Skip to main content
Log in

Iterant recombination with one-norm minimization for multilevel Markov chain algorithms via the ellipsoid method

  • Published:
Computing and Visualization in Science

Abstract

Recently, it was shown how the convergence of a class of multigrid methods for computing the stationary distribution of sparse, irreducible Markov chains can be accelerated by the addition of an outer iteration based on iterant recombination. The acceleration was performed by selecting a linear combination of previous fine-level iterates with probability constraints to minimize the two-norm of the residual using a quadratic programming method. In this paper we investigate the alternative of minimizing the one-norm of the residual. This gives rise to a nonlinear convex program which must be solved at each acceleration step. To solve this minimization problem we propose to use a deep-cuts ellipsoid method for nonlinear convex programs. The main purpose of this paper is to investigate whether an iterant recombination approach can be obtained in this way that is competitive in terms of execution time and robustness. We derive formulas for subgradients of the one-norm objective function and the constraint functions, and show how an initial ellipsoid can be constructed that is guaranteed to contain the exact solution and give conditions for its existence. We also investigate using the ellipsoid method to minimize the two-norm. Numerical tests show that the one-norm and two-norm acceleration procedures yield a similar reduction in the number of multigrid cycles. The tests also indicate that one-norm ellipsoid acceleration is competitive with two-norm quadratic programming acceleration in terms of running time with improved robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bause F., Kritzinger P.: Stochastic Petri Nets. Springer, Germany (1996)

    MATH  Google Scholar 

  2. Bazaraa M.S., Sherali H.D., Shetty C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, New Jersey (2006)

    Book  MATH  Google Scholar 

  3. Berman A., Plemmons R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, PA (1987)

    Google Scholar 

  4. Bertsimas D., Tsitisklis J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont, MA (1997)

    Google Scholar 

  5. Bland R.G., Goldfarb D., Todd M.J.: The ellipsoid method: a survey. Oper. Res. 29(6), 1039–1091 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandt A., Mikulinsky V.: On recombining iterants in multigrid algorithms and problems with small islands. SIAM J. Sci. Comput. 16, 20–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Briggs W.L., Henson V.E., McCormick S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  8. Buchholz P.: Multilevel solutions for structured Markov chains. SIAM J. Matrix Anal. Appl. 22(2), 342–357 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao W.L., Stewart W.J.: Iterative aggregation/disaggregation techniques for nearly uncoupled Markov chains. JACM 32(3), 702–719 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chatelin F., Miranker W.L.: Acceleration by aggregation of successive approximation methods. Linear Algebra Appl. 43, 17–47 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sterck H., Manteuffel T., McCormick S.F., Miller K., Pearson J., Ruge J., Sanders G.: Smoothed aggregation multigrid for Markov chains. SIAM J. Sci. Comput. 32, 40–61 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sterck H., Manteuffel T., McCormick S.F., Miller K., Ruge J., Sanders G.: Algebraic multigrid for Markov chains. SIAM J. Sci. Comput. 32, 544–562 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sterck H., Manteuffel T., McCormick S.F., Nguyen Q., Ruge J.: Multilevel adaptive aggregation for Markov chains, with application to web ranking. SIAM J. Sci. Comput. 30, 2235–2262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Sterck H., Manteuffel T., Miller K., Sanders G.: Top-level acceleration of adaptive algebraic multilevel methods for steady-state solution to Markov chains. Adv. Comput. Math. 35, 375–403 (2010)

    Article  Google Scholar 

  15. Sterck H., Miller K., Sanders G., Winlaw M.: Recursively accelerated multilevel aggregation for Markov chains. SIAM J. Sci. Comput. 32(3), 1652–1671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dziuban S.T., Ecker J.G., Kupferschmid M.: Using deep cuts in an ellipsoid algorithm for nonlinear programming. Math. Program. Stud. 25, 93–107 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Ecker J.G., Kupferschmid M.: An ellipsoid algorithm for nonlinear programming. Math. Program. 27, 83–106 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frenk J.B.G., Gromicho J., Zhang S.: A deep cut ellipsoid algorithm for convex programming: theory and applications. Math. Program. 63, 83–108 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goldfarb D., Todd M.J.: Modifications and implementation of the ellipsoid algorithm for linear programming. Math. Program. 23, 1–19 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grassmann W., Taksar M., Heyman D.: Regenerative analysis and steady-state distributions for Markov chains. Oper. Res. 33(5), 1107–1116 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haviv M.: Aggregation/disaggregation methods for computing the stationary distribution of Markov chains. SIAM J. Numer. Anal. 24(4), 952–966 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, New York, NY (1985)

