2.49 in [47]).

It remains to apply Lemma 8.2, which, in combination with Lemma 6.4 (applied
to the indicator functions of events), implies that the sequence An converges in
Ω Wc-almost surely.
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Remark 8.5. This section is about the quadratic variation of the price path,
but in finance the quadratic variation of the stochastic logarithm (see, e.g., [35],
p. 134) of a price process is usually even more important than the quadratic
variation of the price process itself. A pathwise version of the stochastic loga-
rithm has been studied by Norvaǐsa in [50, 51]. Consider an ω ∈ Ω such that
A(ω) exists, belongs to Ω, and has the same intervals of constancy as ω; The-
orem 5.1(a) says that these conditions are satisfied for typical ω. Fix a time
horizon T > 0 and suppose, additionally, that inft∈[0,T ] ω(t) > 0. The limit

Rt(ω) := lim
n→∞

∞∑
k=0

ω(Tnk ∧ t)− ω(Tnk−1 ∧ t)
ω(Tnk−1 ∧ t)

(where we use the same notation as in (5.1)) exists for all t ∈ [0, T ] and the
function R(ω) : t ∈ [0, T ] 7→ Rt(ω) satisfies ([51], Proposition 56)

Rt(ω) = ln
ω(t)

ω(0)
+

1

2

∫ t

0

dAs(ω)

ω2(s)
, t ∈ [0, T ].

In financial terms, the value Rt(ω) is the cumulative return of the security ω
over [0, t] ([50], Section 2); in probabilistic terms, R(ω) is the pathwise stochastic
logarithm of ω. The quadratic variation of R(ω) can be defined as

lim
n→∞

∞∑
k=0

(
RTnk ∧t(ω)−RTnk−1∧t(ω)

)2

=

∫ t

0

dAs(ω)

ω2(s)

(the existence of the limit and the equality are also parts of Proposition 56 in
[51]).

Remark 8.6. Analogues for càdlàg price paths of the main results of this
section can be found in [71].

9 Tightness

In this section we will do some groundwork for the proof of Theorems 5.1(b)
and 6.5, and will also finish the proof of Theorem 5.1(a). We start from the
results that show (see the next section) that Qc is tight in the topology induced
by the metric (8.1).

Lemma 9.1. For each α > 0 and S ∈ {1, 2, 4 . . .},

P
(
∀δ ∈ (0, 1) ∀s1, s2 ∈ [0, S] : (0 ≤ s2 − s1 ≤ δ & τs2 <∞)

=⇒ |ω(τs2)− ω(τs1)| ≤ 230α−1/2S1/4δ1/8
)
≥ 1− α. (9.1)

Proof. Let S = 2d, where d ∈ {0, 1, 2, . . .}. For each m = 1, 2, . . ., divide the
interval [0, S] into 2d+m equal subintervals of length 2−m. Fix, for a moment,
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such anm, and set β = βm := (21/4−1)2−m/4α (where 21/4−1 is the normalizing
constant ensuring that the βm sum to α) and

ti := τi2−m , ωi := ω(ti), i = 0, 1, . . . , 2d+m (9.2)

(we will be careful to use ωi only when ti <∞).
We will first replace the quadratic variation process A (in terms of which

the stopping times τs are defined) by a version of Al for a large enough l. If τ
is any stopping time (we will be interested in τ = ti for various i), set, in the
notation of (5.1),

An,τt (ω) :=

∞∑
k=0

(
ω(τ ∨ Tnk ∧ t)− ω(τ ∨ Tnk−1 ∧ t)

)2
, t ≥ τ, n = 1, 2, . . .

(we omit parentheses in expressions of the form x ∨ y ∧ z since (x ∨ y) ∧ z =
x ∨ (y ∧ z), provided x ≤ z). The intuition is that An,τt (ω) is the version of
Ant (ω) that starts at time τ rather than 0.

For i = 0, 1, . . . , 2d+m−1, let Ei be the event that ti <∞ implies that (8.7),
with α replaced by γ > 0 and Ant replaced by An,tit , holds for all n = 1, 2, . . .
and t ∈ [ti,∞). Applying a trading strategy similar to that used in the proof
of Lemma 8.1 but starting at time ti rather than 0, we can see that the lower
price of Ei is at least 1− γ. The inequality

An,tit −An−1,ti
t ≥ −2−nAn,tit − 2−2n+2 −

n+ ln 2
γ

2n

holds for all t ∈ [ti, ti+1] and all n on the event {ti < ∞} ∩ Ei. For the value
t := ti+1 this inequality implies

An,titi+1
≥ 1

1 + 2−n

(
An−1,ti
ti+1

− 2−2n+2 −
n+ ln 2

γ

2n

)

(including the case ti+1 =∞). Applying the last inequality to n = l+1, l+2, . . .
(where l will be chosen later), we obtain that

A∞,titi+1
≥

( ∞∏
n=l+1

1

1 + 2−n

)
Al,titi+1

−
∞∑

n=l+1

(
2−2n+2 +

n+ ln 2
γ

2n

)
(9.3)

holds on the whole of {ti <∞}∩Ei except perhaps a null set. The qualification
“except a null set” allows us not only to assume that A∞,titi+1

exists in (9.3) but

also to assume that A∞,titi+1
= Ati+1

−Ati = 2−m. Let γ := 1
32−d−mβ and choose

l = l(m) so large that (9.3) implies Al,titi+1
≤ 2−m+1/2 (this can be done as both

the product and the sum in (9.3) are convergent, and so the product can be
made arbitrarily close to 1 and the sum can be made arbitrarily close to 0).
Doing this for all i = 0, 1, . . . , 2d+m − 1 will ensure that the lower price of

ti <∞ =⇒ Al,titi+1
≤ 2−m+1/2, i = 0, 1, . . . , 2d+m − 1, (9.4)
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is at least 1− β/3.
An important observation for what follows is that the process defined as

(ω(t) − ω(ti))
2 − Al,tit for t ≥ ti and as 0 for t < ti is a simple capital process

(corresponding to betting 2(ω(T lk) − ω(ti)) at each time T lk > ti). Now we can
see that ∑

i=1,...,2d+m:ti<∞

(ωi − ωi−1)2 ≤ 21/2 3

β
S (9.5)

will hold on the event (9.4), except for a set of ω of upper price at most β/3:
indeed, there is a positive simple capital process taking value at least 21/2S +∑j
i=1(ωi − ωi−1)2 − j2−m+1/2 on the conjunction of events (9.4) and tj < ∞

at time tj , j = 0, 1, . . . , 2d+m, and this simple capital process will make at least
21/2 3

βS at time τS (in the sense of lim inf if τS =∞) out of initial capital 21/2S

if (9.4) happens but (9.5) fails to happen.
For each ω ∈ Ω, define

J(ω) :=
{
i = 1, . . . , 2d+m : ti <∞ & |ωi − ωi−1| ≥ ε

}
,

where ε = εm will be chosen later. It is clear that |J(ω)| ≤ 21/23S/βε2 on
the set (9.5). Consider the simple trading strategy whose capital increases by

(ω(ti) − ω(τ))2 − Al,τti between each time τ ∈ [ti−1, ti] ∩ [0,∞) when |ω(τ) −
ωi−1| = ε for the first time during [ti−1, ti]∩ [0,∞) (this is guaranteed to happen
when i ∈ J(ω)) and the corresponding time ti, i = 1, . . . , 2d+m, and which
is not active (i.e., sets the bet to 0) otherwise. (Such a strategy exists, as
explained in the previous paragraph.) This strategy will make at least ε2 out of
(21/23S/βε2)2−m+1/2 provided all three of the events (9.4), (9.5), and

∃i ∈ {1, . . . , 2d+m} : ti <∞ & |ωi − ωi−1| ≥ 2ε

happen. (And we can make the corresponding simple capital process positive
by being active for at most 21/23S/βε2 values of i and setting the bet to 0 as
soon as (9.4) becomes violated.) This corresponds to making at least 1 out of
(21/23S/βε4)2−m+1/2. Solving the equation (21/23S/βε4)2−m+1/2 = β/3 in ε
gives ε = (2× 32S2−m/β2)1/4. Therefore,

max
i=1,...,2d+m:ti<∞

|ωi − ωi−1| ≤ 2ε = 2(2× 32S2−m/β2)1/4

= 25/431/2
(

21/4 − 1
)−1/2

α−1/2S1/42−m/8 (9.6)

except for a set of ω of upper price β. By the countable subadditivity of upper
price (Lemma 4.1), (9.6) holds for all m = 1, 2, . . . except for a set of ω of upper
price at most

∑
m βm = α.

