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Optimization Problems in Contracted Tensor Networks

Mike Espig ∗ Wolfgang Hackbusch ∗ Stefan Handschuh ∗ Reinhold Schneider †

October 17, 2011

Abstract

We discuss the calculus of variations in tensor representations with a special focus on tensor networks
and apply it to functionals of practical interest. The survey provides all necessary ingredients for applying
minimization methods in a general setting. The important cases of target functionals which are linear
and quadratic with respect to the tensor product are discussed, and combinations of these functionals are
presented in detail. As an example, we consider the representation rank compression in tensor networks.
For the numerical treatment, we use the nonlinear block Gauss-Seidel method. We demonstrate the rate of
convergence in numerical tests.

Keywords: tensor format, tensor representation, tensor network, variational calculus in tensor networks.

1 Introduction

Let (Vµ, 〈, 〉Vµ
) be a real pre-Hilbert spaces and V :=

d⊗
µ=1

Vµ equipped with the induced inner product and

norm.

Notation 1.1. Let X be a vector space, Y a subspace of X and f : Y → R. We will use the short notation
M(f, Y ) for the set of minimizers of the induced minimization problem, i.e.

M(f, Y ) := {y ∈ Y : f(y) = inf f(Y )}. (1)

Problem 1.2. Given a functional F : V → R and a set M ⊂ V , we are searching for a minimizer of the
constrained optimization problem where the original setM is confined to tensors which we can represent in a
parametrised way, i.e. we are searching for

u ∈ M(F,M∩U), (2)

where U ⊂ V is the image of a multilinear map U : P → V . The map U is a tensor format from a parameter
space P into the tensor product space, see Definition 2.3 for an explicit description.

We will see that a contracted tensor network is a special tensor representation, see Definition 2.6 for more
details. Let us mention a few basic examples which are important in several practical applications in high
dimensions.

∗Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
†Technical University Berlin, Germany
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(i) The approximation of v ∈ V in a specific tensor representation, i.e. F (u) = ‖u− v‖2, u ∈ U .

(ii) The solution of equations Au = b or g(u) = 0 where A, g : V → V ′. Here we have F (u) = ‖Au− b‖2
V ′

resp. ‖g(u)‖V ′ .
(iii) If A : V → V ′ is bounded, symmetric and coercive with respect to ||.||V and b ∈ V ′ given, we may

instead of the first functional in (ii) focus on F (u) := 1
2〈Au, u〉 − 〈b, u〉.

(iv) Computation of the lowest eigenvalue of a symmetric operator A : V → V ′ by minimizing the Rayleigh
quotient: F (u) := 〈Au, u〉/〈u, u〉 over M = V\{0}. This problem is equivalent to the minimization
problem

find u ∈ M
(
F, {u ∈ U : ||u|| = 1}).

In the first three examples we have M∩ U = U , while in the last example we have an additional constraint,
namely M = {W ∈ V : 〈W,W 〉 = 1}.

The case of interest for our work is summarized in the following abstractly formulated Problem 1.3.

Problem 1.3. For a given function F : V → R and a tensor format U : P → V we consider the following
problem:

find u ∈ M(J,M), J := F ◦ U : P → V → R and M ⊆ P. (3)

We call the function J : P → R objective function.

2 Mathematical description of tensor formats and tensor networks

A tensor format is described by the parameter space and a multilinear map into the tensor space of higher order.
The parameter space consist of two different types of parameters: the parameters of vector space meaning and
interior parameters. We will describe this in more details below. Let in the following V =

⊗d
µ=1 Vµ be the

tensor product of vector spaces V1, . . . , Vd.

Notation 2.1. Let A ∈ {R, V1, . . . , Vd}, ` ∈ N0 := N∪ {0}, andN` :=
`×

ν=1
N (1 ≤ `). The set of maps with

finite support fromN` into A is defined by

M0(N`, A) :=
{

A, ` = 0,{
u : N` → A |#supp(u) ∈ N}

, ` ≥ 1.
(4)

The natural number ` is called the degree of u ∈M0(N`, A).

Let us start with an example for pointing out our further intentions.

Example 2.2. A tensor network is described by its tensor network graph G = (N, E). An example of a tensor
network graph is plotted in Figure 1. The set of nodes N contains two different types of nodes, i.e. we have
N = {v1, v2} ∪ {w}. The set for vertices of vector space meaning {v1, v2} and the set of nodes for the

coefficients {w}, where in Figure 1 the symbol stands for nodes of vector space meaning and the symbol
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v1 v2
w

j1 j2

Figure 1: The tensor network graph of the tensor network from Example 2.2.

denotes vertices for the coefficients. We have two edges E = {{v1, w}, {w, v2}} in our example. The tensor
network format introduced by the tensor network graph is the following multilinear map:

UG : M0(N2,R)×M0(N, V1)×M0(N, V2) → V1 ⊗ V2

(w, v1, v2) 7→ UG(w, v1, v2) :=
∞∑

j1=1

∞∑

j2=1

w(j1, j2)︸ ︷︷ ︸
∈R

v1(j1)︸ ︷︷ ︸
∈V1

⊗ v2(j2)︸ ︷︷ ︸
∈V2

,

where for a better understanding the edges are identified by there corresponding summation indices, i.e. j1 '
{v1, w} and j2 ' {w, v2}. For given so called representation ranks r = (r1, r2) ∈ N2, the tensor network
representation UG, r introduced by the tensor network format UG is the restriction of UG onto M0(N≤r1 ×
N≤r2 ,R)×M0(N≤r1 , V1)×M0(N≤r2 , V2), i.e.

UG, r(w, v1, v2) :=
r1∑

j1=1

r2∑

j2=1

w(j1, j2)v1(j1)⊗ v2(j2),

Notice that the representation rank r refers to the support of the representation system (w, v1, v2) and not to
the represented tensor.

Definition 2.3 (Parameter Space, Tensor Format). Let d, L ∈ N0 and furthermore `1, . . . , `d, ˜̀
1, . . . , ˜̀

L ∈ N0.

The vector space S of parameters of vector space meaning for V is defined by

S :=
d×

µ=1

M0(N`µ , Vµ). (5)

In a similar way we define the space C for the interior parameter

C :=
L×

ν=1

M0(N
˜̀
ν ,R). (6)

We call the cartesian product
Pd,L = S × C (7)

a parameter space of order (d, L). A tensor format of order (d, L) in V is a multilinear map

U : Pd,L → V (8)

from the parameter space into the tensor space.

We will see in the following that a tensor network is a special tensor format, where the definition of a tensor
network is based on the tensor network graph.
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Definition 2.4 (Tensor Network Graph, Tensor Network Tree, Degree Map). Let

Ns =



vµ ∈

⋃

`∈N0

M0(N`, Vµ) : 1 ≤ µ ≤ d





be a set of nodes of vector space meaning with #Ns = d and

Nc =



wν ∈

⋃

`∈N0

M0(N`,R) : 1 ≤ ν ≤ L





be a finite subset of nodes of interior parameters with #Nc = L. Further let N := Ns ∪ Nc and E ⊂
{{n1, n2} : n1, n2 ∈ N,n1 6= n2} ⊂ P(N) a set of edges. We call the finite graph G := (N,E) a tensor
network graph in V of order (d, L). The degree map of G is defined as g : N → N, n 7→ #{e ∈ E : n ∈ e},
such that g assigns each element of N the number of edges, it is connected to.

In graph theory there are different ways to describe a graph. For our work, the most useful is the incidence
map.

Definition 2.5 (Incidence Map). Let G = (N, E) be a tensor network graph of order (d, L). Since we have
chosen all tensor network graphs to be finite, we can select an edge enumeration, i.e. there is a bijective map
e : N≤m → E, where m := #E. We call the map

I : N ×
m×̀
=1

N→
m⋃

`=1

N` (9)

(n, j1, . . . , jm) 7→ I(n, j) := (j` : 1 ≤ ` ≤ m,n ∈ e(`)) . (10)

the incidence map of G, where the order of the j` is being preserved.

We will not distinguish between N and N≤d+L such that we identify both sets with each other, i.e. there is a
bijective map ϕ : N≤d+L → N such that we can uniquely identify µ ∈ N≤d+L with n = ϕ(µ). If it is clear
from context we simply write µ with the meaning of ϕ(µ), (µ ' ϕ(µ)). Further, if 1 ≤ µ ≤ d then n ∈ Ns

and n ∈ Nc otherwise.

Definition 2.6 (Tensor Network Format, Tensor Network Representation). Let G = (N, E) be a tensor net-
work graph of order (d, L) and m := #E. Furthermore, let I be the incidence map and g the degree map of
G. We define the following tensor format UG as a tensor network format in V .

