Skip to main content
Log in

Efficient multi-scale computation of products of orbitals in electronic structure calculations

  • Published:
Computing and Visualization in Science

Abstract

The computation of two-electron integrals in electronic structure calculations is a major bottleneck in Hartree-Fock, density functional theory and post-Hartree-Fock methods. For large systems, one has to compute a huge number of two-electron integrals for these methods which leads to very high computational costs. The adaptive computation of products of orbitals in wavelet bases provides an important step towards efficient algorithms for the treatment of two-electron integrals in tensor product formats. For this, we use the non-standard approach of Beylkin which avoids explicit coupling between different resolution levels. We tested the efficiency of the algorithm for the products of orbitals in Daubechies wavelet bases and computed the two-electron integrals. This paper contains the detailed procedure and corresponding error analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aquilante F., Lindh R., Pedersen T.B.: Unbiased auxiliary basis sets for accurate two-electron integral approximations. J. Chem. Phys. 127(114107), 7 (2007)

    Google Scholar 

  2. Baerends E.J., Ellis D.E., Ros P.: Self-consistent molecular Hartree-Fock-Slater calculations I. The computational procedure. Chem. Phys. 2, 41–51 (1973)

    Article  Google Scholar 

  3. Beebe N.H.F., Linderberg J.: Simplifications in the generation and transformation of two-electron integrals in molecular calculations. Int. J. Quantum Chem. 12, 683–705 (1977)

    Article  Google Scholar 

  4. Bernholdt D.E., Harrison R.J.: Large-scale correlated electronic structure calculations: The RI-MP2 method on parallel computers. Chem. Phys. Lett. 250, 477–484 (1996)

    Article  Google Scholar 

  5. Beylkin, G.: On the fast algorithm for multiplication of functions in the wavelet bases. In: Meyer, Y., Roques, S. (eds.) Progress in wavelet analysis and applications: Proceedings of the international conference “wavelets and applications”, 1992, Toulouse, France, pp. 53–61, Editions Frontiers, Paris (1993)

  6. Beylkin G.: On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal. 6, 1716–1740 (1992)

    Article  MathSciNet  Google Scholar 

  7. Boman L., Koch H., de Merás A.S.: Method specific Cholesky decomposition: Coulomb and exchange energies. J. Chem. Phys. 129(134107), 14 (2008)

    Google Scholar 

  8. Boys S.F.: Electronic Wave Functions. I. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. A 200, 542–554 (1950)

    Article  MATH  Google Scholar 

  9. Boys S.F., Cook G.B., Reeves C.M., Shavitt I.: Automatic fundamental calculations of molecular structure. Nature 178, 1207–1209 (1956)

    Article  Google Scholar 

  10. Chinnamsetty, S.R.: Wavelet Tensor Product Approximation in Electronic Structure Calculations, PhD thesis, University of Leipzig, Leipzig (2008)

  11. Chinnamsetty, S.R., Espig, M., Flad, H.-J., Hackbusch, W.: Canonical tensor products as a generalization of Gaussian-type orbitals. Z. Phys. Chem. 224, 681–694 (2010)

    Google Scholar 

  12. Chinnamsetty S.R., Espig M., Khoromskij B.N., Hackbusch W., Flad H.-J.: Tensor product approximation with optimal rank in quantum chemistry. J. Chem. Phys. 127(084110), 14 (2007)

    Google Scholar 

  13. Dacre P.D., Elder M.: The evaluation of two-electron integrals using Gaussian expansions of orbital products. Mol. Phys. 22, 593–605 (1971)

    Article  Google Scholar 

  14. Dahmen W., Micchelli C.A.: Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal. 30, 507–537 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dahmen W., Schneider R., Xu Y.: Nonlinear functionals of wavelet expansions-adaptive reconstruction and fast evaluation. Numer. Math. 86, 49–101 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daubechies I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Daubechies I.: Ten Lectures on Wavelets. SIAM, Phiadelphia (1992)

    MATH  Google Scholar 

  18. De Silva V., Lim L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008)

    Article  MathSciNet  Google Scholar 

  19. Deslauriers G., Dubuc S.: Symmetric iterative interpolation processes. Constr. Approx. 5, 49–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dunlap B.I., Connolly J.W.D., Sabin J.R.: On some approximations in applications of X α theory. J. Chem. Phys. 71, 3396–3402 (1979)

    Article  Google Scholar 

  21. Dupuis M., Rys J., King H.F.: Evaluation of molecular integrals over Gaussian basis functions. J. Chem. Phys. 65, 111–116 (1976)

    Article  MathSciNet  Google Scholar 

  22. Espig, M.: Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Dimensionen, PhD thesis, University of Leipzig, Leipzig (2008)

  23. Feyereisen M., Fitzgerald G., Komornicki A.: Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem. Phys. Lett. 208, 359–363 (1993)

    Article  Google Scholar 

  24. Flad H.-J., Schneider R., Schulze B.-W.: Regularity of solutions of Hartree-Fock equations with Coulomb potential, Math. Methods Appl. Sci. 31, 2172–2201 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gill P.M.W.: Molecular integrals over Gaussian basis functions. Adv. Quantum Chem. 25, 141–205 (1994)

