Skip to main content
Log in

Refinement of flexible space–time finite element meshes and discontinuous Galerkin methods

  • Published:
Computing and Visualization in Science

Abstract

In this paper we present an algorithm to refine space–time finite element meshes as needed for the numerical solution of parabolic initial boundary value problems. The approach is based on a decomposition of the space–time cylinder into finite elements, which also allows a rather general and flexible discretization in time. This also includes adaptive finite element meshes which move in time. For the handling of three-dimensional spatial domains, and therefore of a four-dimensional space–time cylinder, we describe a refinement strategy to decompose pentatopes into smaller ones. For the discretization of the initial boundary value problem we use an interior penalty Galerkin approach in space, and an upwind technique in time. A numerical example for the transient heat equation confirms the order of convergence as expected from the theory. First numerical results for the transient Navier–Stokes equations and for an adaptive mesh moving in time underline the applicability and flexibility of the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abedi, R., Chung, S.-H., Erickson, J., Fan, Y., Garland, M., Guoy, D., Haber, R., Sullivan, J.M., Thite, S., Zhou, Y.: Spacetime meshing with adaptive refinement and coarsening. In: Proceedings of Symposium on Computational Geometry, pp. 300–309 (2004)

  2. Arnold D.N, Brezzi F., Cockburn B., Marini D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumann C.E., Oden J.T.: A discontinuous hp finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumgartner L.: Zerlegung des n-dimensionalen Raumes in kongruente Simplexe. Math. Nachr. 48, 213–224 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Behr M.: Simplex space–time meshes in finite element simulations. Int. J. Numer. Methods Fluids 57, 1421–1434 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bey J.: Simplicial grid refinement on Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85, 1–29 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen Z., Steeb H., Diebels S.: A space–time discontinuous Galerkin method applied to single-phase flow in porous media. Comput. Geosci. 12, 525–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn B., Gopalakrishnan J., Lazarov R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coxeter H.S.M.: Regular Polytopes. Dover, New York (1973)

    Google Scholar 

  10. Egger H., Schöberl J.: A hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems. IMA J. Numer. Anal. 30, 1206–1234 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freudenthal H.: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. 43, 580–582 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gonçalves E.N., Palhares R.M., Takahashi R.H.C., Mesquita R.C.: Algorithm 860: simpleS—an extension of Freudenthal’s simplex subdivision. ACM Trans. Math. Softw. 32, 609–621 (2006)

    Article  MATH  Google Scholar 

  13. Haiman M.: A simple and relatively efficient triangulation of the n-cube. Discret. Comput. Geom. 6, 287–289 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson C.R., Hansen C.: The Visualization Handbook. Elsevier–Butterworth Heinemann, Oxford (2005)

    Google Scholar 

  15. Masud A., Hughes T.J.R.: A space–time Galerkin/least-squares finite element formulation of the Navier–Stokes equations for moving domain problems. Comput. Methods Appl. Mech. Eng. 146, 91–126 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neumüller, M.: Eine Finite Element Methode für optimale Kontrollprobleme mit parabolischen Randwertaufgaben. Masterarbeit, Institut für Numerische Mathematik, Technische Universität Graz (2010)

  17. Orden D.: Asymptotically efficient triangulations of the d-cube. Discret. Comput. Geom. 30, 509–528 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Rivière B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  19. Sudirham J.J., van der Vegt J.J.W., van Damme R.M.J.: Space–time discontinuous Galerkin method for advection–diffusion problems on time-dependent domains. Appl. Numer. Math. 56, 1491–1518 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tezduyar T.E.: Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 195, 2983–3000 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tezduyar T.E., Behr M., Liou J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure. I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94, 339–351 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tezduyar T.E., Behr M., Mittal S., Liou J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure. II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94, 353–371 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tezduyar T.E., Sathe S.: Enhanced-discretization space–time technique (EDSTT). Comput. Methods Appl. Mech. Eng. 193, 1385–1401 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thomee V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    MATH  Google Scholar 

  25. van der Vegt J.J.W., Sudirham J.J.: A space–time discontinuous Galerkin method for the time-dependent Oseen equations. Appl. Numer. Math. 58, 1892–1917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Steinbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumüller, M., Steinbach, O. Refinement of flexible space–time finite element meshes and discontinuous Galerkin methods. Comput. Visual Sci. 14, 189–205 (2011). https://doi.org/10.1007/s00791-012-0174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-012-0174-z

Keywords

Navigation