UG :
d×

µ=1

M0(Ng(µ), Vµ) ×
L×

ν=1

M0(Ng(d+ν),R) → V (11)

(v1, . . . , vd, w1, . . . , wL) 7→
∞∑

j1=1

· · ·
∞∑

jm=1

(
L∏

ν=1

wν(I(d + ν, j))

)
d⊗

µ=1

vµ(I(µ, j)).

The tensor network representation UG, r with representation rank r = (r1, . . . , rm) ∈ Nm is defined as

UG,r :
d×

µ=1

M0(Ng(µ), Vµ) ×
L×

ν=1

M0(Ng(d+ν),R) → V (12)

(v1, . . . , vd, w1, . . . , wL) 7→
r1∑

j1=1

· · ·
rm∑

jm=1

(
L∏

ν=1

wν(I(d + ν, j))

)
d⊗

µ=1

vµ(I(µ, j)).
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We say u = UG,r(v1, . . . , vd, w1, . . . , wL) ∈ Range UG,r ⊂ V is represented in the tensor network format
with representation rank r ∈ Nm. Furthermore, we call the tuple of parameters (v1, . . . , vd, w1, . . . , wL) a
representation system of u with representation rank r.

Note that due to the multilinearity of UG,r a representation system is not uniquely determined. We want to
illustrate the abstract definition of the tensor network on further examples. The most recent tensor represen-
tations are tensor networks, e.g. hierarchical tensor format [8, Hackbusch and Kühn, 2009], [6, Grasedyck,
2010], the tree Tucker format (TT) [18, 14, Oseledets and Tyrtyshnikov, 2009], where the TT tensor format
is also called tensor train format. The Tucker decomposition is also a tensor network format, see Figure 2 for
illustration. The canonical polyadic decomposition (CP) for tensor ranks greater than one and d > 2 is not
a tensor network. But, it is easy to illustrate that the canonical polyadic tensor representation for d = 2 is a
tensor network for any rank.

v1

v2 v3

(a) Elementary Tensor (CP with
r = 1)

v1

v2 v3

w1

j1

j2 j3

(b) Tucker

Figure 2: The tensor network graph of the canonical polyadic (rank is one) and the Tucker format for d = 3.

Example 2.7. Our first example of a tensor network is the hierarchical tensor format for d = 4. Where the
tensor network graph of order (4, 3) is shown in Figure 3. The map IH : N ××6

l=1N→ ⋃6
l=1N

l is defined

w1

w2 w3

v1 v2 v3 v4

j5 j6

j1 j2 j3 j4

Figure 3: The tensor network graph of the hierarchical tensor format for d = 4.
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by

IH(n, (j1, . . . , j6)) :=





(j1), n = 1;
(j2), n = 2;
(j3), n = 3;
(j4), n = 4;
(j5, j6), n = 5;
(j1, j2, j5), n = 6;
(j3, j4, j6), n = 7.

Furthermore, the multilinear map for the hierarchical tensor format is

UH(v1, . . . , w3) :=
∑

j∈N6

w1(j5, j6)w2(j1, j2, j5)w3(j3, j4, j6) v1(j1)⊗ v2(j2)⊗ v3(j3)⊗ v4(j4). (13)

v1 v2 v3 v4

j1 j2 j3

Figure 4: The tensor network graph of the tensor train format for d = 4.

Next, we want to consider the tensor train format for d = 4. The tensor network graph of order (4, 0) is
illustrated in Figure 4. We see that the degree of the nodes v1 and v2 is equal to 1. Furthermore, the degree of
the nodes v2, v3 is 2 and the number of edges in the graph is 3. For this example, the map ITT : N××3

l=1N→⋃3
l=1N

l is defined by

ITT (n, (j1, j2, j3)) :=





(j1), n = 1;
(j1, j2), n = 2;
(j2, j3), n = 3;
(j3), n = 4.

Finally, for the tensor network representation with representation rank r = (r1, r2, r3) ∈ N3 we have

UTT, r(v1, . . . , v4) :=
r1∑

j1=1

r2∑

j2=1

r3∑

j3=1

v1(j1)⊗ v2(j1, j2)⊗ v3(j2, j3)⊗ v4(j3).

Another example of a tensor network is the tensor chain (see [11]). The network graph of the tensor chain

v1

v2v3

j1 j2

j3

Figure 5: The tensor network graph of the tensor chain for d = 3.
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is presented in Figure 5 for d = 3 and the tensor network representation UTC, r with representation rank
r = (r1, r2, r3) ∈ N3 is defined by

UTC, r(v1, . . . , v3) :=
r1∑

j1=1

r2∑

j2=1

r3∑

j3=1

v1(j1, j2)⊗ v2(j2, j3)⊗ v3(j1, j3). (14)

The so called projected entangled-pair states (PEPS) offers an efficient tensor network of certain many-body
states of a lattice system, see e.g. [17], [16]. For d = 6, the tensor network graph of the PEPS tensor network
is shown in Figure 6.

v1 v2 v3

v4 v5 v6

j1 j2

j3

j4j5

j6 j7

Figure 6: The tensor network graph of the PEPS for d = 6.

The multilinear map of the PEPS with equal representation ranks r ∈ N is given by

UPEPS,r(v1, . . . , v6) :=
∑

j∈N7
≤r

ṽ(j)⊗ v̂(j), (15)

where

ṽ(j) := v1(j1, j6)⊗ v2(j1, j2, j7)⊗ v3(j2, j3),
v̂(j) := v4(j5, j6)⊗ v5(j4, j5, j7)⊗ v6(j3, j4).

3 Closedness of tensor network formats

The following section is of interest for optimization problems in tensor networks. The main statements of
Theorem 3.2 and Proposition 3.4 can be summarized as follows. Assume, we have a sequence (uk)k∈N in V
with lim

k→∞
uk = u and every uk is presented in a tensor network UG : Pd,L → V with representation rank r,

i.e. there is ûk ∈ Pd,L with uk = UG,r(ûk) (see Definition 2.6). The crucial question is whether we represent
u in UG,r, i.e. is there û ∈ Pd,L such that u = UG,r(û).
In the following let G := (N, E) be a tensor network graph of order (d, L), m := #E, and UG : Pd,L → V
the tensor network introduced by the network graph G, as described in Definition 2.6.

Definition 3.1 (Closed). A tensor network format UG : Pd,L → V is called closed, if for every representation
rank r ∈ Nm the image of the corresponding tensor network representation UG,r : Pd,L → V is a closed set
in (V, ‖ · ‖).

In order to prove the statement of Theorem 3.2 one needs further assumption on the norm of (V ‖ · ‖). The
norm of (V, ‖ · ‖) is supposed to be not weaker then the induced injective norm ‖ · ‖∨, where the injective
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norm on V is defined by

‖x‖∨ := sup
06=v∗µ∈V ∗µ ,µ∈N≤d

{
|(v∗1 ⊗ . . .⊗ v∗d)(x)|∏d

µ=1 ‖vµ‖V ∗µ

: 0 6= vµ ∈ V ∗
µ , 1 ≤ µ ≤ d

}
, (16)

see [5].

Therorem 3.2. Let the norm of (V, ‖ · ‖) be not weaker than ‖ · ‖∨ and G = (N, E) a tensor network graph.
Further, assume that the tensor network graph G is a tree. Then every tensor network UG introduced by the
tree G is a closed tensor format.

The proof of Theorem 3.2 is deeply influenced by the ideas of Hackbusch published in [7, Chapter 6].