We have now allowed m to vary and so will write tmi instead of ti defined by
(9.2). Fix an ω ∈ Ω satisfying A(ω) ∈ Ω and (9.6) for m = 1, 2, . . . . Intervals of
the form [tmi−1(ω), tmi (ω)] ⊆ [0,∞), for m ∈ {1, 2, . . .} and i ∈ {1, 2, 3, . . . , 2d+m},
will be called predyadic (of order m). Given an interval [s1, s2] ⊆ [0, S] of length

29



at most δ ∈ (0, 1) and with τs2 < ∞, we can cover (τs1(ω), τs2(ω)) (without
covering any points in the complement of [τs1(ω), τs2(ω)]) by adjacent predyadic
intervals with disjoint interiors such that, for some m ∈ {1, 2, . . .}: there are
between one and two predyadic intervals of order m; for i = m + 1,m + 2, . . .,
there are at most two predyadic intervals of order i (start from finding the point
in [s1, s2] of the form j2−k with integer j and k and the smallest possible k,
and cover (τs1(ω), τj2−k ] and [τj2−k , τs2(ω)) by predyadic intervals in the greedy
manner). Combining (9.6) and 2−m ≤ δ, we obtain

|ω (τs2)− ω (τs1)| ≤ 29/431/2
(

21/4 − 1
)−1/2

α−1/2S1/4

×
(

2−m/8 + 2−(m+1)/8 + 2−(m+2)/8 + · · ·
)

= 29/431/2
(

21/4 − 1
)−1/2 (

1− 2−1/8
)−1

α−1/2S1/42−m/8

≤ 29/431/2
(

21/4 − 1
)−1/2 (

1− 2−1/8
)−1

α−1/2S1/4δ1/8,

which is stronger than (9.1) (as 29/431/2
(
21/4 − 1

)−1/2 (
1− 2−1/8

)−1 ≈ 228.22).

Now we can prove the following elaboration of Lemma 9.1, which will be
used in the next two sections.

Lemma 9.2. For each α > 0,

P
(
∀S ∈ {1, 2, 4, . . .} ∀δ ∈ (0, 1) ∀s1, s2 ∈ [0, S] :

(0 ≤ s2 − s1 ≤ δ & τs2 <∞)

=⇒ |ω(τs2)− ω(τs1)| ≤ 430α−1/2S1/2δ1/8
)
≥ 1− α. (9.7)

Proof. Replacing α in (9.1) by αS := (1 − 2−1/2)S−1/2α for S = 1, 2, 4, . . .
(where 1 − 2−1/2 is the normalizing constant ensuring that the αS sum to α
over S), we obtain

P
(
∀δ ∈ (0, 1) ∀s1, s2 ∈ [0, S] : (0 ≤ s2 − s1 ≤ δ & τs2 <∞)

=⇒ |ω(τs2)− ω(τs1)| ≤ 230 (1− 2−1/2)−1/2α−1/2S1/2δ1/8
)

≥ 1− (1− 2−1/2)S−1/2α.

The countable subadditivity of upper price now gives

P
(
∀S ∈ {1, 2, 4, . . .} ∀δ ∈ (0, 1) ∀s1, s2 ∈ [0, S] :

(0 ≤ s2 − s1 ≤ δ & τs2 <∞) =⇒
|ω(τs2)− ω(τs1)| ≤ 230 (1− 2−1/2)−1/2α−1/2S1/2δ1/8

)
≥ 1− α,

which is stronger than (9.7) (as 230 (1− 2−1/2)−1/2 ≈ 424.98).
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The following lemma develops inequality (9.5) and will be useful in the proof
of Theorem 5.1.

Lemma 9.3. For each α > 0,

P

(
∀S ∈ {1, 2, 4, . . .} ∀m ∈ {1, 2, . . .} :∑

i=1,...,S2m:ti<∞

(
ω(ti)− ω(ti−1)

)2

≤ 64α−1S22m/16

)
≥ 1− α, (9.8)

in the notation of (9.2).

Proof. Replacing β/3 in (9.5) with 2−1(21/16 − 1)S−12−m/16α, where S ranges
over {1, 2, 4, . . .} and m over {1, 2, . . .}, we obtain

P

( ∑
i=1,...,S2m:ti<∞

(
ω(ti)− ω(ti−1)

)2

≤ 23/2(21/16 − 1)−1α−1S22m/16

)
≥ 1− 2−1(21/16 − 1)S−12−m/16α.

By the countable subadditivity of upper price this implies

P

(
∀S ∈ {1, 2, 4, . . .} ∀m ∈ {1, 2, . . .} :

∑
i=1,...,S2m:ti<∞

(
ω(ti)− ω(ti−1)

)2

≤ 23/2(21/16 − 1)−1α−1S22m/16

)
≥ 1− α,

which is stronger than (9.8) (as 23/2(21/16 − 1)−1 ≈ 63.88).

The following lemma completes the proof of Theorem 5.1(a).

Lemma 9.4. For typical ω, A(ω) has the same intervals of constancy as ω.

Proof. The definition of A immediately implies that A(ω) is always constant on
every interval of constancy of ω (provided A(ω) exists). Therefore, we are only
required to prove that typical ω are constant on every interval of constancy of
A(ω).

The proof can be extracted from the proof of Lemma 9.1. It suffices to prove
that, for any α > 0, S ∈ {1, 2, 4, . . .}, rational c > 0, and interval [a, b] with
rational end-points a and b such that a < b, the upper price of the following
event is at most α: ω changes by at least c over [a, b], A is constant over
[a, b], and [a, b] ⊆ [0, τS ]. Fix such α, S, c, and [a, b], and let E stand for
the event described in the previous sentence. Choose m ∈ {1, 2, . . .} such that
2−m+1/2/c2 ≤ α/2 and choose the corresponding l = l(m) as in the proof of
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Lemma 9.1 but with 1−β/3 replaced by 1−α/2 (cf. (9.4)). The positive simple

capital process 2−m+1/2 + (ω(t)− ω(a))2 −Al,at , started at time a and stopped

when t reaches b∧ τS , when Al,at reaches 2−m+1/2, or when |ω(t)−ω(a)| reaches
c, whatever happens first, makes c2 out of 2−m+1/2 on the conjunction of (9.4)
and the event E. Therefore, the upper price of the conjunction is at most α/2,
and the upper price of E is at most α.

In view of Lemma 9.4 we can strengthen (9.7) to

P
(
∀S ∈ {1, 2, 4, . . .} ∀δ ∈ (0, 1) ∀t1, t2 ∈ [0,∞) :(

|At2 −At1 | ≤ δ & At1 ∈ [0, S] & At2 ∈ [0, S]
)

=⇒
|ω(t2)− ω(t1)| ≤ 430α−1/2S1/2δ1/8

)
≥ 1− α.

10 Proof of the remaining parts of Theorems
5.1(b) and 6.5

Let c ∈ R be a fixed constant. Results of the previous section imply the tightness
of Qc (for details, see below).

Lemma 10.1. For each α > 0 there exists a compact set K ⊆ Ω such that
Qc(K) ≥ 1− α.