    Article  MathSciNet  Google Scholar 

  26. Greeley B.H., Russo T.V., Mainz D.T., Friesner R.A., Langlois J.-M., Goddard W.A. III, Donnelly R.E., Ringnalda M.N.: New pseudospectral algorithms for electronic structure calculations: length scale separation and analytical two-electron integral corrections. J. Chem. Phys. 101, 4028–4041 (1994)

    Article  Google Scholar 

  27. Helgaker T., Taylor P.R.: Gaussian basis sets and molecular integrals. In: Yarkony, D.R. (eds) Modern Electronic Structure Theory, Part. II. Advanced Series in Physical Chemistry, pp. 725–856. World Scientific Publishing, Singapore (1995)

    Chapter  Google Scholar 

  28. Helgaker T., Jørgensen P., Olsen J.: Molecular Electronic-Structure Theory. John Wiley & Sons Ltd, Chichester (2000)

    Google Scholar 

  29. Kendall R.A., Früchtl A.: The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development. Theor. Chem. Acc. 97, 158–163 (1997)

    Google Scholar 

  30. Khoromskij B.N., Khoromskaia V., Chinnamsetty S.R., Flad H.-J.: Tensor decomposition in electronic structure calculations on 3D Cartesian grids. J. Comput. Phys. 228, 5749–5762 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo H., Kolb D., Flad H.-J., Hackbusch W., Koprucki T.: Wavelet approximation of correlated wavefunctions. II.Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117, 3625–3638 (2002)

    Article  Google Scholar 

  32. Manby F.R., Knowles P.J., Lloyd A.W.: The Poisson equation in density fitting for the Kohn-Sham Coulomb problem. J. Chem. Phys. 115, 9144–9148 (2001)

    Article  Google Scholar 

  33. Martinez T.J., Carter E.A.: Pseudospectral methods applied to the electron correlation problem. In: Yarkony, D.R. (eds) Modern Electronic Structure Theory, Part. II. Advanced Series in Physical Chemistry, pp. 1132–1165. World Scientific Publishing, Singapore (1995)

    Chapter  Google Scholar 

  34. Obara S., Saika A.: Efficient recursive computation of molecular integrals over Cartesian Gaussian functions. J. Chem. Phys. 84, 3963–3974 (1986)

    Article  Google Scholar 

  35. Pollicott M., Weiss H.: How smooth is your wavelet? Wavelet regularity via thermodynamic formalism. Comm. Math. Phys. 281, 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Polly R., Werner H.-J., Manby F.R., Knowles P.J.: Fast Hartree-Fock theory using local density fitting approximations. Mol. Phys. 102, 2311–2321 (2004)

    Article  Google Scholar 

  37. Preuss H.: Bemerkungen zum Self-consistent-field-Verfahren und zur Methode der Konfigurationenwechselwirkung in der Quantenchemie. Z. Naturforsch. A 11, 823–831 (1956)

    MathSciNet  Google Scholar 

  38. Rendell A.P., Lee T.J.: Coupled-cluster theory employing approximate integrals: an approach to avoid the input/output and storage bottlenecks. J. Chem. Phys. 101, 400–408 (1994)

    Article  Google Scholar 

  39. Rys J., Dupuis M., King H.F.: Computation of electron repulsion integrals using the Rys quadrature method. J. Comput. Chem. 4, 154–157 (1983)

    Article  Google Scholar 

  40. Sambe H., Felton R.H.: A new computational approach to Slater’s SCFX α equation. J. Chem. Phys. 62, 1122–1126 (1975)

    Article  Google Scholar 

  41. Schütz M., Manby F.R.: Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals. Phys. Chem. Chem. Phys. 5, 3349–3358 (2003)

    Article  Google Scholar 

  42. Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Article  Google Scholar 

  43. Ten-no S.: An efficient algorithm for electron repulsion integrals over contracted Gaussian-type functions. Chem. Phys. Lett. 211, 259–264 (1993)

    Article  Google Scholar 

  44. Ten-no S., Iwata S.: Three-center expansion of electron repulsion integrals with linear combination of atomic electron distributions. Chem. Phys. Lett. 240, 578–584 (1995)

    Article  Google Scholar 

  45. Vahtras O., Almlöf J., Feyereisen M.W.: Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett. 213, 514–518 (1993)

    Article  Google Scholar 

  46. Van Alsenoy C.: Ab initio calculations on large molecules: the multiplicative integral approximation. J. Comput. Chem. 9, 620–626 (1988)

    Article  Google Scholar 

  47. Weigend F.: A fully direct RI-HF algorithm: implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency. Phys. Chem. Chem. Phys. 4, 4285–4291 (2002)

    Article  Google Scholar 

  48. Weigend F., Häser M.: RI-MP2: first derivatives and global consistency. Theor. Chem. Acc. 97, 331–340 (1997)

    Google Scholar 

  49. Werner H.-J., Manby F.R., Knowles P.J.: Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations. J. Chem. Phys. 118, 8149–8160 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Jürgen Flad.

Additional information

Communicated by Gabriel Wittum.

Supported by German Research Foundation (DFG) Priority Program 1145: Modern and universal first principles methods for many-electron systems in chemistry and physics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinnamsetty, S.R., Hackbusch, W. & Flad, HJ. Efficient multi-scale computation of products of orbitals in electronic structure calculations. Comput. Visual Sci. 13, 397–408 (2010). https://doi.org/10.1007/s00791-011-0153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-011-0153-9

Keywords

Navigation