Proof. (Induction over the cardinality of E, m := #E) In order to make notations not more difficult than
necessary, we assume that r = r1 = · · · = rm. Initial Step: Follows direct from [7, Chapter 6]. Inductive
Step: Let G = (N, E) be a tensor network tree with m + 1 = #E and lim

k→∞
UG(ûk) = u ∈ V . Choose an

edge e ∈ E. Since G is a tree, the edge e subdivides G into two tensor network sub trees G1 = (N1, E1) and
G2 = (N2, E2) with incidence maps I1, I2. Where N1 = N1s ∪ N1c and N2 = N2s ∪ N2c are parameter
spaces of order (d1, L1) and (d2, L2) respectively, see Definition 2.3 and Definition 2.4. We introduce the
following index sets:

Ic
1 = {ν ∈ N : wk

ν ∈ N1c}, Is
1 = {ν ∈ N : vk

ν ∈ N1s}, Ic
2 = {ν ∈ N : wk

ν ∈ N2c}, Is
2 = {ν ∈ N : vk

ν ∈ N2s}.
We can assume without loss of generality that the edge e and the enumeration of the notes are chosen such that
e = {vd1 , vd}. Furthermore, we have for UG(ûk)

uk := UG(ûk) =
r∑

je=1

UG1(û
k
1(je))⊗ UG2(û

k
2(je)),

with

UG1(û
k
1(·)) =

∑

j∈Nm1
≤r


 ∏

ν∈Ic
1

wk
ν(I1(ν, j))


 ⊗

µ∈Is
1\{d1}

vk
µ(I1(µ, j))⊗ vk

d1
((I1(µ, j), ·)) ∈ Ṽ1 and (17)

UG2(û
k
2(·)) =

∑

j∈Nm2
≤r


 ∏

ν∈Ic
2

wk
ν(I2(ν, j))


 ⊗

µ∈Is
2\{d}

vk
µ(I2(µ, j))⊗ vk

d((I2(µ, j), ·)) ∈ Ṽ2, (18)

where Ṽ1 :=
⊗

µ∈Is
1\{d1}

Vµ ⊗M0(N≤r, Vd1) and Ṽ2 :=
⊗

µ∈Is
2\{d}

Vµ ⊗M0(N≤r, Vd).

The tensor space V is isomorphic to V1 ⊗ V2, where V1 =
⊗

µ∈Is
1
Vµ and V2 =

⊗
µ∈Is

2
Vµ. According to [7,

Chapter 6], there exist a decomposition of u = lim
k→∞

uk in V1 ⊗ V2 such that

u =
r′∑

i=1

u1(i)⊗ u2(i), (r′ ≤ r) (19)

with smallest sets U1 := {u1(i) ∈ V1 : 1 ≤ i ≤ r′} and U2 := {u2(i) ∈ V2 : 1 ≤ i ≤ r′} linearly inde-
pendent. It remains to show that there are parameters û1(·) and û2(·) such that u1(·) = UG1(û1(·)) and
u2(·) = UG2(û2(·)).
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Let U ′
1 = {u′1(i) ∈ V ′1 : 1 ≤ i ≤ r′} and U ′

2 = {u′2(i) ∈ V ′2 : 1 ≤ i ≤ r′} be the dual basis of U1 and U2. In
[7, Chapter 6] it is shown that (idV1 ⊗ u′2(i))(u

k) −−−→
k→∞

u1(i) and (u′1(i) ⊗ idV2)(u
k) −−−→

k→∞
u2(i) for all

1 ≤ i ≤ r′. After short calculation (using tensor contractions) we have that

(idV1 ⊗ u′2(·))(UG(ûk)) =
∑

j∈Nm1
≤r


 ∏

ν∈Ic
1

wk
ν(I1(ν, j))


 ⊗

µ∈Is
1\{d1}

vk
µ(I1(µ, j))⊗ ṽk

d1
((I1(µ, j), ·)),(20)

(u′1(·)⊗ idV2)(UG(ûk)) =
∑

j∈Nm2
≤r


 ∏

ν∈Ic
2

wk
ν(I2(ν, j))


 ⊗

µ∈Is
2\{d}

vk
µ(I2(µ, j))⊗ ṽk

d((I2(µ, j), ·)), (21)

where we define ṽk
d1

((I1(µ, j), ·)) :=
∑r

je=1 u′2(·)(UG2(u
k
2(je)))vk

d1
((I1(µ, j), je)) ∈ M0(N≤r, Vd1) and

ṽk
d((I2(µ, j), ·)) :=

∑r
je=1 u′1(·)(UG1(u

k
1(je)))vk

d((I2(µ, j), je)) ∈ M0(N≤r, Vd). Comparing the equations
(17) and (18) with (20) and (21), we see that there are parameters ûk

1(·) and ûk
2(·) such that

(idV1 ⊗ u′2(·))(UG(ûk)) = UG1(û
k
1(·))

(u′1(·)⊗ idV2)(UG(ûk)) = UG2(û
k
2(·)).

Note that this is only possible if the network graph G is a tree. Since G1 and G2 are tensor network trees in Ṽ1

and Ṽ2, the induction hypothesis shows that there are parameters û1(·) and û2(·) such that u1(·) = UG1(û1(·))
and u2(·) = UG2(û2(·)). With Eq. (19) we finally have

u =
r′∑

je=1

u1(je)⊗ u2(je) =
r′∑

je=1

UG1(û1(je))⊗ UG2(û2(je)) = UG(û),

where û := (û1, û2) ∈ Pd,L and r′ ≤ r.

¥

If the tensor network graph G is not a tree (it contains cycles), then the induced tensor network UG is in general
not closed, see [12, Landsberg et al., 2011]. We want to mention that in the interesting case if dim(Vµ) ≤
3 (calculations in the second quantization of quantum mechanics), the analysis in [12] make no statement
about the closedness of tensor network formats. If the tensor representation would be stable, we can ensure
closedness.

Definition 3.3 (Stable). Let UG : P → V be a tensor network in V and r ∈ Nm a representation rank, where
G = (N,E) is a tensor network graph and m := #E.

(a) For û ∈ P we define

χUG
(û, r) :=

1
‖UG(û)‖

r1∑

j1=1

· · ·
rm∑

jm=1

(
L+d∏

ν=d

|wν(I(ν, j))|
)

d∏

µ=1

‖vµ(I(µ, j))‖.

(b) For u ∈ Range (UG) we set

χUG
(u, r) := inf {χUG

(û, r) : u = UG(û)} .
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(c) The sequence (uk)k∈N ⊂ Range (UG,r) is called stable in Range (UG,r), if

χUG
((uk)k∈N, r) := sup

k∈N
χUG

(uk, r) < ∞;

otherwise, the sequence is called instable.

Proposition 3.4. Let V =
⊗d

µ=1 Vµ and suppose that dimVµ ∈ N. Furthermore, let G = (N, E) be a
tensor network graph and UG,r : P → V a tensor representation with representation rank r. If a sequence
(uk)k∈N ⊂ Range (UG,r) is stable and convergent, then limk→∞ uk ∈ Range (UG,r).

Proof. Let (uk)k∈N ⊂ Range (UG,r) with limk→∞ uk and set c := 2χUG
((uk)k∈N, r). After choosing a

subsequence, limk→∞ uk = u holds with a representation system ûk := (wk
1 , . . . , wk

L, vk
1 , . . . vk

d)t ∈ P such
that

r1∑

j1=1

· · ·
rm∑

jm=1

(
L+d∏

ν=d

|wk
ν(I(ν, j))|

)
d∏

µ=1

‖vk
µ(I(µ, j))‖ ≤ c‖u‖.

The components of the parameter space wk
ν(I(ν, j)) and vk

µ(I(µ, j)) can be scaled equally so that all
{wk

ν(I(ν, j)) ∈ R : k ∈ N} and {vk
µ(I(µ, j)) ∈ Vµ : k ∈ N} are uniformly bounded. Choosing furthermore

a subsequence, limits w̃ν(I(ν, j)) := limk→∞wk
ν(I(ν, j)) and ṽµ(I(µ, j)) := limk→∞ vk

µ(I(µ, j)) exists
and with the continuity of UG it follows that limk→∞ uk = UG,r(ũ), where ũ := (w̃1, . . . , w̃L, ṽ1, . . . , ṽd)t ∈
P . ¥

4 Computation of derivatives in tensor representations

We would like to find a local minimizer by means of differential calculus in an arbitrary tensor format. Let

P :=
d+L×
ν=1

Pν a parameter space of order (d, L) and U : P → V a tensor format. Before we can start with the

computation of the derivatives, we need to introduce the following useful notation.

Notation 4.1. Let D := d + L, ν ∈ N≤D and p̂ := (p1, . . . , pD) ∈ P . We define the following substitution

Uν(p̂) : Pν → V, u 7→ Uν(p̂)(u) := U(p1, . . . , pν−1, u, pν+1, . . . , pD). (22)

The Fréchet derivative U ′(p̂) of U at p̂ ∈ P is a linear mapping from P to V . Due to the multilinearity
of U , it may be expressed by the partial derivatives of U in direction pν ∈ Pν which we will denote by
dU(p̂)/dpν ∈ L(P,V) := {f : P → V : f is a homomorphism}. The mapping dU(p̂)/dpν maps u ∈ Pν1 to

dU(p̂)
dpν1

(u) = lim
h→0

Uν1(p̂)(pν1 + hu)− Uν1(p̂)(pν1)
h

= Uν1(p̂)(u).

