Skip to main content
Log in

A convection-diffusion-shape model for aberrant colonic crypt morphogenesis

  • Published:
Computing and Visualization in Science

Abstract

It is generally accepted that colorectal cancer is initiated in the small pits, called crypts, that line the colon. Normal crypts exhibit a regular pit pattern, similar in two-dimensions to a U-shape, but aberrant crypts display different patterns, and in some cases show bifurcation. According to several medical articles, there is an interest in correlating pit patterns and the cellular kinetics, namely of proliferative and apoptotic cells, in colonic crypts. This paper proposes and implements a hybrid convection-diffusion-shape model for simulating and predicting what has been validated medically, with respect to some aberrant colonic crypt morphogenesis. The model demonstrates crypt fission, in which a single crypt starts dividing into two crypts, when there is an increase of proliferative cells. The overall model couples the cell movement and proliferation equations with the crypt geometry. It relies on classical continuum transport/mass conservation laws and the changes in the crypt shape are driven by the pressure exerted by the cells on the crypt wall. This pressure is related to the cell velocity by a Darcy-type law. Numerical simulations are conducted and comparisons with the medical results are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcón T., Byrne H.M., Maini P.K.: Towards whole-organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 85, 451–472 (2004)

    Article  Google Scholar 

  2. Araujo R.P., McElwain L.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)

    Article  MathSciNet  Google Scholar 

  3. Armstrong N.J., Painter K.J., Sherratt J.A.: A continuum approach to modelling cell–cell adhesion. J. Theor. Biol. 243, 98–113 (2006)

    Article  MathSciNet  Google Scholar 

  4. Baker R.E., Gaffney E.A., Maini P.K.: Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 21(11), R251–R290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bienz M., Clevers H.: Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000)

    Article  Google Scholar 

  6. Boman B.M., Fields J.Z., Bonham-Carter O., Runquist O.A.: Computer modeling implicates stem cell overproduction in colon cancer initiation. Cancer Res. 61, 8408–8411 (2001)

    Google Scholar 

  7. d’Onofrio A., Tomlinson I.P.M.: A nonlinear mathematical model of cell turnover, differentiation and tumorigenesis in the intestinal crypt. J. Theor. Biol. 244, 367–374 (2007)

    Article  MathSciNet  Google Scholar 

  8. Drasdo D., Loeffer M.: Individual-based models to growth and folding in one-layered tissues: intestinal crypts and early development. Nonlinear Anal. 47, 245–256 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edwards C.M., Chapman S.: Biomechanical modelling of colorectal crypt budding and fission. Bull. Math. Biol. 69(6), 1927–1942 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Figueiredo I., Leal C., Leonori T., Romanazzi G., Figueiredo P., Donato M.: A coupled convection-diffusion level set model for tracking epithelial cells in colonic crypts. Procedia Comput. Sci. 1(1), 955–963 (2010)

    Google Scholar 

  11. Figueiredo P., Donato M.: Cyclooxygenase-2 is overexpressed in aberrant crypt foci of smokers. Eur. J. Gastroenterol. Hepatol. 22(10), 1271 (2010)

    Article  Google Scholar 

  12. Figueiredo P., Donato M., Urbano M., Goulão H., Gouveia H., Sofia C., Leitão M., Freitas D.: Aberrant crypt foci: endoscopic assessment and cell kinetics characterization. Int. J. Colorectal Dis. 24(4), 441–450 (2009)

    Article  Google Scholar 

  13. Galle J., Loeffler M., Drasdo D.: Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys. J. 88, 62–75 (2005)

    Article  Google Scholar 

  14. Greaves L.C. et al.: Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc. Natl. Acad. Sci. U.S.A. 103(3), 714–719 (2006)

    Article  Google Scholar 

  15. Greenspan H.P.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56(2), 229–242 (1976)

    Article  MathSciNet  Google Scholar 

  16. Harper P.R., Jones S.K.: Mathematical models for the early detection and treatment of colorectal cancer. Health Care Manag. Sci. 8, 101–109 (2005)

    Article  Google Scholar 

  17. Hogea C., Murray B., Sethian J.A.: Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J. Math. Biol. 53(1), 86–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hurlstone D. et al.: Rectal aberrant crypt foci identified using high-magnification-chromoscopic colonoscopy: biomarkers for flat and depressed neoplasia. Am. J. Gastroenterol. 100, 1283–1289 (2005)

    Article  Google Scholar 

  19. Johnston M.D., Edwards C., Bodmer W.F., Maini P.K., Chapman S.J.: Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc. Natl. Acad. Sci. U.S.A. 104(10), 4008–4013 (2007)

    Article  Google Scholar 

  20. Kato Y.: Mixed-type boundary conditions for second order elliptic differential equations. J. Math. Soc. Jpn. 26, 405–432 (1974)

    Article  MATH  Google Scholar 

  21. Kutarani Y., Tamura S., Furuya Y., Onishi S.: Morphogenesis of a colorectal neoplasm with a type iiis pit pattern inferred from isolated crypts. J. Gastroenterol. 43, 597–602 (2008)

