Skip to main content
Log in

A practical framework for the construction of prolongation operators for multigrid based on canonical basis functions

  • Published:
Computing and Visualization in Science

Abstract

We discuss a general framework for the construction of prolongation operators for multigrid methods. It turns out that classical black-box prolongation or prolongation operators based on smoothed aggregation can be classified as special cases. The approach is suitable both for geometric and for purely algebraic multigrid settings. It allows for a simple and efficient implementation and parallelization by introducing canonical basis functions. We show numerical results for several diffusion problems with strongly varying or jumping coefficients. As one possible application for our method we choose three-dimensional medical image segmentation. In addition to that a nonsymmetric convection-diffusion problem is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcouffe R., Brandt A., Dendy J., Painter J.: The multi-grid method for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 2, 430–454 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Braess D.: Towards algebraic multigrid for elliptic prooblems of second order. Computing 55, 379–393 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brandt A.: General highly accurate algebraic coarsening. Electronic Trans. Numer. Anal. 10, 1–20 (2000)

    MATH  MathSciNet  Google Scholar 

  4. Brandt A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    MATH  MathSciNet  Google Scholar 

  5. Brandt, A.: 1984 multigrid guide with applications to fluid dynamics. Monograph, GMD-Studie 85, GMD-FIT, Postfach 1240, D-5205, St. Augustin 1, West Germany (1985)

  6. Brandt A., Yavneh I.: Accelerated multigrid convergence and high-reynolds recirculating flows. SIAM J. Sci. Comput. 14(3), 607–626 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezina M., Cleary A., Falgout R., Henson V., Jones J., Manteuffel T., McCormick S., Ruge J.: Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput. 22(5), 1570–1592 (2001)

    Article  MathSciNet  Google Scholar 

  8. Brezina M., Falgout R., MacLachlan S., Manteuffel T., McCormick S., Ruge J.: Adaptive smoothed aggregation (alphaSA). SIAM J. Sci. Comput. 25(6), 1896–1920 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Briggs W. L., Henson V. E., McCormick S. F.: A Multigrid Tutorial. 2nd edn. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  10. de Zeeuw P.: Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J. Comput. Appl. Math. 33, 1–27 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dendy J. E. Jr.: Black box multigrid. J. Comput. Phys. 48, 366–386 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dendy J. E. Jr.: Black box multigrid for nonsymmetric problems. Appl. Math. Comput. 13, 261–284 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dendy J. E. Jr.: Two multigrid methods for three-dimensional equations with highly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 8, 673–685 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Falgout R.D.: Introduction to algebraic multigrid. Comput. Sci. Eng. 8(6), 24–33 (2006)

    Article  Google Scholar 

  15. Grady L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  16. Grady, L., Tasdizen, T., Whitaker, R.: A geometric multigrid approach to solving the 2D inhomogeneous Laplace equation with internal Dirichlet boundary conditions. In: IEEE International Conference on Image Processing (ICIP), vol. 2, 2005

  17. Hackbusch W.: Multi-Grid Methods Applications. Springer, Berlin (1985)

    MATH  Google Scholar 

  18. Hackbusch, W., Trottenberg, U. (eds): Multigrid Methods. Springer, Berlin (1982)

    MATH  Google Scholar 

  19. Han J., Bennewitz C., Köstler H., Hornegger J., Kuwert T.: Computer-aided validation of hybrid SPECT/CT scanners. Comput. Med. Imaging Graph. 32(5), 388–395 (2008)

    Article  Google Scholar 

  20. Kimmel R., Yavneh I.: An algebraic multigrid approach for image analysis. SIAM J. Sci. Comput. 24(4), 1218–1231 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Köstler, H.: A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer Vision. Verlag Dr. Hut, München (2008)

  22. Ruge J. W., Stüben K.: Algebraic multigrid (AMG). In: McCormick, S.F. (eds) Multigrid Methods, Frontiers in Applied Mathematics, pp. 73–130. SIAM, Philadelphia (1987)

    Google Scholar 

  23. Stüben, K.: Algebraic multigrid (AMG): An introduction with applications. GMD-Forschungszentrum Informationstechnik, appeared as an appendix in [24] (1999)

  24. Trottenberg U., Oosterlee C., Schüller A.: Multigrid. Academic Press, London and San Diego (2001)

    MATH  Google Scholar 

  25. Vaněk P., Brezina M., Mandel J.: Convergence of algebraic multigrid based on smoothed aggregation. Numerische Mathematik 88(3), 559–579 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Vaněk P., Mandel J., Brezina M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56(3), 179–196 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vassilevski P.: Element-free AMGe: General algorithms for computing interpolation weights in AMG. SIAM J. Sci. Comput. 23(2), 629–650 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wagner C.: On the algebraic construction of multilevel transfer operators. Computing 65(1), 73–95 (2000)

    MATH  MathSciNet  Google Scholar 

  29. Wesseling P.: An Introduction to Multigrid Methods, Ser. Pure and Applied Mathematics. Wiley, Chichester (1992)

    Google Scholar 

  30. Wienands R., Yavneh I.: Collocation coarse approximation (CCA) in multigrid. SIAM J. Sci. Comput. 31, 3643–3660 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yavneh I.: Coarse-grid correction for nonelliptic and singular perturbation problems. SIAM J. Sci. Comput. 19, 1682 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yavneh I., Venner C., Brandt A.: Fast multigrid solution of the advection problem with closed characteristics. SIAM J. Sci. Comput. 19, 111 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yavneh I.: Why multigrid methods are so efficient. Comput. Sci. Eng. 8(6), 12–22 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Wienands.

Additional information

Communicated by Gabriel Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wienands, R., Köstler, H. A practical framework for the construction of prolongation operators for multigrid based on canonical basis functions. Comput. Visual Sci. 13, 207–220 (2010). https://doi.org/10.1007/s00791-010-0138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-010-0138-0

Keywords

Navigation