Corollary 4.2. Let U be a tensor network as defined in Definition 2.6. For the partial derivatives we have

dU(v̂, ŵ)
dvµ1

(u) =
∞∑

j1=1

· · ·
∞∑

jm=1

w(j)




µ1−1⊗

µ=1

vµ(I(µ, j))


⊗ u(I(µ1, j))⊗




d⊗

µ=µ1+1

vµ(I(µ, j))


 ,(23)

dU(v̂, ŵ)
dwν1

(u) =
∞∑

j1=1

· · ·
∞∑

jm=1

L∏

ν=1, ν 6=ν1

wν(I(d + ν, j)) v(j)u(I(ν1, j)), (24)

where w(j) :=
∏L

ν=1 wν(I(d + ν, j)) and v(j) :=
⊗d

µ=1 vµ(I(µ, j)).
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Corollary 4.3. By the chain rule, the Fréchet derivative of the functional J := F ◦ U : P → R from (3) at
point û ∈ P is given by

J ′(û) = F ′(U(û)) ◦ U ′(û). (25)

5 Tensor product subspaces and best approximation in tensor networks

Let G = (N, E) be a tensor network graph of order (d, L) in V and m := #E, where V is the tensor
product of pre-Hilbert spaces

(
Vv, 〈, 〉µ

)
. Furthermore, we define the two tensor network representations

UR : PR → V and Ur : Pr → V introduced by G with representation ranks R = (R1, . . . , Rm)t ∈ Nm and
r = (r1, . . . , rm)t ∈ Nm respectively, where we have

rl ≤ Rl, (26)

for all 1 ≤ l ≤ m. Moreover, let a ∈ V be represented in UR, i.e. there is pR = (vR,1, . . . , wR,L) ∈ PR with

a = UR(pR) =
R1∑

i1=1

· · ·
Rm∑

im=1

(
L∏

ν=1

wR,ν(I(d + ν, i))

)
d⊗

µ=1

vR,µ(I(µ, i)). (27)

In this section we are analyzing the following minimization problem.

Problem 5.1 (Representation Rank Minimization). Find p∗r ∈ Pr such that

‖UR(pR)− Ur(p∗r)‖V = inf
pr∈Pr

‖UR(pR)− Ur(pr)‖V . (28)

For a convenient description of our results we need an edge enumeration of the tensor network graph G =
(N, E), i.e. a bijective map e : E → N≤m from the set of edges E to the setN≤m.

Therorem 5.2. Let p∗r = (v∗r,1, . . . , w
∗
r,L) ∈ Pr be a solution of the representation rank minimization problem

(28) and g the degree map of G as defined in Definition 2.4. Then we have for all µ ∈ N≤d and all j ∈
×1≤l≤g(µ)N≤re(l)

v∗r,µ(j) ∈ Uµ := span

{
vR,µ(i) ∈ Vµ : i ∈ ×

1≤l≤g(µ)

N≤Re(l)

}
. (29)

Proof. Assume there is a µ∗ ∈ N≤d and a j ∈ ×1≤l≤g(µ)N≤re(l)
with v∗r,µ(j∗) /∈ Uµ. Let Nµ : Vµ → Uµ be

the orthonormal projection from Vµ onto Uµ. Then it is straightforward to show that N :
d⊗

µ=1
Vµ →

d⊗
µ=1

Uµ is

the orthonormal projection from
d⊗

µ=1
Vµ onto

d⊗
µ=1

Uµ. After a short calculation, we have

‖UR(pR)− Ur(p∗r)‖2
V = ‖UR(pR)−NUr(p∗r)‖2

V + ‖Ur(p∗r)−NUr(p∗r)‖2
V

< ‖UR(pR)−NUr(p∗r)‖2
V

and because of v∗r,µ(j∗) /∈ Uµ we can conclude ‖Ur(p∗r)−NUr(p∗r)‖V > 0. Furthermore, we have

NUr(p∗r) =
r1∑

j1=1

· · ·
rm∑

jm=1

(
L∏

ν=1

w∗r,ν(I(d + ν, j))

)
d⊗

µ=1

Nµv∗r,µ︸ ︷︷ ︸
v̂∗r,µ:=

(I(µ, j))

= Ur(p̂r
∗),
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where p̂r
∗ := (v̂∗r,1, . . . , v̂

∗
r,d, w

∗
r,1, . . . , w

∗
r,L) ∈ Pr. Consequently ‖UR(pR)− Ur(p̂∗r)‖V < ‖UR(pR)− Ur(p∗r)‖V ,

but this contradicts the fact that ‖UR(pR)− Ur(p∗r)‖V = infpr∈Pr ‖UR(pR)− Ur(pr)‖V . ¥

Under the notations and premises of Theorem 5.2, let {zlµ ∈ Uµ : l ∈ N≤tµ} be an orthonormal basis of Uµ,
where we set tµ := dimUµ. If we are looking for a solution of the Problem 5.1, with the use of Theorem 5.2,
we can restrict our search to U :=

⊗d
µ=1 Uµ. Therefore, there are αR,µ(i) ∈ Rtµ and ξr,µ(j) ∈ Rtµ such that

vR,µ(i) =
tµ∑

lµ=1

(αR,µ(i))lµzlµµ and vr,µ(j) =
tµ∑

lµ=1

(ξr,µ(j))lµzlµµ.

These equations induce a linear mapping Zµ : Rtµ → Uµ with

vR,µ(i) = ZµαR,µ(i) and vr,µ(j) = Zµξr,µ(j),

where i ∈×1≤l≤g(µ)N≤Re(l)
and j ∈×1≤l≤g(µ)N≤re(l)

. Furthermore, we have

UR(pR) =
R1∑

i1=1

· · ·
Rm∑

im=1

(
L∏

ν=1

wR,ν(I(d + ν, i))

)
d⊗

µ=1

vR,µ(I(µ, i))

=
R1∑

i1=1

· · ·
Rm∑

im=1

(
L∏

ν=1

wR,ν(I(d + ν, i))

)
d⊗

µ=1

ZµαR,µ(I(µ, i))

=




d⊗

µ=1

Zµ







R1∑

i1=1

· · ·
Rm∑

im=1

(
L∏

ν=1

wR,ν(I(d + ν, i))

)
d⊗

µ=1

αR,µ(I(µ, i))




︸ ︷︷ ︸
ÛR(p̂R):=

and

Ur(pr) =
r1∑

j1=1

· · ·
rm∑

jm=1

(
L∏

ν=1

wr,ν(I(d + ν, j))

)
d⊗

µ=1

vr,µ(I(µ, j))

=




d⊗

µ=1

Zµ







r1∑

j1=1

· · ·
rm∑

jm=1

(
L∏

ν=1

wr,ν(I(d + ν, j))

)
d⊗

µ=1

ξr,µ(I(µ, j))


 .

︸ ︷︷ ︸
Ûr(p̂r):=

Corollary 5.3. From the definition of ÛR and Ûr it is obvious that ÛR and Ûr are tensor networks in S :=⊗d
µ=1R

tµ , where the network topology is the same as for UR and Ur respectively, since the incidence map is
the same for all tensor networks. Further, we have

UR(pR) = ZÛR(p̂R) and Ur(pr) = ZÛr(p̂r), (30)

where we set Z : S → U , Z :=
⊗d

µ=1 Zµ. In addition

‖UR(pR)− Ur(pr)‖2
V =

〈
ÛR(p̂R)− Ûr(p̂r), ZtZ(ÛR(p̂R)− Ûr(p̂r))

〉
S

= ‖ÛR(p̂R)− Ûr(p̂r)‖2
S . (31)
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Corollary 5.4. Under the notations and premises of Theorem 5.2, we have that

‖UR(pR)− Ur(p∗r)‖V = inf
pr∈Pr

‖UR(pR)− Ur(pr)‖V (32)

is equivalent to
‖ÛR(p̂R)− Ûr(p̂∗r)‖S = inf

p̂r∈P̂r

‖ÛR(p̂R)− Ûr(p̂r)‖S . (33)

For this reason, it is sufficient to consider the original approximation only in S. Hereby we have to assume
that in practice the computation of the orthonormal basis of Uµ and the coefficients αR is reasonable. This fact
reduces the original potentially infinite dimensional approximation to a finite minimization task.