    Article  Google Scholar 

  22. van Leeuwen, I., Byrne, H., Johnston, M., Edwards, C., Chapman, S., Bodmer, W., Maini, P.: Modelling multiscale aspects of colorectal cancer. In: CP971, International Conference on Mathematical Biology-ICMB07, pp. 3–7. American Institute of Physics Conference Proceedings (2008)

  23. van Leeuwen I.M.M., Byrne H.M., Jensen O.E., King J.R.: Crypt dynamics and colorectal cancer: advances in mathematical modelling. Cell Prolif. 39, 157–181 (2006)

    Article  Google Scholar 

  24. van Leeuwen I.M.M., Edwards C.M., Ilyas M., Byrne H.M.: Towards a multiscale model of colorectal cancer. World J. Gastroenterol. 13(9), 1399–1407 (2007)

    Google Scholar 

  25. Macklin P., Lowengrub J.: A new ghost cell/level set method for moving boundary problems: application to tumor growth. J. Sci. Comput. 35(2–3), 266–299 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mantzaris N.V., Webb S., Othmer H.G.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49, 111–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meineke F.A., Potten C.S., Loeffler M.: Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 34(4), 253–266 (2001)

    Article  Google Scholar 

  28. Michor F., Iwasa Y., Lengauer C., Nowak M.A.: Dynamics of colorectal cancer. Semin. Cancer Biol. 15, 484–494 (2005)

    Article  Google Scholar 

  29. Murray, J.D.: Mathematical biology: II. Spatial models and biomedical applications, 3rd edn. In: Interdisciplinary Applied Mathematics: Mathematical Biology, vol. 18. Springer-Verlag, New York (2003)

  30. Pao C.V.: Nonlinear parabolic and elliptic equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  31. Paulus U., Loeffler M., Zeidler J., Owen G., Potten C.: The differentiation and lineage development of goblet cells in the murine small intestinal crypt: experimental and modelling studies. J. Cell Sci. 106, 473–484 (1993)

    Google Scholar 

  32. Pinsky P.F.: A multi-stage model of adenoma development. J. Theor. Biol. 207, 129–143 (2000)

    Article  Google Scholar 

  33. Preston S.L., Wong W.M., Chan A.O.O., Poulsom R., Jeffery R., Goodlad R., Mandir N., Elia G., Novelli M., Bodmer W., Tomlinson I., Wright N.: Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res. 63, 3819–3825 (2003)

    Google Scholar 

  34. Preziosi L., Farina A.: On Darcy’s law for growing porous media. Int. J. Non-Linear Mech. 37, 485–491 (2002)

    Article  MATH  Google Scholar 

  35. Quarteroni, A., Formaggia, L., Veneziani, A. (eds.): Complex Systems in Biomedicine. Springer, Milano (2006)

  36. Ribba, B., Colin, T., Schnell, S.: A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor. Biol. Med. Model. 3(7), (2006). doi:10.1186/1742-4682-3-7

  37. Roncucci L., Medline A., Bruce W.R.: Classification of aberrant crypt foci and microadenomas in human colon. Cancer Epidemiol. Biomarkers Prev. 1, 57–60 (1991)

    Google Scholar 

  38. Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM Rev. 49(2), 179–208 (2007). URL http://dx.doi.org/10.1137/S0036144504446291

    Google Scholar 

  39. Sherratt J.A., Chaplain M.A.: A new mathematical model for avascular tumour growth. J. Math. Biol. 43, 291–312 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shih I.M. et al.: Top-down morphogenesis of colorectal tumors. Proc. Natl. Acad. Sci. U.S.A. 98(5), 2640–2645 (2001)

    Article  Google Scholar 

  41. Tamura S., Furuya Y., Tadokoro T., Higashidani Y., Yokoyama Y., Araki K., Onishi S.: Pit pattern and three-dimensional configuration of isolated crypts from the patients with colorectal neoplasm. J. Gastroenterol. 37(10), 798–806 (2002)

    Article  Google Scholar 

  42. Taylor R.W. et al.: Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Investig. 112(9), 1351–1360 (2003)

    Google Scholar 

  43. The Mathworks, Inc.: http://www.matlab.com

  44. Tomlinson I.P.M., Bodmer W.F.: Failure of programmed cell death and differentiation as causes of tumors: some simple mathematical models. Proc. Natl. Acad. Sci. U.S.A. 92(9), 11130–11134 (1995)

    Article  Google Scholar 

  45. Walter, A.C.: A comparison of continuum and cell-based models of colorectal cancer. Ph.D. thesis, University of Nottingham (2009)

  46. Ward J.P., King J.R.: Mathematical modelling of avascular-tumor growth. IMA J. Math. Appl. Med. Biol. 14, 39–69 (1997)

    Article  MATH  Google Scholar 

  47. Wodarz D.: Effect of stem cell turnover rates on protection against cancer and aging. J. Theor. Biol. 245, 449–458 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel N. Figueiredo.

Additional information

Communicated by Gabriel Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiredo, I.N., Leal, C., Romanazzi, G. et al. A convection-diffusion-shape model for aberrant colonic crypt morphogenesis. Comput. Visual Sci. 14, 157–166 (2011). https://doi.org/10.1007/s00791-012-0170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-012-0170-3

Keywords

Mathematics Subject Classification (2000)

Navigation