Skip to main content
Log in

Three-dimensional simulation of the thermohaline-driven buoyancy of a brine parcel

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

We provide three-dimensional numerical simulations of the thermohaline-driven buoyancy of a brine “parcel” immersed in an initially homogeneous porous medium of hydrological interest. Our purpose is to improve our understanding of the thermohaline flow through the 3D visualization of the evolving patterns generated by the distributions of brine, temperature, and fluid density in the porous medium. We propose a possible physical interpretation of our results, which are obtained within the approximations usually employed in the context of density- and temperature-driven flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bear J.: Hydraulics of groundwater. Dover Publications, Inc, Mineola, New York (USA) (1979)

    Google Scholar 

  2. Oldenburg C.M., Pruess K.: Layered thermohaline convection in hypersaline geothermal systems. Transp. Porous Media 33, 29–63 (1998)

    Article  Google Scholar 

  3. Oldenburg C.M., Pruess K.: Plume separation by transient thermohaline convection in porous media. Geophys. Res. Lett. 26(19), 2997–3000 (1998)

    Article  Google Scholar 

  4. Oldenburg, C.M., Pruess, K.: Thermohaline convective mixing at a brine interface. In: Proceedings of the 25th workshop on geothermal reservoir engineering (SGP-TR-165). Standford University, Stanford, California (USA), Jan 24–26th, (2000)

  5. Landau L.D., Lifshitz E.M.: Fluid mechanics. 2nd Edn. Course of theoretical physics. vol. 6. Butterworth-Heinemann, Oxford (UK) (2003)

    Google Scholar 

  6. Grillo, A., Lampe, M., Wittum, G.: Modeling and Simulation of temperature-density-driven flow and thermodiffusion in porous media. Journal of Porous Media, Accepted (2011)

  7. Diersch, H.-J.G., Kolditz, O.: Variable-density flow and transport in porous media: approaches and challenges. In Wasy software FEFLOW—finite element subsurface flow and transport simulation system. White Papers, Vol. II, Wasy GmbH Institute for Water Resources and Systems Research, Berlin, Germany (2005)

  8. Frolkovič P., DeSchepper H.: Numerical modeling of convective dominated transport with density driven flow in porous media. Adv. Water Resour. 24(1), 63–72 (2001)

    Article  Google Scholar 

  9. Fein, E.: d 3 f—Ein Programmpaket zur Modellierung von dichtegetriebenen Strömungen. GRS, Braunschweig, GRS-139, ISBN 3-923875-97-5 (1998)

  10. Bastian P., Birken K., Eckstein K., Johannsen K., Lang S., Neuss N., Rentz-Reichert H.: \({\mathcal{UG} }\) —a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1(1), 27–40 (1997)

    Article  MATH  Google Scholar 

  11. UG home page, http://atlas.gcsc.uni-frankfurt.de/~ug

  12. Knaber P., Frolkovič P. et al.: Consistent velocity approximation for finite volume or element discretizations of density-driven flow in porous media. In: Aldama, A.A. (eds) Computational Methods in Water Resources XI, vol. 1—Computation Methods in Subsurface Flow and Transport Problems, pp. 93–100. Computation Mechanics Publications, Southampton (1996)

    Google Scholar 

  13. Nield D.A., Kuznetsov A.V.: A two-velocity two-temperature model for a bi-dispersed porous medium: forced convection in a channel. Transp. Porous Med. 59, 325–339 (2005)

    Article  Google Scholar 

  14. Diersch H.-J.G., Kolditz O.: Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Resour. 25(8), 899–944 (2002)

    Article  Google Scholar 

  15. Bear J.: Dynamics of Fluids in Porous Media, pp. 645–647. Dover Publications, Inc., New York (USA) (1972)

    MATH  Google Scholar 

  16. Holstad A.: Temperature-driven flow in porous media using a Mixed Finite Element Method and Finite Volume Method. Adv. Water Resour. 24, 843–862 (2001)

    Article  Google Scholar 

  17. Johannsen K., Kinzelbach W., Oswald S., Wittum G.: The Saltpool benchmark problem—numerical simulation of saltwater upconing in a porous medium. Adv. Water Resour. 25(3), 335–348 (2001)

    Article  Google Scholar 

  18. Frolkovič P.: Finite volume discretization of density driven flows in porous media. In: Benkhaldoun, F., Vilsmeier, R. (eds) Finite Volumes for Complex Applications, pp. 433–440. Hermes, Paris (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio Grillo.

Additional information

Communicated by Sabine Attinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grillo, A., Lampe, M. & Wittum, G. Three-dimensional simulation of the thermohaline-driven buoyancy of a brine parcel. Comput. Visual Sci. 13, 287–297 (2010). https://doi.org/10.1007/s00791-010-0145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-010-0145-1

Keywords

Navigation