6 Nonlinear block Gauss-Seidel method

So far we have developed all ingredients for applying steepest decent type algorithms. In the following section
let P = ×D

µ=1 Pµ be a parameter space of order (d, L), where D := d + L, and U : P → V a tensor
representation. Further, let J := F ◦ U : P → V → R be an objective function as defined in Problem 1.3. In
the following analysis, it is not required that U is a tensor network.
The nonlinear Gauss-Seidel (NGS) method arises from iterative methods used for linear systems of equations.
Intuitively, we may think of a generalized linear method which reduces to a feasible iteration for nonlinear
systems. The direct extension of the linear Gauss-Seidel method to the nonlinear NGS method is obvious.
Suppose that the k-th iterate xk = (xk

1, . . . , x
k
n)T and the first l−1 components xk+1

1 , . . . , xk+1
l−1 of the (k+1)-

th iterate xk+1 have been determined. If H : Ω ⊂ Rn → Rn has components functions h1, . . . , hn, then the
basic step of the the nonlinear NGS, in analogy to the linear case, is to solve the l-th equation

hl(xk+1
1 , . . . , xk+1

l−1 , xl, x
k
l+1, . . . , x

k
n) = 0,

for xl, and to set xk+1
l = xl. Thus, in order to obtain xk+1 from xk, we have to solve successively the n

one-dimensional nonlinear equations.
From a mathematical point of view, the established alternating least square (ALS) method [2, 3] and the density
matrix renormalization group (DMRG) algorithm [9, 10, 15] are nonlinear block Gauss-Seidel methods, where
the DMRG algorithm is also called modified alternating least square method (MALS). In the DMRG method
we allow an enlargement of the parameter space and the partitioning (blocking) of the parameter space is not
disjoint.
For the nonlinear block NGS method, we want to describe the situation by an explicit example in order to
motivate the abstract setting defined below. For this purpose consider a simple structured tensor network for
d = 3, e.g. the tensor train format as defined in Example 2.7. The tensor train representation is described by
the multilinear map

UTT : M0(N≤r, V1)×M0(N2
≤r, V2)×M0(N≤r, V3) →

3⊗

µ=1

Vµ

v̂ = (v1, v2, v3) 7→ UTT (v̂) =
r∑

j1=1

r∑

j2=1

v1(j1)⊗ v2(j1, j2)⊗ v3(j2),

i.e. in our setting we have the parameter space P = P1 × P2 × P3, where P1 = V r
1 , P2 = V r2

2 , and P3 = V r
3 .

The ALS and the DMRG method are introduced by a partitioning of the parameter space P . The partitioning
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{X̃1, X̃2, X̃3} for the ALS method is given by

P = P1 × {0} × {0}︸ ︷︷ ︸
=:X̃1

+ {0} × P2 × {0}︸ ︷︷ ︸
=:X̃2

+ {0} × {0} × P3︸ ︷︷ ︸
=:X̃3

and the partitioning {X1, X2} for the DMRG method is defined by

P = P1 × P2 × {0}︸ ︷︷ ︸
=:X1

+ {0} × P2 × P3︸ ︷︷ ︸
=:X2

.

For general cases, a partition of the coordinates is defined as follows.

Definition 6.1 (Partition of Coordinates). Let p ∈ N and P =
D×

µ=1
Pµ a parameter space of a tensor represen-

tation. We call the set {Xl ⊂ P : 1 ≤ l ≤ p} a partition of coordinates of P if:

(i) P =
p∑

l=1

Xl.

(ii) Every Xl is of the form Xl =
D×

µ=1
Xl,µ, where Xl,µ is either equal to Pµ or equal to the null space {0Pµ}

of Pµ.

We say {Xl ⊂ P : 1 ≤ l ≤ p} is a disjoint partition of coordinates if we have

Xl ∩Xl′ = {0P } for all 1 ≤ l, l′ ≤ D.

For a convenient description of the nonlinear block SOR method we introduce the function Jl. Where for a
given partition of coordinates {Xl ⊂ P : 1 ≤ l ≤ p}, the function Jl can be viewed as the restriction of J to
the the subset Xl, see Notation 6.2.

Notation 6.2. Let {Xl ⊂ P : 1 ≤ l ≤ p} be a partition of coordinates of P and J : P → R the objective
function from Problem 1.3. Further, let Xc

l := P \Xl be the complement of Xl in P . We define

Jl : Xl ×Xc
l → R, (xl, x

c
l ) 7→ Jl(xl, x

c
l ) := J(xl + xc

l ).

Definition 6.3 (Nonlinear block Gauss-Seidel method). Let {Xl ⊂ P : 1 ≤ l ≤ p} be a partition of coordi-
nates of P and J : P → R the objective function. The nonlinear block Gauss-Seidel (GS) method is described
by Algorithm 1.

Similar to the lineare case one can extend the nonlinear Gauss-Seidel method to the nonlinear successive over-
relaxation method. The convergence analysis of the nonlinear GS method is already discussed in the literature,
e.g. in [13, Ortega and Rheinboldt]. Generally speaking, the convergence of the nonlinear GS method is locally
assigned by the convergence of the linear GS method applied to the Hessian J ′′(x∗) of J at a point x∗ ∈ P
with J ′(x∗) = 0. Let us consider a block decomposition of the Hessian J ′′(x)

J ′′block(x) = Dblock(x)− Lblock(x)− Lt
block(x)

into its block diagonal, strictly block lower-, and strictly block upper-triangular parts, where the blocking is
introduced by a disjoint portioning of coordinates, and suppose that Dblock(x∗) is nonsingular. Furthermore,
let H(x) be defined by

H(x) := [Dblock(x)− Lblock(x)]−1 Lt
block(x), (35)
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Algorithm 1 Nonlinear block GS method
1: Choose initial x1 ∈ P , and define k := 1.
2: while Stop Condition do
3: for 1 ≤ l ≤ p do
4: Compute x̃l ∈ Xl such that

∂1Jl

(
x̃l,xck(l)

l

)
= 0Xl

, (34)

where xck(l)
l =

(
xk(l) − xk(l)

l

)
∈ Xc

l and xk(l) ∈ P is the current iterant.

5: xk(l+1)
l := x̃l.

6: end for
7: k 7→ k + p.
8: end while

where H(x) is simply the GS iteration matrix for the linear system J ′′(x)x̃ = b. We can establish the fol-
lowing Theorem 6.4, whose proof follows directly from the arguments used in [13, Theorem 10.3.5, p. 326].
Unfortunately, the proof of Theorem 10.3.5 does not match for nonlinear block GS methods with a non-
disjoint partition of the coordinates, since the function Ĝ defined in [13, Eq. (15), p. 326] does not fulfil
Ĝ(xk+1,xk) = 0 for all k ∈ N0. Therefore, we cannot apply Theorem 10.3.5 for methods with overlapping
partition of the coordinates like the DMRG method.

Therorem 6.4. Let {Xl ⊂ P : 1 ≤ l ≤ p} be a partition of coordinates of P , J ∈ C2(P,R) and x∗ ∈ P a
parameter for which J ′(x∗) = 0 and ρ (H(x∗)) < 1, where H(x∗) is defined in Eq. (35) and Dblock(x∗) is
nonsingular. Then there exists an environment B(x∗) of x∗ such that, for any initial guess x1 ∈ B(x∗), there
is a unique sequence (xk)k∈N ⊂ B(x∗) which satisfies the description of the nonlinear block GS method from
Algorithm 1. Furthermore, limk→∞ xk = x∗ is R-linear with R-convergence factor ρ (H(x∗)).

The statement of Theorem 6.4 provides useful a priori information, even when it is not possible to ascertain in
advance that ρ (H(x∗)) < 1. For quadratic functionals F and the canonical tensor format UCP , the situation
J = F ◦ UCP is considered in [19].

7 Numerical Experiments

In this section, we want to explicitly describe the nonlinear block Gauss-Seidel method for two different
partitions of the coordinates.

