Skip to main content
Log in

Feature lines extraction for remote rendering on point model

  • Special Issue: Remote Visualization
  • Published:
Computing and Visualization in Science

Abstract

In this paper, we propose a method to extract feature lines on point model via an implicit fitting process at various scales. Based on these feature lines, we present a feature-based remote rendering scheme to interactively display large-scale point models on mobile devices over a low-bandwidth wireless network. By quickly loading and rendering the feature-line representations, users can well capture the general shape and main features of a model. Further a hybrid rendering of point and feature line helps to interactively display regions of interest. If with a powerful rendering capability, clients can also approximately reconstruct the model guided by the features. Experiments show that a small amount of feature lines can hold the ruling perceptual details and deliver a good visual impression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces. In: IEEE Visualization, pp. 21–28 (2001)

  2. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1 (2011)

    Google Scholar 

  3. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  4. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Proceedings of ACM SIGGRAPH, pp. 67–76 (2001)

  5. Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., Singh, M.: How well do line drawings depict shape? ACM Trans. Graphics-TOG 28(3), 28 (2009)

    Google Scholar 

  6. Diepstraten, J., Gorke, M., Ertl, T.: Remote line rendering for mobile devices. In: Proceedings of IEEE, Computer Graphics International(CGI)’04, pp. 454–461 (2004)

  7. Duguet, F., Drettakis, G.: Flexible point-based rendering on mobile devices. IEEE Comput. Graph. Appl. 24(4), 57–63 (2004)

    Article  Google Scholar 

  8. Guennebaud, M., Gross, G.: Algebraic point set surfaces. In: ACM Trans. Graph. (TOG), Proc. ACM SIGGRAPH, 26(3), 23 (2007)

  9. Gumhold, S., Wang, X., McLeod, R.F.: Feature extraction from point clouds. In: Proceedings of 10th International Meshing Roundtable (2001)

  10. Lai, Y.K., Hu, S.M., Fang, T.: Robust principal curvatures using feature adapted integral invariants. In: SPM (2009) SIAM/ACM Joint Conference on Geometric and Physical Modeling (2009)

  11. Lamberti, Fabrizio, Sanna, Andrea: A streaming-based solution for remote visualization of 3d graphics on mobile devices. Vis. Comput. Graph. IEEE Trans. 13(2), 247–260 (2007)

  12. Liang, X.H., Zhao, Q.P., He, Z.Y., Xie, K., Liu, Y.B.: A point-based rendering approach for real-time interaction on mobile devices. Sci. China (Ser. F Inf. Sci.) 52(8), 1335–1345 (2009)

    Google Scholar 

  13. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithms. Comput. Graph. (Proc. ACM SIGGRAPH ’87) 21(3), 163–169 (1987)

    Article  Google Scholar 

  14. Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential geometry operators for triangulated 2-manifolds. In: International Workshop on Visualization and Mathematics (2002)

  15. Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: ShapeModeling International, pp. 89–98 (2001)

  16. Ohtake, Y., Belyaev, A., Seidel, H.-P.: 3D scattered data approximation with adaptive compactly supported radial basis functions. In: International Conference on Shape Modeling and Applications (2004a)

  17. Ohtake, Y., Belyaev, A., Seidel, H.-P.: Ridge-valley lines on meshes via implicit surface fitting. ACM Trans. Graph. (TOG) 23(3), 609–612 (2004b)

  18. Pauly, M., Gross, M., Kobbelt, L.: Efficient simplification of point-sampled surfaces. In: IEEE Visualization, pp. 163–170 (2002)

  19. Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum 22(3), 281–289 (2003)

    Google Scholar 

  20. Pottmann, H., Steiner, T., Hofer, M., Haider, C., Hanbury, A.: The isophotic metric and its application to feature sensitive morphology on surfaces. In: ECCV2004, Part IV (2004)

  21. Pottmann, H., Wallner, J., Huang, Q.X., Yang, Y.L.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26(1), 37–60 (2009)

    Google Scholar 

  22. Pottmann, H., Wallner, J., Yang, Y.L., Lai, Y.K., Hu, S.M.: Principal curvatures from the integral invariant viewpoint. Comput. Aided Geom. Des. 24(8–9), 428–442 (2007)

    Google Scholar 

  23. Shi, S., Jeon, W.J., Nahrstedt, K., Campbell, R.H.: Real-time remote rendering of 3d video for mobile devices. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 391–400. (2009)

  24. Sipiran, I., Bustos, B.: A robust 3d interest points detector based on harris operator. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, pp. 7–14 (2010)

  25. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing (2009)

  26. Vaxman, A., Ben-Chen, M., Gotsman, C.: A multi-resolution approach to heat kernels on discrete surfaces. ACM Trans. Graph. 29(4), 121 (2010)

    Google Scholar 

  27. Xie, K., Liang, X.H., Liu, Y.B., He, Z.Y.: An adaptive splitting and transmission control method for rendering point model on mobile devices. In: Proceedings of ACM SIGGRAPH Symposium On Interactive 3D Graphics and Games (2010)

  28. Yamazaki, I., Natarajan, V., Ba, Z.J., Hamann, B.: Segmenting point sets. In: IEEE International Conference on Shape Modeling and Applications (2006)

  29. Zhao, H., Osher, S.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Berlin (2002)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National High Technology Research and Development Program of China (863 Program) under Grant No.2013AA013701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Liang.

Additional information

Communicated by: Fabrizio Lamberti and Andrea Sanna (Guest Editors).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 28446 KB)

Supplementary material 2 (pdf 305 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, C., Yuan, C., Hu, S. et al. Feature lines extraction for remote rendering on point model. Comput. Visual Sci. 15, 101–109 (2012). https://doi.org/10.1007/s00791-013-0202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-013-0202-7

Keywords

Navigation