Skip to main content
Log in

From Computer Aided Design to wavelet BEM

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

This paper develops an interface between Computer Aided Design (CAD) and the wavelet Galerkin scheme for boundary integral equations. The key issue is an algorithm that decomposes a technical surface which was generated by CAD tools into a regular collection of parameterized four-sided patches. By a postprocessing step the global continuity of the parametrization is guaranteed. Numerical results are reported to illustrate the approach. In particular, the decomposition techniques are applied to real CAD data which come from IGES files.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beylkin G., Coifman R., Rokhlin V.: The fast wavelet transform and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brunnett G.: Geometric design with trimmed surfaces. Comput. Suppl. 10, 101–115 (1995)

    Google Scholar 

  3. Cohen A., Daubechies I., Feauveau J.-C.: Biorthogonal bases of compactly supported wavelets. Pure Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dahmen W., Harbrecht H., Schneider R.: Compression techniques for boundary integral equations—optimal complexity estimates. SIAM J. Numer. Anal. 43, 2251–2271 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dahmen W., Kunoth A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dahmen W., Schneider R.: Composite wavelet bases for operator equations. Math. Comput. 68, 1533–1567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dahmen W., Schneider R.: Wavelets on manifolds I construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farin G.: Discrete Coons patches. Comput. Aided Geom. Des. 16(7), 691–700 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Floater M.: Chordal cubic spline interpolation is fourth order accurate. IMA J. Numer. Anal. 26, 25–33 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Forrest A.: On Coons and other methods for the representation of curved surfaces. Comput. Graph. Image Process. 1, 341–359 (1972)

    Article  MathSciNet  Google Scholar 

  11. Gordon W., Hall C.: Construction of curvilinear co-ordinate systems and applications to mesh generation. Int. J. Numer. Methods Eng. 7, 461–477 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gordon W., Hall C.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gordon, W.: Sculptured surface interpolation via blending-function methods. Research Report, Department of Mathematics and Computer Science, Drexel University, Philadelphia (1982)

  14. Greengard L., Rokhlin V.: A fast algorithm for particle simulation. J. Comput. Phys. 73, 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hackbusch W.: A sparse matrix arithmetic based on \({\mathcal{H}}\) -matrices part I: introduction to \({\mathcal{H}}\) -matrices. Computing 64, 89–108 (1999)

    Article  MathSciNet  Google Scholar 

  16. Hackbusch W., Nowak Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Harbrecht H.: A Newton method for Bernoulli’s free boundary problem in three dimensions. Computing 82, 11–30 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Harbrecht H., Hohage T.: Fast methods for three-dimensional inverse obstacle scattering. J. Integral Equ. Appl. 19, 237–260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Harbrecht H., Schneider R.: Biorthogonal wavelet bases for the boundary element method. Math. Nachr. 269–270, 167–188 (2004)

    Article  MathSciNet  Google Scholar 

  20. Harbrecht H., Schneider R.: Wavelet Galerkin schemes for boundary integral equations—implementation and quadrature. SIAM J. Sci. Comput. 27, 1347–1370 (2002)

    Article  MathSciNet  Google Scholar 

  21. Harbrecht H., Stevenson R.: Wavelets with patchwise cancellation properties. Math. Comput. 75, 1871–1889 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hoschek J., Lasser D.: Grundlagen der Geometrischen Datenverarbeitung. Teubner, Stuttgart (1989)

    MATH  Google Scholar 

  23. von Petersdorff T., Schneider R., Schwab C.: Multiwavelets for second kind integral equations. SIAM J. Numer. Anal. 34, 2212–2227 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Prautzsch H., Boehm W., Paluszny M.: Bézier and B-Spline Techniques. Springer, Berlin (2002)

    MATH  Google Scholar 

  25. Randrianarivony, M.: Geometric processing of CAD data and meshes as input of integral equation solvers. PhD thesis, Technische Universität Chemnitz, (2006)

  26. Roulier J.A.: Specifying the arc length of Bézier curves. Comput. Aided Geom. Des. 10, 25–56 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schneider R.: Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleichungssysteme. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  28. Schulze G. : Segmentation operators on Coons’ patches. In: Lyche, T., Schumaker, L. (eds) Mathematical Methods in Computer Aided Geometric Design, pp. 561–572. Academic Press, Boston (1989)

    Google Scholar 

  29. U.S. Product Data Association. Initial graphics exchange specification. IGES 5.3. Trident Research Center, SC, (1996)

  30. Wendland, W.L.: On asymptotic error analysis and underlying mathematical principles for boundary element methods. In: Brebbia C.A. (ed) Boundary Element Techniques in Computer Aided Engineering, NATO ASI Series E-84, pp. 417–436. Martinus Nijhoff, Dordrecht (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Harbrecht.

Additional information

Communicated by G. Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harbrecht, H., Randrianarivony, M. From Computer Aided Design to wavelet BEM. Comput. Visual Sci. 13, 69 (2010). https://doi.org/10.1007/s00791-009-0129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00791-009-0129-1

Keywords

Navigation