In particular, Lemma 10.1 asserts that Qc(Ω) = 1. This fact and the results
of Section 7 allow us to check that Theorem 6.5 implies Theorem 5.1(b). First,
the inequality ≤ in (6.5) implies

Qc(E) = P(ntt−1(E);ω(0) = c, A∞ =∞)

= E(1E ◦ntt;ω(0) = c, A∞ =∞) ≤
∫

Ω

1E dWc = Wc(E)

for all E ∈ F. Therefore,

Qc(E) = P(ntt−1(E);ω(0) = c, A∞ =∞)

= 1− P
(

ntt−1(Ec) ∪
(
ntt−1(Ω)

)c
;ω(0) = c, A∞ =∞

)
= 1− P(ntt−1(Ec);ω(0) = c, A∞ =∞) (10.1)

≥ 1−Wc(E
c) = Wc(E)

and so, by Lemma 7.3 and (7.2),

Qc(E) = Qc(E) = Wc(E)

for all E ∈ F. The equality in line (10.1) follows from P(ntt−1(Ω);ω(0) =
c, A∞ = ∞) = 1, which in turn follows from (and is in fact equivalent to)
Qc(Ω) = 1. Therefore, we only need to finish the proof of Theorem 6.5.
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More precise results than Lemma 10.1 can be stated in terms of the modulus
of continuity of a function ψ ∈ R[0,∞) on an interval [0, S] ⊆ [0,∞):

mS
δ (ψ) := sup

s1,s2∈[0,S]:|s1−s2|≤δ
|ψ(s1)− ψ(s2)|, δ > 0;

it is clear that limδ→0 mS
δ (ψ) = 0 if and only if ψ is continuous (equivalently,

uniformly continuous) on [0, S].

Lemma 10.2. For each α > 0,

Qc

(
∀S ∈ {1, 2, 4, . . .} ∀δ ∈ (0, 1) : mS

δ ≤ 430α−1/2S1/2δ1/8
)
≥ 1− α.

Lemma 10.2 immediately follows from Lemma 9.2, and Lemma 10.1 immediately
follows from Lemma 10.2 and the Arzelà–Ascoli theorem (as stated in [37],
Theorem 2.4.9).

We start the proof of the remaining part of Theorem 6.5 from a series of
reductions. To establish the inequality ≤ in (6.5) we only need to establish
E(F ◦ ntt;ω(0) = c, A∞ =∞) <

∫
FdWc + ε for each positive constant ε.

(a) We can assume that F in (6.5) is lower semicontinuous on Ω. Indeed, if
it is not, by the Vitali–Carathéodory theorem (see, e.g., [54], Theorem
2.25) for any compact K ⊆ Ω (assumed non-empty) there exists a lower
semicontinuous function G on K such that G ≥ F on K and

∫
K
GdWc ≤∫

K
FdWc + ε. Without loss of generality we assume supG ≤ supF , and

we extend G to all of Ω by setting G := supF outside K. Choosing K with
large enough Wc(K) (which can be done since the probability measure Wc

is tight: see, e.g., [7], Theorem 1.4), we will have G ≥ F and
∫
GdWc ≤∫

FdWc + 2ε. Achieving S0 ≤
∫
GdWc + ε and lim inft→∞St(ω) ≥ (G ◦

ntt)(ω), where S is a positive capital process, will automatically achieve
S0 ≤

∫
FdWc + 3ε and lim inft→∞St(ω) ≥ (F ◦ ntt)(ω).

(b) We can further assume that F is continuous on Ω. Indeed, since each lower
semicontinuous function on a metric space is the limit of an increasing
sequence of continuous functions (see, e.g., [27], Problem 1.7.15(c)), given
a lower semicontinuous positive function F on Ω we can find a series of
positive continuous functions Gn on Ω, n = 1, 2, . . ., such that

∑∞
n=1G

n =
F . The sum S of positive capital processes S1,S2, . . . achieving Sn

0 ≤∫
GndWc + 2−nε and lim inft→∞Sn

t (ω) ≥ (Gn ◦ ntt)(ω), n = 1, 2, . . ., will
achieve S0 ≤

∫
FdWc + ε and lim inft→∞St(ω) ≥ (F ◦ ntt)(ω).

(c) We can further assume that F depends on ψ ∈ Ω only via ψ|[0,S] for

some S ∈ (0,∞). Indeed, let us fix ε > 0 and prove E(F ◦ ntt;ω(0) =
c, A∞ = ∞) ≤

∫
FdWc + Cε for some positive constant C assuming

E(G◦ntt;ω(0) = c, A∞ =∞) ≤
∫
GdWc for all continuous positive G that

depend on ψ ∈ Ω only via ψ|[0,S] for some S ∈ (0,∞). Choose a compact
set K ⊆ Ω with Wc(K) > 1 − ε and Qc(K) > 1 − ε (cf. Lemma 10.1).
Set FS(ψ) := F (ψS), where ψS is defined by ψS(s) := ψ(s ∧ S) and S is
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sufficiently large in the following sense. Since F is uniformly continuous
on K and the metric is defined by (8.1), F and FS can be made arbitrarily
close in C(K); in particular, let ‖F −FS‖C(K) < ε. Choose positive capital
processes S0 and S1 such that

S0
0 ≤

∫
FSdWc + ε, lim inf

t→∞
S0
t (ω) ≥ (FS ◦ ntt)(ω),

S1
0 ≤ ε, lim inf

t→∞
S1
t (ω) ≥ (1Kc ◦ntt)(ω),

for all ω ∈ Ω satisfying ω(0) = c and A∞(ω) = ∞. The sum S :=
S0 + (supF )S1 + ε will satisfy

S0 ≤
∫
FSdWc + (supF + 2)ε ≤

∫
K

FSdWc + (2 supF + 2)ε

≤
∫
K

FdWc + (2 supF + 3)ε ≤
∫
FdWc + (2 supF + 3)ε

and

lim inf
t→∞

St(ω) ≥ (FS ◦ ntt)(ω) + (supF )(1Kc ◦ ntt)(ω) + ε ≥ (F ◦ ntt)(ω),

provided ω(0) = c and A∞(ω) =∞. We assume S ∈ {1, 2, 4, . . .}, without
loss of generality.

(d) We can further assume that F (ψ) depends on ψ ∈ Ω only via the val-
ues ψ(iS/N), i = 1, . . . , N (remember that we are interested in the case
ψ(0) = c), for some N ∈ {1, 2, . . .}. Indeed, let us fix ε > 0 and prove
E(F ◦ ntt;ω(0) = c, A∞ =∞) ≤

∫
FdWc +Cε for some positive constant

C assuming E(G ◦ ntt;ω(0) = c, A∞ = ∞) ≤
∫
GdWc for all continu-

ous positive G that depend on ψ ∈ Ω only via ψ(iS/N), i = 1, . . . , N ,
for some N . Let K ⊆ Ω be the compact set in Ω defined as K :={
ψ ∈ Ω | ψ(0) = c & ∀δ > 0 : mS

δ (ψ) ≤ f(δ)
}

for some f : (0,∞)→ (0,∞)
satisfying limδ→0 f(δ) = 0 (cf. the Arzelà–Ascoli theorem) and chosen in
such a way that Wc(K) > 1 − ε and Qc(K) > 1 − ε. Let g be the modu-
lus of continuity of F on K, g(δ) := supψ1,ψ2∈K:ρ(ψ1,ψ2)≤δ|F (ψ1)−F (ψ2)|;
we know that limδ→0 g(δ) = 0. Set FN (ψ) := F (ψN ), where ψN is the
piecewise linear function whose graph is obtained by joining the points
(iS/N,ψ(iS/N)), i = 0, 1, . . . , N , and (∞, ψ(S)), and N is so large that
g(f(S/N)) ≤ ε. Since

ψ ∈ K =⇒ ‖ψ − ψN‖C[0,S] ≤ f(S/N) =⇒ ρ(ψ,ψN ) ≤ f(S/N)

(we assume, without loss of generality, that the graph of ψ is horizontal
over [S,∞)), we have ‖F−FN‖C(K) ≤ ε. Choose positive capital processes
S0 and S1 such that

S0
0 ≤

∫
FNdWc + ε, lim inf

t→∞
S0
t (ω) ≥ (FN ◦ ntt)(ω),
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S1
0 ≤ ε, lim inf

t→∞
S1
t (ω) ≥ (1Kc ◦ ntt)(ω),

provided ω(0) = c and A∞(ω) = ∞. The sum S := S0 + (supF )S1 + ε
will satisfy

S0 ≤
∫
FNdWc + (supF + 2)ε ≤

∫
K

FNdWc + (2 supF + 2)ε

≤
∫
K

FdWc + (2 supF + 3)ε ≤
∫
FdWc + (2 supF + 3)ε

and

lim inf
t→∞

St(ω) ≥ (FN ◦ ntt)(ω) + (supF )(1Kc ◦ntt)(ω) + ε ≥ (F ◦ ntt)(ω),

provided ω(0) = c and A∞(ω) =∞.