We want to consider a tensor chain a ∈ S :=
⊗d

µ=1R
nµ with (n1, . . . , nd) ∈ Nd and representation rank

(R1, . . . , Rd) ∈ Nd similarly to the tensor chain (TC) example in Section 2. We want to minimize

‖a− u‖

which is equivalent to minimizing

Fa(x) :=
1

‖a‖2

(
−〈a, x〉+

1
2
〈x, x〉

)
,

where the quotient ‖a‖2 has been added for numerical reasons. In terms of Eq. (14) UTC with representation
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rank (r1, . . . , rd) ∈ Nd is given as

UTC :
d−1×
µ=1

(Rnµ)(rµ,rµ+1) × (Rnd)(r1,rd) → V,

(u1, . . . , ud) 7→
r1∑

j1=1

. . .

rd∑

jd=1

d−1⊗

µ=1

uµ(jµ, jµ+1)⊗ ud(j1, jd) =: u

so J of (3) is defined as

J :
d−1×
µ=1

(Rnµ)(rµ,rµ+1) × (Rnd)(r1,rd) → R,

(u1, . . . , ud) 7→ (Fa ◦ UTC) (u1, . . . , u1)

which we want to minimize in our experiments. We define

Aµ(iµ, iµ+1, jµ, jµ+1) := 〈aµ(iµ, iµ+1), uµ(jµ, jµ+1)〉, 1 ≤ µ ≤ d− 1
Ad(id, i1, jd, j1) := 〈ad(i1, id), ud(i1, jd)〉

Bµ(jµ, jµ+1, j
′
µ, j′µ+1) := 〈uµ(jµ, jµ+1), uµ(j′µ, j′µ+1)〉, 1 ≤ µ ≤ d− 1

Bd(jd, j1, j
′
d, j

′
1) := 〈ud(j1, jd), ud(j′1, j

′
d)〉

such that

J(u1, . . . , ud) =
1

‖a‖2


−

∑

i∈I

∑

j∈J




d−1∏

µ=1

〈aµ(iµ, iµ+1), uµ(jµ, jµ+1)〉

 〈ad(i1, id), ud(j1, jd)〉

+
1
2

∑

j∈J

∑

j′∈J




d−1∏

µ=1

〈uµ(jµ, jµ+1), uµ(j′µ, j′µ+1)〉

 〈ud(j1, jd), ud(j′1, j

′
d)〉




=
1

‖a‖2


−

∑

i∈I

∑

j∈J




d−1∏

µ=1

Aµ(iµ, iµ+1, jµ, jµ+1)


Ad(id, i1, jd, j1)

+
1
2

∑

j∈J

∑

j′∈J




d−1∏

µ=1

Bµ(jµ, jµ+1, j
′
µ, j′µ+1)


Bd(jd, j1, j

′
d, j

′
1)




(36)

whereas J := {(l1, . . . , ld) : lµ = 1, . . . , rµ, 1 ≤ µ ≤ d}, I := {(l1, . . . , ld) : lµ = 1, . . . , Rµ, 1 ≤ µ ≤ d}
and jk denotes the k-th component of multi-index j.

7.1 Alternating least squares for the tensor chain format

As stated earlier, the ALS method is the nonlinear block Gauss-Seidel method with disjoint partition of the
coordinates that is defined as

X` = {0} × . . .× {0} × P` × {0} × . . .× {0} (37)

for 1 ≤ ` ≤ d, where

P` =

{
(Rn`)(r`,r`+1) ` = 1, . . . , d− 1,

(Rnd)(r1,rd) ` = d.
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For convenience, we will assume ` 6= d in our formulae and lemmata. In the following part, we want to
introduce some abbreviations, that will become handy later on. We define

A[`](i`, i`+1, j`, j`+1) :=
R1,...,R`−1∑

i1,...,i`−1=1

R`+2,...,Rd∑

i`+2,...,id=1

r1,...,r`−1∑

j1,...,j`−1=1

r`+2,...,rd∑

j`+2,...,jd=1


d−1∏

µ=1,µ 6=`

Aµ(iµ, iµ+1, jµ, jµ+1)


Ad(id, i1, jd, j1)

and

B[`](j`, j`+1, j
′
`, j

′
`+1) :=

r1∑

j1=1

. . .

r`−1∑

j`−1=1

r`+2∑

j`+2=1

. . .

rd∑

jd=1

r1∑

j′1=1

. . .

r`−1∑

j′`−1=1

r`+2∑

j′`+2=1

. . .

rd∑

j′d=1


d−1∏

µ=1,µ 6=`

Bµ(jµ, jµ+1, j
′
µ, j′µ+1)


Bd(jd, j1, j

′
d, j

′
1)

which leads to a structure of equation (36) that pays respect to the partitioning (37):

J`(u`, u
c
`) =

1
‖a‖2


−

R∑̀

i`=1

R`+1∑

i`+1=1

r∑̀

j`=1

r`+1∑

j`+1=1

A`(i`, i`+1, j`, j`+1)A[`](i`, i`+1, j`, j`+1)

+
1
2

r∑̀

j`=1

r`+1∑

j`+1=1

r∑̀

j′`=1

r`+1∑

j′`+1=1

B`(j`, j`+1, j
′
`, j

′
`+1)B[`](j`, j`+1, j

′
`, j

′
`+1)


 .

Now we can formulate the derivative with respect to the partitioning in a shorter notation, resulting in the
derivative with respect to X`, with u` ∈ X` and uc

` ∈ Xc
`

‖a‖2 ∂

∂u`
Jl(u`, u

c
`) =


−

R∑̀

i`=1

R`+1∑

i`+1=1

a`(i`, i`+1)A[`](i`, i`+1, j`, j`+1)

+
r∑̀

j′`=1

r`+1∑

j′`+1=1

u`(j′`, j
′
`+1)B[`](j

′
`, j

′
`+1, j`, j`+1)




j`,j`+1

such that setting this derivative equal to zero as in Eq. (34) in Algorithm 1, one has to solve the equation



R∑̀

i`=1

R`+1∑

i`+1=1

a`(i`, i`+1)A[`](i`, i`+1, j`, j`+1)




j`,j`+1

=




r∑̀

j′`=1

r`+1∑

j′`+1=1

u`(j′`, j
′
`+1)B[`](j

′
`, j

′
`+1, j`, j`+1)




j`,j`+1

,

which is equivalent to (
A[`] ⊗ Idn`

)
a` =

(
B[`] ⊗ Idn`

)
u`

17



where

a` :=




a`(1, 1)
...

a`(R`, R`+1)




A[`] :=
(
A[`](i`, i`+1, j`, j`+1)

)
(j`,j`+1),(i`,i`+1)

u` :=




u`(1, 1)
...

u`(r`, r`+1)




B[`] :=
(
B[`](j

′
`, j

′
`+1, j`, j`+1)

)
(j`,j`+1),(j

′
`,j
′
`+1)

and consequently, we have to solve

u`
!=

(
B−1

[`] ⊗ Idn`

) (
A[`] ⊗ Idn`

)
a` =

(
B−1

[`] A[`] ⊗ Idn`

)
a`.

Remark 7.1. The existence of B−1
[`] is not guaranteed in all cases. If B[`] is not regular, its matrix-rank is

smaller than r` · r`+1 and since B[`] is a gramian matrix we can reduce the rank of B[`](j`, j`+1, j
′
`, j

′
`+1).

To make compact statements about the complexity of the algorithm, we want to define r := max1≤µ≤d{rµ},
R := max1≤µ≤d{Rµ} and n := max1≤µ≤d{nµ}.

The question may arise, how to efficiently compute A[`] and B[`]. For one single entry of A[`], the naive
approach (compute each term separately) is in O(rd−2Rd−2(d − 2)) such that the complete cost would be in
O(rdRd(d − 2)) which we want to avoid. A better approach it to treat each matrix entry as an inner product
of two tensors in the MPS/TT format which is O((d− 2)r2R2). This improves the complete complexity to be
O((d − 2)r4R4) but this still allows improvements since we have considered each entry as a separate tensor
chain inner product. If we take into account the connection between each entry, we can improve the complexity
significantly. First, we introduce the definitions

Aµ :=





(
Aµ(iµ, iµ+1, jµ, jµ+1)

)
(iµ,jµ),(iµ+1,jµ+1)

∈ RRµrµ×Rµ+1rµ+1 1 ≤ µ ≤ d− 1
(
Aµ(id, i1, jd, j1)

)
(id,jd),(i1,j1)

∈ RRdrd×R1r1 µ = d

and

Bµ :=





(
Bµ(jµ, jµ+1, j

′
µ, j′µ+1)

)
(jµ,j′µ),(jµ+1,j′µ+1)

∈ Rr2
µ×r2

µ+1 1 ≤ µ ≤ d− 1
(
Bµ(jd, j1, j

′
d, j

′
1)

)
(jd,j′d),(j1,j′1)

∈ Rr2
d×r2

1 µ = d

such that we can formulate the following lemma.

Lemma 7.2. For 1 ≤ ` ≤ d− 1 and Aµ and Bµ for 1 ≤ µ ≤ d as defined above,

(
A[`](i`, i`+1, j`, j`+1)

)
(i`+1,j`+1),(i`,j`)

=
d∏

µ=`+1

Aµ

`−1∏

µ=1

Aµ

and
(
B[`](j`, j`+1, j

′
`, j

′
`+1)

)
(j`+1,j′`+1),(j`,j

′
`)

=
d∏

µ=`+1

Bµ

`−1∏

µ=1

Bµ,

hold true, so A[`] and B[`] can be interpreted as a product of matrices.
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Proof. Without loss of generality, ` will be set equal to 1 and we will only prove the equation for A[`]. As the
first step, let us abbreviate

x((i3, j3), (i1, j1)) :=
R4∑

i4=1

. . .