    MATH  Google Scholar 

  23. Horton, G., Leutenegger, S.T.: A multi-level solution algorithm for steady-state Markov chains. In: Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp. 191–200 (1994)

  24. Iudin D.B., Nemirovskii A.S.: Informational complexity and effective methods of solution for convex extremal problems. Matekon Transl. Russ. East Eur. Math. Econ. 13, 3–25 (1976)

    Google Scholar 

  25. Khachiyan L.G.: A polynomial algorithm in linear programming. Sov. Math. Doklady 20, 191–194 (1976)

    Google Scholar 

  26. Koury J.R., McAllister D.F., Stewart W.J.: Iterative methods for computing stationary distributions of nearly completely decomposable Markov chains. SIAM J. Alg. Disc. Meth. 5(2), 164–186 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krieger U.R.: Numerical solution of large finite Markov chains by algebraic multigrid techniques. In: Stewart, W. (eds) Numerical Solution of Markov Chains, pp. 403–424. Kluwer, Dordrecht (1995)

    Google Scholar 

  28. Krieger U.R.: On a two-level multigrid solution method for Markov chains. Linear Algebra Appl. 223–224, 415–438 (1995)

    Article  MathSciNet  Google Scholar 

  29. Leutenegger, S.T., Horton, G.: On the utility of the multi-level algorithm for the solution of nearly completely decomposable Markov chains. Tech. Rep. 94-44, ICASE (1994)

  30. Lüthi H.-J.: On the solution of variational inequalities by the ellipsoid method. Math. Oper. Res. 10(3), 515–522 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mandel J., Sekerka B.: A local convergence proof for the iterative aggregation method. Linear Algebra Appl. 51, 163–172 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Marek I., Mayer P.: Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices. Numer. Linear Algebra Appl. 5, 253–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Marek I., Mayer P.: Convergence theory of some classes of iterative aggregation/disaggregation methods for computing stationary probability vectors of stochastic matrices. Linear Algebra Appl. 363, 177–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Molloy M.K.: IEEE Trans. Comput. C-31, 913–917 (1982)

    Article  Google Scholar 

  35. Philippe B., Saad Y., Stewart W.J.: Numerical methods in Markov chain modeling. Oper. Res. 40(6), 1156–1179 (1992)

    Article  MATH  Google Scholar 

  36. Rockafellar R.T.: Convex Analysis. Princeton University Press, New Jersey (1970)

    MATH  Google Scholar 

  37. Shor N.Z.: Cut-off method with space extension in convex programming problems. Cybernetics 13, 94–96 (1977)

    Google Scholar 

  38. Simon H.A., Ando A.: Aggregation of variables in dynamic systems. Econometrica 29, 111–138 (1961)

    Article  MATH  Google Scholar 

  39. Stewart W.J.: An Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton, NJ (1994)

    Google Scholar 

  40. Takahashi, Y.: A lumping method for numerical calculations of stationary distributions of Markov chains. Tech. Rep. B-18, Department of Information Sciences, Tokyo Institute of Technology (1975)

  41. Treister E., Yavneh I.: On-the-fly adaptive smoothed aggregation for Markov chains. SISC 33, 2927–2949 (2011)

    Google Scholar 

  42. Treister E., Yavneh I.: Square and stretch multigrid for stochastic matrix eigenproblems. Numer. Linear Algebr. 17, 229–251 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Trottenberg U., Oosterlee C.W., Schüller A.: Multigrid. Elsevier Academic Press, San Diego, California (2001)

    MATH  Google Scholar 

  44. Washio T., Oosterlee C.W.: Krylov subspace acceleration for nonlinear multigrid schemes. Electron. Trans. Numer. Anal. 6, 271–290 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Killian Miller.

Additional information

Communicated by C. W. Oosterlee and A. Borzi Pl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Sterck, H., Miller, K. & Sanders, G. Iterant recombination with one-norm minimization for multilevel Markov chain algorithms via the ellipsoid method. Comput. Visual Sci. 14, 51–65 (2011). https://doi.org/10.1007/s00791-011-0163-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-011-0163-7

Keywords

Navigation