(e) We can further assume that

F (ψ) = U (ψ(S/N), ψ(2S/N), . . . , ψ(S)) (10.2)

where the function U : RN → [0,∞) is not only continuous but also has
compact support. (We will sometimes say that U is the generator of F .)
Indeed, let us fix ε > 0 and prove E(F ◦ ntt;ω(0) = c, A∞ = ∞) ≤∫
FdWc + Cε for some positive constant C assuming E(G ◦ ntt;ω(0) =

c, A∞ = ∞) ≤
∫
GdWc for all G whose generator has compact support.

Let BR be the open ball of radius R and centred at the origin in the space
RN with the `∞ norm. We can rewrite (10.2) as F (ψ) = U(σ(ψ)) where
σ : Ω→ RN reduces each ψ ∈ Ω to σ(ψ) := (ψ(S/N), ψ(2S/N), . . . , ψ(S)).
Choose R > 0 so large that Wc(σ

−1(BR)) > 1 − ε and Qc(σ
−1(BR)) >

1− ε (the existence of such R follows from the Arzelà–Ascoli theorem and
Lemma 10.1). Alongside F , whose generator is denoted U , we will also
consider F ∗ with generator

U∗(z) :=

{
U(z) if z ∈ BR
0 if z ∈ Bc2R

(where BR is the closure of BR in RN ); in the remaining region B2R \BR,
U∗ is defined arbitrarily (but making sure that U∗ is continuous and takes
values in [0, supU ]; this can be done by the Tietze–Urysohn theorem, [27],
Theorem 2.1.8). Choose positive capital processes S0 and S1 such that

S0
0 ≤

∫
F ∗dWc + ε, lim inf

t→∞
S0
t (ω) ≥ (F ∗ ◦ ntt)(ω),

S1
0 ≤ ε, lim inf

t→∞
S1
t (ω) ≥ (1(σ−1(BR))c ◦ ntt)(ω),

provided ω(0) = c and A∞(ω) = ∞. The sum S := S0 + (supF )S1 will
satisfy

S0 ≤
∫
F ∗dWc + (supF + 1)ε ≤

∫
σ−1(BR)

F ∗dWc + (2 supF + 1)ε
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=

∫
σ−1(BR)

FdWc + (2 supF + 1)ε ≤
∫
FdWc + (2 supF + 1)ε

and

lim inf
t→∞

St(ω) ≥ (F ∗ ◦ ntt)(ω) + (supF )(1(σ−1(BR))c ◦ ntt)(ω)

≥ (F ◦ ntt)(ω),

provided ω(0) = c and A∞(ω) =∞.

(f) Since every continuous U : RN → [0,∞) with compact support can be ar-
bitrarily well approximated in C(RN ) by an infinitely differentiable (posi-
tive) function with compact support (see, e.g., [1], Theorem 2.29), we can
further assume that the generator U of F is an infinitely differentiable
function with compact support.

(g) By Lemma 10.1, it suffices to prove that, given ε > 0 and a compact set
K in Ω, some positive capital process S with S0 ≤

∫
FdWc + ε achieves

lim inft→∞St(ω) ≥ (F ◦ ntt)(ω) for all ω ∈ ntt−1(K) such that ω(0) = c
and A∞(ω) =∞. Indeed, we can choose K with Qc(K) so close to 1 that
the sum of S and a positive capital process eventually attaining supF
on (ntt−1(K))c will give a positive capital process starting from at most∫
FdWc + 2ε and attaining (F ◦ ntt)(ω) in the limit, provided ω(0) = c

and A∞(ω) =∞.

From now on we fix a compact K ⊆ Ω, assuming, without loss of generality, that
the statements inside the outer parentheses in (9.7) and (9.8) are satisfied for
some α > 0 when ntt(ω) ∈ K.

In the rest of the proof we will be using, often following [57], Section 6.2, the
standard method going back to Lindeberg [44]. For i = N −1, define a function
U i : R× [0,∞)× Ri → R by

U i(x,D;x1, . . . , xi) :=

∫ ∞
−∞

Ui+1(x1, . . . , xi, x+ z)N0,D(dz), (10.3)

where UN stands for U and N0,D is the Gaussian probability measure on R with
mean 0 and variance D ≥ 0. Next define, for i = N − 1,

Ui(x1, . . . , xi) := U i(xi, S/N ;x1, . . . , xi). (10.4)

Finally, we can alternately use (10.3) and (10.4) for i = N − 2, . . . , 1, 0 to define
inductively other U i and Ui (with (10.4) interpreted as U0 := U0(c, S/N) when
i = 0). Notice that U0 =

∫
FdWc.

Informally, the functions (10.3) and (10.4) constitute Sceptic’s goal: assum-
ing ntt(ω) ∈ K, ω(0) = c, and A∞(ω) =∞, he will keep his capital at time τiS/N ,
i = 0, 1, . . . , N , close to Ui(ω(τS/N ), ω(τ2S/N ), . . . , ω(τiS/N )) and his capital at

any other time t ∈ [0, τS ] close to U i(ω(t), D;ω(τS/N ), ω(τ2S/N ), . . . , ω(τiS/N ))
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where i := bNAt/Sc and D := (i + 1)S/N − At. This will ensure that his
capital at time τS is close to or exceeds (F ◦ ntt)(ω) when his initial capital is
U0 =

∫
FdWc, ω(0) = c, and A∞(ω) =∞.

The proof is based on the fact that each function U i(x,D;x1, . . . , xi) satisfies
the heat equation in the variables x and D:

∂U i
∂D

(x,D;x1, . . . , xi) =
1

2

∂2U i
∂x2

(x,D;x1, . . . , xi) (10.5)

for all x ∈ R, all D > 0, and all x1, . . . , xi ∈ R. This can be checked by direct
differentiation.

Sceptic will only bet at the times of the form τkS/LN , where L ∈ {1, 2, . . .}
is a constant that will later be chosen large and k is integer. For i = 0, . . . , N
and j = 0, . . . , L let us set

ti,j := τiS/N+jS/LN , Xi,j := ω(ti,j), Di,j := S/N − jS/LN.

For any array Yi,j , we set dYi,j := Yi,j+1 − Yi,j .
Using Taylor’s formula and omitting the arguments ω(τS/N ), . . . , ω(τiS/N ),

we obtain, for i = 0, . . . , N − 1 and j = 0, . . . , L− 1,

dU i(Xi,j , Di,j) =
∂U i
∂x

(Xi,j , Di,j)dXi,j +
∂U i
∂D

(Xi,j , Di,j)dDi,j

+
1

2

∂2U i
∂x2

(X ′i,j , D
′
i,j)(dXi,j)

2 +
∂2U i
∂x∂D

(X ′i,j , D
′
i,j)dXi,jdDi,j

+
1

2

∂2U i
∂D2

(X ′i,j , D
′
i,j)(dDi,j)

2, (10.6)

where (X ′i,j , D
′
i,j) is a point strictly between (Xi,j , Di,j) and (Xi,j+1, Di,j+1).