Rd∑

id=1

r4∑

j4=1

. . .

rd∑

jd=1




d−1∏

µ=3

Aµ(iµ, iµ+1, jµ, jµ+1)


Ad(i1, id, j1, jd)

y((i2, j2), (i3, j3)) := A2(i2, i3, j2, j3)

which results in

A[1](i1, i2, j1, j2) =
(R3,r3)∑

(i3,j3)=(1,1)

y((i2, j2), (i3, j3))x((i3, j3), (i1, j1))

such that we see
(
A[`](i`, i`+1, j`, j`+1)

)
(i`+1,j`+1),(i`,j`)

=
(
y((i2, j2), (i3, j3))

)
(i2,j2),(i3,j3)

(
x((i3, j3), (i1, j1))

)
(i3,j3),(i1,j1)

= A2 ·
(
x((i3, j3), (i1, j1))

)
(i3,j3),(i1,j1)

.

Applying this procedure successively to x((i3, j3), (i1, j1)) finishes the proof, since analogous arguments hold
for B[`]. ¥

Corollary 7.3. The computational cost of A[`] is at most

O(dr3R3).

Analogously B[`] ∈ O(dr6).

Note that B[`] and A[`] are only after reshaping representable as a product of matrices (compare the definition
of B[`] and A[`] with Lemma 7.2).

We want to give the concrete algorithm for ALS in the TC format, which is a specialized version of Algorithm
1. First, we have to give four short definitions

A
(k)
` :=

(
〈a`(i`, i`+1), u

(k)
` (j`, j`+1)〉

)
(i`+1,j`+1),(i`,j`)

A
(k)
>` :=

d∏

µ=`+1

A(k)
µ , A

(k)
<` :=

`−1∏

µ=1

A(k)
µ

B
(k)
` :=

(
〈u(k)

` (j`, j`+1), u
(k)
` (j′`, j

′
`+1)〉

)
(j`+1,j′`+1),(j`,j

′
`)

B
(k)
>` :=

d∏

µ=`+1

B(k)
µ , B

(k)
<` :=

`−1∏

µ=1

B(k)
µ

for k ∈ N and 1 ≤ ` ≤ d− 1, where u
(k)
` is that u` which has been computed in cycle k. Additionally, we set

A
(k)
>d = B

(k)
>d = A

(k)
0 = B

(k)
0 = Id.

Lemma 7.4. The computational cost of
(
B−1

[`] A[`] ⊗ Idn`

)
a` is at most

O(dr6) +O(dr3R3) +O(n(r2R2 + r4))

if the matrices Aµ and Bµ are given for 1 ≤ µ ≤ d and if we consider reshaping of a matrix as a free operation.
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Proof. From Lemma 7.2, we can conclude that the computational cost for B[`] is equal to the computational
cost of d− 2 matrix-matrix multiplications of r2 × r2 matrices such that

cost(B[`]) ∈ O((d− 2)r6)

and an analogous argument holds for A[`], such that

cost(A[`]) ∈ O((d− 2)r3R3)

since A[`] can be calculated as a product of rR × rR matrices. Computing B−1
[`] from B[`] has a complexity

ofO(r6). The computation of
(
B−1

[`] A[`] ⊗ Idn`

)
a` can be done by one matrix-matrix multiplication without

having to perform ⊗Idn`
by considering a`(i`, i`+1) as columns of ã` ∈ Rn`×R`·R`+1 such that

(
B−1

[`] A[`] ⊗ Idn`

)
a`
∼= ã`

(
B−1

[`] A[`]

)T
= ã`AT

[`]B
−1T

[`]

which finishes the proof by ã`AT
[`]B

−1T

[`] being in

O(n(r2R2 + r4))

if we compute ã`AT
[`] first. ¥

In cycle k, in the `-th step of Algorithm 1, we have to compute B
(k)
>` B

(k+1)
<` and A

(k)
>` A

(k+1)
<` . Therefore, it

is more efficient to compute and store B
(k)
>` and A

(k)
>` in a prephase. Additionally, we will store B

(k+1)
<` and

A
(k+1)
<` in each `-step since B

(k+1)
<`+1 = B

(k+1)
<` B

(k+1)
` and A

(k+1)
<`+1 = A

(k+1)
<` A

(k+1)
` for 1 ≤ ` ≤ d− 1.

Algorithm 2 Alternating Least Squares (ALS) Method for TC

1: Choose initial u(1) = (u(1)
1 , . . . , u

(1)
d ) ∈×d

µ=1 Pµ and parameter ε ∈ R>0. Define g := J(u(1)), k := 1.
2: while ∆g > ε do
3: B̃ := Id, Ã := Id
4: for d− 1 ≥ ` ≥ 1 do
5: store B

(k)
>` = B

(k)
`+1B

(k)
>`+1 and A

(k)
>` = A

(k)
`+1A

(k)
>`+1

6: end for
7: for 1 ≤ ` ≤ d do
8: B̃ 7→ B̃B

(k+1)
`−1 {⇒ B̃ = B

(k+1)
<` }

9: Ã 7→ ÃA
(k+1)
`−1 {⇒ Ã = A

(k+1)
<` }

10: u(k+1)
` :=

((
reshape

(
B

(k)
>` B̃

))−1
reshape

(
A

(k)
>` Ã

)
⊗ Idn`

)
a`

11: end for
12: g ← J(u(k+1))
13: k 7→ k + 1
14: end while

Lemma 7.5. One complete ALS cycle with prephase, as described in Algorithm 2, is at most

O(dr6) +O(dr3R3) +O(dn(r2R2 + r4))

in terms of complexity.
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Proof. Follows from the described prephase and the proof of Lemma 7.4. ¥

Remark 7.6. The prephase described above needs additional storage of dr4 + dr2R2.

Remark 7.7. Computing the initially needed Bµ and Aµ for 2 ≤ µ ≤ d in Lemma 7.4 and 7.5 is in

O (
dn(r2R2 + r4)

)

in terms of the complexity.

7.2 DMRG for the tensor chain format

ALS does not adjust the ranks of the edges, so now, we want to choose a slightly different approach: Instead
of fixing all nodes but one, we are fixing all nodes but two neighboured ones. So we are using the following
partition of coordinates:

X` =

{
{0} × . . .× {0} × P` × P`+1 × {0} × . . .× {0}, 1 ≤ ` ≤ d− 1,

P1 × {0} × . . .× {0} × Pd, ` = d.

In contrary to ALS, we do not have a disjoint partition since

X` ∩X`+1 = {0} × . . .× {0} × P`+1 × {0} × . . .× {0} for 1 ≤ ` ≤ d− 1
and

Xd ∩X1 = P1 × {0} × . . .× {0}.

This partitioning gives us the opportunity to adjust the rank between nodes ` and ` + 1 for 1 ≤ ` ≤ d− 1 and
between nodes d and 1 since we do not have to fix r`+1 and r1, respectively.

From now on, 1 ≤ ` ≤ d− 2 in order to keep the readability of the upcoming notations.

Similar to the previous section, we want to define some useful abbreviations

A[`)(i`, i`+2, j`, j`+2) :=
R1∑

i1=1

. . .

R`−1∑

i`−1=1

R`+3∑

i`+3=1

. . .

Rd∑

id=1

r1∑

j1=1

. . .

r`−1∑

j`−1=1

r`+3∑

j`+3=1

. . .

rd∑

jd=1


d−1∏

µ=1,µ/∈{`,`+1}
Aµ(iµ, iµ+1, jµ, jµ+1)


Ad(i1, id, j1, jd),

B[`)(j`, j`+2, j
′
`, j

′
`+2) :=

r1∑

j1=1

. . .

r`−1∑

j`−1=1

r`+3∑

j`+3=1

. . .

rd∑

jd=1

r1∑

j′1=1

. . .

r`−1∑

j′`−1=1

r`+3∑

j′`+3=1

. . .

rd∑

j′d=1


d−1∏

µ=1,µ/∈{`,`+1}
Bµ(jµ, jµ+1, j

′
µ, j′µ+1)


Bd(j1, jd, j

′
1, j

′
d),

a`,`+1(i`, i`+2) :=
R`+1∑

i`+1=1

a`(i`, i`+1)⊗ a`+1(i`+1, i`+2) ∈ Rn`×n`+1

and

u`,`+1(j`, j`+2) :=
r`+1∑

j`+1=1

u`(j`, j`+1)⊗ u`+1(j`+1, j`+2) ∈ Rn`×n`+1 (38)
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such that Eq. (36) with respect to the above written partitioning is

J`(u`,`+1, u
c
`,`+1) =

1
‖a‖2


−

R∑̀

i`=1

R`+2∑

i`+2=1

r∑̀

j`=1

r`+2∑

j`+2=1

〈a`,`+1(i`, i`+2), u`,`+1(j`, j`+2)〉A[`)(i`, i`+2, j`, j`+2)

+
1
2

r∑̀

j`=1

r`+2∑

j`+2=1

r∑̀

j′`=1

r`+2∑

j′`+2=1

〈u`,`+1(j`, j`+2), u`,`+1(j′`, j
′
`+2)〉B[`)(j`, j`+2, j

′
`, j

′
`+2)


 .