Applying Taylor’s formula to ∂2U i/∂x
2, we find

∂2U i
∂x2

(X ′i,j , D
′
i,j) =

∂2U i
∂x2

(Xi,j , Di,j)

+
∂3U i
∂x3

(X ′′i,j , D
′′
i,j)∆Xi,j +

∂3Ui
∂D∂x2

(X ′′i,j , D
′′
i,j)∆Di,j ,

where (X ′′i,j , D
′′
i,j) is a point strictly between (Xi,j , Di,j) and (X ′i,j , D

′
i,j), and

∆Xi,j and ∆Di,j satisfy |∆Xi,j | ≤ |dXi,j |, |∆Di,j | ≤ |dDi,j |. Plugging this
equation and the heat equation (10.5) into (10.6), we obtain

dU i(Xi,j , Di,j) =
∂U i
∂x

(Xi,j , Di,j)dXi,j+
1

2

∂2U i
∂x2

(Xi,j , Di,j)
(
(dXi,j)

2 + dDi,j

)
+

1

2

∂3U i
∂x3

(X ′′i,j , D
′′
i,j)∆Xi,j(dXi,j)

2 +
1

2

∂3U i
∂D∂x2

(X ′′i,j , D
′′
i,j)∆Di,j(dXi,j)

2

+
∂2U

∂x∂D
(X ′i,j , D

′
i,j)dXi,jdDi,j +

1

2

∂2U

∂D2
(X ′i,j , D

′
i,j)(dDi,j)

2. (10.7)
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To show that Sceptic can achieve his goal, we will describe a simple trading
strategy that results in increase of his capital of approximately (10.7) during
the time interval [ti,j , ti,j+1] (we will make sure that the cumulative error of our
approximation is small with high probability, which will imply the statement
of the theorem). We will see that there is a trading strategy resulting in the
capital increase equal to the first addend on the right-hand side of (10.7), that
there is another trading strategy resulting in the capital increase approximately
equal to the second addend, and that the last four addends are negligible. The
sum of the two trading strategies will achieve our goal.

The trading strategy whose capital increase over [ti,j , ti,j+1] is the first ad-
dend is obvious: it bets ∂U i/∂x at time ti,j . The bet is bounded as average of
∂Ui+1/∂xi+1, the boundedness of which can be seen from the recursive formula

Uk(x1, . . . , xk) =

∫ ∞
−∞

Uk+1(x1, . . . , xk, xk + z)N0,S/N (dz),

k = i+ 1, . . . , N − 1,

and UN = U being an infinitely differentiable function with compact support.
The second addend involves the expression (dXi,j)

2 + dDi,j = (ωi,j+1 −
ωi,j)

2 − S/LN . To analyze it, we will need the following lemma.

Lemma 10.3. For all δ > 0 and β > 0, there exists a positive integer l such
that

ti,j+1 <∞ =⇒

∣∣∣∣∣A
l,ti,j
ti,j+1

S/LN
− 1

∣∣∣∣∣ < δ

holds for all i = 0, . . . , N − 1 and j = 0, . . . , L− 1 except for a set of ω of upper
price at most β.

Lemma 10.3 can be proved similarly to (9.4). (The inequality in (9.4) is
one-sided, so it was sufficient to use only (8.7); for Lemma 10.3 both (8.7) and
(8.6) should be used.)

We know that (ω(t) − ω(ti,j))
2 − Al,ti,jt is a simple capital process (see the

proof of Lemma 9.1). Therefore, there is indeed a simple trading strategy re-
sulting in capital increase approximately equal to the second addend on the
right-hand side of (10.7), with the cumulative approximation error that can be
made arbitrarily small on a set of ω of lower price arbitrarily close to 1. (Anal-
ogously to the analysis of the first addend, ∂2U i/∂x

2 is bounded as average of
∂2Ui+1/∂x

2
i+1.)

Let us show that the last four terms on the right-hand side of (10.7) are neg-
ligible when L is sufficiently large (assuming S, N , and U fixed). All the partial
derivatives involved in those terms are bounded: the heat equation implies

∂3U i
∂D∂x2

=
∂3U i
∂x2∂D

=
1

2

∂4U i
∂x4

,

∂2U i
∂x∂D

=
1

2

∂3U i
∂x3

,
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∂2U i
∂D2

=
1

2

∂3U i
∂D∂x2

=
1

4

∂4U i
∂x4

,

and ∂3U i/∂x
3 and ∂4U i/∂x

4, being averages of ∂3Ui+1/∂x
3
i+1 and ∂4Ui+1/∂x

4
i+1,

respectively, are bounded. We can assume that

|dXi,j | ≤ C1L
−1/8,

N−1∑
i=0

L−1∑
j=0

(dXi,j)
2 ≤ C2L

1/16

(cf. (9.7) and (9.8), respectively) for ntt(ω) ∈ K and some constants C1 and C2

(remember that S, N , U , and, of course, α are fixed; without loss of generality
we can assume that N and L are powers of 2). This makes the cumulative
contribution of the four terms have at most the order of magnitude O(L−1/16);
therefore, Sceptic can achieve his goal for ntt(ω) ∈ K by making L sufficiently
large.

To ensure that his capital is always positive, Sceptic stops playing as soon as
his capital hits 0. Increasing his initial capital by a small amount we can make
sure that this will never happen when ntt(ω) ∈ K (for L sufficiently large).

11 Proof of the inequality ≤ in Theorem 6.3

Fix a bounded positive I-measurable functional F . Let a :=
∫
FdWc; our goal

is to show that E(F ;ω(0) = c) ≤ a. Define Ω′ to be the set of all ω ∈ Ω such
that ω(0) = c and ∀t ∈ [0,∞) : At(ω) = At(ω) = t. We know (Lemma 8.4) that
Wc(Ω

′) = 1. It is clear that τs(ω) = s for all ω ∈ Ω′, and so ntt(ω) = ω for all
ω ∈ Ω′. By Theorem 6.5,

E(F 1Ω′) = E(F ; Ω′) = E(F ◦ ntt; Ω′) ≤ E(F ◦ ntt;ω(0) = c, A∞ =∞) = a

(we will not need the opposite inequality in that theorem). Therefore, for
any ε > 0 there exists a positive capital process S such that S0 ≤ a + ε
and lim inft→∞St ≥ F 1Ω′ . We assume, without loss of generality, that S is
bounded. Moreover, the proof of Theorem 6.5 shows that S can be chosen time-
invariant, in the sense that Sf(t)(ω) = St(ω ◦ f) for all time transformations f
and all t ∈ [0,∞). This property will also be assumed to be satisfied until the
end of this section. In conjunction with the time-superinvariance of F (which
is equivalent to (6.2)) and the last statement of Theorem 5.1(a), it implies, for
typical ω ∈ Ω satisfying ω(0) = c and A∞(ω) =∞,

lim inf
t→∞

St(ω) = lim inf
t→∞

St(ψ
f ) = lim inf

t→∞
Sf(t)(ψ)

≥ (F 1Ω′)(ψ) = F (ψ) ≥ F (ω), (11.1)

where ψ is any element of Ω′ that satisfies ψf = ω for some time transformation
f , necessarily satisfying limt→∞ f(t) =∞ (we can always take ψ := ntt(ω) and
f := A(ω); ω = ntt(ω) ◦ A(ω) follows from ω(t) = ω(τAt(ω))). It is easy to
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modify S so that S0 is increased by at most ε and the inequality between the
two extreme terms in (11.1) becomes true for all, rather than for typical, ω ∈ Ω
satisfying ω(0) = c and A∞(ω) =∞.

Let us now consider ω ∈ Ω such that ω(0) = c but A∞(ω) = ∞ is not
satisfied. Without loss of generality we assume that A(ω) exists and is an
element of Ω with the same intervals of constancy as ω and that the statement in
the outermost parentheses in (9.7) holds for some α > 0. Set b := A∞(ω) <∞.
Suppose lim inft→∞St(ω) ≤ F (ω) − δ for some δ > 0; to complete the proof,
it suffices to arrive at a contradiction. By the statement in the outermost
parentheses in (9.7), the function ntt(ω)|[0,b) can be continued to the closed
interval [0, b] so that it becomes an element g of C[0, b]. Let Γ(g) be the set of
all extensions of g that are elements of Ω. By the time-superinvariance of F , all
ψ ∈ Γ(g) satisfy F (ψ) ≥ F (ω). Since lim inft→b−St(ψ) ≤ F (ω)− δ (remember
that S is time-invariant) and the function t 7→ St is lower semicontinuous (see
(2.2)), Sb(ψ) ≤ F (ω) − δ ≤ F (ψ) − δ, for each ψ ∈ Γ(g). Continue g, which
is now fixed, by measure-theoretic Brownian motion starting from g(b), so that
the extension is an element of Ω′ with probability one. Let us represent S in
the form (2.2) and use the argument in the proof of Lemma 6.4. We can see
that St(ξ), t ≥ b, where ξ is g extended by the trajectory of Brownian motion
starting from g(b), is a positive measure-theoretic supermartingale with the time
interval [b,∞). Now we have the following analogue of (6.4):∫

Γ(g)

lim inf
t→∞

StdP ≤ lim inf
t→∞

∫
Γ(g)

StdP ≤
∫

Γ(g)

SbdP ≤
∫

Γ(g)

FdP − δ,

P referring to the underlying probability measure of the Brownian motion (con-
centrated on Γ(g)). However,

∫
Γ(g)

lim inft→∞StdP <
∫

Γ(g)
FdP contradicts

the choice of S: cf. (11.1) and Lemma 8.4.

12 Other connections with literature

This section discusses several areas of stochastics (in Subsection 12.1) and math-
ematical finance (in Subsections 12.2 and 12.3) which are especially closely con-
nected with this paper’s approach.

12.1 Stochastic integration

The natural financial interpretation of the stochastic integral is that
∫ t

0
πsdXs

is the trader’s profit at time t from holding πs units of a financial security with
price path X at time s (see, e.g., [59], Remark III.5a.2). It is widely believed

that
∫ t

0
πsdXs cannot in general be defined pathwise; since our picture does not

involve a probability measure on Ω, we restricted ourselves to countable combi-
nations (see (2.2)) of integrals of simple integrands (see (2.1)). This definition
served our purposes well, but in this subsection we will discuss other possible
definitions, always assuming that Xs is a continuous function of s.
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The pathwise definition of
∫ t

0
πsdXs is straightforward when the total vari-

ation (i.e., strong 1-variation in the terminology of Subsection 4.2) of Xs over
[0, t] is finite; it can be defined as, e.g., the Lebesgue–Stiltjes integral. It has
been known for a long time that the Riemann–Stiltjes definition also works in
the case 1/ vi(π) + 1/ vi(X) > 1 (Youngs’ theory; see, e.g., [24], Section 2.2).
Unfortunately, in the most interesting case vi(π) = vi(X) = 2 this condition is
not satisfied.

Another pathwise definition of stochastic integral is due to Föllmer [28].
Föllmer considers a sequence of partitions of the interval [0,∞) and assumes
that the quadratic variation of X exists, in a suitable sense, along this sequence.
Our definition of quadratic variation given in Section 5 resembles Föllmer’s
definition; in particular, our Theorem 5.1(a) implies that Föllmer’s quadratic
variation exists for typical ω along the sequence of partitions Tn (as defined
at the beginning of Section 5). In the statement of his theorem ([28], p. 144),

Föllmer defines the pathwise integral
∫ t

0
f(Xs)dXs for a C1 function f assuming

that the quadratic variation of X exists and proves Itô’s formula for his integral.
In particular, Föllmer’s pathwise integral

∫ t
0
f(ω(s))dω(s) along Tn exists for

typical ω and satisfies Itô’s formula. There are two obstacles to using Föllmer’s
definition in this paper: in order to prove the existence of the quadratic variation
we already need our simple notion of integration (which defines the notion of

“typical” in Theorem 5.1(a)); the class of integrals
∫ t

0
f(ω(s)) dω(s) with f ∈ C1

is too restrictive for our purposes, and using it would complicate the proofs.
An interesting development of Youngs’ theory is Lyons’s [46] theory of rough

paths. In Lyons’s theory, we can deal directly only with the rough paths X sat-
isfying vi(X) < 2 (by means of Youngs’ theory). In order to treat rough paths
satisfying vi(X) ∈ [n, n+1), where n = 2, 3, . . ., we need to postulate the values
of the iterated integrals Xi

s,t :=
∫
s<u1<···<ui<t dXu1 · · · dXui for i = 2, . . . , n

(satisfying so-called Chen’s consistency condition). According to Corollary 4.4,
only the case n = 2 is relevant for our idealized market, and in this case Lyons’s
theory is much simpler than in general (but to establish Corollary 4.4 we al-
ready used our simple integral). Even in the case n = 2 there are different
natural choices of X2

s,t (e.g., those leading to Itô-type and to Stratonovich-type
integrals); and in the case n > 2 the choice would inevitably become even more
ad hoc.

Another obstacle to using Lyons’s theory in this paper is that the smoothness
restrictions that it imposes are too strong for our purposes. In principle, we
could use the integral

∫ t
0
Gdω to define the capital brought by a strategy G

for trading in ω by time t. However, similarly to Föllmer’s, Lyons’s theory
requires that G should take a position of the form f(ω(t)) at time t, where
f is a differentiable function whose derivative f ′ is a Lipschitz function ([14],
Theorems 3.2 and 3.6). This restriction would again complicate the proofs.
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12.2 Fundamental Theorems of Asset Pricing

The First and Second Fundamental Theorems of Asset Pricing (FTAPs, for
brevity) are families of mathematical statements; e.g., we have different state-
ments for one-period, multi-period, discrete-time, and continuous-time markets.
A very special case of the Second FTAP, the one covering binomial models, was
already discussed briefly in Section 1. In the informal comparisons of our re-
sults and the FTAPs in this subsection we only consider the case of one security
whose price path Xt is assumed to be continuous. (In the background, there is
also an implicit security, such as cash or bond, serving as our numéraire.)

The First FTAP says that a stochastic model for the security price path
Xt admits no arbitrage (or satisfies a suitable modification of this condition,
such as no free lunch with vanishing risk) if and only if there is an equivalent
martingale measure (or a suitable modification thereof, such as an equivalent
sigma-martingale measure). The Second FTAP says that the market is complete
if and only if there is only one equivalent martingale measure (as, e.g., in the
case of the classical Black–Scholes model). The completeness of the market
means that each contingent claim has a unique fair price defined in terms of
hedging.

Theorems 3.1 and 6.3 are connected (admittedly, somewhat loosely) with the
Second FTAP, namely its part saying that each contingent claim has a unique
fair price provided there is a unique equivalent martingale measure. For exam-
ple, Theorem 3.1 and Corollary 3.8 essentially say that each contingent claim of
the form 1E , where E ∈ I and ω(0) = c for all ω ∈ E, has a fair price and its fair
price is equal to the Wiener measure Wc(E) of E. The scarcity of contingent
claims that we can show to have a fair price is not surprising: it is intuitively
clear that our market is heavily incomplete. According to Remark 3.5, we can
replace the Wiener measure by many other measures. The proofs of both the
Second FTAP and our Theorems 3.1 and 6.3 construct fair prices of contingent
claims using hedging arguments. Extending this paper’s results to a wider class
of contingent claims is an interesting direction of further research.