The derivative with respect to the partition of coordinates is defined as

‖a‖2 ∂

∂u`,`+1
Jl(u`,`+1, u

c
`,`+1) =


−

R∑̀

i`=1

R`+2∑

i`+2=1

a`,`+1(i`, i`+2)A[`)(i`, i`+2, j`, j`+2)

+
r∑̀

j′`=1

r`+2∑

j′`+2=1

u`,`+1(j′`, j
′
`+2)B[`)(j

′
`, j

′
`+2, j`, j`+2)




j`,j`+2

and setting this derivative equal to zero results in
(
A[`) ⊗ Idn`×n`+1

)
a`,`+1 =

(
B[`) ⊗ Idn`×n`+1

)
u`,`+1

where

a`,`+1 :=




a`,`+1(1, 1)
...

a`,`+1(R`, R`+2)




A[`) :=
(
A[`)(i`, i`+2, j`, j`+2)

)
(j`,j`+2),(i`,i`+2)

u`,`+1 :=




u`,`+1(1, 1)
...

u`,`+1(r`, r`+2)




B[`) :=
(
B[`)(j

′
`, j

′
`+2, j`, j`+2)

)
(j`,j`+2),(j

′
`,j
′
`+2)

such that we have to solve

u`,`+1
!=

(
B−1

[`) ⊗ Idn`×n`+1

) (
A[`) ⊗ Idn`×n`+1

)
a`,`+1 =

(
B−1

[`) A[`) ⊗ Idn`×n`+1

)
a`,`+1

in order to improve the approximation. This formula will give us all u`,`+1 but what we need are all u` and
u`+1. So we have to separate u`,`+1 and the obvious way to do this is by using the singular value decomposition
(SVD). If we reorder u`,`+1 such that i` with the component dimension of ul are the row index and i`+1 with
the component dimension of u`+1 are the column index:

(
u`,`+1(i`, i`+2)m`,m`+1

)
(m`,i`),(m`+1,i`+2)

SV D=
r̃`+1∑

j`+1=1




u`(1, i)1
u`(1, i)2

...
u`(r`, i)n`


⊗




u`+1(i, 1)1
u`+1(i, 1)2

...
u`+1(i, r`+2)n`+1




where we obtain the terms separated. Note that r̃`+1 is the new rank for the edge between the optimized nodes.

Just as before it is now necessary to compute A[`) and B[`) in an efficient way. That can be done similarly to
Lemma 7.2.
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Lemma 7.8. For 1 ≤ ` ≤ d and Aµ and Bµ for 1 ≤ µ ≤ d as defined in Section 7.1,

(
A[`)(i`, i`+2, j`, j`+2)

)
(i`+2,j`+2),(i`,j`)

=
d∏

µ=`+2

Aµ

`−1∏

µ=1

Aµ

and
(
B[`)(j`, j`+2, j

′
`, j

′
`+2)

)
(j`+2,j′`+2),(j`,j

′
`)

=
d∏

µ=`+2

Bµ

`−1∏

µ=1

Bµ,

hold true, so A[`) and B[`) can be interpreted as a product of matrices.

Proof. Analogous to Lemma 7.2. ¥

Lemma 7.9. Computing
(
B−1

[`) A[`) ⊗ Idn`×n`+1

)
a`,`+1 is in

O(dr6) +O(dr3R3) +O(n2(r2R2 + r4)).

Proof. Analogous to the proof of Lemma 7.4. ¥

Similar to section 7.1, we add a prephase, which computes and stores A
(k)
>` and B

(k)
>` for 2 ≤ ` ≤ d− 1 before

the k-th cycle. Then one complete DMRG cycle has a complexity linear in d.

Algorithm 3 DMRG Method for TC

1: Choose initial u(1) = (u(1)
1 , . . . , u

(1)
d ) ∈×d

µ=1 Pµ and parameter ε ∈ R>0. Define g := J(u(1)), k := 1.
2: while ∆g > ε do

3: u(k+1)
d,1 :=

((
reshape

(∏d−1
µ=2 Bµ

))−1
reshape

(∏d−1
µ=2 Aµ

)
⊗ Idnd×n1

)
ad,1

4: [u(k+1)
d , u

(k+1)
1 ] := SV D

(
reshape

(
u(k+1)

d,1

))

5: B̃ := Id, Ã := Id
6: for d− 1 ≥ ` ≥ 2 do
7: store B

(k)
>` = B

(k)
`+1B

(k)
>`+1 and A

(k)
>` = A

(k)
`+1A

(k)
>`+1

8: end for
9: for 1 ≤ ` ≤ d− 1 do

10: B̃ 7→ B̃B
(k+1)
`−1 {⇒ B̃ = B

(k+1)
<` }

11: Ã 7→ ÃA
(k+1)
`−1 {⇒ Ã = A

(k+1)
<` }

12: u(k+1)
`,`+1 :=

((
reshape

(
B

(k)
>`+1B̃

))−1
reshape

(
A

(k)
>`+1Ã

)
⊗ Idn`×n`+1

)
a`,`+1

13: [u(k+1)
` , u

(k)
`+1] := SV D

(
reshape

(
u(k+1)

`,`+1

))

14: end for
15: g ← J(u(k+1))
16: k 7→ k + 1
17: end while

Lemma 7.10. One DMRG cycle with prephase is in

O(dr6) +O(dr3R3) +O(dn2(r2R2 + r4)) +O(dn3R3).
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Proof. Follows directly from Lemma 7.9 and the complexity of the singular value decomposition being in
O(n3R3). ¥

Remark 7.11 (Initial guesses). It is especially important for algorithms that do not adjust the rank (like
ALS) to start with an approximation that is already relatively close to the solution. Let (r1, . . . , rd) be our
representation ranks just as before. To efficiently generate a starting value, we are taking the given tensor a as
the initial approximation value such that u has the same initial representation rank as a. For each summation
1 ≤ µ ≤ d we want to perform an adaptive cross approximation (ACA, see [1]) as follows:

Rµ∑

iµ=1

uµ−1(·, iµ)⊗ uµ(iµ, ·) =
Rµ∑

iµ=1

aµ−1(·, iµ)⊗ aµ(iµ, ·) ACA≈:
rµ∑

iµ=1

uµ−1(·, iµ)⊗ uµ(iµ, ·).

After approximating edge µ, the representation rank of u is reduced to (R1, . . . , Rµ−1, rµ, Rµ+1, . . . , Rd).
Successively applying this scheme to all edges is resulting in u with the desired representation rank.

For the DMRG algorithm however, we do not need to compute an initial guess with non trivial ranks, we simply
use a rank 1 tensor as the init guess and let the algrithm find the ranks.

7.3 Tables

The results, that we want to present here were are in the following way. In the first step, we convert the full
tensor with the scheme that is described in [20] into a MPS/TT (with an accuracy of 10−12) which we interpret
as a tensor chain where the last summation index is 1. The source code can be found in [4]. One iteration is
one complete cycle.

Table 1: Reduced representation ranks for AO integrals in H2O using different basis sets using ALS

Basis set dim(Vµ) Initial r
ε

10−2 10−4 10−6

r #iter. r #iter. r #iter.
STO-3G 7 (7, 49, 7, 1) (12)4 34 (14)4 61 (16)4 31
6-31G 13 (13, 169, 13, 1) (27)4 71 (40)4 82 (44)4 42

Table 2: Reduced representation ranks for AO integrals in NH3 using different basis sets using ALS

Basis set dim(Vµ) Initial r
ε

10−2 10−4 10−6

r #iter. r #iter. r #iter.
STO-3G 8 (8, 64, 8, 1) (14)4 97 (16)4 195 (18)4 90
6-31G 15 (15, 225, 15, 1) (33)4 29 (50)4 72 (55)4 39
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