Theorems 3.1 and 6.3 are much more closely connected with a generalized
version of the Second FTAP (see [29], Theorem 5.32, for a discrete-time version)
which says, in the first approximation, that the range of arbitrage-free prices
of a contingent claim coincides with the range of the expectations of its payoff
function w.r. to the equivalent martingale measures. We can even say (com-
pletely disregarding mathematical rigour for a moment) that Theorem 6.3 is a
special case of the generalized Second FTAP: by the Dubins–Schwarz result, ω
is a time-changed Brownian motion under the martingale measures, and so the
I-measurability of F implies that the unique fair price of the contingent claim
with the payoff function F is

∫
FdWω(0).

The conditions of the First, Second, and generalized Second FTAP include
a given probability measure on the sample space (our stochastic model of the
market). In the case of continuous time, it is this postulated probability mea-
sure that allows one to use Itô’s notion of stochastic integral for defining basic
financial notions such as the resulting capital of a trading strategy. No such
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condition is needed in the case of our results.
The notion of arbitrage is pivotal in mathematical finance; in particular, it

enters both the First FTAP and the generalized Second FTAP. This paper’s
results and discussions were not couched in terms of arbitrage, although there
were two places where arbitrage-type notions did enter the picture.

First, we used the notion of coherence in Section 7. The most standard
notion of arbitrage is that no trading strategy can start from zero capital and
end up with positive capital that is strictly positive with a strictly positive
probability. Our condition of coherence is similar but much weaker; and of
course, it does not involve probabilities. We show that this condition is satisfied
automatically in our framework.

The second place where we need arbitrage-type notions is in the interpreta-
tion of results such as Corollaries 4.2 and 4.4–4.7. For example, Corollary 4.4
implies that vi[0,1](ω) ∈ {0, 2} for typical ω. Remembering our definitions, this
means that either vi[0,1](ω) ∈ {0, 2} or a predefined trading strategy makes infi-
nite capital (at time 1) starting from one monetary unit and never risking going
into debt. If we do not believe that making infinite capital risking only one
monetary unit is possible for a predefined trading strategy (i.e., that the market
is “efficient”, in a very weak sense), we should expect vi[0,1](ω) ∈ {0, 2}. This
looks like an arbitrage-type argument, but there are two important differences:

• Our condition of market efficiency is only needed for the interpretation of
our results; their mathematical statements do not depend on it. The stan-
dard no-arbitrage conditions are used directly in mathematical theorems
(such as the First FTAP and the generalized Second FTAP).

• The usual no-arbitrage conditions are conditions on the currently observed
prices or our stochastic model of the market (or both). On the contrary,
our condition of market efficiency describes what we expect to happen, or
not to happen, on the actual price path.

It should be noted that our condition of market efficiency (a predefined trad-
ing strategy is not expected to make infinite capital risking only one monetary
unit) is much closer to Delbaen and Schachermayer’s [20] version of the no-
arbitrage condition, which is known as NFLVR (no free lunch with vanishing
risk), than to the classical no-arbitrage condition. The classical no-arbitrage
condition only considers trading strategies that start from 0 and never go into
debt, whereas the NFLVR condition allows trading strategies that start from
0 and are permitted to go into slight debt. Our condition of market efficiency
allows risking one monetary unit, but this can be rescaled so that the trading
strategies considered start from zero and are only allowed to go into debt limited
by an arbitrarily small ε > 0.

Remark 12.1. Mathematical statements of the First FTAP sometimes in-
volve the condition that Xt should be a semimartingale: see, e.g., Delbaen
and Schachermayer’s version in [20], Theorem 1.1. However, this condition is
not a big restriction: in the same paper, Delbaen and Schachermayer show that
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the NFLVR condition already implies that Xt is a semimartingale (under some
additional conditions, such as Xt being locally bounded; see [20], Theorem 7.2).
A direct proof of the last result, using financial arguments and not depending
on the Bichteler–Dellacherie theorem, is given in the recent paper [4].

We could have used the notion of arbitrage to restate part of Theorem 6.3: if
the contingent claim with a bounded and I-measurable payoff function F : Ω→
[0,∞) is worth strictly more than

∫
FdWω(0) at time 0, we can turn capital 0 at

time 0 into capital 1 at time ∞. Indeed, we can short such a contingent claim
and divide the proceeds

∫
FdWω(0) + ε, where ε > 0, into two parts: investing∫

FdWω(0) + ε/2 into a trading strategy bringing capital F (ω) at time∞ allows
us to meet our obligation; we keep the remaining ε/2 (and we can scale up our
portfolio to replace ε/2 by 1). We did not introduce the corresponding notion
of arbitrage formally since this restatement does not seem to add much to the
theorem.

12.3 Model uncertainty and robust results

In this subsection we will discuss some known approaches to mathematical fi-
nance that do not assume from the outset a given probability model.

One natural relaxation of the standard framework replaces the probability
model with a family, more or less extensive, of probability models (there is a
“model uncertainty”). Results proved under model uncertainty may be called
robust. We get some robustness for free already in the standard Black–Scholes
framework: option prices do not depend on the drift parameter µ in the prob-
ability model dXt/Xt = µdt + σdWt, Wt being Brownian motion. “Volatility
uncertainty”, i.e., uncertainty about the value of σ, is much more serious. A
natural assumption, sometimes called the “uncertain volatility model”, is that σ
can change dynamically between known limits σ and σ, σ < σ. Study of volatil-
ity uncertainty under this assumption was originated by Avellaneda et al. [2]
and Lyons [45] and has been the object of intensive study recently; whereas older
paper concentrated on robust pricing of contingent claims whose payoff depends
on the underlying security’s value at one maturity date, recent work treats the
much more difficult case of general path-dependent contingent claims. This re-
search has given rise to two important developments: Denis and Martini’s [21]
“almost pathwise” theory of stochastic calculus and Peng’s [52, 53] G-stochastic
calculus (in our current context, G refers to the function G(y) := supσ∈[σ,σ] σ

2y).
Definitions similar to our (2.3) and (6.1) are standard in the literature on

model uncertainty: see, e.g., Mykland [48], (3.3), Denis and Martini [21] (the
definition of Λ(f) on p. 834), or Cassese [11], (4.4). Different terms corre-
sponding to our “upper price” have been used, such as “conservative ask price”
(Mykland) and “cheapest riskless superreplication price” (Denis and Martini);
we will continue using “upper price” as a generic notion. A major difficulty
for such definitions lies in defining the class of capital processes; it is here that
pre-specifying a family of probability models proves to be particularly useful.

Finally, we will discuss approaches that are completely model-free. Bick
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and Willinger [6] use Föllmer’s construction of stochastic integral discussed in
Subsection 12.1 to define capital processes of trading strategies. Even though
their framework is not stochastic, the conditions that they impose on the price
paths in order for dynamic hedging to be successful are not so different from
the standard conditions. The assumption used in their Proposition 1 is, in their
notation, [Y, Y ]t = Y 0 + σ2t, where S(t) = exp(Y (t)) is the price path and
[Y, Y ]t is the pathwise quadratic variation of its logarithm; this is similar to the
Black–Scholes model. They also consider (in Proposition 3) a more general case
d[S, S]t = β2(S(t), t), but β has to be a continuous function that is known in
advance.

Section 4 of Dawid et al.’s [17] can be recast as a study of the upper price of
the American option paying f(X∗t ), where f is a fixed positive and increasing
function, t is the exercise time (chosen by the option’s owner), X∗t := maxs≤tXs

(time is discrete in [17]), and Xs ≥ 0 is the price of the underlying security
at time s. Corollary 2 in [17] implies that the upper price of this option is

X0

∫∞
X0

f(x)
x2 dx. This is compatible with Theorem 6.3 since X0/x

2, x ∈ [X0,∞),
is the density of the maximum of Brownian motion started at X0 and stopped
when it hits 0 (cf. the first statement of Theorem 2.49 in [47]).

Let us assume, for simplicity, that X0 = 1 (as in [30]). The simplest Amer-
ican option with payoff f(X∗t ) is the one corresponding to the identity func-
tion f(x) = x; it is a kind of a perpetual lookback option (as discussed in,
e.g., [25], Section 5). The upper price of this option is, of course, infinite:∫∞

1
(1/x) dx = ∞. To get a finite price, we can fix a finite maturity date T

and consider a European option with payoff X∗T := supt≤T Xt (we no longer
assume that time is discrete). To find a non-trivial upper price of this European
lookback option, Hobson [30] considers trading strategies that trade not only in
the underlying security X but also in call options on X with maturity date T
and all possible strike prices (making some regularity assumptions about the
call prices); he also finds the upper prices for some modifications of European
lookback options. In order to avoid the use of the stochastic integral, the dy-
namic part of the trading strategies that he considers is very simple; there is
only finite trading activity in each security. Hobson’s paper has been developed
in various directions: see, e.g., the recent review [31] and references therein.
One important issue that arises when we specify the prices of vanilla options at
the outset is whether these prices lead to arbitrage opportunities; it has been
investigated, for various notions of arbitrage, in [15] and [12].

An advantage of this paper’s main results is that the prices they provide are
“almost” two-sided (serve as both ask and bid prices): cf. Corollary 3.8. Their
disadvantage is that they allow us to price such a narrow class of contingent
claims: their payoff functions are required to be I-measurable. In principle,
Hobson’s idea of using vanilla options for pricing exotic options may lead to
interesting developments of this paper’s approach. One could consider a whole
spectrum of trading frameworks, even in the case of one underlying security X.
One extreme is the framework of this paper and, in the case of a discontinuous
price path, [69]. The security is not supported by any derivatives, which leads
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to the paucity of contingent claims that can be priced. The other extreme is
where, alongside X, we are allowed to trade in all European contingent claims
for all maturity dates. Perhaps the most interesting research questions arise
in between the two extremes, where only some European contingent claims are
available for use in hedging.

Appendix: Hoeffding’s process

In this appendix we will check that Hoeffding’s original proof of his inequality
([32], Theorem 2) remains valid in the game-theoretic framework. This obser-
vation is fairly obvious, but all details will be spelled out for convenience of
reference. This appendix is concerned with the case of discrete time, and it will
be convenient to redefine some notions (such as “process”).

Perhaps the most useful product of Hoeffding’s method is a positive super-
martingale starting from 1 and attaining large values when the sum of bounded
martingale differences is large. Hoeffding’s inequality can be obtained by ap-
plying the maximal inequality to this supermartingale. However, we do not
need Hoeffding’s inequality in this paper, and instead of Hoeffding’s positive
supermartingale we will have a positive “supercapital process”, to be defined
below.

This is a version of the basic forecasting protocol from [57]:

Game of forecasting bounded variables

Players: Sceptic, Forecaster, Reality

Protocol:
Sceptic announces K0 ∈ R.
FOR n = 1, 2, . . . :

Forecaster announces interval [an, bn] ⊆ R and number µn ∈ (an, bn).
Sceptic announces Mn ∈ R.
Reality announces xn ∈ [an, bn].
Sceptic announces Kn ≤ Kn−1 +Mn(xn − µn).

On each round n of the game Forecaster outputs an interval [an, bn] which, in his
opinion, will cover the actual observation xn to be chosen by Reality, and also
outputs his expectation µn for xn. The forecasts are being tested by Sceptic,
who is allowed to gamble against them. The expectation µn is interpreted as
the price of a ticket which pays xn after Reality’s move becomes known; Sceptic
is allowed to buy any number Mn, positive or negative (perhaps zero), of such
tickets. When xn falls outside [an, bn], Sceptic becomes infinitely rich; without
loss of generality we include the requirement xn ∈ [an, bn] in the protocol;
furthermore, we will always assume that µn ∈ (an, bn). Sceptic is allowed to
choose his initial capital K0 and is allowed to throw away part of his money at
the end of each round.

It is important that the game of forecasting bounded variables is a perfect-
information game: each player can see the other players’ moves before making
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his or her (Forecaster and Sceptic are male and Reality is female) own move;
there is no randomness in the protocol.

A process is a real-valued function defined on all finite sequences

(a1, b1, µ1, x1, . . . , aN , bN , µN , xN ), N = 0, 1, . . . ,

of Forecaster’s and Reality’s moves in the game of forecasting bounded variables.
If we fix a strategy for Sceptic, Sceptic’s capital KN , N = 0, 1, . . ., become a
function of Forecaster’s and Reality’s previous moves; in other words, Sceptic’s
capital becomes a process. The processes that can be obtained this way are
called supercapital processes.

The following theorem is essentially inequality (4.16) in [32].

Theorem A.1. For any h ∈ R, the process

N∏
n=1

exp

(
h(xn − µn)− h2

8
(bn − an)2

)
is a supercapital process.

Proof. Assume, without loss of generality, that Forecaster is additionally re-
quired to always set µn := 0. (Adding the same number to an, bn, and µn on
each round will not change anything for Sceptic.) Now we have an < 0 < bn.

It suffices to prove that on round n Sceptic can turn a capital of K into a
capital of at least

K exp

(
hxn −

h2

8
(bn − an)2

)
;

in other words, that he can obtain a payoff of at least

exp

(
hxn −

h2

8
(bn − an)2

)
− 1

using the available tickets (paying xn and costing 0). This will follow from the
inequality

exp

(
hxn −

h2

8
(bn − an)2

)
− 1 ≤ xn

ehbn − ehan
bn − an

exp

(
−h

2

8
(bn − an)2

)
,

(A.1)
which can be rewritten as

exp (hxn) ≤ exp

(
h2

8
(bn − an)2

)
+ xn

ehbn − ehan
bn − an

. (A.2)

Our goal is to prove (A.2). By the convexity of the function exp, it suffices
to prove

xn − an
bn − an

ehbn +
bn − xn
bn − an

ehan ≤ exp

(
h2

8
(bn − an)2

)
+ xn

ehbn − ehan
bn − an

, (A.3)
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i.e.,
bne

han − anehbn
bn − an

≤ exp

(
h2

8
(bn − an)2

)
, (A.4)

i.e.,

ln
(
bne

han − anehbn
)
≤ h2

8
(bn − an)2 + ln(bn − an). (A.5)

(The logarithm on the left-hand side of (A.5) is well defined since the numerator
of the left-hand side of (A.4) is strictly positive, which follows from the left-hand
side of (A.4) being the value at xn = 0 of the left-hand side of (A.3), linear in
xn and strictly positive for both xn = an and xn = bn.) The derivative of the
left-hand side of (A.5) in h is

anbne
han − anbnehbn

bnehan − anehbn

and the second derivative, after cancellations and regrouping, is

(bn − an)2

(
bne

han
) (
−anehbn

)
(bnehan − anehbn)

2 .

The last ratio is of the form u(1−u) where 0 < u < 1. Hence it does not exceed
1/4, and the second derivative itself does not exceed (bn − an)2/4. Inequality
(A.5) now follows from the second-order Taylor expansion of the left-hand side
around h = 0.
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David Prömel, Martin Huesmann, Alexander M. G. Cox, Pietro Siorpaes, and
Beatrice Acciaio.

This work was supported in part by EPSRC (grant EP/F002998/1).

48



References

[1] Robert A. Adams and John J. F. Fournier. Sobolev Spaces. Academic
Press, Amsterdam, second edition, 2003.

[2] M. Avellaneda, A. Levy, and A. Parás. Pricing and hedging derivative secu-
rities in markets with uncertain volatilities. Applied Mathematical Finance,
2:73–88, 1995.
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Strasbourg, 15:143–150, 1981.
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Ivar Ekeland, Elyès Jouini, Jose A. Scheinkman, and Nizar Touzi, editors,
Paris–Princeton Lectures on Mathematical Finance 2010, volume 2003 of
Lecture Notes in Mathematics, pages 267–318. Springer, Berlin, 2011.

[32] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58:13–30, 1963.

[33] Jørgen Hoffmann-Jørgensen. The general marginal problem. In Sve-
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